Deck 14: Building Multiple Regression Models

Full screen (f)
exit full mode
Question
Stepwise regression is one of the ways to prevent the problem of multicollinearity.
Use Space or
up arrow
down arrow
to flip the card.
Question
A linear regression model cannot be used to explore the possibility that a quadratic relationship may exist between two variables.
Question
The regression model y = β\beta 0 + β\beta 1 x1 + β\beta 2 x2 + β\beta 3 x1x2 + ε\varepsilon is a first order model.
Question
If a data set contains k independent variables, the "all possible regression" search procedure will determine 2k different models.
Question
Recoding data cannot improve the fit of a regression model.
Question
If each pair of independent variables is weakly correlated, there is no problem of multicollinearity.
Question
If two or more independent variables are highly correlated, the regression analysis is unlikely to suffer from the problem of multicollinearity.
Question
Regression models in which the highest power of any predictor variable is 1 and in which there are no cross product terms are referred to as first-order models.
Question
If the effect of an independent variable (e.g., square footage)on a dependent variable (e.g., price)is affected by different ranges of values for a second independent variable (e.g., age ), the two independent variables are said to interact.
Question
A linear regression model can be used to explore the possibility that a quadratic relationship may exist between two variables by suitably transforming the independent variable.
Question
A qualitative variable which represents categories such as geographical territories or job classifications may be included in a regression model by using indicator or dummy variables.
Question
A logarithmic transformation may be applied to both positive and negative numbers.
Question
If a qualitative variable has c categories, then only (c - 1)dummy variables must be included in the regression model.
Question
If a square-transformation is applied to a series of positive numbers, all greater than 1, the numerical values of the numbers in the transformed series will be smaller than the corresponding numbers in the original series.
Question
The regression model y = β\beta 0 + β\beta 1 x1 + β\beta 2 x21 + ε\varepsilon is called a quadratic model.
Question
Qualitative data can be incorporated into linear regression models using indicator variables.
Question
If a data set contains k independent variables, the "all possible regression" search procedure will determine 2k - 1 different models.
Question
If a qualitative variable has c categories, then c dummy variables must be included in the regression model, one for each category.
Question
The interaction between two independent variables can be examined by including a new variable, which is the sum of the two independent variables, in the regression model.
Question
The regression model y = β\beta 0 + β\beta 1 x1 + β\beta 2 x2 + β\beta 3 x3 + ε\varepsilon is a third order model.
Question
We may use logistic regression when the dependent variable is a dummy variable, coded 0 or 1.
Question
Multiple linear regression models can handle certain nonlinear relationships by ________.

A)biasing the sample
B)recoding or transforming variables
C)adjusting the resultant ANOVA table
D)adjusting the observed t and F values
E)performing nonlinear regression
Question
The following scatter plot indicates that _________. <strong>The following scatter plot indicates that _________.  </strong> A)a log x transform may be useful B)a log y transform may be useful C)a<sub> </sub>x<sup>2</sup> transform may be useful D)no transform is needed E)a 1/y transform may be useful <div style=padding-top: 35px>

A)a log x transform may be useful
B)a log y transform may be useful
C)a x2 transform may be useful
D)no transform is needed
E)a 1/y transform may be useful
Question
A multiple regression analysis produced the following tables.  Coefficients  Stardard Error t Statistic p-value  Irtercept 1411.876762.15331.8524830.074919x135.1821596.84330.3632890.719218x127.7216483.0079432.5670860.016115\begin{array} { | c | c | c | c | c | } \hline & \text { Coefficients } & \text { Stardard Error } & t \text { Statistic } & p \text {-value } \\\hline & & & & \\\hline \text { Irtercept } & 1411.876 & 762.1533 & 1.852483 & 0.074919 \\\hline x _ { 1 } & 35.18215 & 96.8433 & 0.363289 & 0.719218 \\\hline x _ { 1 } { } ^ { 2 } & 7.721648 & 3.007943 & 2.567086 & 0.016115 \\\hline\end{array} dfSSMSF Repression 2585670322928351657.34861 Residual 25127655735106229 Total 2771332605\begin{array} { | c | c | c | c | c | } \hline & \mathrm { df } & \mathrm { SS } & \mathrm { MS } & F \\\hline \text { Repression } & 2 & 58567032 & 29283516 & 57.34861 \\\hline \text { Residual } & 25 & 12765573 & 5106229 & \\\hline \text { Total } & 27 & 71332605 & & \\\hline\end{array} The sample size for this analysis is ____________.

A)28
B)25
C)30
D)27
E)2
Question
If the variance inflation factor is bigger than 10, the regression analysis might suffer from the problem of multicollinearity.
Question
To test the overall effectiveness of a logistic regression, a chi-squared statistic is used.
Question
When structuring a logistic regression model, only one independent or predictor variable can be used.
Question
A multiple regression analysis produced the following tables.  Coefficients  Stardard Error t Statistic p-value  Irtercept 1411.876762.15331.8524830.074919x135.1821596.84330.3632890.719218x127.7216483.0079432.5670860.016115\begin{array} { | c | c | c | c | c | } \hline & \text { Coefficients } & \text { Stardard Error } & t \text { Statistic } & p \text {-value } \\\hline & & & & \\\hline \text { Irtercept } & 1411.876 & 762.1533 & 1.852483 & 0.074919 \\\hline x _ { 1 } & 35.18215 & 96.8433 & 0.363289 & 0.719218 \\\hline x _ { 1 } { } ^ { 2 } & 7.721648 & 3.007943 & 2.567086 & 0.016115 \\\hline\end{array} dfSSMSF Repression 2585670322928351657.34861 Residual 25127655735106229 Total 2771332605\begin{array} { | c | c | c | c | c | } \hline & \mathrm { df } & \mathrm { SS } & \mathrm { MS } & F \\\hline \text { Repression } & 2 & 58567032 & 29283516 & 57.34861 \\\hline \text { Residual } & 25 & 12765573 & 5106229 & \\\hline \text { Total } & 27 & 71332605 & & \\\hline\end{array} Using α\alpha = 0.10 to test the null hypothesis H0: β\beta 2 = 0, the critical t value is ____.

A)± 1.316
B)± 1.314
C)± 1.703
D)± 1.780
E)± 1.708
Question
A multiple regression analysis produced the following tables.  Coefficients  Stardard Error t Statistic p-value  Irtercept 1411.876762.15331.8524830.074919x135.1821596.84330.3632890.719218x127.7216483.0079432.5670860.016115\begin{array} { | c | c | c | c | c | } \hline & \text { Coefficients } & \text { Stardard Error } & t \text { Statistic } & p \text {-value } \\\hline & & & & \\\hline \text { Irtercept } & 1411.876 & 762.1533 & 1.852483 & 0.074919 \\\hline x _ { 1 } & 35.18215 & 96.8433 & 0.363289 & 0.719218 \\\hline x _ { 1 } { } ^ { 2 } & 7.721648 & 3.007943 & 2.567086 & 0.016115 \\\hline\end{array} dfSSMSF Repression 2585670322928351657.34861 Residual 25127655735106229 Total 2771332605\begin{array} { | c | c | c | c | c | } \hline & \mathrm { df } & \mathrm { SS } & \mathrm { MS } & F \\\hline \text { Repression } & 2 & 58567032 & 29283516 & 57.34861 \\\hline \text { Residual } & 25 & 12765573 & 5106229 & \\\hline \text { Total } & 27 & 71332605 & & \\\hline\end{array} Using α\alpha = 0.10 to test the null hypothesis H0: β\beta 1 = 0, the critical t value is ____.

A)± 1.316
B)± 1.314
C)± 1.703
D)± 1.780
E)± 1.708
Question
The following scatter plot indicates that _________. <strong>The following scatter plot indicates that _________.  </strong> A)a log x transform may be useful B)a log y transform may be useful C)an<sub> </sub>x<sup>2</sup> transform may be useful D)no transform is needed E)a (- x)transform may be useful <div style=padding-top: 35px>

A)a log x transform may be useful
B)a log y transform may be useful
C)an x2 transform may be useful
D)no transform is needed
E)a (- x)transform may be useful
Question
The following scatter plot indicates that _________. <strong>The following scatter plot indicates that _________.  </strong> A)a log x transform may be useful B)a y<sup>2</sup> transform may be useful C)a<sub> </sub>x<sup>2</sup> transform may be useful D)no transform is needed E)a 1/x transform may be useful <div style=padding-top: 35px>

A)a log x transform may be useful
B)a y2 transform may be useful
C)a x2 transform may be useful
D)no transform is needed
E)a 1/x transform may be useful
Question
A local parent group was concerned with the increasing cost of school for families with school aged children.The parent group was interested in understanding the relationship between the academic grade level for the child and the total costs spent per child per academic year.They performed a multiple regression analysis using total cost as the dependent variable and academic year (x1)as the independent variables.The multiple regression analysis produced the following tables.  Coefficients  Stardard Error t Statistic p-value  Intercept 707.9144435.11831.6269470.114567x12.90330781.628020.0355680.971871x1211.912973.8062113.1298780.003967\begin{array} { | c | c | c | c | c | } \hline & \text { Coefficients } & \text { Stardard Error } & t \text { Statistic } & p \text {-value } \\\hline \text { Intercept } & 707.9144 & 435.1183 & 1.626947 & 0.114567 \\\hline \boldsymbol { x } _ { 1 } & 2.903307 & 81.62802 & 0.035568 & 0.971871 \\\hline \mathbf { x } _ { 1 } { } ^ { 2 } & 11.91297 & 3.806211 & 3.129878 & 0.003967 \\\hline\end{array} df5sMSFp-value  Repression 2320551531602757747.345571.49E09 Residual 279140128338523.3 Total 2941195281\begin{array} { | c | c | c | c | c | c | } \hline & \mathrm { df } & \mathbf { 5 s } & \mathrm { MS } & F & p \text {-value } \\\hline \text { Repression } & 2 & 32055153 & 16027577 & 47.34557 & 1.49 \mathrm { E } - 09 \\\hline \text { Residual } & 27 & 9140128 & \mathbf { 3 3 8 5 2 3 . 3 } & & \\\hline \text { Total } & \mathbf { 2 9 } & 41195281 & & & \\\hline\end{array} The sample size for this analysis is ____________.

A)27
B)29
C)30
D)25
E)28
Question
The logistic regression model constrains the estimated probabilities to lie between 0 and 100.
Question
A multiple regression analysis produced the following tables.  Coefficients  Stardard Error t Statistic p-value  Irtercept 1411.876762.15331.8524830.074919x135.1821596.84330.3632890.719218x127.7216483.0079432.5670860.016115\begin{array} { | c | c | c | c | c | } \hline & \text { Coefficients } & \text { Stardard Error } & t \text { Statistic } & p \text {-value } \\\hline & & & & \\\hline \text { Irtercept } & 1411.876 & 762.1533 & 1.852483 & 0.074919 \\\hline x _ { 1 } & 35.18215 & 96.8433 & 0.363289 & 0.719218 \\\hline x _ { 1 } { } ^ { 2 } & 7.721648 & 3.007943 & 2.567086 & 0.016115 \\\hline\end{array} dfSSMSF Regression 2585670322928351657.34861 Residual 2512765573510622.9 Total 2771332605\begin{array} { | c | c | c | c | c | } \hline & \mathrm { df } & \mathrm { SS } & \mathrm { MS } & F \\\hline \text { Regression } & 2 & 58567032 & 29283516 & 57.34861 \\\hline \text { Residual } & 25 & 12765573 & 510622.9 & \\\hline \text { Total } & 27 & 71332605 & & \\\hline\end{array} Using α\alpha = 0.05 to test the null hypothesis H0: β\beta 1 = β\beta 2 = 0, the critical F value is ____.

A)4.24
B)3.39
C)5.57
D)3.35
E)2.35
Question
A multiple regression analysis produced the following tables.  Coefficients  Stardard Error t Statistic p-value  Irtercept 1411.876762.15331.8524830.074919x135.1821596.84330.3632890.719218x127.7216483.0079432.5670860.016115\begin{array} { | c | c | c | c | c | } \hline & \text { Coefficients } & \text { Stardard Error } & t \text { Statistic } & p \text {-value } \\\hline \text { Irtercept } & 1411.876 & 762.1533 & 1.852483 & 0.074919 \\\hline \boldsymbol { x } _ { 1 } & 35.18215 & 96.8433 & 0.363289 & 0.719218 \\\hline \boldsymbol { x } _ { 1 } { } ^ { 2 } & 7.721648 & \mathbf { 3 . 0 0 7 9 4 3 } & 2.567086 & 0.016115\\\hline\end{array} dfSSMSF Regression 2585670322928351657.34861 Residual 2512765573510622.9 Total 2771332605\begin{array} { | c | c | c | c | c | } \hline & \mathrm { df } & \mathrm { SS } & \mathrm { MS } & F \\\hline \text { Regression } & 2 & 58567032 & 29283516 & 57.34861 \\\hline \text { Residual } & 25 & 12765573 & 510622.9 & \\\hline \text { Total } & 27 & 71332605 & & \\\hline\end{array} For x1= 20, the predicted value of y is ____________.

A)5,204.18.
B)2,031.38
C)2,538.86
D)6262.19
E)6,535.86
Question
A multiple regression analysis produced the following tables.  Coefficients  Stardard Error t Statistic p-value  Irtercept 1411.876762.15331.8524830.074919x135.1821596.84330.3632890.719218x127.7216483.0079432.5670860.016115\begin{array} { | c | c | c | c | c | } \hline & \text { Coefficients } & \text { Stardard Error } & t \text { Statistic } & p \text {-value } \\\hline & & & & \\\hline \text { Irtercept } & 1411.876 & 762.1533 & 1.852483 & 0.074919 \\\hline x _ { 1 } & 35.18215 & 96.8433 & 0.363289 & 0.719218 \\\hline x _ { 1 } { } ^ { 2 } & 7.721648 & 3.007943 & 2.567086 & 0.016115 \\\hline\end{array} dfSSMSF Repression 2585670322928351657.34861 Residual 25127655735106229 Total 2771332605\begin{array} { | c | c | c | c | c | } \hline & \mathrm { df } & \mathrm { SS } & \mathrm { MS } & F \\\hline \text { Repression } & 2 & 58567032 & 29283516 & 57.34861 \\\hline \text { Residual } & 25 & 12765573 & 5106229 & \\\hline \text { Total } & 27 & 71332605 & & \\\hline\end{array} The regression equation for this analysis is ____________.

A) <strong>A multiple regression analysis produced the following tables.  \begin{array} { | c | c | c | c | c | } \hline & \text { Coefficients } & \text { Stardard Error } & t \text { Statistic } & p \text {-value } \\ \hline & & & & \\ \hline \text { Irtercept } & 1411.876 & 762.1533 & 1.852483 & 0.074919 \\ \hline x _ { 1 } & 35.18215 & 96.8433 & 0.363289 & 0.719218 \\ \hline x _ { 1 } { } ^ { 2 } & 7.721648 & 3.007943 & 2.567086 & 0.016115 \\ \hline \end{array}   \begin{array} { | c | c | c | c | c | } \hline & \mathrm { df } & \mathrm { SS } & \mathrm { MS } & F \\ \hline \text { Repression } & 2 & 58567032 & 29283516 & 57.34861 \\ \hline \text { Residual } & 25 & 12765573 & 5106229 & \\ \hline \text { Total } & 27 & 71332605 & & \\ \hline \end{array}  The regression equation for this analysis is ____________.</strong> A)  = 762.1533 + 96.8433 x<sub>1</sub> + 3.007943 x<sub>1</sub><sup>2</sup> B)  = 1411.876 + 762.1533 x<sub>1</sub> + 1.852483 x<sub>1</sub><sup>2</sup> C)  = 1411.876 + 35.18215 x<sub>1</sub> + 7.721648 x<sub>1</sub><sup>2</sup> D)  = 762.1533 + 1.852483 x<sub>1</sub> + 0.074919 x<sub>1</sub><sup>2</sup> E)  = 762.1533 - 1.852483 x<sub>1</sub> + 0.074919 x<sub>1</sub><sup>2</sup> <div style=padding-top: 35px>  = 762.1533 + 96.8433 x1 + 3.007943 x12
B)11efcd21_6411_aee5_b057_4518c9fddc20_TB7041_00 = 1411.876 + 762.1533 x1 + 1.852483 x12
C)11efcd21_6411_aee5_b057_4518c9fddc20_TB7041_00 = 1411.876 + 35.18215 x1 + 7.721648 x12
D)11efcd21_6411_aee5_b057_4518c9fddc20_TB7041_00 = 762.1533 + 1.852483 x1 + 0.074919 x12
E)11efcd21_6411_aee5_b057_4518c9fddc20_TB7041_00 = 762.1533 - 1.852483 x1 + 0.074919 x12
Question
A multiple regression analysis produced the following tables.  Coefficients  Stardard Error t Statistic p-value  Irtercept 1411.876762.15331.8524830.074919x135.1821596.84330.3632890.719218x127.7216483.0079432.5670860.016115\begin{array} { | c | c | c | c | c | } \hline & \text { Coefficients } & \text { Stardard Error } & t \text { Statistic } & p \text {-value } \\\hline \text { Irtercept } & 1411.876 & 762.1533 & 1.852483 & 0.074919 \\\hline \boldsymbol { x } _ { 1 } & 35.18215 & 96.8433 & 0.363289 & 0.719218 \\\hline \boldsymbol { x } _ { 1 } { } ^ { 2 } & 7.721648 & \mathbf { 3 . 0 0 7 9 4 3 } & 2.567086 & 0.016115\\\hline\end{array} dfSSMSF Regression 2585670322928351657.34861 Residual 2512765573510622.9 Total 2771332605\begin{array} { | c | c | c | c | c | } \hline & \mathrm { df } & \mathrm { SS } & \mathrm { MS } & F \\\hline \text { Regression } & 2 & 58567032 & 29283516 & 57.34861 \\\hline \text { Residual } & 25 & 12765573 & 510622.9 & \\\hline \text { Total } & 27 & 71332605 & & \\\hline\end{array} For x1= 10, the predicted value of y is ____________.

A)8.88.
B)2,031.38
C)2,53.86
D)262.19
E)2,535.86
Question
The following scatter plot indicates that _________. <strong>The following scatter plot indicates that _________.  </strong> A)a<sub> </sub>x<sup>2</sup> transform may be useful B)a log y transform may be useful C)a<sub> </sub>x<sup>4</sup> transform may be useful D)no transform is needed E)a x<sup>3</sup> transform may be useful <div style=padding-top: 35px>

A)a x2 transform may be useful
B)a log y transform may be useful
C)a x4 transform may be useful
D)no transform is needed
E)a x3 transform may be useful
Question
A local parent group was concerned with the increasing cost of school for families with school aged children.The parent group was interested in understanding the relationship between the academic grade level for the child and the total costs spent per child per academic year.They performed a multiple regression analysis using total cost as the dependent variable and academic year (x1)as the independent variables.The multiple regression analysis produced the following tables.  Coefficients  Stardard Error t Statistic p-value  Intercept 707.9144435.11831.6269470.114567x12.90330781.628020.0355680.971871x1211.912973.8062113.1298780.003967\begin{array} { | c | c | c | c | c | } \hline & \text { Coefficients } & \text { Stardard Error } & t \text { Statistic } & p \text {-value } \\\hline \text { Intercept } & 707.9144 & 435.1183 & 1.626947 & 0.114567 \\\hline \boldsymbol { x } _ { 1 } & 2.903307 & 81.62802 & 0.035568 & 0.971871 \\\hline \mathbf { x } _ { 1 } { } ^ { 2 } & 11.91297 & 3.806211 & 3.129878 & 0.003967 \\\hline\end{array} df5sMSFp-value  Regression 2320551531602757747.345571.49E09 Residual 279140128338523.3 Total 2941195281\begin{array} { | c | c | c | c | c | c | } \hline & \mathrm { df } & \mathbf { 5 s } & \mathrm { MS } & F & p \text {-value } \\\hline \text { Regression } & 2 & 32055153 & 16027577 & 47.34557 & 1.49 \mathrm { E } - 09 \\\hline \text { Residual } & 27 & 9140128 & 338523.3 & & \\\hline \text { Total } & \mathbf { 2 9 } & 41195281 & & & \\\hline\end{array} Using α\alpha = 0.01 to test the null hypothesis H0: β\beta 1 = β\beta 2 = 0, the critical F value is ____.

A)5.42
B)5.49
C)7.60
D)3.35
E)2.49
Question
A local parent group was concerned with the increasing cost of school for families with school aged children.The parent group was interested in understanding the relationship between the academic grade level for the child and the total costs spent per child per academic year.They performed a multiple regression analysis using total cost as the dependent variable and academic year (x1)as the independent variables.The multiple regression analysis produced the following tables.  Coefficients  Stardard Error t Statistic p-value  Intercept 707.9144435.11831.6269470.114567x12.90330781.628020.0355680.971871x1211.912973.8062113.1298780.003967\begin{array} { | c | c | c | c | c | } \hline & \text { Coefficients } & \text { Stardard Error } & t \text { Statistic } & p \text {-value } \\\hline \text { Intercept } & 707.9144 & 435.1183 & 1.626947 & 0.114567 \\\hline \boldsymbol { x } _ { 1 } & 2.903307 & 81.62802 & 0.035568 & 0.971871 \\\hline \mathbf { x } _ { 1 } { } ^ { 2 } & 11.91297 & 3.806211 & 3.129878 & 0.003967 \\\hline\end{array}  Df  SS  MS Fp-value  Regression 2320551531602757747.345571.49E09 Residual 279140128338523.3 Total 2941195281\begin{array} { | c | c | c | c | c | c | } \hline & \text { Df } & \text { SS } & \text { MS } & F & p \text {-value } \\\hline \text { Regression } & 2 & 32055153 & 16027577 & 47.34557 & 1.49 \mathrm { E } - 09 \\\hline \text { Residual } & 27 & 9140128 & 338523.3 & & \\\hline \text { Total } & 29 & 41195281 & & & \\\hline\end{array} The regression equation for this analysis is ____________.

A) <strong>A local parent group was concerned with the increasing cost of school for families with school aged children.The parent group was interested in understanding the relationship between the academic grade level for the child and the total costs spent per child per academic year.They performed a multiple regression analysis using total cost as the dependent variable and academic year (x<sub>1</sub>)as the independent variables.The multiple regression analysis produced the following tables.  \begin{array} { | c | c | c | c | c | } \hline & \text { Coefficients } & \text { Stardard Error } & t \text { Statistic } & p \text {-value } \\ \hline \text { Intercept } & 707.9144 & 435.1183 & 1.626947 & 0.114567 \\ \hline \boldsymbol { x } _ { 1 } & 2.903307 & 81.62802 & 0.035568 & 0.971871 \\ \hline \mathbf { x } _ { 1 } { } ^ { 2 } & 11.91297 & 3.806211 & 3.129878 & 0.003967 \\ \hline \end{array}   \begin{array} { | c | c | c | c | c | c | } \hline & \text { Df } & \text { SS } & \text { MS } & F & p \text {-value } \\ \hline \text { Regression } & 2 & 32055153 & 16027577 & 47.34557 & 1.49 \mathrm { E } - 09 \\ \hline \text { Residual } & 27 & 9140128 & 338523.3 & & \\ \hline \text { Total } & 29 & 41195281 & & & \\ \hline \end{array}  The regression equation for this analysis is ____________.</strong> A) = 707.9144 + 2.903307 x<sub>1</sub> + 11.91297 x<sub>1</sub><sup>2</sup> B) = 707.9144 + 435.1183 x<sub>1</sub> + 1.626947 x<sub>1</sub><sup>2</sup> C)  = 435.1183 + 81.62802 x<sub>1</sub> + 3.806211 x<sub>1</sub><sup>2</sup> D)  = 1.626947 + 0.035568 x<sub>1</sub> + 3.129878 x<sub>1</sub><sup>2</sup> E)  = 1.626947 + 0.035568 x<sub>1</sub> - 3.129878 x<sub>1</sub><sup>2</sup> <div style=padding-top: 35px>  = 707.9144 + 2.903307 x1 + 11.91297 x12
B)11efcd21_6411_aee5_b057_4518c9fddc20_TB7041_00= 707.9144 + 435.1183 x1 + 1.626947 x12
C)11efcd21_6411_aee5_b057_4518c9fddc20_TB7041_00 = 435.1183 + 81.62802 x1 + 3.806211 x12
D)11efcd21_6411_aee5_b057_4518c9fddc20_TB7041_00 = 1.626947 + 0.035568 x1 + 3.129878 x12
E)11efcd21_6411_aee5_b057_4518c9fddc20_TB7041_00 = 1.626947 + 0.035568 x1 - 3.129878 x12
Question
After a transformation of the y-variable values into log y, and performing a regression analysis produced the following tables.  Coefficients  Stardard Error t Statistic p-value  Iritercept 2.0053490.09735120.599234.81E18x0.0271260.0095182.8498430.008275\begin{array} { | c | c | c | c | c | } \hline & \text { Coefficients } & \text { Stardard Error } & t \text { Statistic } & p \text {-value } \\\hline \text { Iritercept } & 2.005349 & 0.097351 & 20.59923 & 4.81 \mathrm { E } - 18 \\\hline \boldsymbol { x } & 0.027126 & 0.009518 & \mathbf { 2 . 8 4 9 8 4 3 } & \mathbf { 0 . 0 0 8 2 7 5 } \\\hline\end{array} df SS  MS Fp-value  Regression 10.1966420.1966428.1216070.008447 Residual 260.6295170.024212 Total 270.826159\begin{array} { | c | c | c | c | c | c | } \hline & \mathrm { df } & \text { SS } & \text { MS } & F & p \text {-value } \\\hline \text { Regression } & 1 & 0.196642 & 0.196642 & 8.121607 & 0.008447 \\\hline \text { Residual } & 26 & 0.629517 & 0.024212 & & \\\hline \text { Total } & 27 & 0.826159 & & & \\\hline\end{array} For x1= 10, the predicted value of y is ____________.

A)155.79
B)1.25
C)2.42
D)189.06
E)18.90
Question
In multiple regression analysis, qualitative variables are sometimes referred to as ___.

A)dummy variables
B)quantitative variables
C)dependent variables
D)performance variables
E)cardinal variables
Question
A local parent group was concerned with the increasing cost of school for families with school aged children.The parent group was interested in understanding the relationship between the academic grade level for the child and the total costs spent per child per academic year.They performed a multiple regression analysis using total cost as the dependent variable and academic year (x1)as the independent variables.The multiple regression analysis produced the following tables.  Coefficients  Stardard Error t Statistic p-value  Intercept 707.9144435.11831.6269470.114567x12.90330781.628020.0355680.971871x1211.912973.8062113.1298780.003967\begin{array} { | c | c | c | c | c | } \hline & \text { Coefficients } & \text { Stardard Error } & t \text { Statistic } & p \text {-value } \\\hline \text { Intercept } & 707.9144 & 435.1183 & 1.626947 & 0.114567 \\\hline \boldsymbol { x } _ { 1 } & 2.903307 & 81.62802 & 0.035568 & 0.971871 \\\hline \mathbf { x } _ { 1 } ^ { 2 } & 11.91297 & 3.806211 & 3.129878 & 0.003967 \\\hline\end{array}  df  SS  MS Fp-value  Regression 2320551531602757747.345571.49E09 Residual 279140128338523.3 Total 2941195281\begin{array} { | c | c | c | c | c | c | } \hline & \text { df } & \text { SS } & \text { MS } & F & p \text {-value } \\\hline \text { Regression } & 2 & 32055153 & 16027577 & 47.34557 & 1.49 \mathrm { E } - 09 \\\hline \text { Residual } & 27 & 9140128 & 338523.3 & & \\\hline \text { Total } & 29 & 41195281 & & & \\\hline\end{array} Using α\alpha = 0.05 to test the null hypothesis H0: β\beta 1 = 0, the critical t value is ____.

A)± 1.311
B)± 1.699
C)± 1.703
D)± 2.502
E)± 2.052
Question
Yvonne Yang, VP of Finance at Discrete Components, Inc.(DCI), wants a regression model which predicts the average collection period on credit sales.Her data set includes two qualitative variables: sales discount rates (0%, 2%, 4%, and 6%), and total assets of credit customers (small, medium, and large).The number of dummy variables needed for "total assets of credit customer" in Yvonne's regression model is ________.

A)1
B)2
C)3
D)4
E)7
Question
Hope Hernandez is the new regional Vice President for a large gasoline station chain.She wants a regression model to predict sales in the convenience stores.Her data set includes two qualitative variables: the gasoline station location (inner city, freeway, and suburbs), and curb appeal of the convenience store (low, medium, and high).The number of dummy variables needed for "curb appeal" in Hope's regression model is ______.

A)1
B)2
C)3
D)4
E)5
Question
Abby Kratz, a market specialist at the market research firm of Saez, Sikes, and Spitz, is analyzing household budget data collected by her firm.Abby's dependent variable is weekly household expenditures on groceries (in $'s), and her independent variables are annual household income (in $1,000's)and household neighborhood (0 = suburban, 1 = rural).Regression analysis of the data yielded the following table.  Coefficients  Stardard Error t Statistic p-value  Irtercept 19.6824710.011761.9659340.077667x1 (incorne) 1.7352720.1745649.9406121.68E06x2 (neighborhood) 49.124567.6557766.4166677.67E05\begin{array} { | l | r | r | r | r | } \hline & \text { Coefficients } & \text { Stardard Error } & t \text { Statistic } & p \text {-value } \\\hline \text { Irtercept } & 19.68247 & 10.01176 & 1.965934 & 0.077667 \\\hline x _ { 1 } \text { (incorne) } & 1.735272 & 0.174564 & 9.940612 & 1.68 \mathrm { E } - 06 \\\hline x _ { 2 } \text { (neighborhood) } & 49.12456 & 7.655776 & 6.416667 & 7.67 \mathrm { E } - 05 \\\hline\end{array} For two households, one suburban and one rural, Abby's model predicts ________.

A)equal weekly expenditures for groceries
B)the suburban household's weekly expenditures for groceries will be $49 more
C)the rural household's weekly expenditures for groceries will be $49 more
D)the suburban household's weekly expenditures for groceries will be $8 more
E)the rural household's weekly expenditures for groceries will be $49 less
Question
A local parent group was concerned with the increasing cost of school for families with school aged children.The parent group was interested in understanding the relationship between the academic grade level for the child and the total costs spent per child per academic year.They performed a multiple regression analysis using total cost as the dependent variable and academic year (x1)as the independent variables.The multiple regression analysis produced the following tables.  Coefficients  Stardard Error t Statistic p-value  Intercept 707.9144435.11831.6269470.114567x12.90330781.628020.0355680.971871x1211.912973.8062113.1298780.003967\begin{array} { | c | c | c | c | c | } \hline & \text { Coefficients } & \text { Stardard Error } & t \text { Statistic } & p \text {-value } \\\hline \text { Intercept } & 707.9144 & 435.1183 & 1.626947 & 0.114567 \\\hline \boldsymbol { x } _ { 1 } & 2.903307 & 81.62802 & 0.035568 & 0.971871 \\\hline \mathbf { x } _ { 1 } { } ^ { 2 } & 11.91297 & 3.806211 & 3.129878 & 0.003967 \\\hline\end{array}  df  Ss  Ms Fp-value  Regression 2320551531602757747.345571.49E09 Residual 279140128338523.3 Total 2941195281\begin{array} { | c | c | c | c | c | c | } \hline & \text { df } & \text { Ss } & \text { Ms } & F & p \text {-value } \\\hline \text { Regression } & 2 & 32055153 & 16027577 & 47.34557 & 1.49 \mathrm { E } - 09 \\\hline \text { Residual } & 27 & 9140128 & 338523.3 & & \\\hline \text { Total } & 29 & 41195281 & & & \\\hline\end{array} For a child in grade 10 (x1= 10)the predicted value of y is ____________.

A)707.91
B)1,117.38
C)856.08
D)2,189.54
E)1,928.24
Question
Alan Bissell, a market analyst for City Sound Online Mart, is analyzing sales from heavy metal song downloads.Alan's dependent variable is annual heavy metal song download sales (in $1,000,000's), and his independent variables are website visitors (in 1,000's)and type of download format requested (0 = MP3, 1 = other).Regression analysis of the data yielded the following tables.  Coefficients  Standard Error t Statistic p-value  Iritercept 1.70.3842124.4246380.00166x1 (websitevisitors) 0.040.0140292.8511460.019054x2 (download format) 1.56666670.205187.635583.21E05\begin{array} { | c | c | c | c | c | } \hline & \text { Coefficients } & \text { Standard Error } & t \text { Statistic } & p \text {-value } \\\hline \text { Iritercept } & 1.7 & 0.384212 & 4.424638 & 0.00166 \\\hline x _ { 1 } \text { (websitevisitors) } & 0.04 & 0.014029 & 2.851146 & 0.019054 \\\hline x _ { 2 } \text { (download format) } & - 1.5666667 & 0.20518 & - 7.63558 & 3.21 E - 05 \\\hline\end{array} For the same number of website visitors, what is difference between the predicted sales for MP3 versus 'other' heavy metal song downloads

A)$1,566,666 higher sales for 'other' formats
B)the same sales for both formats
C)$1,566,666 lower sales for the 'other' format
D)$1,700,000 higher sales for the MP3 format
E)$ 1,700,000 lower sales for the 'other' format
Question
Yvonne Yang, VP of Finance at Discrete Components, Inc.(DCI), wants a regression model which predicts the average collection period on credit sales.Her data set includes two qualitative variables: sales discount rates (0%, 2%, 4%, and 6%), and total assets of credit customers (small, medium, and large).The number of dummy variables needed for "sales discount rate" in Yvonne's regression model is ________.

A)1
B)2
C)3
D)4
E)7
Question
If a qualitative variable has 4 categories, how many dummy variables must be created and used in the regression analysis?

A)3
B)4
C)5
D)6
E)7
Question
Hope Hernandez is the new regional Vice President for a large gasoline station chain.She wants a regression model to predict sales in the convenience stores.Her data set includes two qualitative variables: the gasoline station location (inner city, freeway, and suburbs), and curb appeal of the convenience store (low, medium, and high).The number of dummy variables needed for Hope's regression model is ______.

A)2
B)4
C)6
D)8
E)9
Question
Abby Kratz, a market specialist at the market research firm of Saez, Sikes, and Spitz, is analyzing household budget data collected by her firm.Abby's dependent variable is weekly household expenditures on groceries (in $'s), and her independent variables are annual household income (in $1,000's)and household neighborhood (0 = suburban, 1 = rural).Regression analysis of the data yielded the following table.  Coefficients  Stardard Error t Statistic p-value  Intercept 19.6824710.011761.9659340.077667x1 (income) 1.7352720.1745649.9406121.68E06x2 (neighborhood) 49.124567.6557766.4166677.67E05\begin{array} { | c | c | c | c | c | } \hline & \text { Coefficients } & \text { Stardard Error } & t \text { Statistic } & p \text {-value } \\\hline \text { Intercept } & 19.68247 & 10.01176 & 1.965934 & 0.077667 \\\hline x _ { 1 } \text { (income) } & 1.735272 & 0.174564 & 9.940612 & 1.68 \mathrm { E } - 06 \\\hline x _ { 2 } \text { (neighborhood) } & 49.12456 & 7.655776 & 6.416667 & 7.67 \mathrm { E } - 05 \\\hline\end{array} For a rural household with $90,000 annual income, Abby's model predicts weekly grocery expenditure of ________________.

A)$156.19
B)$224.98
C)$444.62
D)$141.36
E)$175.86
Question
A local parent group was concerned with the increasing cost of school for families with school aged children.The parent group was interested in understanding the relationship between the academic grade level for the child and the total costs spent per child per academic year.They performed a multiple regression analysis using total cost as the dependent variable and academic year (x1)as the independent variables.The multiple regression analysis produced the following tables.  Coefficients  Stardard Error t Statistic p-value  Intercept 707.9144435.11831.6269470.114567x12.90330781.628020.0355680.971871x1211.912973.8062113.1298780.003967\begin{array} { | c | c | c | c | c | } \hline & \text { Coefficients } & \text { Stardard Error } & t \text { Statistic } & p \text {-value } \\\hline \text { Intercept } & 707.9144 & 435.1183 & 1.626947 & 0.114567 \\\hline \boldsymbol { x } _ { 1 } & 2.903307 & 81.62802 & 0.035568 & 0.971871 \\\hline \mathbf { x } _ { 1 } { } ^ { 2 } & 11.91297 & 3.806211 & 3.129878 & 0.003967 \\\hline\end{array}  df  Ss  Ms Fp-value  Regression 2320551531602757747.345571.49E09 Residual 279140128338523.3 Total 2941195281\begin{array} { | c | c | c | c | c | c | } \hline & \text { df } & \text { Ss } & \text { Ms } & F & p \text {-value } \\\hline \text { Regression } & 2 & 32055153 & 16027577 & 47.34557 & 1.49 \mathrm { E } - 09 \\\hline \text { Residual } & 27 & 9140128 & 338523.3 & & \\\hline \text { Total } & 29 & 41195281 & & & \\\hline\end{array} For a child in grade 5 (x1= 5), the predicted value of y is ____________.

A)707.91
B)1,020.26
C)781.99
D)840.06
E)1078.32
Question
A local parent group was concerned with the increasing cost of school for families with school aged children.The parent group was interested in understanding the relationship between the academic grade level for the child and the total costs spent per child per academic year.They performed a multiple regression analysis using total cost as the dependent variable and academic year (x1)as the independent variables.The multiple regression analysis produced the following tables.  Coefficients  Stardard Error t Statistic p-value  Intercept 707.9144435.11831.6269470.114567x12.90330781.628020.0355680.971871x1211.912973.8062113.1298780.003967\begin{array} { | c | c | c | c | c | } \hline & \text { Coefficients } & \text { Stardard Error } & t \text { Statistic } & p \text {-value } \\\hline \text { Intercept } & 707.9144 & 435.1183 & 1.626947 & 0.114567 \\\hline \boldsymbol { x } _ { 1 } & 2.903307 & 81.62802 & 0.035568 & 0.971871 \\\hline \mathbf { x } _ { 1 } { } ^ { 2 } & 11.91297 & 3.806211 & 3.129878 & 0.003967 \\\hline\end{array} df5sMSFp-value  Regression 2320551531602757747.345571.49E09 Residual 279140128338523.3 Total 2941195281\begin{array} { | c | c | c | c | c | c | } \hline & \mathrm { df } & \mathbf { 5 s } & \mathrm { MS } & F & p \text {-value } \\\hline \text { Regression } & 2 & 32055153 & 16027577 & 47.34557 & 1.49 \mathrm { E } - 09 \\\hline \text { Residual } & 27 & 9140128 & 338523.3 & & \\\hline \text { Total } & \mathbf { 2 9 } & 41195281 & & & \\\hline\end{array} These results indicate that ____________.

A)none of the predictor variables is significant at the 5% level
B)each predictor variable is significant at the 5% level
C)x1 is the only predictor variable significant at the 5% level
D)x12 is the only predictor variable significant at the 5% level
E)each predictor variable is insignificant at the 5% level
Question
Alan Bissell, a market analyst for City Sound Online Mart, is analyzing sales from heavy metal song downloads.Alan's dependent variable is annual heavy metal song download sales (in $1,000,000's), and his independent variables are website visitors (in 1,000's)and type of download format requested (0 = MP3, 1 = other).Regression analysis of the data yielded the following tables.  Coefficients  Standard Error t Statistic p-value  Iritercept 1.70.3842124.4246380.00166x1 (websitevisitors) 0.040.0140292.8511460.019054x2 (download format) 1.56666670.205187.635583.21E05\begin{array} { | c | c | c | c | c | } \hline & \text { Coefficients } & \text { Standard Error } & t \text { Statistic } & p \text {-value } \\\hline \text { Iritercept } & 1.7 & 0.384212 & 4.424638 & 0.00166 \\\hline x _ { 1 } \text { (websitevisitors) } & 0.04 & 0.014029 & 2.851146 & 0.019054 \\\hline x _ { 2 } \text { (download format) } & - 1.5666667 & 0.20518 & - 7.63558 & 3.21 E - 05 \\\hline\end{array} For 'other' download formats with 10,000 website visitors, Alan's model predicts annual sales of heavy metal song downloads of ________________.

A)$2,100,000
B)$524,507
C)$533,333
D)$729,683
E)$210,000
Question
Alan Bissell, a market analyst for City Sound Online Mart, is analyzing sales from heavy metal song downloads.Alan's dependent variable is annual heavy metal song download sales (in $1,000,000's), and his independent variables are website visitors (in 1,000's)and type of download format requested (0 = MP3, 1 = other).Regression analysis of the data yielded the following tables.  Coefficients  Standard Error t Statistic p-value  Iritercept 1.70.3842124.4246380.00166x1 (websitevisitors) 0.040.0140292.8511460.019054x2 (download format) 1.56666670.205187.635583.21E05\begin{array} { | c | c | c | c | c | } \hline & \text { Coefficients } & \text { Standard Error } & t \text { Statistic } & p \text {-value } \\\hline \text { Iritercept } & 1.7 & 0.384212 & 4.424638 & 0.00166 \\\hline x _ { 1 } \text { (websitevisitors) } & 0.04 & 0.014029 & 2.851146 & 0.019054 \\\hline x _ { 2 } \text { (download format) } & - 1.5666667 & 0.20518 & - 7.63558 & 3.21 E - 05 \\\hline\end{array} For MP3 sales with 10,000 website visitors, Alan's model predicts annual sales of heavy metal song downloads of ________________.

A)$2,100,000
B)$524,507
C)$533,333
D)$729,683
E)$21,000,000
Question
Abby Kratz, a market specialist at the market research firm of Saez, Sikes, and Spitz, is analyzing household budget data collected by her firm.Abby's dependent variable is weekly household expenditures on groceries (in $'s), and her independent variables are annual household income (in $1,000's)and household neighborhood (0 = suburban, 1 = rural).Regression analysis of the data yielded the following table.  Coefficients  Stardard Error t Statistic p-value  Intercept 19.6824710.011761.9659340.077667x1 (income) 1.7352720.1745649.9406121.68E06x2 (neighborhood) 49.124567.6557766.4166677.67E05\begin{array} { | c | c | c | c | c | } \hline & \text { Coefficients } & \text { Stardard Error } & t \text { Statistic } & p \text {-value } \\\hline \text { Intercept } & 19.68247 & 10.01176 & 1.965934 & 0.077667 \\\hline x _ { 1 } \text { (income) } & 1.735272 & 0.174564 & 9.940612 & 1.68 \mathrm { E } - 06 \\\hline x _ { 2 } \text { (neighborhood) } & 49.12456 & 7.655776 & 6.416667 & 7.67 \mathrm { E } - 05 \\\hline\end{array} For a suburban household with $90,000 annual income, Abby's model predicts weekly grocery expenditure of ________________.

A)$156.19
B)$224.98
C)$444.62
D)$141.36
E)$175.86
Question
Alan Bissell, a market analyst for City Sound Online Mart, is analyzing sales from heavy metal song downloads.Alan's dependent variable is annual heavy metal song download sales (in $1,000,000's), and his independent variables are website visitors (in 1,000's)and type of download format requested (0 = MP3, 1 = other).Regression analysis of the data yielded the following tables.  Coefficients  Stardard  Error t Statistic p-value  Intercept 1.70.3842124.4246380.00166x1 (website visitors) 0.040.0140292.8511460.019054x2 (download fommat) 1.56666670.205187.635583.21E05\begin{array} { | c | c | c | c | c | } \hline & \text { Coefficients } & \begin{array} { c } \text { Stardard } \\\text { Error }\end{array} & \boldsymbol { t } \text { Statistic } & p \text {-value } \\\hline \text { Intercept } & 1.7 & 0.384212 & 4.424638 & 0.00166 \\\hline \boldsymbol { x } _ { 1 } \text { (website visitors) } & 0.04 & 0.014029 & \mathbf { 2 . 8 5 1 1 4 6 } & 0.019054 \\\hline \mathbf { x } _ { 2 } \text { (download fommat) } & - 1.5666667 & 0.20518 & - 7.63558 & \mathbf { 3 . 2 1 E - 0 5 } \\\hline\end{array} Alan's model is ________________.

A) <strong>Alan Bissell, a market analyst for City Sound Online Mart, is analyzing sales from heavy metal song downloads.Alan's dependent variable is annual heavy metal song download sales (in $1,000,000's), and his independent variables are website visitors (in 1,000's)and type of download format requested (0 = MP3, 1 = other).Regression analysis of the data yielded the following tables.  \begin{array} { | c | c | c | c | c | } \hline & \text { Coefficients } & \begin{array} { c } \text { Stardard } \\ \text { Error } \end{array} & \boldsymbol { t } \text { Statistic } & p \text {-value } \\ \hline \text { Intercept } & 1.7 & 0.384212 & 4.424638 & 0.00166 \\ \hline \boldsymbol { x } _ { 1 } \text { (website visitors) } & 0.04 & 0.014029 & \mathbf { 2 . 8 5 1 1 4 6 } & 0.019054 \\ \hline \mathbf { x } _ { 2 } \text { (download fommat) } & - 1.5666667 & 0.20518 & - 7.63558 & \mathbf { 3 . 2 1 E - 0 5 } \\ \hline \end{array}  Alan's model is ________________.</strong> A)  = 1.7 + 0.384212<sub> </sub>x<sub>1</sub> + 4.424638<sub> </sub>x<sub>2</sub> + 0.00166 x<sub>3</sub> B)  = 1.7 + 0.04 x<sub>1 </sub>+ 1.5666667 x<sub>2</sub> C)  = 0.384212 + 0.014029 x<sub>1 </sub>+ 0.20518 x<sub>2</sub> D)  = 4.424638 + 2.851146 x<sub>1 </sub>- 7.63558 x<sub>2</sub> E)  = 1.7 + 0.04 x<sub>1 </sub>- 1.5666667 x<sub>2</sub> <div style=padding-top: 35px>  = 1.7 + 0.384212 x1 + 4.424638 x2 + 0.00166 x3
B)11efcd21_6411_aee5_b057_4518c9fddc20_TB7041_00 = 1.7 + 0.04 x1 + 1.5666667 x2
C)11efcd21_6411_aee5_b057_4518c9fddc20_TB7041_00 = 0.384212 + 0.014029 x1 + 0.20518 x2
D)11efcd21_6411_aee5_b057_4518c9fddc20_TB7041_00 = 4.424638 + 2.851146 x1 - 7.63558 x2
E)11efcd21_6411_aee5_b057_4518c9fddc20_TB7041_00 = 1.7 + 0.04 x1 - 1.5666667 x2
Question
Abby Kratz, a market specialist at the market research firm of Saez, Sikes, and Spitz, is analyzing household budget data collected by her firm.Abby's dependent variable is weekly household expenditures on groceries (in $'s), and her independent variables are annual household income (in $1,000's)and household neighborhood (0 = suburban, 1 = rural).Regression analysis of the data yielded the following table.
 InterceptX1 (income)X2(neighborhood) Coefficients 19.682471.73527249.12456Standard Error10.011760.1745647.655776t Statistic 1.9659349.9406126.416667p-value 0.0776671.68E067.67E05\begin{array}{c}\begin{array}{|l|}\hline \text { } \\\hline \text {Intercept}\\\hline \text {\( X_{1} \) (income)}\\\hline \text {\( \mathrm{X}_{2} \)}\\ \text {(neighborhood)}\\\hline \end{array}\begin{array}{l}\hline \text { Coefficients }\\\hline 19.68247 \\\hline 1.735272 \\\hline 49.12456\\\\\hline \end{array}\begin{array}{|l|}\hline \text {Standard Error}\\\hline10.01176 \\\hline 0.174564 \\\hline 7.655776\\\\\hline \end{array}\begin{array}{l|}\hline t \text { Statistic } \\\hline 1.965934 \\\hline 9.940612 \\\hline 6.416667 \\\\\hline \end{array}\begin{array}{l|}\hline p \text {-value }\\\hline0.077667\\\hline1.68 \mathrm{E}-06\\\hline7.67 \mathrm{E}-05\\\\\hline\end{array}\end{array}
Abby's model is ________________.

A) <strong>Abby Kratz, a market specialist at the market research firm of Saez, Sikes, and Spitz, is analyzing household budget data collected by her firm.Abby's dependent variable is weekly household expenditures on groceries (in  = 19.68247 + 10.01176 x<sub>1</sub> + 1.965934 x<sub>2</sub><br>B)11efcd21_6411_aee5_b057_4518c9fddc20_TB7041_00= 1.965934 + 9.940612 x<sub>1</sub> + 6.416667 x<sub>2</sub><br>C)11efcd21_6411_aee5_b057_4518c9fddc20_TB7041_00= 10.01176 + 0.174564 x<sub>1</sub> + 7.655776 x<sub>2</sub><br>D)11efcd21_6411_aee5_b057_4518c9fddc20_TB7041_00= 19.68247 - 1.735272 x<sub>1</sub> + 49.12456 x<sub>2</sub><br>E)11efcd21_6411_aee5_b057_4518c9fddc20_TB7041_00 = 19.68247 + 1.735272 x<sub>1</sub> + 49.12456 x<sub>2</sub></div><div style=
s), and her independent variables are annual household income (in $1,000's)and household neighborhood (0 = suburban, 1 = rural).Regression analysis of the data yielded the following table. \begin{array}{c} \begin{array}{|l|} \hline \text { } \\ \hline \text {Intercept}\\ \hline \text { X_{1} (income)}\\ \hline \text { X2 \mathrm{X}_{2} }\\ \text {(neighborhood)}\\ \hline \end{array} \begin{array}{l} \hline \text { Coefficients }\\ \hline 19.68247 \\ \hline 1.735272 \\ \hline 49.12456\\ \\ \hline \end{array} \begin{array}{|l|} \hline \text {Standard Error}\\ \hline10.01176 \\ \hline 0.174564 \\ \hline 7.655776\\ \\ \hline \end{array} \begin{array}{l|} \hline t \text { Statistic } \\ \hline 1.965934 \\ \hline 9.940612 \\ \hline 6.416667 \\ \\ \hline \end{array} \begin{array}{l|} \hline p \text {-value }\\ \hline0.077667\\ \hline1.68 \mathrm{E}-06\\ \hline7.67 \mathrm{E}-05\\ \\ \hline \end{array} \end{array} Abby's model is ________________. A) = 19.68247 + 10.01176 x1 + 1.965934 x2 B) = 1.965934 + 9.940612 x1 + 6.416667 x2 C) = 10.01176 + 0.174564 x1 + 7.655776 x2 D) = 19.68247 - 1.735272 x1 + 49.12456 x2 E) = 19.68247 + 1.735272 x1 + 49.12456 x2
" class="answers-bank-image d-block" loading="lazy" > = 19.68247 + 10.01176 x1 + 1.965934 x2
B)11efcd21_6411_aee5_b057_4518c9fddc20_TB7041_00= 1.965934 + 9.940612 x1 + 6.416667 x2
C)11efcd21_6411_aee5_b057_4518c9fddc20_TB7041_00= 10.01176 + 0.174564 x1 + 7.655776 x2
D)11efcd21_6411_aee5_b057_4518c9fddc20_TB7041_00= 19.68247 - 1.735272 x1 + 49.12456 x2
E)11efcd21_6411_aee5_b057_4518c9fddc20_TB7041_00 = 19.68247 + 1.735272 x1 + 49.12456 x2
Question
A local parent group was concerned with the increasing cost of school for families with school aged children.The parent group was interested in understanding the relationship between the academic grade level for the child and the total costs spent per child per academic year.They performed a multiple regression analysis using total cost as the dependent variable and academic year (x1)as the independent variables.The multiple regression analysis produced the following tables.  Coefficients  Stardard Error t Statistic p-value  Intercept 707.9144435.11831.6269470.114567x12.90330781.628020.0355680.971871x1211.912973.8062113.1298780.003967\begin{array} { | c | c | c | c | c | } \hline & \text { Coefficients } & \text { Stardard Error } & t \text { Statistic } & p \text {-value } \\\hline \text { Intercept } & 707.9144 & 435.1183 & 1.626947 & 0.114567 \\\hline \boldsymbol { x } _ { 1 } & 2.903307 & 81.62802 & 0.035568 & 0.971871 \\\hline \mathbf { x } _ { 1 } ^ { 2 } & 11.91297 & 3.806211 & 3.129878 & 0.003967 \\\hline\end{array}  df  SS  MS Fp-value  Regression 2320551531602757747.345571.49E09 Residual 279140128338523.3 Total 2941195281\begin{array} { | c | c | c | c | c | c | } \hline & \text { df } & \text { SS } & \text { MS } & F & p \text {-value } \\\hline \text { Regression } & 2 & 32055153 & 16027577 & 47.34557 & 1.49 \mathrm { E } - 09 \\\hline \text { Residual } & 27 & 9140128 & 338523.3 & & \\\hline \text { Total } & 29 & 41195281 & & & \\\hline\end{array} Using α\alpha = 0.05 to test the null hypothesis H0: β\beta 2 = 0, the critical t value is ____.

A)± 1.311
B)± 1.699
C)± 1.703
D)± 2.052
E)± 2.502
Question
Inspection of the following table of correlation coefficients for variables in a multiple regression analysis reveals potential multicollinearity with variables ___________. yx1x2x3x4x5y1x10.08571x20.202460.8683581x30.226310.106040.148531x40.281750.06850.414680.141511x50.2711050.1507960.1293880.152430.008211\begin{array} { | c | r | c | r | c | c | r | } \hline & y & x _ { 1 } & x _ { 2 } & x _ { 3 } & x _ { 4 } & x _ { 5 } \\\hline y & 1 & & & & & \\\hline x _ { 1 } & - 0.0857 & 1 & & & & \\\hline x _ { 2 } & - 0.20246 & 0.868358 & 1 & & & \\\hline x _ { 3 } & - 0.22631 & - 0.10604 & - 0.14853 & 1 & & \\\hline x _ { 4 } & - 0.28175 & - 0.0685 & 0.41468 & - 0.14151 & 1 & \\\hline x _ { 5 } & 0.271105 & 0.150796 & 0.129388 & - 0.15243 & 0.00821 & 1 \\\hline\end{array}

A)x1 and x2
B)x1 and x4
C)x4 and x5
D)x4 and x3
E)x5 and y
Question
Inspection of the following table of t values for variables in a multiple regression analysis reveals that the first independent variable that will be entered into the regression model by the forward selection procedure will be ___________. yx1x2x3x4x5y1x10.08571x20.202460.8683581x30.226310.106040.148531x40.281750.06850.414680.141511x50.2711050.1507960.1293880.152430.008211\begin{array} { | c | r | c | r | c | c | r | } \hline & y & x _ { 1 } & x _ { 2 } & x _ { 3 } & x _ { 4 } & x _ { 5 } \\\hline y & 1 & & & & & \\\hline x _ { 1 } & - 0.0857 & 1 & & & & \\\hline x _ { 2 } & - 0.20246 & 0.868358 & 1 & & & \\\hline x _ { 3 } & - 0.22631 & - 0.10604 & - 0.14853 & 1 & & \\\hline x _ { 4 } & - 0.28175 & - 0.0685 & 0.41468 & - 0.14151 & 1 & \\\hline x _ { 5 } & 0.271105 & 0.150796 & 0.129388 & - 0.15243 & 0.00821 & 1 \\\hline\end{array}

A)x1
B)x2
C)x3
D)x4
E)x5
Question
An appropriate method to identify multicollinearity in a regression model is to ____.

A)examine a residual plot
B)examine the ANOVA table
C)examine a correlation matrix
D)examine the partial regression coefficients
E)examine the R2 of the regression model
Question
Which of the following iterative search procedures for model-building in a multiple regression analysis adds variables to model as it proceeds, but does not reevaluate the contribution of previously entered variables?

A)Backward elimination
B)Stepwise regression
C)Forward selection
D)All possible regressions
E)Forward elimination
Question
Inspection of the following table of t values for variables in a multiple regression analysis reveals that the first independent variable that will be entered into the regression model by the forward selection procedure will be ___________. yx1x2x3x4x5y1x10.8541681x20.118280.003831x30.120030.084990.145231x40.5259010.1181690.148760.0500421x50.181050.073710.9958860.141510.169341\begin{array} { | c | c | c | c | c | c | c | } \hline & y & x _ { 1 } & x _ { 2 } & x _ { 3 } & x _ { 4 } & x _ { 5 } \\\hline y & 1 & & & & & \\\hline x _ { 1 } & 0.854168 & 1 & & & & \\\hline x _ { 2 } & - 0.11828 & - 0.00383 & 1 & & & \\\hline x _ { 3 } & - 0.12003 & - 0.08499 & - 0.14523 & 1 & & \\\hline x _ { 4 } & 0.525901 & 0.118169 & - 0.14876 & 0.050042 & 1 & \\\hline x _ { 5 } & - 0.18105 & - 0.07371 & 0.995886 & - 0.14151 & - 0.16934 & 1 \\\hline\end{array}

A)x1
B)x2
C)x3
D)x4
E)x5
Question
Which of the following iterative search procedures for model-building in a multiple regression analysis starts with all independent variables in the model and then drops non-significant independent variables is a step-by-step manner?

A)Backward elimination
B)Stepwise regression
C)Forward selection
D)All possible regressions
E)Backward selection
Question
An acceptable method of managing multicollinearity in a regression model is the ___.

A)use the forward selection procedure
B)use the backward elimination procedure
C)use the forward elimination procedure
D)use the stepwise regression procedure
E)use all possible regressions
Question
An "all possible regressions" search of a data set containing 5 independent variables will produce ______ regressions.

A)31
B)10
C)25
D)32
E)24
Question
Inspection of the following table of t values for variables in a multiple regression analysis reveals that the first independent variable entered by the forward selection procedure will be ___________. yx1x2x3x4x5y1x10.440081x20.5660530.517281x30.0649190.222640.007341x40.357110.0289570.498690.2605861x50.4263630.204670.0789160.2074770.0238391\begin{array} { | c | c | c | c | c | c | c | } \hline & y & x _ { 1 } & x _ { 2 } & x _ { 3 } & x _ { 4 } & x _ { 5 } \\\hline y & 1 & & & & & \\\hline x _ { 1 } & - 0.44008 & 1 & & & & \\\hline x _ { 2 } & 0.566053 & - 0.51728 & 1 & & & \\\hline x _ { 3 } & 0.064919 & - 0.22264 & - 0.00734 & 1 & & \\\hline x _ { 4 } & - 0.35711 & 0.028957 & - 0.49869 & 0.260586 & 1 & \\\hline x _ { 5 } & 0.426363 & - 0.20467 & 0.078916 & 0.207477 & 0.023839 & 1 \\\hline\end{array}

A)x1
B)x2
C)x3
D)x4
E)x5
Question
An "all possible regressions" search of a data set containing "k" independent variables will produce __________ regressions.

A)2k -1
B)2k - 1
C)k2 - 1
D)2k - 1
E)2k
Question
Carlos Cavazos, Director of Human Resources, is exploring employee absenteeism at the Plano Piano Plant.A multiple regression analysis was performed using the following variables.The results are presented below.  Variable  Description Y number of days absent last fiscal year x1 comrnuting distarnce (in miles) x2 employee’s age (in years) x3 single-parent household (0= no, 1= yes )x4 length of employment at PpP (in years) x5 shift (0= day 1= night) \begin{array} { | l | l | } \hline \text { Variable } & \text { Description } \\\hline Y & \text { number of days absent last fiscal year } \\\hline x _ { 1 } & \text { comrnuting distarnce (in miles) } \\\hline x _ { 2 } & \text { employee's age (in years) } \\\hline x _ { 3 } & \text { single-parent household } ( 0 = \text { no, } 1 = \text { yes } ) \\\hline x _ { 4 } & \text { length of employment at PpP (in years) } \\\hline x _ { 5 } & \text { shift } ( 0 = \text { day } 1 = \text { night) } \\\hline\end{array}  Coefficients  Standard Error t Statistic p-value  Intercept 6.5941463.2730052.0147070.047671x10.180190.1419491.269390.208391x20.2681560.2606431.0288280.307005x32.310680.9620562.401820.018896x40.505790.2708721.867250.065937x52.3295130.9403212.477360.015584\begin{array} { | c | c | c | c | c | } \hline & \text { Coefficients } & \text { Standard Error } & t \text { Statistic } & p \text {-value } \\\hline \text { Intercept } & 6.594146 & \mathbf { 3 . 2 7 3 0 0 5 } & \mathbf { 2 . 0 1 4 7 0 7 } & \mathbf { 0 . 0 4 7 6 7 1 } \\\hline \boldsymbol { x } _ { 1 } & - 0.18019 & 0.141949 & - 1.26939 & 0.208391 \\\hline \mathbf { x } _ { 2 } & 0.268156 & 0.260643 & 1.028828 & 0.307005 \\\hline \boldsymbol { x } _ { 3 } & - 2.31068 & 0.962056 & - 2.40182 & 0.018896 \\\hline \mathbf { x } _ { 4 } & - 0.50579 & 0.270872 & - 1.86725 & 0.065937 \\\hline \boldsymbol { x } _ { 5 } & \mathbf { 2 . 3 2 9 5 1 3 } & 0.940321 & 2.47736 & 0.015584 \\\hline\end{array} df SS  ME Fp-value  Repression 5279.35855.87164.4237550.001532 Residual 67846.203612.6299 Total 721125.562\begin{array} { | c | c | c | c | c | c | } \hline & \mathrm { df } & \text { SS } & \text { ME } & F & p \text {-value } \\\hline \text { Repression } & 5 & 279.358 & 55.8716 & 4.423755 & \mathbf { 0 . 0 0 1 5 3 2 } \\\hline \text { Residual } & 67 & 846.2036 & 12.6299 & & \\\hline \text { Total } & 72 & 1125.562 & & & \\\hline\end{array} R=0.498191R2=0.248194 Adj R2=0.192089se=3.553858n=73\begin{array} { | c | c | c | } \hline R = 0.498191 & R ^ { 2 } = 0.248194 & \text { Adj } R ^ { 2 } = 0.192089 \\\hline \mathrm { s } _ { \mathrm { e } } = 3.553858 & n = 73 & \\\hline\end{array} Which of the following conclusions can be drawn from the above results?

A)All the independent variables in the regression are significant at 5% level.
B)Commuting distance is a highly significant (<1%)variable in explaining absenteeism.
C)Age of the employees tends to have a very significant (<1%)effect on absenteeism.
D)This model explains a little over 49% of the variability in absenteeism data.
E)A single-parent household employee is expected to be absent fewer days, all other variables held constant, compared to one who is not a single-parent household.
Question
An "all possible regressions" search of a data set containing 8 independent variables will produce ______ regressions.

A)8
B)15
C)256
D)64
E)255
Question
Suppose a company is interested in understanding the effect of age and sex on the likelihood a customer will purchase a new product.The data analyst intends to run a logistic regression on her data.Which of the following variable(s)will the analyst need to code as 0 or 1 prior to performing the logistic regression analysis?

A)age and gender
B)age and purchase status
C)age
D)purchase status
E)sex and purchase status Gender is no longer considered dichotomous
Question
Inspection of the following table of t values for variables in a multiple regression analysis reveals that the first independent variable entered by the forward selection procedure will be ___________. yx1x2x3x4x5y1x10.16611x20.2318490.517281x30.4235220.222640.007341x40.332270.0289570.498690.2605861x50.1997960.204670.0789160.2074770.0238391\begin{array} { | l | r | r | r | r | r | r | } \hline & y & x _ { 1 } & x _ { 2 } & x _ { 3 } & x _ { 4 } & x _ { 5 } \\\hline y & 1 & & & & & \\\hline x _ { 1 } & - 0.1661 & 1 & & & & \\\hline x _ { 2 } & 0.231849 & - 0.51728 & 1 & & & \\\hline x _ { 3 } & 0.423522 & - 0.22264 & - 0.00734 & 1 & & \\\hline x _ { 4 } & - 0.33227 & 0.028957 & - 0.49869 & 0.260586 & 1 & \\\hline x _ { 5 } & 0.199796 & - 0.20467 & 0.078916 & 0.207477 & 0.023839 & 1 \\\hline\end{array}

A)x2
B)x3
C)x4
D)x5
E)x1
Question
An "all possible regressions" search of a data set containing 7 independent variables will produce ______ regressions.

A)13
B)127
C)48
D)64
E)97
Question
Large correlations between two or more independent variables in a multiple regression model could result in the problem of ________.

A)multicollinearity
B)autocorrelation
C)partial correlation
D)rank correlation
E)non-normality
Question
Which of the following iterative search procedures for model-building in a multiple regression analysis reevaluates the contribution of variables previously include in the model after entering a new independent variable?

A)Backward elimination
B)Stepwise regression
C)Forward selection
D)All possible regressions
E)Backward selection
Question
A useful technique in controlling multicollinearity involves the use of _________.

A)variance inflation factors
B)a backward elimination procedure
C)a forward elimination procedure
D)a forward selection procedure
E)all possible regressions
Question
Inspection of the following table of correlation coefficients for variables in a multiple regression analysis reveals potential multicollinearity with variables ___________. yx1x2x3x4x5y1x10.8541681x20.118280.003831x30.120030.084990.145231x40.5259010.1181690.148760.0500421x50.181050.073710.9958860.141510.169341\begin{array} { | c | c | c | c | c | c | c | } \hline & y & x _ { 1 } & x _ { 2 } & x _ { 3 } & x _ { 4 } & x _ { 5 } \\\hline y & 1 & & & & & \\\hline x _ { 1 } & 0.854168 & 1 & & & & \\\hline x _ { 2 } & - 0.11828 & - 0.00383 & 1 & & & \\\hline x _ { 3 } & - 0.12003 & - 0.08499 & - 0.14523 & 1 & & \\\hline x _ { 4 } & 0.525901 & 0.118169 & - 0.14876 & 0.050042 & 1 & \\\hline x _ { 5 } & - 0.18105 & - 0.07371 & 0.995886 & - 0.14151 & - 0.16934 & 1 \\\hline\end{array}

A)x1 and x2
B)x1 and x5
C)x3 and x4
D)x2 and x5
E)x3 and x5
Question
Inspection of the following table of correlation coefficients for variables in a multiple regression analysis reveals potential multicollinearity with variables ___________. yx1x2x3x4x5y1x10.083011x20.2367450.517281x30.1551490.222640.007341x40.0222340.580790.8842160.1319561x50.48080.204670.0789160.2074770.1038311\begin{array} { | c | r | c | c | c | c | c | } \hline & y & x _ { 1 } & x _ { 2 } & x _ { 3 } & x _ { 4 } & x _ { 5 } \\\hline y & 1 & & & & & \\\hline x _ { 1 } & - 0.08301 & 1 & & & & \\\hline x _ { 2 } & 0.236745 & - 0.51728 & 1 & & & \\\hline x _ { 3 } & 0.155149 & - 0.22264 & - 0.00734 & 1 & & \\\hline x _ { 4 } & 0.022234 & - 0.58079 & 0.884216 & 0.131956 & 1 & \\\hline x _ { 5 } & 0.4808 & - 0.20467 & 0.078916 & 0.207477 & 0.103831 & 1 \\\hline\end{array}

A)x1 and x5
B)x2 and x3
C)x4 and x2
D)x4 and x3
E)x4 and y
Unlock Deck
Sign up to unlock the cards in this deck!
Unlock Deck
Unlock Deck
1/100
auto play flashcards
Play
simple tutorial
Full screen (f)
exit full mode
Deck 14: Building Multiple Regression Models
1
Stepwise regression is one of the ways to prevent the problem of multicollinearity.
True
2
A linear regression model cannot be used to explore the possibility that a quadratic relationship may exist between two variables.
False
3
The regression model y = β\beta 0 + β\beta 1 x1 + β\beta 2 x2 + β\beta 3 x1x2 + ε\varepsilon is a first order model.
False
4
If a data set contains k independent variables, the "all possible regression" search procedure will determine 2k different models.
Unlock Deck
Unlock for access to all 100 flashcards in this deck.
Unlock Deck
k this deck
5
Recoding data cannot improve the fit of a regression model.
Unlock Deck
Unlock for access to all 100 flashcards in this deck.
Unlock Deck
k this deck
6
If each pair of independent variables is weakly correlated, there is no problem of multicollinearity.
Unlock Deck
Unlock for access to all 100 flashcards in this deck.
Unlock Deck
k this deck
7
If two or more independent variables are highly correlated, the regression analysis is unlikely to suffer from the problem of multicollinearity.
Unlock Deck
Unlock for access to all 100 flashcards in this deck.
Unlock Deck
k this deck
8
Regression models in which the highest power of any predictor variable is 1 and in which there are no cross product terms are referred to as first-order models.
Unlock Deck
Unlock for access to all 100 flashcards in this deck.
Unlock Deck
k this deck
9
If the effect of an independent variable (e.g., square footage)on a dependent variable (e.g., price)is affected by different ranges of values for a second independent variable (e.g., age ), the two independent variables are said to interact.
Unlock Deck
Unlock for access to all 100 flashcards in this deck.
Unlock Deck
k this deck
10
A linear regression model can be used to explore the possibility that a quadratic relationship may exist between two variables by suitably transforming the independent variable.
Unlock Deck
Unlock for access to all 100 flashcards in this deck.
Unlock Deck
k this deck
11
A qualitative variable which represents categories such as geographical territories or job classifications may be included in a regression model by using indicator or dummy variables.
Unlock Deck
Unlock for access to all 100 flashcards in this deck.
Unlock Deck
k this deck
12
A logarithmic transformation may be applied to both positive and negative numbers.
Unlock Deck
Unlock for access to all 100 flashcards in this deck.
Unlock Deck
k this deck
13
If a qualitative variable has c categories, then only (c - 1)dummy variables must be included in the regression model.
Unlock Deck
Unlock for access to all 100 flashcards in this deck.
Unlock Deck
k this deck
14
If a square-transformation is applied to a series of positive numbers, all greater than 1, the numerical values of the numbers in the transformed series will be smaller than the corresponding numbers in the original series.
Unlock Deck
Unlock for access to all 100 flashcards in this deck.
Unlock Deck
k this deck
15
The regression model y = β\beta 0 + β\beta 1 x1 + β\beta 2 x21 + ε\varepsilon is called a quadratic model.
Unlock Deck
Unlock for access to all 100 flashcards in this deck.
Unlock Deck
k this deck
16
Qualitative data can be incorporated into linear regression models using indicator variables.
Unlock Deck
Unlock for access to all 100 flashcards in this deck.
Unlock Deck
k this deck
17
If a data set contains k independent variables, the "all possible regression" search procedure will determine 2k - 1 different models.
Unlock Deck
Unlock for access to all 100 flashcards in this deck.
Unlock Deck
k this deck
18
If a qualitative variable has c categories, then c dummy variables must be included in the regression model, one for each category.
Unlock Deck
Unlock for access to all 100 flashcards in this deck.
Unlock Deck
k this deck
19
The interaction between two independent variables can be examined by including a new variable, which is the sum of the two independent variables, in the regression model.
Unlock Deck
Unlock for access to all 100 flashcards in this deck.
Unlock Deck
k this deck
20
The regression model y = β\beta 0 + β\beta 1 x1 + β\beta 2 x2 + β\beta 3 x3 + ε\varepsilon is a third order model.
Unlock Deck
Unlock for access to all 100 flashcards in this deck.
Unlock Deck
k this deck
21
We may use logistic regression when the dependent variable is a dummy variable, coded 0 or 1.
Unlock Deck
Unlock for access to all 100 flashcards in this deck.
Unlock Deck
k this deck
22
Multiple linear regression models can handle certain nonlinear relationships by ________.

A)biasing the sample
B)recoding or transforming variables
C)adjusting the resultant ANOVA table
D)adjusting the observed t and F values
E)performing nonlinear regression
Unlock Deck
Unlock for access to all 100 flashcards in this deck.
Unlock Deck
k this deck
23
The following scatter plot indicates that _________. <strong>The following scatter plot indicates that _________.  </strong> A)a log x transform may be useful B)a log y transform may be useful C)a<sub> </sub>x<sup>2</sup> transform may be useful D)no transform is needed E)a 1/y transform may be useful

A)a log x transform may be useful
B)a log y transform may be useful
C)a x2 transform may be useful
D)no transform is needed
E)a 1/y transform may be useful
Unlock Deck
Unlock for access to all 100 flashcards in this deck.
Unlock Deck
k this deck
24
A multiple regression analysis produced the following tables.  Coefficients  Stardard Error t Statistic p-value  Irtercept 1411.876762.15331.8524830.074919x135.1821596.84330.3632890.719218x127.7216483.0079432.5670860.016115\begin{array} { | c | c | c | c | c | } \hline & \text { Coefficients } & \text { Stardard Error } & t \text { Statistic } & p \text {-value } \\\hline & & & & \\\hline \text { Irtercept } & 1411.876 & 762.1533 & 1.852483 & 0.074919 \\\hline x _ { 1 } & 35.18215 & 96.8433 & 0.363289 & 0.719218 \\\hline x _ { 1 } { } ^ { 2 } & 7.721648 & 3.007943 & 2.567086 & 0.016115 \\\hline\end{array} dfSSMSF Repression 2585670322928351657.34861 Residual 25127655735106229 Total 2771332605\begin{array} { | c | c | c | c | c | } \hline & \mathrm { df } & \mathrm { SS } & \mathrm { MS } & F \\\hline \text { Repression } & 2 & 58567032 & 29283516 & 57.34861 \\\hline \text { Residual } & 25 & 12765573 & 5106229 & \\\hline \text { Total } & 27 & 71332605 & & \\\hline\end{array} The sample size for this analysis is ____________.

A)28
B)25
C)30
D)27
E)2
Unlock Deck
Unlock for access to all 100 flashcards in this deck.
Unlock Deck
k this deck
25
If the variance inflation factor is bigger than 10, the regression analysis might suffer from the problem of multicollinearity.
Unlock Deck
Unlock for access to all 100 flashcards in this deck.
Unlock Deck
k this deck
26
To test the overall effectiveness of a logistic regression, a chi-squared statistic is used.
Unlock Deck
Unlock for access to all 100 flashcards in this deck.
Unlock Deck
k this deck
27
When structuring a logistic regression model, only one independent or predictor variable can be used.
Unlock Deck
Unlock for access to all 100 flashcards in this deck.
Unlock Deck
k this deck
28
A multiple regression analysis produced the following tables.  Coefficients  Stardard Error t Statistic p-value  Irtercept 1411.876762.15331.8524830.074919x135.1821596.84330.3632890.719218x127.7216483.0079432.5670860.016115\begin{array} { | c | c | c | c | c | } \hline & \text { Coefficients } & \text { Stardard Error } & t \text { Statistic } & p \text {-value } \\\hline & & & & \\\hline \text { Irtercept } & 1411.876 & 762.1533 & 1.852483 & 0.074919 \\\hline x _ { 1 } & 35.18215 & 96.8433 & 0.363289 & 0.719218 \\\hline x _ { 1 } { } ^ { 2 } & 7.721648 & 3.007943 & 2.567086 & 0.016115 \\\hline\end{array} dfSSMSF Repression 2585670322928351657.34861 Residual 25127655735106229 Total 2771332605\begin{array} { | c | c | c | c | c | } \hline & \mathrm { df } & \mathrm { SS } & \mathrm { MS } & F \\\hline \text { Repression } & 2 & 58567032 & 29283516 & 57.34861 \\\hline \text { Residual } & 25 & 12765573 & 5106229 & \\\hline \text { Total } & 27 & 71332605 & & \\\hline\end{array} Using α\alpha = 0.10 to test the null hypothesis H0: β\beta 2 = 0, the critical t value is ____.

A)± 1.316
B)± 1.314
C)± 1.703
D)± 1.780
E)± 1.708
Unlock Deck
Unlock for access to all 100 flashcards in this deck.
Unlock Deck
k this deck
29
A multiple regression analysis produced the following tables.  Coefficients  Stardard Error t Statistic p-value  Irtercept 1411.876762.15331.8524830.074919x135.1821596.84330.3632890.719218x127.7216483.0079432.5670860.016115\begin{array} { | c | c | c | c | c | } \hline & \text { Coefficients } & \text { Stardard Error } & t \text { Statistic } & p \text {-value } \\\hline & & & & \\\hline \text { Irtercept } & 1411.876 & 762.1533 & 1.852483 & 0.074919 \\\hline x _ { 1 } & 35.18215 & 96.8433 & 0.363289 & 0.719218 \\\hline x _ { 1 } { } ^ { 2 } & 7.721648 & 3.007943 & 2.567086 & 0.016115 \\\hline\end{array} dfSSMSF Repression 2585670322928351657.34861 Residual 25127655735106229 Total 2771332605\begin{array} { | c | c | c | c | c | } \hline & \mathrm { df } & \mathrm { SS } & \mathrm { MS } & F \\\hline \text { Repression } & 2 & 58567032 & 29283516 & 57.34861 \\\hline \text { Residual } & 25 & 12765573 & 5106229 & \\\hline \text { Total } & 27 & 71332605 & & \\\hline\end{array} Using α\alpha = 0.10 to test the null hypothesis H0: β\beta 1 = 0, the critical t value is ____.

A)± 1.316
B)± 1.314
C)± 1.703
D)± 1.780
E)± 1.708
Unlock Deck
Unlock for access to all 100 flashcards in this deck.
Unlock Deck
k this deck
30
The following scatter plot indicates that _________. <strong>The following scatter plot indicates that _________.  </strong> A)a log x transform may be useful B)a log y transform may be useful C)an<sub> </sub>x<sup>2</sup> transform may be useful D)no transform is needed E)a (- x)transform may be useful

A)a log x transform may be useful
B)a log y transform may be useful
C)an x2 transform may be useful
D)no transform is needed
E)a (- x)transform may be useful
Unlock Deck
Unlock for access to all 100 flashcards in this deck.
Unlock Deck
k this deck
31
The following scatter plot indicates that _________. <strong>The following scatter plot indicates that _________.  </strong> A)a log x transform may be useful B)a y<sup>2</sup> transform may be useful C)a<sub> </sub>x<sup>2</sup> transform may be useful D)no transform is needed E)a 1/x transform may be useful

A)a log x transform may be useful
B)a y2 transform may be useful
C)a x2 transform may be useful
D)no transform is needed
E)a 1/x transform may be useful
Unlock Deck
Unlock for access to all 100 flashcards in this deck.
Unlock Deck
k this deck
32
A local parent group was concerned with the increasing cost of school for families with school aged children.The parent group was interested in understanding the relationship between the academic grade level for the child and the total costs spent per child per academic year.They performed a multiple regression analysis using total cost as the dependent variable and academic year (x1)as the independent variables.The multiple regression analysis produced the following tables.  Coefficients  Stardard Error t Statistic p-value  Intercept 707.9144435.11831.6269470.114567x12.90330781.628020.0355680.971871x1211.912973.8062113.1298780.003967\begin{array} { | c | c | c | c | c | } \hline & \text { Coefficients } & \text { Stardard Error } & t \text { Statistic } & p \text {-value } \\\hline \text { Intercept } & 707.9144 & 435.1183 & 1.626947 & 0.114567 \\\hline \boldsymbol { x } _ { 1 } & 2.903307 & 81.62802 & 0.035568 & 0.971871 \\\hline \mathbf { x } _ { 1 } { } ^ { 2 } & 11.91297 & 3.806211 & 3.129878 & 0.003967 \\\hline\end{array} df5sMSFp-value  Repression 2320551531602757747.345571.49E09 Residual 279140128338523.3 Total 2941195281\begin{array} { | c | c | c | c | c | c | } \hline & \mathrm { df } & \mathbf { 5 s } & \mathrm { MS } & F & p \text {-value } \\\hline \text { Repression } & 2 & 32055153 & 16027577 & 47.34557 & 1.49 \mathrm { E } - 09 \\\hline \text { Residual } & 27 & 9140128 & \mathbf { 3 3 8 5 2 3 . 3 } & & \\\hline \text { Total } & \mathbf { 2 9 } & 41195281 & & & \\\hline\end{array} The sample size for this analysis is ____________.

A)27
B)29
C)30
D)25
E)28
Unlock Deck
Unlock for access to all 100 flashcards in this deck.
Unlock Deck
k this deck
33
The logistic regression model constrains the estimated probabilities to lie between 0 and 100.
Unlock Deck
Unlock for access to all 100 flashcards in this deck.
Unlock Deck
k this deck
34
A multiple regression analysis produced the following tables.  Coefficients  Stardard Error t Statistic p-value  Irtercept 1411.876762.15331.8524830.074919x135.1821596.84330.3632890.719218x127.7216483.0079432.5670860.016115\begin{array} { | c | c | c | c | c | } \hline & \text { Coefficients } & \text { Stardard Error } & t \text { Statistic } & p \text {-value } \\\hline & & & & \\\hline \text { Irtercept } & 1411.876 & 762.1533 & 1.852483 & 0.074919 \\\hline x _ { 1 } & 35.18215 & 96.8433 & 0.363289 & 0.719218 \\\hline x _ { 1 } { } ^ { 2 } & 7.721648 & 3.007943 & 2.567086 & 0.016115 \\\hline\end{array} dfSSMSF Regression 2585670322928351657.34861 Residual 2512765573510622.9 Total 2771332605\begin{array} { | c | c | c | c | c | } \hline & \mathrm { df } & \mathrm { SS } & \mathrm { MS } & F \\\hline \text { Regression } & 2 & 58567032 & 29283516 & 57.34861 \\\hline \text { Residual } & 25 & 12765573 & 510622.9 & \\\hline \text { Total } & 27 & 71332605 & & \\\hline\end{array} Using α\alpha = 0.05 to test the null hypothesis H0: β\beta 1 = β\beta 2 = 0, the critical F value is ____.

A)4.24
B)3.39
C)5.57
D)3.35
E)2.35
Unlock Deck
Unlock for access to all 100 flashcards in this deck.
Unlock Deck
k this deck
35
A multiple regression analysis produced the following tables.  Coefficients  Stardard Error t Statistic p-value  Irtercept 1411.876762.15331.8524830.074919x135.1821596.84330.3632890.719218x127.7216483.0079432.5670860.016115\begin{array} { | c | c | c | c | c | } \hline & \text { Coefficients } & \text { Stardard Error } & t \text { Statistic } & p \text {-value } \\\hline \text { Irtercept } & 1411.876 & 762.1533 & 1.852483 & 0.074919 \\\hline \boldsymbol { x } _ { 1 } & 35.18215 & 96.8433 & 0.363289 & 0.719218 \\\hline \boldsymbol { x } _ { 1 } { } ^ { 2 } & 7.721648 & \mathbf { 3 . 0 0 7 9 4 3 } & 2.567086 & 0.016115\\\hline\end{array} dfSSMSF Regression 2585670322928351657.34861 Residual 2512765573510622.9 Total 2771332605\begin{array} { | c | c | c | c | c | } \hline & \mathrm { df } & \mathrm { SS } & \mathrm { MS } & F \\\hline \text { Regression } & 2 & 58567032 & 29283516 & 57.34861 \\\hline \text { Residual } & 25 & 12765573 & 510622.9 & \\\hline \text { Total } & 27 & 71332605 & & \\\hline\end{array} For x1= 20, the predicted value of y is ____________.

A)5,204.18.
B)2,031.38
C)2,538.86
D)6262.19
E)6,535.86
Unlock Deck
Unlock for access to all 100 flashcards in this deck.
Unlock Deck
k this deck
36
A multiple regression analysis produced the following tables.  Coefficients  Stardard Error t Statistic p-value  Irtercept 1411.876762.15331.8524830.074919x135.1821596.84330.3632890.719218x127.7216483.0079432.5670860.016115\begin{array} { | c | c | c | c | c | } \hline & \text { Coefficients } & \text { Stardard Error } & t \text { Statistic } & p \text {-value } \\\hline & & & & \\\hline \text { Irtercept } & 1411.876 & 762.1533 & 1.852483 & 0.074919 \\\hline x _ { 1 } & 35.18215 & 96.8433 & 0.363289 & 0.719218 \\\hline x _ { 1 } { } ^ { 2 } & 7.721648 & 3.007943 & 2.567086 & 0.016115 \\\hline\end{array} dfSSMSF Repression 2585670322928351657.34861 Residual 25127655735106229 Total 2771332605\begin{array} { | c | c | c | c | c | } \hline & \mathrm { df } & \mathrm { SS } & \mathrm { MS } & F \\\hline \text { Repression } & 2 & 58567032 & 29283516 & 57.34861 \\\hline \text { Residual } & 25 & 12765573 & 5106229 & \\\hline \text { Total } & 27 & 71332605 & & \\\hline\end{array} The regression equation for this analysis is ____________.

A) <strong>A multiple regression analysis produced the following tables.  \begin{array} { | c | c | c | c | c | } \hline & \text { Coefficients } & \text { Stardard Error } & t \text { Statistic } & p \text {-value } \\ \hline & & & & \\ \hline \text { Irtercept } & 1411.876 & 762.1533 & 1.852483 & 0.074919 \\ \hline x _ { 1 } & 35.18215 & 96.8433 & 0.363289 & 0.719218 \\ \hline x _ { 1 } { } ^ { 2 } & 7.721648 & 3.007943 & 2.567086 & 0.016115 \\ \hline \end{array}   \begin{array} { | c | c | c | c | c | } \hline & \mathrm { df } & \mathrm { SS } & \mathrm { MS } & F \\ \hline \text { Repression } & 2 & 58567032 & 29283516 & 57.34861 \\ \hline \text { Residual } & 25 & 12765573 & 5106229 & \\ \hline \text { Total } & 27 & 71332605 & & \\ \hline \end{array}  The regression equation for this analysis is ____________.</strong> A)  = 762.1533 + 96.8433 x<sub>1</sub> + 3.007943 x<sub>1</sub><sup>2</sup> B)  = 1411.876 + 762.1533 x<sub>1</sub> + 1.852483 x<sub>1</sub><sup>2</sup> C)  = 1411.876 + 35.18215 x<sub>1</sub> + 7.721648 x<sub>1</sub><sup>2</sup> D)  = 762.1533 + 1.852483 x<sub>1</sub> + 0.074919 x<sub>1</sub><sup>2</sup> E)  = 762.1533 - 1.852483 x<sub>1</sub> + 0.074919 x<sub>1</sub><sup>2</sup>  = 762.1533 + 96.8433 x1 + 3.007943 x12
B)11efcd21_6411_aee5_b057_4518c9fddc20_TB7041_00 = 1411.876 + 762.1533 x1 + 1.852483 x12
C)11efcd21_6411_aee5_b057_4518c9fddc20_TB7041_00 = 1411.876 + 35.18215 x1 + 7.721648 x12
D)11efcd21_6411_aee5_b057_4518c9fddc20_TB7041_00 = 762.1533 + 1.852483 x1 + 0.074919 x12
E)11efcd21_6411_aee5_b057_4518c9fddc20_TB7041_00 = 762.1533 - 1.852483 x1 + 0.074919 x12
Unlock Deck
Unlock for access to all 100 flashcards in this deck.
Unlock Deck
k this deck
37
A multiple regression analysis produced the following tables.  Coefficients  Stardard Error t Statistic p-value  Irtercept 1411.876762.15331.8524830.074919x135.1821596.84330.3632890.719218x127.7216483.0079432.5670860.016115\begin{array} { | c | c | c | c | c | } \hline & \text { Coefficients } & \text { Stardard Error } & t \text { Statistic } & p \text {-value } \\\hline \text { Irtercept } & 1411.876 & 762.1533 & 1.852483 & 0.074919 \\\hline \boldsymbol { x } _ { 1 } & 35.18215 & 96.8433 & 0.363289 & 0.719218 \\\hline \boldsymbol { x } _ { 1 } { } ^ { 2 } & 7.721648 & \mathbf { 3 . 0 0 7 9 4 3 } & 2.567086 & 0.016115\\\hline\end{array} dfSSMSF Regression 2585670322928351657.34861 Residual 2512765573510622.9 Total 2771332605\begin{array} { | c | c | c | c | c | } \hline & \mathrm { df } & \mathrm { SS } & \mathrm { MS } & F \\\hline \text { Regression } & 2 & 58567032 & 29283516 & 57.34861 \\\hline \text { Residual } & 25 & 12765573 & 510622.9 & \\\hline \text { Total } & 27 & 71332605 & & \\\hline\end{array} For x1= 10, the predicted value of y is ____________.

A)8.88.
B)2,031.38
C)2,53.86
D)262.19
E)2,535.86
Unlock Deck
Unlock for access to all 100 flashcards in this deck.
Unlock Deck
k this deck
38
The following scatter plot indicates that _________. <strong>The following scatter plot indicates that _________.  </strong> A)a<sub> </sub>x<sup>2</sup> transform may be useful B)a log y transform may be useful C)a<sub> </sub>x<sup>4</sup> transform may be useful D)no transform is needed E)a x<sup>3</sup> transform may be useful

A)a x2 transform may be useful
B)a log y transform may be useful
C)a x4 transform may be useful
D)no transform is needed
E)a x3 transform may be useful
Unlock Deck
Unlock for access to all 100 flashcards in this deck.
Unlock Deck
k this deck
39
A local parent group was concerned with the increasing cost of school for families with school aged children.The parent group was interested in understanding the relationship between the academic grade level for the child and the total costs spent per child per academic year.They performed a multiple regression analysis using total cost as the dependent variable and academic year (x1)as the independent variables.The multiple regression analysis produced the following tables.  Coefficients  Stardard Error t Statistic p-value  Intercept 707.9144435.11831.6269470.114567x12.90330781.628020.0355680.971871x1211.912973.8062113.1298780.003967\begin{array} { | c | c | c | c | c | } \hline & \text { Coefficients } & \text { Stardard Error } & t \text { Statistic } & p \text {-value } \\\hline \text { Intercept } & 707.9144 & 435.1183 & 1.626947 & 0.114567 \\\hline \boldsymbol { x } _ { 1 } & 2.903307 & 81.62802 & 0.035568 & 0.971871 \\\hline \mathbf { x } _ { 1 } { } ^ { 2 } & 11.91297 & 3.806211 & 3.129878 & 0.003967 \\\hline\end{array} df5sMSFp-value  Regression 2320551531602757747.345571.49E09 Residual 279140128338523.3 Total 2941195281\begin{array} { | c | c | c | c | c | c | } \hline & \mathrm { df } & \mathbf { 5 s } & \mathrm { MS } & F & p \text {-value } \\\hline \text { Regression } & 2 & 32055153 & 16027577 & 47.34557 & 1.49 \mathrm { E } - 09 \\\hline \text { Residual } & 27 & 9140128 & 338523.3 & & \\\hline \text { Total } & \mathbf { 2 9 } & 41195281 & & & \\\hline\end{array} Using α\alpha = 0.01 to test the null hypothesis H0: β\beta 1 = β\beta 2 = 0, the critical F value is ____.

A)5.42
B)5.49
C)7.60
D)3.35
E)2.49
Unlock Deck
Unlock for access to all 100 flashcards in this deck.
Unlock Deck
k this deck
40
A local parent group was concerned with the increasing cost of school for families with school aged children.The parent group was interested in understanding the relationship between the academic grade level for the child and the total costs spent per child per academic year.They performed a multiple regression analysis using total cost as the dependent variable and academic year (x1)as the independent variables.The multiple regression analysis produced the following tables.  Coefficients  Stardard Error t Statistic p-value  Intercept 707.9144435.11831.6269470.114567x12.90330781.628020.0355680.971871x1211.912973.8062113.1298780.003967\begin{array} { | c | c | c | c | c | } \hline & \text { Coefficients } & \text { Stardard Error } & t \text { Statistic } & p \text {-value } \\\hline \text { Intercept } & 707.9144 & 435.1183 & 1.626947 & 0.114567 \\\hline \boldsymbol { x } _ { 1 } & 2.903307 & 81.62802 & 0.035568 & 0.971871 \\\hline \mathbf { x } _ { 1 } { } ^ { 2 } & 11.91297 & 3.806211 & 3.129878 & 0.003967 \\\hline\end{array}  Df  SS  MS Fp-value  Regression 2320551531602757747.345571.49E09 Residual 279140128338523.3 Total 2941195281\begin{array} { | c | c | c | c | c | c | } \hline & \text { Df } & \text { SS } & \text { MS } & F & p \text {-value } \\\hline \text { Regression } & 2 & 32055153 & 16027577 & 47.34557 & 1.49 \mathrm { E } - 09 \\\hline \text { Residual } & 27 & 9140128 & 338523.3 & & \\\hline \text { Total } & 29 & 41195281 & & & \\\hline\end{array} The regression equation for this analysis is ____________.

A) <strong>A local parent group was concerned with the increasing cost of school for families with school aged children.The parent group was interested in understanding the relationship between the academic grade level for the child and the total costs spent per child per academic year.They performed a multiple regression analysis using total cost as the dependent variable and academic year (x<sub>1</sub>)as the independent variables.The multiple regression analysis produced the following tables.  \begin{array} { | c | c | c | c | c | } \hline & \text { Coefficients } & \text { Stardard Error } & t \text { Statistic } & p \text {-value } \\ \hline \text { Intercept } & 707.9144 & 435.1183 & 1.626947 & 0.114567 \\ \hline \boldsymbol { x } _ { 1 } & 2.903307 & 81.62802 & 0.035568 & 0.971871 \\ \hline \mathbf { x } _ { 1 } { } ^ { 2 } & 11.91297 & 3.806211 & 3.129878 & 0.003967 \\ \hline \end{array}   \begin{array} { | c | c | c | c | c | c | } \hline & \text { Df } & \text { SS } & \text { MS } & F & p \text {-value } \\ \hline \text { Regression } & 2 & 32055153 & 16027577 & 47.34557 & 1.49 \mathrm { E } - 09 \\ \hline \text { Residual } & 27 & 9140128 & 338523.3 & & \\ \hline \text { Total } & 29 & 41195281 & & & \\ \hline \end{array}  The regression equation for this analysis is ____________.</strong> A) = 707.9144 + 2.903307 x<sub>1</sub> + 11.91297 x<sub>1</sub><sup>2</sup> B) = 707.9144 + 435.1183 x<sub>1</sub> + 1.626947 x<sub>1</sub><sup>2</sup> C)  = 435.1183 + 81.62802 x<sub>1</sub> + 3.806211 x<sub>1</sub><sup>2</sup> D)  = 1.626947 + 0.035568 x<sub>1</sub> + 3.129878 x<sub>1</sub><sup>2</sup> E)  = 1.626947 + 0.035568 x<sub>1</sub> - 3.129878 x<sub>1</sub><sup>2</sup>  = 707.9144 + 2.903307 x1 + 11.91297 x12
B)11efcd21_6411_aee5_b057_4518c9fddc20_TB7041_00= 707.9144 + 435.1183 x1 + 1.626947 x12
C)11efcd21_6411_aee5_b057_4518c9fddc20_TB7041_00 = 435.1183 + 81.62802 x1 + 3.806211 x12
D)11efcd21_6411_aee5_b057_4518c9fddc20_TB7041_00 = 1.626947 + 0.035568 x1 + 3.129878 x12
E)11efcd21_6411_aee5_b057_4518c9fddc20_TB7041_00 = 1.626947 + 0.035568 x1 - 3.129878 x12
Unlock Deck
Unlock for access to all 100 flashcards in this deck.
Unlock Deck
k this deck
41
After a transformation of the y-variable values into log y, and performing a regression analysis produced the following tables.  Coefficients  Stardard Error t Statistic p-value  Iritercept 2.0053490.09735120.599234.81E18x0.0271260.0095182.8498430.008275\begin{array} { | c | c | c | c | c | } \hline & \text { Coefficients } & \text { Stardard Error } & t \text { Statistic } & p \text {-value } \\\hline \text { Iritercept } & 2.005349 & 0.097351 & 20.59923 & 4.81 \mathrm { E } - 18 \\\hline \boldsymbol { x } & 0.027126 & 0.009518 & \mathbf { 2 . 8 4 9 8 4 3 } & \mathbf { 0 . 0 0 8 2 7 5 } \\\hline\end{array} df SS  MS Fp-value  Regression 10.1966420.1966428.1216070.008447 Residual 260.6295170.024212 Total 270.826159\begin{array} { | c | c | c | c | c | c | } \hline & \mathrm { df } & \text { SS } & \text { MS } & F & p \text {-value } \\\hline \text { Regression } & 1 & 0.196642 & 0.196642 & 8.121607 & 0.008447 \\\hline \text { Residual } & 26 & 0.629517 & 0.024212 & & \\\hline \text { Total } & 27 & 0.826159 & & & \\\hline\end{array} For x1= 10, the predicted value of y is ____________.

A)155.79
B)1.25
C)2.42
D)189.06
E)18.90
Unlock Deck
Unlock for access to all 100 flashcards in this deck.
Unlock Deck
k this deck
42
In multiple regression analysis, qualitative variables are sometimes referred to as ___.

A)dummy variables
B)quantitative variables
C)dependent variables
D)performance variables
E)cardinal variables
Unlock Deck
Unlock for access to all 100 flashcards in this deck.
Unlock Deck
k this deck
43
A local parent group was concerned with the increasing cost of school for families with school aged children.The parent group was interested in understanding the relationship between the academic grade level for the child and the total costs spent per child per academic year.They performed a multiple regression analysis using total cost as the dependent variable and academic year (x1)as the independent variables.The multiple regression analysis produced the following tables.  Coefficients  Stardard Error t Statistic p-value  Intercept 707.9144435.11831.6269470.114567x12.90330781.628020.0355680.971871x1211.912973.8062113.1298780.003967\begin{array} { | c | c | c | c | c | } \hline & \text { Coefficients } & \text { Stardard Error } & t \text { Statistic } & p \text {-value } \\\hline \text { Intercept } & 707.9144 & 435.1183 & 1.626947 & 0.114567 \\\hline \boldsymbol { x } _ { 1 } & 2.903307 & 81.62802 & 0.035568 & 0.971871 \\\hline \mathbf { x } _ { 1 } ^ { 2 } & 11.91297 & 3.806211 & 3.129878 & 0.003967 \\\hline\end{array}  df  SS  MS Fp-value  Regression 2320551531602757747.345571.49E09 Residual 279140128338523.3 Total 2941195281\begin{array} { | c | c | c | c | c | c | } \hline & \text { df } & \text { SS } & \text { MS } & F & p \text {-value } \\\hline \text { Regression } & 2 & 32055153 & 16027577 & 47.34557 & 1.49 \mathrm { E } - 09 \\\hline \text { Residual } & 27 & 9140128 & 338523.3 & & \\\hline \text { Total } & 29 & 41195281 & & & \\\hline\end{array} Using α\alpha = 0.05 to test the null hypothesis H0: β\beta 1 = 0, the critical t value is ____.

A)± 1.311
B)± 1.699
C)± 1.703
D)± 2.502
E)± 2.052
Unlock Deck
Unlock for access to all 100 flashcards in this deck.
Unlock Deck
k this deck
44
Yvonne Yang, VP of Finance at Discrete Components, Inc.(DCI), wants a regression model which predicts the average collection period on credit sales.Her data set includes two qualitative variables: sales discount rates (0%, 2%, 4%, and 6%), and total assets of credit customers (small, medium, and large).The number of dummy variables needed for "total assets of credit customer" in Yvonne's regression model is ________.

A)1
B)2
C)3
D)4
E)7
Unlock Deck
Unlock for access to all 100 flashcards in this deck.
Unlock Deck
k this deck
45
Hope Hernandez is the new regional Vice President for a large gasoline station chain.She wants a regression model to predict sales in the convenience stores.Her data set includes two qualitative variables: the gasoline station location (inner city, freeway, and suburbs), and curb appeal of the convenience store (low, medium, and high).The number of dummy variables needed for "curb appeal" in Hope's regression model is ______.

A)1
B)2
C)3
D)4
E)5
Unlock Deck
Unlock for access to all 100 flashcards in this deck.
Unlock Deck
k this deck
46
Abby Kratz, a market specialist at the market research firm of Saez, Sikes, and Spitz, is analyzing household budget data collected by her firm.Abby's dependent variable is weekly household expenditures on groceries (in $'s), and her independent variables are annual household income (in $1,000's)and household neighborhood (0 = suburban, 1 = rural).Regression analysis of the data yielded the following table.  Coefficients  Stardard Error t Statistic p-value  Irtercept 19.6824710.011761.9659340.077667x1 (incorne) 1.7352720.1745649.9406121.68E06x2 (neighborhood) 49.124567.6557766.4166677.67E05\begin{array} { | l | r | r | r | r | } \hline & \text { Coefficients } & \text { Stardard Error } & t \text { Statistic } & p \text {-value } \\\hline \text { Irtercept } & 19.68247 & 10.01176 & 1.965934 & 0.077667 \\\hline x _ { 1 } \text { (incorne) } & 1.735272 & 0.174564 & 9.940612 & 1.68 \mathrm { E } - 06 \\\hline x _ { 2 } \text { (neighborhood) } & 49.12456 & 7.655776 & 6.416667 & 7.67 \mathrm { E } - 05 \\\hline\end{array} For two households, one suburban and one rural, Abby's model predicts ________.

A)equal weekly expenditures for groceries
B)the suburban household's weekly expenditures for groceries will be $49 more
C)the rural household's weekly expenditures for groceries will be $49 more
D)the suburban household's weekly expenditures for groceries will be $8 more
E)the rural household's weekly expenditures for groceries will be $49 less
Unlock Deck
Unlock for access to all 100 flashcards in this deck.
Unlock Deck
k this deck
47
A local parent group was concerned with the increasing cost of school for families with school aged children.The parent group was interested in understanding the relationship between the academic grade level for the child and the total costs spent per child per academic year.They performed a multiple regression analysis using total cost as the dependent variable and academic year (x1)as the independent variables.The multiple regression analysis produced the following tables.  Coefficients  Stardard Error t Statistic p-value  Intercept 707.9144435.11831.6269470.114567x12.90330781.628020.0355680.971871x1211.912973.8062113.1298780.003967\begin{array} { | c | c | c | c | c | } \hline & \text { Coefficients } & \text { Stardard Error } & t \text { Statistic } & p \text {-value } \\\hline \text { Intercept } & 707.9144 & 435.1183 & 1.626947 & 0.114567 \\\hline \boldsymbol { x } _ { 1 } & 2.903307 & 81.62802 & 0.035568 & 0.971871 \\\hline \mathbf { x } _ { 1 } { } ^ { 2 } & 11.91297 & 3.806211 & 3.129878 & 0.003967 \\\hline\end{array}  df  Ss  Ms Fp-value  Regression 2320551531602757747.345571.49E09 Residual 279140128338523.3 Total 2941195281\begin{array} { | c | c | c | c | c | c | } \hline & \text { df } & \text { Ss } & \text { Ms } & F & p \text {-value } \\\hline \text { Regression } & 2 & 32055153 & 16027577 & 47.34557 & 1.49 \mathrm { E } - 09 \\\hline \text { Residual } & 27 & 9140128 & 338523.3 & & \\\hline \text { Total } & 29 & 41195281 & & & \\\hline\end{array} For a child in grade 10 (x1= 10)the predicted value of y is ____________.

A)707.91
B)1,117.38
C)856.08
D)2,189.54
E)1,928.24
Unlock Deck
Unlock for access to all 100 flashcards in this deck.
Unlock Deck
k this deck
48
Alan Bissell, a market analyst for City Sound Online Mart, is analyzing sales from heavy metal song downloads.Alan's dependent variable is annual heavy metal song download sales (in $1,000,000's), and his independent variables are website visitors (in 1,000's)and type of download format requested (0 = MP3, 1 = other).Regression analysis of the data yielded the following tables.  Coefficients  Standard Error t Statistic p-value  Iritercept 1.70.3842124.4246380.00166x1 (websitevisitors) 0.040.0140292.8511460.019054x2 (download format) 1.56666670.205187.635583.21E05\begin{array} { | c | c | c | c | c | } \hline & \text { Coefficients } & \text { Standard Error } & t \text { Statistic } & p \text {-value } \\\hline \text { Iritercept } & 1.7 & 0.384212 & 4.424638 & 0.00166 \\\hline x _ { 1 } \text { (websitevisitors) } & 0.04 & 0.014029 & 2.851146 & 0.019054 \\\hline x _ { 2 } \text { (download format) } & - 1.5666667 & 0.20518 & - 7.63558 & 3.21 E - 05 \\\hline\end{array} For the same number of website visitors, what is difference between the predicted sales for MP3 versus 'other' heavy metal song downloads

A)$1,566,666 higher sales for 'other' formats
B)the same sales for both formats
C)$1,566,666 lower sales for the 'other' format
D)$1,700,000 higher sales for the MP3 format
E)$ 1,700,000 lower sales for the 'other' format
Unlock Deck
Unlock for access to all 100 flashcards in this deck.
Unlock Deck
k this deck
49
Yvonne Yang, VP of Finance at Discrete Components, Inc.(DCI), wants a regression model which predicts the average collection period on credit sales.Her data set includes two qualitative variables: sales discount rates (0%, 2%, 4%, and 6%), and total assets of credit customers (small, medium, and large).The number of dummy variables needed for "sales discount rate" in Yvonne's regression model is ________.

A)1
B)2
C)3
D)4
E)7
Unlock Deck
Unlock for access to all 100 flashcards in this deck.
Unlock Deck
k this deck
50
If a qualitative variable has 4 categories, how many dummy variables must be created and used in the regression analysis?

A)3
B)4
C)5
D)6
E)7
Unlock Deck
Unlock for access to all 100 flashcards in this deck.
Unlock Deck
k this deck
51
Hope Hernandez is the new regional Vice President for a large gasoline station chain.She wants a regression model to predict sales in the convenience stores.Her data set includes two qualitative variables: the gasoline station location (inner city, freeway, and suburbs), and curb appeal of the convenience store (low, medium, and high).The number of dummy variables needed for Hope's regression model is ______.

A)2
B)4
C)6
D)8
E)9
Unlock Deck
Unlock for access to all 100 flashcards in this deck.
Unlock Deck
k this deck
52
Abby Kratz, a market specialist at the market research firm of Saez, Sikes, and Spitz, is analyzing household budget data collected by her firm.Abby's dependent variable is weekly household expenditures on groceries (in $'s), and her independent variables are annual household income (in $1,000's)and household neighborhood (0 = suburban, 1 = rural).Regression analysis of the data yielded the following table.  Coefficients  Stardard Error t Statistic p-value  Intercept 19.6824710.011761.9659340.077667x1 (income) 1.7352720.1745649.9406121.68E06x2 (neighborhood) 49.124567.6557766.4166677.67E05\begin{array} { | c | c | c | c | c | } \hline & \text { Coefficients } & \text { Stardard Error } & t \text { Statistic } & p \text {-value } \\\hline \text { Intercept } & 19.68247 & 10.01176 & 1.965934 & 0.077667 \\\hline x _ { 1 } \text { (income) } & 1.735272 & 0.174564 & 9.940612 & 1.68 \mathrm { E } - 06 \\\hline x _ { 2 } \text { (neighborhood) } & 49.12456 & 7.655776 & 6.416667 & 7.67 \mathrm { E } - 05 \\\hline\end{array} For a rural household with $90,000 annual income, Abby's model predicts weekly grocery expenditure of ________________.

A)$156.19
B)$224.98
C)$444.62
D)$141.36
E)$175.86
Unlock Deck
Unlock for access to all 100 flashcards in this deck.
Unlock Deck
k this deck
53
A local parent group was concerned with the increasing cost of school for families with school aged children.The parent group was interested in understanding the relationship between the academic grade level for the child and the total costs spent per child per academic year.They performed a multiple regression analysis using total cost as the dependent variable and academic year (x1)as the independent variables.The multiple regression analysis produced the following tables.  Coefficients  Stardard Error t Statistic p-value  Intercept 707.9144435.11831.6269470.114567x12.90330781.628020.0355680.971871x1211.912973.8062113.1298780.003967\begin{array} { | c | c | c | c | c | } \hline & \text { Coefficients } & \text { Stardard Error } & t \text { Statistic } & p \text {-value } \\\hline \text { Intercept } & 707.9144 & 435.1183 & 1.626947 & 0.114567 \\\hline \boldsymbol { x } _ { 1 } & 2.903307 & 81.62802 & 0.035568 & 0.971871 \\\hline \mathbf { x } _ { 1 } { } ^ { 2 } & 11.91297 & 3.806211 & 3.129878 & 0.003967 \\\hline\end{array}  df  Ss  Ms Fp-value  Regression 2320551531602757747.345571.49E09 Residual 279140128338523.3 Total 2941195281\begin{array} { | c | c | c | c | c | c | } \hline & \text { df } & \text { Ss } & \text { Ms } & F & p \text {-value } \\\hline \text { Regression } & 2 & 32055153 & 16027577 & 47.34557 & 1.49 \mathrm { E } - 09 \\\hline \text { Residual } & 27 & 9140128 & 338523.3 & & \\\hline \text { Total } & 29 & 41195281 & & & \\\hline\end{array} For a child in grade 5 (x1= 5), the predicted value of y is ____________.

A)707.91
B)1,020.26
C)781.99
D)840.06
E)1078.32
Unlock Deck
Unlock for access to all 100 flashcards in this deck.
Unlock Deck
k this deck
54
A local parent group was concerned with the increasing cost of school for families with school aged children.The parent group was interested in understanding the relationship between the academic grade level for the child and the total costs spent per child per academic year.They performed a multiple regression analysis using total cost as the dependent variable and academic year (x1)as the independent variables.The multiple regression analysis produced the following tables.  Coefficients  Stardard Error t Statistic p-value  Intercept 707.9144435.11831.6269470.114567x12.90330781.628020.0355680.971871x1211.912973.8062113.1298780.003967\begin{array} { | c | c | c | c | c | } \hline & \text { Coefficients } & \text { Stardard Error } & t \text { Statistic } & p \text {-value } \\\hline \text { Intercept } & 707.9144 & 435.1183 & 1.626947 & 0.114567 \\\hline \boldsymbol { x } _ { 1 } & 2.903307 & 81.62802 & 0.035568 & 0.971871 \\\hline \mathbf { x } _ { 1 } { } ^ { 2 } & 11.91297 & 3.806211 & 3.129878 & 0.003967 \\\hline\end{array} df5sMSFp-value  Regression 2320551531602757747.345571.49E09 Residual 279140128338523.3 Total 2941195281\begin{array} { | c | c | c | c | c | c | } \hline & \mathrm { df } & \mathbf { 5 s } & \mathrm { MS } & F & p \text {-value } \\\hline \text { Regression } & 2 & 32055153 & 16027577 & 47.34557 & 1.49 \mathrm { E } - 09 \\\hline \text { Residual } & 27 & 9140128 & 338523.3 & & \\\hline \text { Total } & \mathbf { 2 9 } & 41195281 & & & \\\hline\end{array} These results indicate that ____________.

A)none of the predictor variables is significant at the 5% level
B)each predictor variable is significant at the 5% level
C)x1 is the only predictor variable significant at the 5% level
D)x12 is the only predictor variable significant at the 5% level
E)each predictor variable is insignificant at the 5% level
Unlock Deck
Unlock for access to all 100 flashcards in this deck.
Unlock Deck
k this deck
55
Alan Bissell, a market analyst for City Sound Online Mart, is analyzing sales from heavy metal song downloads.Alan's dependent variable is annual heavy metal song download sales (in $1,000,000's), and his independent variables are website visitors (in 1,000's)and type of download format requested (0 = MP3, 1 = other).Regression analysis of the data yielded the following tables.  Coefficients  Standard Error t Statistic p-value  Iritercept 1.70.3842124.4246380.00166x1 (websitevisitors) 0.040.0140292.8511460.019054x2 (download format) 1.56666670.205187.635583.21E05\begin{array} { | c | c | c | c | c | } \hline & \text { Coefficients } & \text { Standard Error } & t \text { Statistic } & p \text {-value } \\\hline \text { Iritercept } & 1.7 & 0.384212 & 4.424638 & 0.00166 \\\hline x _ { 1 } \text { (websitevisitors) } & 0.04 & 0.014029 & 2.851146 & 0.019054 \\\hline x _ { 2 } \text { (download format) } & - 1.5666667 & 0.20518 & - 7.63558 & 3.21 E - 05 \\\hline\end{array} For 'other' download formats with 10,000 website visitors, Alan's model predicts annual sales of heavy metal song downloads of ________________.

A)$2,100,000
B)$524,507
C)$533,333
D)$729,683
E)$210,000
Unlock Deck
Unlock for access to all 100 flashcards in this deck.
Unlock Deck
k this deck
56
Alan Bissell, a market analyst for City Sound Online Mart, is analyzing sales from heavy metal song downloads.Alan's dependent variable is annual heavy metal song download sales (in $1,000,000's), and his independent variables are website visitors (in 1,000's)and type of download format requested (0 = MP3, 1 = other).Regression analysis of the data yielded the following tables.  Coefficients  Standard Error t Statistic p-value  Iritercept 1.70.3842124.4246380.00166x1 (websitevisitors) 0.040.0140292.8511460.019054x2 (download format) 1.56666670.205187.635583.21E05\begin{array} { | c | c | c | c | c | } \hline & \text { Coefficients } & \text { Standard Error } & t \text { Statistic } & p \text {-value } \\\hline \text { Iritercept } & 1.7 & 0.384212 & 4.424638 & 0.00166 \\\hline x _ { 1 } \text { (websitevisitors) } & 0.04 & 0.014029 & 2.851146 & 0.019054 \\\hline x _ { 2 } \text { (download format) } & - 1.5666667 & 0.20518 & - 7.63558 & 3.21 E - 05 \\\hline\end{array} For MP3 sales with 10,000 website visitors, Alan's model predicts annual sales of heavy metal song downloads of ________________.

A)$2,100,000
B)$524,507
C)$533,333
D)$729,683
E)$21,000,000
Unlock Deck
Unlock for access to all 100 flashcards in this deck.
Unlock Deck
k this deck
57
Abby Kratz, a market specialist at the market research firm of Saez, Sikes, and Spitz, is analyzing household budget data collected by her firm.Abby's dependent variable is weekly household expenditures on groceries (in $'s), and her independent variables are annual household income (in $1,000's)and household neighborhood (0 = suburban, 1 = rural).Regression analysis of the data yielded the following table.  Coefficients  Stardard Error t Statistic p-value  Intercept 19.6824710.011761.9659340.077667x1 (income) 1.7352720.1745649.9406121.68E06x2 (neighborhood) 49.124567.6557766.4166677.67E05\begin{array} { | c | c | c | c | c | } \hline & \text { Coefficients } & \text { Stardard Error } & t \text { Statistic } & p \text {-value } \\\hline \text { Intercept } & 19.68247 & 10.01176 & 1.965934 & 0.077667 \\\hline x _ { 1 } \text { (income) } & 1.735272 & 0.174564 & 9.940612 & 1.68 \mathrm { E } - 06 \\\hline x _ { 2 } \text { (neighborhood) } & 49.12456 & 7.655776 & 6.416667 & 7.67 \mathrm { E } - 05 \\\hline\end{array} For a suburban household with $90,000 annual income, Abby's model predicts weekly grocery expenditure of ________________.

A)$156.19
B)$224.98
C)$444.62
D)$141.36
E)$175.86
Unlock Deck
Unlock for access to all 100 flashcards in this deck.
Unlock Deck
k this deck
58
Alan Bissell, a market analyst for City Sound Online Mart, is analyzing sales from heavy metal song downloads.Alan's dependent variable is annual heavy metal song download sales (in $1,000,000's), and his independent variables are website visitors (in 1,000's)and type of download format requested (0 = MP3, 1 = other).Regression analysis of the data yielded the following tables.  Coefficients  Stardard  Error t Statistic p-value  Intercept 1.70.3842124.4246380.00166x1 (website visitors) 0.040.0140292.8511460.019054x2 (download fommat) 1.56666670.205187.635583.21E05\begin{array} { | c | c | c | c | c | } \hline & \text { Coefficients } & \begin{array} { c } \text { Stardard } \\\text { Error }\end{array} & \boldsymbol { t } \text { Statistic } & p \text {-value } \\\hline \text { Intercept } & 1.7 & 0.384212 & 4.424638 & 0.00166 \\\hline \boldsymbol { x } _ { 1 } \text { (website visitors) } & 0.04 & 0.014029 & \mathbf { 2 . 8 5 1 1 4 6 } & 0.019054 \\\hline \mathbf { x } _ { 2 } \text { (download fommat) } & - 1.5666667 & 0.20518 & - 7.63558 & \mathbf { 3 . 2 1 E - 0 5 } \\\hline\end{array} Alan's model is ________________.

A) <strong>Alan Bissell, a market analyst for City Sound Online Mart, is analyzing sales from heavy metal song downloads.Alan's dependent variable is annual heavy metal song download sales (in $1,000,000's), and his independent variables are website visitors (in 1,000's)and type of download format requested (0 = MP3, 1 = other).Regression analysis of the data yielded the following tables.  \begin{array} { | c | c | c | c | c | } \hline & \text { Coefficients } & \begin{array} { c } \text { Stardard } \\ \text { Error } \end{array} & \boldsymbol { t } \text { Statistic } & p \text {-value } \\ \hline \text { Intercept } & 1.7 & 0.384212 & 4.424638 & 0.00166 \\ \hline \boldsymbol { x } _ { 1 } \text { (website visitors) } & 0.04 & 0.014029 & \mathbf { 2 . 8 5 1 1 4 6 } & 0.019054 \\ \hline \mathbf { x } _ { 2 } \text { (download fommat) } & - 1.5666667 & 0.20518 & - 7.63558 & \mathbf { 3 . 2 1 E - 0 5 } \\ \hline \end{array}  Alan's model is ________________.</strong> A)  = 1.7 + 0.384212<sub> </sub>x<sub>1</sub> + 4.424638<sub> </sub>x<sub>2</sub> + 0.00166 x<sub>3</sub> B)  = 1.7 + 0.04 x<sub>1 </sub>+ 1.5666667 x<sub>2</sub> C)  = 0.384212 + 0.014029 x<sub>1 </sub>+ 0.20518 x<sub>2</sub> D)  = 4.424638 + 2.851146 x<sub>1 </sub>- 7.63558 x<sub>2</sub> E)  = 1.7 + 0.04 x<sub>1 </sub>- 1.5666667 x<sub>2</sub>  = 1.7 + 0.384212 x1 + 4.424638 x2 + 0.00166 x3
B)11efcd21_6411_aee5_b057_4518c9fddc20_TB7041_00 = 1.7 + 0.04 x1 + 1.5666667 x2
C)11efcd21_6411_aee5_b057_4518c9fddc20_TB7041_00 = 0.384212 + 0.014029 x1 + 0.20518 x2
D)11efcd21_6411_aee5_b057_4518c9fddc20_TB7041_00 = 4.424638 + 2.851146 x1 - 7.63558 x2
E)11efcd21_6411_aee5_b057_4518c9fddc20_TB7041_00 = 1.7 + 0.04 x1 - 1.5666667 x2
Unlock Deck
Unlock for access to all 100 flashcards in this deck.
Unlock Deck
k this deck
59
Abby Kratz, a market specialist at the market research firm of Saez, Sikes, and Spitz, is analyzing household budget data collected by her firm.Abby's dependent variable is weekly household expenditures on groceries (in $'s), and her independent variables are annual household income (in $1,000's)and household neighborhood (0 = suburban, 1 = rural).Regression analysis of the data yielded the following table.
 InterceptX1 (income)X2(neighborhood) Coefficients 19.682471.73527249.12456Standard Error10.011760.1745647.655776t Statistic 1.9659349.9406126.416667p-value 0.0776671.68E067.67E05\begin{array}{c}\begin{array}{|l|}\hline \text { } \\\hline \text {Intercept}\\\hline \text {\( X_{1} \) (income)}\\\hline \text {\( \mathrm{X}_{2} \)}\\ \text {(neighborhood)}\\\hline \end{array}\begin{array}{l}\hline \text { Coefficients }\\\hline 19.68247 \\\hline 1.735272 \\\hline 49.12456\\\\\hline \end{array}\begin{array}{|l|}\hline \text {Standard Error}\\\hline10.01176 \\\hline 0.174564 \\\hline 7.655776\\\\\hline \end{array}\begin{array}{l|}\hline t \text { Statistic } \\\hline 1.965934 \\\hline 9.940612 \\\hline 6.416667 \\\\\hline \end{array}\begin{array}{l|}\hline p \text {-value }\\\hline0.077667\\\hline1.68 \mathrm{E}-06\\\hline7.67 \mathrm{E}-05\\\\\hline\end{array}\end{array}
Abby's model is ________________.

A) <strong>Abby Kratz, a market specialist at the market research firm of Saez, Sikes, and Spitz, is analyzing household budget data collected by her firm.Abby's dependent variable is weekly household expenditures on groceries (in  = 19.68247 + 10.01176 x<sub>1</sub> + 1.965934 x<sub>2</sub><br>B)11efcd21_6411_aee5_b057_4518c9fddc20_TB7041_00= 1.965934 + 9.940612 x<sub>1</sub> + 6.416667 x<sub>2</sub><br>C)11efcd21_6411_aee5_b057_4518c9fddc20_TB7041_00= 10.01176 + 0.174564 x<sub>1</sub> + 7.655776 x<sub>2</sub><br>D)11efcd21_6411_aee5_b057_4518c9fddc20_TB7041_00= 19.68247 - 1.735272 x<sub>1</sub> + 49.12456 x<sub>2</sub><br>E)11efcd21_6411_aee5_b057_4518c9fddc20_TB7041_00 = 19.68247 + 1.735272 x<sub>1</sub> + 49.12456 x<sub>2</sub></div>s), and her independent variables are annual household income (in $1,000's)and household neighborhood (0 = suburban, 1 = rural).Regression analysis of the data yielded the following table.  \begin{array}{c} \begin{array}{|l|} \hline \text {  } \\ \hline \text {Intercept}\\ \hline \text { X_{1}  (income)}\\ \hline \text { <span class=X2 \mathrm{X}_{2} }\\ \text {(neighborhood)}\\ \hline \end{array} \begin{array}{l} \hline \text { Coefficients }\\ \hline 19.68247 \\ \hline 1.735272 \\ \hline 49.12456\\ \\ \hline \end{array} \begin{array}{|l|} \hline \text {Standard Error}\\ \hline10.01176 \\ \hline 0.174564 \\ \hline 7.655776\\ \\ \hline \end{array} \begin{array}{l|} \hline t \text { Statistic } \\ \hline 1.965934 \\ \hline 9.940612 \\ \hline 6.416667 \\ \\ \hline \end{array} \begin{array}{l|} \hline p \text {-value }\\ \hline0.077667\\ \hline1.68 \mathrm{E}-06\\ \hline7.67 \mathrm{E}-05\\ \\ \hline \end{array} \end{array} Abby's model is ________________. A) = 19.68247 + 10.01176 x1 + 1.965934 x2 B) = 1.965934 + 9.940612 x1 + 6.416667 x2 C) = 10.01176 + 0.174564 x1 + 7.655776 x2 D) = 19.68247 - 1.735272 x1 + 49.12456 x2 E) = 19.68247 + 1.735272 x1 + 49.12456 x2 " class="answers-bank-image d-block" loading="lazy" > = 19.68247 + 10.01176 x1 + 1.965934 x2
B)11efcd21_6411_aee5_b057_4518c9fddc20_TB7041_00= 1.965934 + 9.940612 x1 + 6.416667 x2
C)11efcd21_6411_aee5_b057_4518c9fddc20_TB7041_00= 10.01176 + 0.174564 x1 + 7.655776 x2
D)11efcd21_6411_aee5_b057_4518c9fddc20_TB7041_00= 19.68247 - 1.735272 x1 + 49.12456 x2
E)11efcd21_6411_aee5_b057_4518c9fddc20_TB7041_00 = 19.68247 + 1.735272 x1 + 49.12456 x2
Unlock Deck
Unlock for access to all 100 flashcards in this deck.
Unlock Deck
k this deck
60
A local parent group was concerned with the increasing cost of school for families with school aged children.The parent group was interested in understanding the relationship between the academic grade level for the child and the total costs spent per child per academic year.They performed a multiple regression analysis using total cost as the dependent variable and academic year (x1)as the independent variables.The multiple regression analysis produced the following tables.  Coefficients  Stardard Error t Statistic p-value  Intercept 707.9144435.11831.6269470.114567x12.90330781.628020.0355680.971871x1211.912973.8062113.1298780.003967\begin{array} { | c | c | c | c | c | } \hline & \text { Coefficients } & \text { Stardard Error } & t \text { Statistic } & p \text {-value } \\\hline \text { Intercept } & 707.9144 & 435.1183 & 1.626947 & 0.114567 \\\hline \boldsymbol { x } _ { 1 } & 2.903307 & 81.62802 & 0.035568 & 0.971871 \\\hline \mathbf { x } _ { 1 } ^ { 2 } & 11.91297 & 3.806211 & 3.129878 & 0.003967 \\\hline\end{array}  df  SS  MS Fp-value  Regression 2320551531602757747.345571.49E09 Residual 279140128338523.3 Total 2941195281\begin{array} { | c | c | c | c | c | c | } \hline & \text { df } & \text { SS } & \text { MS } & F & p \text {-value } \\\hline \text { Regression } & 2 & 32055153 & 16027577 & 47.34557 & 1.49 \mathrm { E } - 09 \\\hline \text { Residual } & 27 & 9140128 & 338523.3 & & \\\hline \text { Total } & 29 & 41195281 & & & \\\hline\end{array} Using α\alpha = 0.05 to test the null hypothesis H0: β\beta 2 = 0, the critical t value is ____.

A)± 1.311
B)± 1.699
C)± 1.703
D)± 2.052
E)± 2.502
Unlock Deck
Unlock for access to all 100 flashcards in this deck.
Unlock Deck
k this deck
61
Inspection of the following table of correlation coefficients for variables in a multiple regression analysis reveals potential multicollinearity with variables ___________. yx1x2x3x4x5y1x10.08571x20.202460.8683581x30.226310.106040.148531x40.281750.06850.414680.141511x50.2711050.1507960.1293880.152430.008211\begin{array} { | c | r | c | r | c | c | r | } \hline & y & x _ { 1 } & x _ { 2 } & x _ { 3 } & x _ { 4 } & x _ { 5 } \\\hline y & 1 & & & & & \\\hline x _ { 1 } & - 0.0857 & 1 & & & & \\\hline x _ { 2 } & - 0.20246 & 0.868358 & 1 & & & \\\hline x _ { 3 } & - 0.22631 & - 0.10604 & - 0.14853 & 1 & & \\\hline x _ { 4 } & - 0.28175 & - 0.0685 & 0.41468 & - 0.14151 & 1 & \\\hline x _ { 5 } & 0.271105 & 0.150796 & 0.129388 & - 0.15243 & 0.00821 & 1 \\\hline\end{array}

A)x1 and x2
B)x1 and x4
C)x4 and x5
D)x4 and x3
E)x5 and y
Unlock Deck
Unlock for access to all 100 flashcards in this deck.
Unlock Deck
k this deck
62
Inspection of the following table of t values for variables in a multiple regression analysis reveals that the first independent variable that will be entered into the regression model by the forward selection procedure will be ___________. yx1x2x3x4x5y1x10.08571x20.202460.8683581x30.226310.106040.148531x40.281750.06850.414680.141511x50.2711050.1507960.1293880.152430.008211\begin{array} { | c | r | c | r | c | c | r | } \hline & y & x _ { 1 } & x _ { 2 } & x _ { 3 } & x _ { 4 } & x _ { 5 } \\\hline y & 1 & & & & & \\\hline x _ { 1 } & - 0.0857 & 1 & & & & \\\hline x _ { 2 } & - 0.20246 & 0.868358 & 1 & & & \\\hline x _ { 3 } & - 0.22631 & - 0.10604 & - 0.14853 & 1 & & \\\hline x _ { 4 } & - 0.28175 & - 0.0685 & 0.41468 & - 0.14151 & 1 & \\\hline x _ { 5 } & 0.271105 & 0.150796 & 0.129388 & - 0.15243 & 0.00821 & 1 \\\hline\end{array}

A)x1
B)x2
C)x3
D)x4
E)x5
Unlock Deck
Unlock for access to all 100 flashcards in this deck.
Unlock Deck
k this deck
63
An appropriate method to identify multicollinearity in a regression model is to ____.

A)examine a residual plot
B)examine the ANOVA table
C)examine a correlation matrix
D)examine the partial regression coefficients
E)examine the R2 of the regression model
Unlock Deck
Unlock for access to all 100 flashcards in this deck.
Unlock Deck
k this deck
64
Which of the following iterative search procedures for model-building in a multiple regression analysis adds variables to model as it proceeds, but does not reevaluate the contribution of previously entered variables?

A)Backward elimination
B)Stepwise regression
C)Forward selection
D)All possible regressions
E)Forward elimination
Unlock Deck
Unlock for access to all 100 flashcards in this deck.
Unlock Deck
k this deck
65
Inspection of the following table of t values for variables in a multiple regression analysis reveals that the first independent variable that will be entered into the regression model by the forward selection procedure will be ___________. yx1x2x3x4x5y1x10.8541681x20.118280.003831x30.120030.084990.145231x40.5259010.1181690.148760.0500421x50.181050.073710.9958860.141510.169341\begin{array} { | c | c | c | c | c | c | c | } \hline & y & x _ { 1 } & x _ { 2 } & x _ { 3 } & x _ { 4 } & x _ { 5 } \\\hline y & 1 & & & & & \\\hline x _ { 1 } & 0.854168 & 1 & & & & \\\hline x _ { 2 } & - 0.11828 & - 0.00383 & 1 & & & \\\hline x _ { 3 } & - 0.12003 & - 0.08499 & - 0.14523 & 1 & & \\\hline x _ { 4 } & 0.525901 & 0.118169 & - 0.14876 & 0.050042 & 1 & \\\hline x _ { 5 } & - 0.18105 & - 0.07371 & 0.995886 & - 0.14151 & - 0.16934 & 1 \\\hline\end{array}

A)x1
B)x2
C)x3
D)x4
E)x5
Unlock Deck
Unlock for access to all 100 flashcards in this deck.
Unlock Deck
k this deck
66
Which of the following iterative search procedures for model-building in a multiple regression analysis starts with all independent variables in the model and then drops non-significant independent variables is a step-by-step manner?

A)Backward elimination
B)Stepwise regression
C)Forward selection
D)All possible regressions
E)Backward selection
Unlock Deck
Unlock for access to all 100 flashcards in this deck.
Unlock Deck
k this deck
67
An acceptable method of managing multicollinearity in a regression model is the ___.

A)use the forward selection procedure
B)use the backward elimination procedure
C)use the forward elimination procedure
D)use the stepwise regression procedure
E)use all possible regressions
Unlock Deck
Unlock for access to all 100 flashcards in this deck.
Unlock Deck
k this deck
68
An "all possible regressions" search of a data set containing 5 independent variables will produce ______ regressions.

A)31
B)10
C)25
D)32
E)24
Unlock Deck
Unlock for access to all 100 flashcards in this deck.
Unlock Deck
k this deck
69
Inspection of the following table of t values for variables in a multiple regression analysis reveals that the first independent variable entered by the forward selection procedure will be ___________. yx1x2x3x4x5y1x10.440081x20.5660530.517281x30.0649190.222640.007341x40.357110.0289570.498690.2605861x50.4263630.204670.0789160.2074770.0238391\begin{array} { | c | c | c | c | c | c | c | } \hline & y & x _ { 1 } & x _ { 2 } & x _ { 3 } & x _ { 4 } & x _ { 5 } \\\hline y & 1 & & & & & \\\hline x _ { 1 } & - 0.44008 & 1 & & & & \\\hline x _ { 2 } & 0.566053 & - 0.51728 & 1 & & & \\\hline x _ { 3 } & 0.064919 & - 0.22264 & - 0.00734 & 1 & & \\\hline x _ { 4 } & - 0.35711 & 0.028957 & - 0.49869 & 0.260586 & 1 & \\\hline x _ { 5 } & 0.426363 & - 0.20467 & 0.078916 & 0.207477 & 0.023839 & 1 \\\hline\end{array}

A)x1
B)x2
C)x3
D)x4
E)x5
Unlock Deck
Unlock for access to all 100 flashcards in this deck.
Unlock Deck
k this deck
70
An "all possible regressions" search of a data set containing "k" independent variables will produce __________ regressions.

A)2k -1
B)2k - 1
C)k2 - 1
D)2k - 1
E)2k
Unlock Deck
Unlock for access to all 100 flashcards in this deck.
Unlock Deck
k this deck
71
Carlos Cavazos, Director of Human Resources, is exploring employee absenteeism at the Plano Piano Plant.A multiple regression analysis was performed using the following variables.The results are presented below.  Variable  Description Y number of days absent last fiscal year x1 comrnuting distarnce (in miles) x2 employee’s age (in years) x3 single-parent household (0= no, 1= yes )x4 length of employment at PpP (in years) x5 shift (0= day 1= night) \begin{array} { | l | l | } \hline \text { Variable } & \text { Description } \\\hline Y & \text { number of days absent last fiscal year } \\\hline x _ { 1 } & \text { comrnuting distarnce (in miles) } \\\hline x _ { 2 } & \text { employee's age (in years) } \\\hline x _ { 3 } & \text { single-parent household } ( 0 = \text { no, } 1 = \text { yes } ) \\\hline x _ { 4 } & \text { length of employment at PpP (in years) } \\\hline x _ { 5 } & \text { shift } ( 0 = \text { day } 1 = \text { night) } \\\hline\end{array}  Coefficients  Standard Error t Statistic p-value  Intercept 6.5941463.2730052.0147070.047671x10.180190.1419491.269390.208391x20.2681560.2606431.0288280.307005x32.310680.9620562.401820.018896x40.505790.2708721.867250.065937x52.3295130.9403212.477360.015584\begin{array} { | c | c | c | c | c | } \hline & \text { Coefficients } & \text { Standard Error } & t \text { Statistic } & p \text {-value } \\\hline \text { Intercept } & 6.594146 & \mathbf { 3 . 2 7 3 0 0 5 } & \mathbf { 2 . 0 1 4 7 0 7 } & \mathbf { 0 . 0 4 7 6 7 1 } \\\hline \boldsymbol { x } _ { 1 } & - 0.18019 & 0.141949 & - 1.26939 & 0.208391 \\\hline \mathbf { x } _ { 2 } & 0.268156 & 0.260643 & 1.028828 & 0.307005 \\\hline \boldsymbol { x } _ { 3 } & - 2.31068 & 0.962056 & - 2.40182 & 0.018896 \\\hline \mathbf { x } _ { 4 } & - 0.50579 & 0.270872 & - 1.86725 & 0.065937 \\\hline \boldsymbol { x } _ { 5 } & \mathbf { 2 . 3 2 9 5 1 3 } & 0.940321 & 2.47736 & 0.015584 \\\hline\end{array} df SS  ME Fp-value  Repression 5279.35855.87164.4237550.001532 Residual 67846.203612.6299 Total 721125.562\begin{array} { | c | c | c | c | c | c | } \hline & \mathrm { df } & \text { SS } & \text { ME } & F & p \text {-value } \\\hline \text { Repression } & 5 & 279.358 & 55.8716 & 4.423755 & \mathbf { 0 . 0 0 1 5 3 2 } \\\hline \text { Residual } & 67 & 846.2036 & 12.6299 & & \\\hline \text { Total } & 72 & 1125.562 & & & \\\hline\end{array} R=0.498191R2=0.248194 Adj R2=0.192089se=3.553858n=73\begin{array} { | c | c | c | } \hline R = 0.498191 & R ^ { 2 } = 0.248194 & \text { Adj } R ^ { 2 } = 0.192089 \\\hline \mathrm { s } _ { \mathrm { e } } = 3.553858 & n = 73 & \\\hline\end{array} Which of the following conclusions can be drawn from the above results?

A)All the independent variables in the regression are significant at 5% level.
B)Commuting distance is a highly significant (<1%)variable in explaining absenteeism.
C)Age of the employees tends to have a very significant (<1%)effect on absenteeism.
D)This model explains a little over 49% of the variability in absenteeism data.
E)A single-parent household employee is expected to be absent fewer days, all other variables held constant, compared to one who is not a single-parent household.
Unlock Deck
Unlock for access to all 100 flashcards in this deck.
Unlock Deck
k this deck
72
An "all possible regressions" search of a data set containing 8 independent variables will produce ______ regressions.

A)8
B)15
C)256
D)64
E)255
Unlock Deck
Unlock for access to all 100 flashcards in this deck.
Unlock Deck
k this deck
73
Suppose a company is interested in understanding the effect of age and sex on the likelihood a customer will purchase a new product.The data analyst intends to run a logistic regression on her data.Which of the following variable(s)will the analyst need to code as 0 or 1 prior to performing the logistic regression analysis?

A)age and gender
B)age and purchase status
C)age
D)purchase status
E)sex and purchase status Gender is no longer considered dichotomous
Unlock Deck
Unlock for access to all 100 flashcards in this deck.
Unlock Deck
k this deck
74
Inspection of the following table of t values for variables in a multiple regression analysis reveals that the first independent variable entered by the forward selection procedure will be ___________. yx1x2x3x4x5y1x10.16611x20.2318490.517281x30.4235220.222640.007341x40.332270.0289570.498690.2605861x50.1997960.204670.0789160.2074770.0238391\begin{array} { | l | r | r | r | r | r | r | } \hline & y & x _ { 1 } & x _ { 2 } & x _ { 3 } & x _ { 4 } & x _ { 5 } \\\hline y & 1 & & & & & \\\hline x _ { 1 } & - 0.1661 & 1 & & & & \\\hline x _ { 2 } & 0.231849 & - 0.51728 & 1 & & & \\\hline x _ { 3 } & 0.423522 & - 0.22264 & - 0.00734 & 1 & & \\\hline x _ { 4 } & - 0.33227 & 0.028957 & - 0.49869 & 0.260586 & 1 & \\\hline x _ { 5 } & 0.199796 & - 0.20467 & 0.078916 & 0.207477 & 0.023839 & 1 \\\hline\end{array}

A)x2
B)x3
C)x4
D)x5
E)x1
Unlock Deck
Unlock for access to all 100 flashcards in this deck.
Unlock Deck
k this deck
75
An "all possible regressions" search of a data set containing 7 independent variables will produce ______ regressions.

A)13
B)127
C)48
D)64
E)97
Unlock Deck
Unlock for access to all 100 flashcards in this deck.
Unlock Deck
k this deck
76
Large correlations between two or more independent variables in a multiple regression model could result in the problem of ________.

A)multicollinearity
B)autocorrelation
C)partial correlation
D)rank correlation
E)non-normality
Unlock Deck
Unlock for access to all 100 flashcards in this deck.
Unlock Deck
k this deck
77
Which of the following iterative search procedures for model-building in a multiple regression analysis reevaluates the contribution of variables previously include in the model after entering a new independent variable?

A)Backward elimination
B)Stepwise regression
C)Forward selection
D)All possible regressions
E)Backward selection
Unlock Deck
Unlock for access to all 100 flashcards in this deck.
Unlock Deck
k this deck
78
A useful technique in controlling multicollinearity involves the use of _________.

A)variance inflation factors
B)a backward elimination procedure
C)a forward elimination procedure
D)a forward selection procedure
E)all possible regressions
Unlock Deck
Unlock for access to all 100 flashcards in this deck.
Unlock Deck
k this deck
79
Inspection of the following table of correlation coefficients for variables in a multiple regression analysis reveals potential multicollinearity with variables ___________. yx1x2x3x4x5y1x10.8541681x20.118280.003831x30.120030.084990.145231x40.5259010.1181690.148760.0500421x50.181050.073710.9958860.141510.169341\begin{array} { | c | c | c | c | c | c | c | } \hline & y & x _ { 1 } & x _ { 2 } & x _ { 3 } & x _ { 4 } & x _ { 5 } \\\hline y & 1 & & & & & \\\hline x _ { 1 } & 0.854168 & 1 & & & & \\\hline x _ { 2 } & - 0.11828 & - 0.00383 & 1 & & & \\\hline x _ { 3 } & - 0.12003 & - 0.08499 & - 0.14523 & 1 & & \\\hline x _ { 4 } & 0.525901 & 0.118169 & - 0.14876 & 0.050042 & 1 & \\\hline x _ { 5 } & - 0.18105 & - 0.07371 & 0.995886 & - 0.14151 & - 0.16934 & 1 \\\hline\end{array}

A)x1 and x2
B)x1 and x5
C)x3 and x4
D)x2 and x5
E)x3 and x5
Unlock Deck
Unlock for access to all 100 flashcards in this deck.
Unlock Deck
k this deck
80
Inspection of the following table of correlation coefficients for variables in a multiple regression analysis reveals potential multicollinearity with variables ___________. yx1x2x3x4x5y1x10.083011x20.2367450.517281x30.1551490.222640.007341x40.0222340.580790.8842160.1319561x50.48080.204670.0789160.2074770.1038311\begin{array} { | c | r | c | c | c | c | c | } \hline & y & x _ { 1 } & x _ { 2 } & x _ { 3 } & x _ { 4 } & x _ { 5 } \\\hline y & 1 & & & & & \\\hline x _ { 1 } & - 0.08301 & 1 & & & & \\\hline x _ { 2 } & 0.236745 & - 0.51728 & 1 & & & \\\hline x _ { 3 } & 0.155149 & - 0.22264 & - 0.00734 & 1 & & \\\hline x _ { 4 } & 0.022234 & - 0.58079 & 0.884216 & 0.131956 & 1 & \\\hline x _ { 5 } & 0.4808 & - 0.20467 & 0.078916 & 0.207477 & 0.103831 & 1 \\\hline\end{array}

A)x1 and x5
B)x2 and x3
C)x4 and x2
D)x4 and x3
E)x4 and y
Unlock Deck
Unlock for access to all 100 flashcards in this deck.
Unlock Deck
k this deck
locked card icon
Unlock Deck
Unlock for access to all 100 flashcards in this deck.