Deck 4: Basic Estimation Techniques

Full screen (f)
exit full mode
Question
In a linear regression equation of the form Y = a + bX, the intercept parameter a shows

A) the value of X when Y is zero.
B) the value of Y when X is zero.
C) the amount that Y changes when X changes by one unit.
D) the amount that X changes when Y changes by one unit.
Use Space or
up arrow
down arrow
to flip the card.
Question

The linear regression equation, Y = a + bX, was estimated. The following computer printout was
obtained:
 DEPENDENT VARIABLE:  Y  R-SQUARE  F-RATIO  P-VALUE ON F  OBSERVATIONS: 180.30667.0760.0171\begin{array}{rllll}\text { DEPENDENT VARIABLE: } & \text { Y } & \text { R-SQUARE } & \text { F-RATIO } & \text { P-VALUE ON F } \\\text { OBSERVATIONS: } &18 & 0.3066 & 7.076 & 0.0171\end{array}

 VARIABLE  PARAMETER  ESTIMATE  STANDARD  ERROR  T-RATIO  P-VALUE  INTERCEPT 15.485.093.040.0008X21.368.032.660.0171\begin{array}{lllll}\text { VARIABLE } & \begin{array}{llll}\text { PARAMETER } \\\text { ESTIMATE }\end{array} & \begin{array}{l}\text { STANDARD } \\\text { ERROR }\end{array} & \text { T-RATIO } & \text { P-VALUE } \\\text { INTERCEPT } & 15.48 & 5.09 & 3.04 & 0.0008\\X&-21.36&8.03&-2.66&0.0171\end{array}

-Which of the following statements is correct at the 1% level of significance?

A) Both a^\hat { a } and
b^\hat { b } are statistically significant.
B) Neither a^\hat { a } nor
b^\hat { b } is statistically significant.
C) a^\hat { a } is statistically significant, but
b^\hat { b } is not.
D) b^\hat { b } is statistically significant, but
a^\hat { a } is not.
Question
In a linear regression equation Y = a + bX, the fitted or predicted value of Y is

A) the value of Y obtained by substituting specific values of X into the sample regression equation.
B) the value of X associated with a particular value of Y.
C) the value of X that the regression equation predicts.
D) the values of the parameters predicted by the estimators.
E) the value of Y associated with a particular value of X in the sample.
Question
The sample regression line

A) shows the actual (or true) relation between the dependent and independent variables.
B) is used to estimate the population regression line.
C) connects the data points in a sample.
D) is estimated by the population regression line.
E) maximizes the sum of the squared differences between the data points in a sample and the sample regression line.
Question

The linear regression equation, Y = a + bX, was estimated. The following computer printout was
obtained:
 DEPENDENT VARIABLE:  Y  R-SQUARE  F-RATIO  P-VALUE ON F  OBSERVATIONS: 180.30667.0760.0171\begin{array}{rllll}\text { DEPENDENT VARIABLE: } & \text { Y } & \text { R-SQUARE } & \text { F-RATIO } & \text { P-VALUE ON F } \\\text { OBSERVATIONS: } &18 & 0.3066 & 7.076 & 0.0171\end{array}

 VARIABLE  PARAMETER  ESTIMATE  STANDARD  ERROR  T-RATIO  P-VALUE  INTERCEPT 15.485.093.040.0008X21.368.032.660.0171\begin{array}{lllll}\text { VARIABLE } & \begin{array}{llll}\text { PARAMETER } \\\text { ESTIMATE }\end{array} & \begin{array}{l}\text { STANDARD } \\\text { ERROR }\end{array} & \text { T-RATIO } & \text { P-VALUE } \\\text { INTERCEPT } & 15.48 & 5.09 & 3.04 & 0.0008\\X&-21.36&8.03&-2.66&0.0171\end{array}

-If X equals 20, what is the predicted value of Y?

A) 186.42
B) 165.69
C) -186.42
D) -411.72
Question
The critical value of t is the value that a t-statistic must exceed in order to

A) reject the hypothesis that the true value of a parameter equals zero.
B) accept the hypothesis that the estimated value of parameter equals the true value.
C) reject the hypothesis that the estimated value of the parameter equals the true value.
D) reject the hypothesis that the estimated value of the parameter exceeds the true value.
Question

The linear regression equation, Y = a + bX, was estimated. The following computer printout was
obtained:
 DEPENDENT VARIABLE:  Y  R-SQUARE  F-RATIO  P-VALUE ON F  OBSERVATIONS: 180.30667.0760.0171\begin{array}{rllll}\text { DEPENDENT VARIABLE: } & \text { Y } & \text { R-SQUARE } & \text { F-RATIO } & \text { P-VALUE ON F } \\\text { OBSERVATIONS: } &18 & 0.3066 & 7.076 & 0.0171\end{array}

 VARIABLE  PARAMETER  ESTIMATE  STANDARD  ERROR  T-RATIO  P-VALUE  INTERCEPT 15.485.093.040.0008X21.368.032.660.0171\begin{array}{lllll}\text { VARIABLE } & \begin{array}{llll}\text { PARAMETER } \\\text { ESTIMATE }\end{array} & \begin{array}{l}\text { STANDARD } \\\text { ERROR }\end{array} & \text { T-RATIO } & \text { P-VALUE } \\\text { INTERCEPT } & 15.48 & 5.09 & 3.04 & 0.0008\\X&-21.36&8.03&-2.66&0.0171\end{array}

-The exact level of significance of b^\hat { b } is

A) 0.171 percent.
B) 1 percent.
C) 1.71 percent.
D) 2.66 percent.
E) 2.921 percent.
Question

The linear regression equation, Y = a + bX, was estimated. The following computer printout was
obtained:
 DEPENDENT VARIABLE:  Y  R-SQUARE  F-RATIO  P-VALUE ON F  OBSERVATIONS: 180.30667.0760.0171\begin{array}{rllll}\text { DEPENDENT VARIABLE: } & \text { Y } & \text { R-SQUARE } & \text { F-RATIO } & \text { P-VALUE ON F } \\\text { OBSERVATIONS: } &18 & 0.3066 & 7.076 & 0.0171\end{array}

 VARIABLE  PARAMETER  ESTIMATE  STANDARD  ERROR  T-RATIO  P-VALUE  INTERCEPT 15.485.093.040.0008X21.368.032.660.0171\begin{array}{lllll}\text { VARIABLE } & \begin{array}{llll}\text { PARAMETER } \\\text { ESTIMATE }\end{array} & \begin{array}{l}\text { STANDARD } \\\text { ERROR }\end{array} & \text { T-RATIO } & \text { P-VALUE } \\\text { INTERCEPT } & 15.48 & 5.09 & 3.04 & 0.0008\\X&-21.36&8.03&-2.66&0.0171\end{array}

-What is the critical value of t at the 1% level of significance?

A) 1.746
B) 2.120
C) 2.878
D) 2.921
Question
A parameter estimate is said to be statistically significant if there is sufficient evidence that the

A) sample regression equals the population regression.
B) parameter estimated from the sample equals the true value of the parameter.
C) value of the t-ratio equals the critical value.
D) true value of the parameter does not equal zero.
Question
The method of least squares

A) can be used to estimate the explanatory variables in a linear regression equation.
B) can be used to estimate the slope parameters of a linear equation.
C) minimizes the distance between the population regression line and the sample regression line.
D) all of the above
Question

The linear regression equation, Y = a + bX, was estimated. The following computer printout was
obtained:
 DEPENDENT VARIABLE:  Y  R-SQUARE  F-RATIO  P-VALUE ON F  OBSERVATIONS: 180.30667.0760.0171\begin{array}{rllll}\text { DEPENDENT VARIABLE: } & \text { Y } & \text { R-SQUARE } & \text { F-RATIO } & \text { P-VALUE ON F } \\\text { OBSERVATIONS: } &18 & 0.3066 & 7.076 & 0.0171\end{array}

 VARIABLE  PARAMETER  ESTIMATE  STANDARD  ERROR  T-RATIO  P-VALUE  INTERCEPT 15.485.093.040.0008X21.368.032.660.0171\begin{array}{lllll}\text { VARIABLE } & \begin{array}{llll}\text { PARAMETER } \\\text { ESTIMATE }\end{array} & \begin{array}{l}\text { STANDARD } \\\text { ERROR }\end{array} & \text { T-RATIO } & \text { P-VALUE } \\\text { INTERCEPT } & 15.48 & 5.09 & 3.04 & 0.0008\\X&-21.36&8.03&-2.66&0.0171\end{array}

-The value of the R2 statistic indicates that

A) 0.3066% of the total variation in Y is explained by the regression equation.
B) 0.3066% of the total variation in X is explained by the regression equation.
C) 30.66% of the total variation in Y is explained by the regression equation.
D) 30.66% of the total variation in X is explained by the regression equation.
Question
In the linear model Y=a+bX+cZY = a + b X + c Z , a test of the hypothesis that parameter c equals zero is

A) an F-test.
B) an R2-test.
C) a zero-statistic.
D) a t-test.
E) a Z-test.
Question
In a regression equation, the ______ captures the effects of factors that might influence the dependent variable but aren't used as explanatory variables.

A) intercept
B) slope parameter
C) R-square
D) random error term
Question
Which of the following is an example of a time-series data set?

A) amount of labor employed in each factory in the U.S. in 2010.
B) amount of labor employed yearly in a specific factory from 1990 through 2010.
C) average amount of labor employed at specific times of the day at a specific factory in 2010.
D) All of the above are time-series data sets.
Question
An estimator is unbiased if it produces

A) a parameter from the sample that equals the true parameter.
B) estimates of a parameter that are close to the true parameter.
C) estimates of a parameter that are statistically significant.
D) estimates of a parameter that are on average equal to the true parameter.
E) both b and c
Question
In a linear regression equation of the form Y = a + bX, the slope parameter b shows

A) Δ\Delta X / Δ\Delta Y.
B) Δ\Delta Y / Δ\Delta X.
C) Δ\Delta Y / Δ\Delta b.
D) Δ\Delta X / Δ\Delta b.
E) none of the above
Question

The linear regression equation, Y = a + bX, was estimated. The following computer printout was
obtained:
 DEPENDENT VARIABLE:  Y  R-SQUARE  F-RATIO  P-VALUE ON F  OBSERVATIONS: 180.30667.0760.0171\begin{array}{rllll}\text { DEPENDENT VARIABLE: } & \text { Y } & \text { R-SQUARE } & \text { F-RATIO } & \text { P-VALUE ON F } \\\text { OBSERVATIONS: } &18 & 0.3066 & 7.076 & 0.0171\end{array}

 VARIABLE  PARAMETER  ESTIMATE  STANDARD  ERROR  T-RATIO  P-VALUE  INTERCEPT 15.485.093.040.0008X21.368.032.660.0171\begin{array}{lllll}\text { VARIABLE } & \begin{array}{llll}\text { PARAMETER } \\\text { ESTIMATE }\end{array} & \begin{array}{l}\text { STANDARD } \\\text { ERROR }\end{array} & \text { T-RATIO } & \text { P-VALUE } \\\text { INTERCEPT } & 15.48 & 5.09 & 3.04 & 0.0008\\X&-21.36&8.03&-2.66&0.0171\end{array}

-The parameter estimate of b indicates

A) X increases by 8.03 units when Y increases by one unit.
B) X decreases by 21.36 units when Y increases by one unit.
C) Y decreases by 2.66 units when X increases by one unit.
D) a 10-unit decrease in X results in a 213.6 unit increase in Y.
Question
To test whether the overall regression equation is statistically significant one uses

A) the t-statistic.
B) the R2-statistic.
C) the F-statistic.
D) the standard error statistic.
Question
If an analyst believes that more than one explanatory variable explains the variation in the dependent variable, what model should be used?

A) a simple linear regression model
B) a multiple regression model
C) a nonlinear regression model
D) a log-linear model
Question

The linear regression equation, Y = a + bX, was estimated. The following computer printout was
obtained:
 DEPENDENT VARIABLE:  Y  R-SQUARE  F-RATIO  P-VALUE ON F  OBSERVATIONS: 180.30667.0760.0171\begin{array}{rllll}\text { DEPENDENT VARIABLE: } & \text { Y } & \text { R-SQUARE } & \text { F-RATIO } & \text { P-VALUE ON F } \\\text { OBSERVATIONS: } &18 & 0.3066 & 7.076 & 0.0171\end{array}

 VARIABLE  PARAMETER  ESTIMATE  STANDARD  ERROR  T-RATIO  P-VALUE  INTERCEPT 15.485.093.040.0008X21.368.032.660.0171\begin{array}{lllll}\text { VARIABLE } & \begin{array}{llll}\text { PARAMETER } \\\text { ESTIMATE }\end{array} & \begin{array}{l}\text { STANDARD } \\\text { ERROR }\end{array} & \text { T-RATIO } & \text { P-VALUE } \\\text { INTERCEPT } & 15.48 & 5.09 & 3.04 & 0.0008\\X&-21.36&8.03&-2.66&0.0171\end{array}

-The parameter estimate of a indicates

A) when X is zero, Y is 5.09.
B) when X is zero, Y is 15.48.
C) when Y is zero, X is -21.36.
D) when Y is zero, X is 8.03.
Question
Suppose you are testing the statistical significance (at the 1% significance level) of a parameter estimate from the estimated regression model: M = a + bR + cI
Which is estimated using a cross-section data set on 22 firms. The critical value of the appropriate test statistic is

A) tcritical = 2.861.
B) tcritical = -.845.
C) tcritical = 2.845.
D) Fcritical = 5.93.
E) Fcritical = 19.44.
Question

A firm is experiencing theft problems at its warehouse. A consultant to the firm believes that the dollar loss from theft each week (T) depends on the number of security guards (G) and on the unemployment rate in the county where the warehouse is located (U measured as a percent). In order to test this hypothesis, the consultant estimated the regression equation T = a + bG + cU and obtained the following results:
 DEPENDENT VARIAELE:  T  R-SQUARE  F-RATIO  P-VALUE ONF  OESERVATIONS: 270.779342.380.0001 PARAMETER  STANDARD  VARIAELE  ESTMATE  ERROR  T-RATIO  P-VALUE  INTERCEPT 5150.431740.722.960.0068 G 480.92130.653.680.0012 U 211.075.02.810.0095\begin{array} { c l l l l l } \text { DEPENDENT VARIAELE: } & \text { T } & \text { R-SQUARE } & \text { F-RATIO } & \text { P-VALUE ONF } \\\text { OESERVATIONS: } & 27 & \mathbf { 0 . 7 7 9 3 } & 42.38 & \mathbf { 0 . 0 0 0 1 } & \\& & \text { PARAMETER } & \text { STANDARD } & & \\\text { VARIAELE } & & \text { ESTMATE } & \text { ERROR } & \text { T-RATIO } & \text { P-VALUE } \\\text { INTERCEPT } & & 5150.43 & 1740.72 & \mathbf { 2 . 9 6 } & \mathbf { 0 . 0 0 6 8 } \\\text { G } & & - 480.92 & 130.65 & - \mathbf { 3 . 6 8 } & \mathbf { 0 . 0 0 1 2 } \\\text { U } & & 211.0 & 75.0 & \mathbf { 2 . 8 1 } & \mathbf { 0 . 0 0 9 5 }\end{array}

-If the firm hires 6 guards and the unemployment rate in the county is 10% (U = 10), what is the predicted dollar loss to theft per week?

A) $4,375 per week
B) $5,150 per week
C) $8,300 per week
D) $9,955 per week
Question

A firm is experiencing theft problems at its warehouse. A consultant to the firm believes that the dollar loss from theft each week (T) depends on the number of security guards (G) and on the unemployment rate in the county where the warehouse is located (U measured as a percent). In order to test this hypothesis, the consultant estimated the regression equation T = a + bG + cU and obtained the following results:
 DEPENDENT VARIAELE:  T  R-SQUARE  F-RATIO  P-VALUE ONF  OESERVATIONS: 270.779342.380.0001 PARAMETER  STANDARD  VARIAELE  ESTMATE  ERROR  T-RATIO  P-VALUE  INTERCEPT 5150.431740.722.960.0068 G 480.92130.653.680.0012 U 211.075.02.810.0095\begin{array} { c l l l l l } \text { DEPENDENT VARIAELE: } & \text { T } & \text { R-SQUARE } & \text { F-RATIO } & \text { P-VALUE ONF } \\\text { OESERVATIONS: } & 27 & \mathbf { 0 . 7 7 9 3 } & 42.38 & \mathbf { 0 . 0 0 0 1 } & \\& & \text { PARAMETER } & \text { STANDARD } & & \\\text { VARIAELE } & & \text { ESTMATE } & \text { ERROR } & \text { T-RATIO } & \text { P-VALUE } \\\text { INTERCEPT } & & 5150.43 & 1740.72 & \mathbf { 2 . 9 6 } & \mathbf { 0 . 0 0 6 8 } \\\text { G } & & - 480.92 & 130.65 & - \mathbf { 3 . 6 8 } & \mathbf { 0 . 0 0 1 2 } \\\text { U } & & 211.0 & 75.0 & \mathbf { 2 . 8 1 } & \mathbf { 0 . 0 0 9 5 }\end{array}

-Which of the following is correct at the 1% level of significance?

A) The regression equation as a whole is statistically significant because the p-value of F is smaller than 0.01.
B) The estimates of the parameters a, b, and c are all statistically significant because the absolute values of their t-ratios exceed 2.797.
C) The estimates of the parameters a, b, and c are all statistically significant because the p- values for, a^\hat { a } , b^\hat { b } and c^\hat { c } are all less than 0.01.
D) The critical value of t is 2.797.
E) all of the above
Question
If the p-value is 10%, then the

A) level of significance is 10%.
B) level of confidence is 90%.
C) probability of a Type I error is 90%.
D) both a and b
E) all of the above
Question
Refer to the following nonlinear model which relates W to P, Q, and R:
W=aPbQcRdW = a P ^ { b } Q ^ { c } R ^ { d }
The computer output form the regression analysis is:
 DEPENDENTVARIAELE:  LNW  R-SQUARE  F-RATIO  P-VALUE ONF  OESERVATIONS:  19 0.902343.120.0001 PARAMETER  STANDARD  VARIAELE  ESTMMATE  ERROR  T-RATIO  P-VALUE  INTERCEPT 2.500.455.560.0001 LNP 5.101.752.910.0113 LNQ 12.43.23.830.0017 LNR 6.001.54000.0010\begin{array} { r l l l l l } \text { DEPENDENTVARIAELE: } & \text { LNW } & \text { R-SQUARE } & \text { F-RATIO } & \text { P-VALUE ONF } \\\text { OESERVATIONS: } & \text { 19 } & \mathbf { 0 . 9 0 2 3 } & 43.12 & \mathbf { 0 . 0 0 0 1 } & \\\\& \text { PARAMETER } & \text { STANDARD } & & \\\text { VARIAELE } & \text { ESTMMATE } & \text { ERROR } & \text { T-RATIO } & \text { P-VALUE } \\\text { INTERCEPT } & \mathbf { 2 . 5 0 } & \mathbf { 0 . 4 5 } & \mathbf { 5 . 5 6 } & \mathbf { 0 . 0 0 0 1 } \\\text { LNP } & - 5.10 & 1.75 & - \mathbf { 2 . 9 1 } & \mathbf { 0 . 0 1 1 3 } \\\text { LNQ } & 12.4 & \mathbf { 3 . 2 } & \mathbf { 3 . 8 3 } & \mathbf { 0 . 0 0 1 7 } \\\text { LNR } & \mathbf { - 6 . 0 0 } & 1.5 & - 400 & \mathbf { 0 . 0 0 1 0 }\end{array}

-The estimated value of a is

A) 0.916
B) 12.182
C) 2.50
D) 2.66
Question
Suppose you are testing the statistical significance (at the 5% significance level) of a parameter estimate from the estimated regression equation: Y = a + bR + cS + dW
Which is estimated using a time-series sample containing monthly observations over a 30-month time period. The critical value of the appropriate test statistic is

A) tcritical = 2.042.
B) tcritical = 2.056.
C) Fcritical = 4.22.
D) Fcritical = 7.76.
Question
Refer to the following computer output from estimating the parameters of the nonlinear model
 DEPENDENT VARIAELE:  LNY  R-SQUARE  F-RATIO  P-VALUE ONF  OESERVATIONS:  32 0.775632.440.0001 PARAMETER  STANDARD  VARIAELE  ESTMATE  ERROR  T-RATIO  P-VALUE  INTEREEPT 0.59310.322.170.0390 LNRR 4.651.363.430.0019 LNS 0.440.241.830.0774 LNT 8.284.61.800.0826\begin{array} { r l l l l l } \text { DEPENDENT VARIAELE: } & \text { LNY } & \text { R-SQUARE } & \text { F-RATIO } & \text { P-VALUE ONF } \\\text { OESERVATIONS: } & \text { 32 } & \mathbf { 0 . 7 7 5 6 } & \mathbf { 3 2 . 4 4 } & \mathbf { 0 . 0 0 0 1 } & \\\\& \text { PARAMETER } & \text { STANDARD } & & \\\text { VARIAELE } & \text { ESTMATE } & \text { ERROR } & \text { T-RATIO } & \text { P-VALUE } \\\text { INTEREEPT } & \mathbf { - 0 . 5 9 3 1 } & \mathbf { 0 . 3 2 } & \mathbf { - 2 . 1 7 } & \mathbf { 0 . 0 3 9 0 } \\\text { LNRR } & \mathbf { 4 . 6 5 } & 1.36 & \mathbf { 3 . 4 3 } & \mathbf { 0 . 0 0 1 9 } \\\text { LNS } & \mathbf { - 0 . 4 4 } & \mathbf { 0 . 2 4 } & - 1.83 & \mathbf { 0 . 0 7 7 4 } \\\text { LNT } & \mathbf { 8 . 2 8 } & \mathbf { 4 . 6 } & \mathbf { 1 . 8 0 } & \mathbf { 0 . 0 8 2 6 }\end{array}

-The nonlinear relation can be transformed into the following linear regression model:

A) Y=ln(aRbScTd)Y = \ln \left( a R ^ { b } S ^ { c } T ^ { d } \right)
B) lnY=ln(aRbScTd)\ln Y = \ln \left( a R ^ { \mathrm { b } } S ^ { \mathrm { c } } T ^ { \mathrm { d } } \right)
C) lnY=lnalnRlnSlnT\ln Y = \ln a \cdot \ln R \cdot \ln S \cdot \ln T
D) lnY=lna+blnR+clnS+dlnT\ln Y = \ln a + b \ln R + c \ln S + d \ln T
Question
Refer to the following nonlinear model which relates W to P, Q, and R:
W=aPbQcRdW = a P ^ { b } Q ^ { c } R ^ { d }
The computer output form the regression analysis is:
 DEPENDENTVARIAELE:  LNW  R-SQUARE  F-RATIO  P-VALUE ONF  OESERVATIONS:  19 0.902343.120.0001 PARAMETER  STANDARD  VARIAELE  ESTMMATE  ERROR  T-RATIO  P-VALUE  INTERCEPT 2.500.455.560.0001 LNP 5.101.752.910.0113 LNQ 12.43.23.830.0017 LNR 6.001.54000.0010\begin{array} { r l l l l l } \text { DEPENDENTVARIAELE: } & \text { LNW } & \text { R-SQUARE } & \text { F-RATIO } & \text { P-VALUE ONF } \\\text { OESERVATIONS: } & \text { 19 } & \mathbf { 0 . 9 0 2 3 } & 43.12 & \mathbf { 0 . 0 0 0 1 } & \\\\& \text { PARAMETER } & \text { STANDARD } & & \\\text { VARIAELE } & \text { ESTMMATE } & \text { ERROR } & \text { T-RATIO } & \text { P-VALUE } \\\text { INTERCEPT } & \mathbf { 2 . 5 0 } & \mathbf { 0 . 4 5 } & \mathbf { 5 . 5 6 } & \mathbf { 0 . 0 0 0 1 } \\\text { LNP } & - 5.10 & 1.75 & - \mathbf { 2 . 9 1 } & \mathbf { 0 . 0 1 1 3 } \\\text { LNQ } & 12.4 & \mathbf { 3 . 2 } & \mathbf { 3 . 8 3 } & \mathbf { 0 . 0 0 1 7 } \\\text { LNR } & \mathbf { - 6 . 0 0 } & 1.5 & - 400 & \mathbf { 0 . 0 0 1 0 }\end{array}

-If R decreases by 12% (all other things constant), W will

A) decrease by 72%.
B) decrease by 6%.
C) increase by 6%.
D) increase by 72%.
Question
Refer to the following computer output from estimating the parameters of the nonlinear model
 DEPENDENT VARIAELE:  LNY  R-SQUARE  F-RATIO  P-VALUE ONF  OESERVATIONS:  32 0.775632.440.0001 PARAMETER  STANDARD  VARIAELE  ESTMATE  ERROR  T-RATIO  P-VALUE  INTEREEPT 0.59310.322.170.0390 LNRR 4.651.363.430.0019 LNS 0.440.241.830.0774 LNT 8.284.61.800.0826\begin{array} { r l l l l l } \text { DEPENDENT VARIAELE: } & \text { LNY } & \text { R-SQUARE } & \text { F-RATIO } & \text { P-VALUE ONF } \\\text { OESERVATIONS: } & \text { 32 } & \mathbf { 0 . 7 7 5 6 } & \mathbf { 3 2 . 4 4 } & \mathbf { 0 . 0 0 0 1 } & \\\\& \text { PARAMETER } & \text { STANDARD } & & \\\text { VARIAELE } & \text { ESTMATE } & \text { ERROR } & \text { T-RATIO } & \text { P-VALUE } \\\text { INTEREEPT } & \mathbf { - 0 . 5 9 3 1 } & \mathbf { 0 . 3 2 } & \mathbf { - 2 . 1 7 } & \mathbf { 0 . 0 3 9 0 } \\\text { LNRR } & \mathbf { 4 . 6 5 } & 1.36 & \mathbf { 3 . 4 3 } & \mathbf { 0 . 0 0 1 9 } \\\text { LNS } & \mathbf { - 0 . 4 4 } & \mathbf { 0 . 2 4 } & - 1.83 & \mathbf { 0 . 0 7 7 4 } \\\text { LNT } & \mathbf { 8 . 2 8 } & \mathbf { 4 . 6 } & \mathbf { 1 . 8 0 } & \mathbf { 0 . 0 8 2 6 }\end{array}

-The estimated value of a is

A) -0.6931
B) 0.50
C) -3.67
D) 2.66
Question
In the nonlinear function Y=aXbZ2Y = a X ^ { b } Z ^ { 2 } , the parameter c measures

A) If Δ\Delta Y / Δ\Delta Z.
B) the percent change in Y for a 1 percent change in Z.
C) the elasticity of Y with respect to Z.
D) both a and c
E) both b and c
Question

A firm is experiencing theft problems at its warehouse. A consultant to the firm believes that the dollar loss from theft each week (T) depends on the number of security guards (G) and on the unemployment rate in the county where the warehouse is located (U measured as a percent). In order to test this hypothesis, the consultant estimated the regression equation T = a + bG + cU and obtained the following results:
 DEPENDENT VARIAELE:  T  R-SQUARE  F-RATIO  P-VALUE ONF  OESERVATIONS: 270.779342.380.0001 PARAMETER  STANDARD  VARIAELE  ESTMATE  ERROR  T-RATIO  P-VALUE  INTERCEPT 5150.431740.722.960.0068 G 480.92130.653.680.0012 U 211.075.02.810.0095\begin{array} { c l l l l l } \text { DEPENDENT VARIAELE: } & \text { T } & \text { R-SQUARE } & \text { F-RATIO } & \text { P-VALUE ONF } \\\text { OESERVATIONS: } & 27 & \mathbf { 0 . 7 7 9 3 } & 42.38 & \mathbf { 0 . 0 0 0 1 } & \\& & \text { PARAMETER } & \text { STANDARD } & & \\\text { VARIAELE } & & \text { ESTMATE } & \text { ERROR } & \text { T-RATIO } & \text { P-VALUE } \\\text { INTERCEPT } & & 5150.43 & 1740.72 & \mathbf { 2 . 9 6 } & \mathbf { 0 . 0 0 6 8 } \\\text { G } & & - 480.92 & 130.65 & - \mathbf { 3 . 6 8 } & \mathbf { 0 . 0 0 1 2 } \\\text { U } & & 211.0 & 75.0 & \mathbf { 2 . 8 1 } & \mathbf { 0 . 0 0 9 5 }\end{array}

-Hiring one more guard per week will decrease the losses due to theft at the warehouse by _________ per week.

A) $5,150
B) $211
C) $130
D) $480.92
Question
Refer to the following computer output from estimating the parameters of the nonlinear model
 DEPENDENT VARIAELE:  LNY  R-SQUARE  F-RATIO  P-VALUE ONF  OESERVATIONS:  32 0.775632.440.0001 PARAMETER  STANDARD  VARIAELE  ESTMATE  ERROR  T-RATIO  P-VALUE  INTEREEPT 0.59310.322.170.0390 LNRR 4.651.363.430.0019 LNS 0.440.241.830.0774 LNT 8.284.61.800.0826\begin{array} { r l l l l l } \text { DEPENDENT VARIAELE: } & \text { LNY } & \text { R-SQUARE } & \text { F-RATIO } & \text { P-VALUE ONF } \\\text { OESERVATIONS: } & \text { 32 } & \mathbf { 0 . 7 7 5 6 } & \mathbf { 3 2 . 4 4 } & \mathbf { 0 . 0 0 0 1 } & \\\\& \text { PARAMETER } & \text { STANDARD } & & \\\text { VARIAELE } & \text { ESTMATE } & \text { ERROR } & \text { T-RATIO } & \text { P-VALUE } \\\text { INTEREEPT } & \mathbf { - 0 . 5 9 3 1 } & \mathbf { 0 . 3 2 } & \mathbf { - 2 . 1 7 } & \mathbf { 0 . 0 3 9 0 } \\\text { LNRR } & \mathbf { 4 . 6 5 } & 1.36 & \mathbf { 3 . 4 3 } & \mathbf { 0 . 0 0 1 9 } \\\text { LNS } & \mathbf { - 0 . 4 4 } & \mathbf { 0 . 2 4 } & - 1.83 & \mathbf { 0 . 0 7 7 4 } \\\text { LNT } & \mathbf { 8 . 2 8 } & \mathbf { 4 . 6 } & \mathbf { 1 . 8 0 } & \mathbf { 0 . 0 8 2 6 }\end{array}

-Which of the parameter estimates are statistically significant at the 90% level of confidence?

A) All the parameter estimates are statistically significant.
B) All parameter estimates except a^\hat { a } and
b^\hat { b } are statistically significant.
C) a^\hat { a } is not statistically significant, but all the rest of the parameter estimates are significant.
D) c^\hat { c } is not statistically significant, but all the rest of the parameter estimates are significant.
Question
Refer to the following nonlinear model which relates W to P, Q, and R:
W=aPbQcRdW = a P ^ { b } Q ^ { c } R ^ { d }
The computer output form the regression analysis is:
 DEPENDENTVARIAELE:  LNW  R-SQUARE  F-RATIO  P-VALUE ONF  OESERVATIONS:  19 0.902343.120.0001 PARAMETER  STANDARD  VARIAELE  ESTMMATE  ERROR  T-RATIO  P-VALUE  INTERCEPT 2.500.455.560.0001 LNP 5.101.752.910.0113 LNQ 12.43.23.830.0017 LNR 6.001.54000.0010\begin{array} { r l l l l l } \text { DEPENDENTVARIAELE: } & \text { LNW } & \text { R-SQUARE } & \text { F-RATIO } & \text { P-VALUE ONF } \\\text { OESERVATIONS: } & \text { 19 } & \mathbf { 0 . 9 0 2 3 } & 43.12 & \mathbf { 0 . 0 0 0 1 } & \\\\& \text { PARAMETER } & \text { STANDARD } & & \\\text { VARIAELE } & \text { ESTMMATE } & \text { ERROR } & \text { T-RATIO } & \text { P-VALUE } \\\text { INTERCEPT } & \mathbf { 2 . 5 0 } & \mathbf { 0 . 4 5 } & \mathbf { 5 . 5 6 } & \mathbf { 0 . 0 0 0 1 } \\\text { LNP } & - 5.10 & 1.75 & - \mathbf { 2 . 9 1 } & \mathbf { 0 . 0 1 1 3 } \\\text { LNQ } & 12.4 & \mathbf { 3 . 2 } & \mathbf { 3 . 8 3 } & \mathbf { 0 . 0 0 1 7 } \\\text { LNR } & \mathbf { - 6 . 0 0 } & 1.5 & - 400 & \mathbf { 0 . 0 0 1 0 }\end{array}

-The nonlinear relation can be transformed into the following linear regression model:

A) W=ln(aPbQcRh)W = \ln \left( a P ^ { b } Q ^ { c } R ^ { \mathrm { h } } \right)
B) lnW=ln(aPbQcRd)\ln W = \ln \left( a P ^ { \mathrm { b } } Q ^ { \mathrm { c } } R ^ { \mathrm { d } } \right)
C) lnW=lnalnPlnQlnR\ln W = \ln a \cdot \ln P \cdot \ln Q \cdot \ln R
D) lnW=lna+blnP+clnQ+dlnR\ln W = \ln a + b \ln P + c \ln Q + d \ln R
Question

A firm is experiencing theft problems at its warehouse. A consultant to the firm believes that the dollar loss from theft each week (T) depends on the number of security guards (G) and on the unemployment rate in the county where the warehouse is located (U measured as a percent). In order to test this hypothesis, the consultant estimated the regression equation T = a + bG + cU and obtained the following results:
 DEPENDENT VARIAELE:  T  R-SQUARE  F-RATIO  P-VALUE ONF  OESERVATIONS: 270.779342.380.0001 PARAMETER  STANDARD  VARIAELE  ESTMATE  ERROR  T-RATIO  P-VALUE  INTERCEPT 5150.431740.722.960.0068 G 480.92130.653.680.0012 U 211.075.02.810.0095\begin{array} { c l l l l l } \text { DEPENDENT VARIAELE: } & \text { T } & \text { R-SQUARE } & \text { F-RATIO } & \text { P-VALUE ONF } \\\text { OESERVATIONS: } & 27 & \mathbf { 0 . 7 7 9 3 } & 42.38 & \mathbf { 0 . 0 0 0 1 } & \\& & \text { PARAMETER } & \text { STANDARD } & & \\\text { VARIAELE } & & \text { ESTMATE } & \text { ERROR } & \text { T-RATIO } & \text { P-VALUE } \\\text { INTERCEPT } & & 5150.43 & 1740.72 & \mathbf { 2 . 9 6 } & \mathbf { 0 . 0 0 6 8 } \\\text { G } & & - 480.92 & 130.65 & - \mathbf { 3 . 6 8 } & \mathbf { 0 . 0 0 1 2 } \\\text { U } & & 211.0 & 75.0 & \mathbf { 2 . 8 1 } & \mathbf { 0 . 0 0 9 5 }\end{array}

-Aone percent increase in the level of unemployment in the county results in an increase in losses due to theft of __________ more losses per week.

A) $75
B) $211
C) $280
D) $460
Question
Refer to the following computer output from estimating the parameters of the nonlinear model
 DEPENDENT VARIAELE:  LNY  R-SQUARE  F-RATIO  P-VALUE ONF  OESERVATIONS:  32 0.775632.440.0001 PARAMETER  STANDARD  VARIAELE  ESTMATE  ERROR  T-RATIO  P-VALUE  INTEREEPT 0.59310.322.170.0390 LNRR 4.651.363.430.0019 LNS 0.440.241.830.0774 LNT 8.284.61.800.0826\begin{array} { r l l l l l } \text { DEPENDENT VARIAELE: } & \text { LNY } & \text { R-SQUARE } & \text { F-RATIO } & \text { P-VALUE ONF } \\\text { OESERVATIONS: } & \text { 32 } & \mathbf { 0 . 7 7 5 6 } & \mathbf { 3 2 . 4 4 } & \mathbf { 0 . 0 0 0 1 } & \\\\& \text { PARAMETER } & \text { STANDARD } & & \\\text { VARIAELE } & \text { ESTMATE } & \text { ERROR } & \text { T-RATIO } & \text { P-VALUE } \\\text { INTEREEPT } & \mathbf { - 0 . 5 9 3 1 } & \mathbf { 0 . 3 2 } & \mathbf { - 2 . 1 7 } & \mathbf { 0 . 0 3 9 0 } \\\text { LNRR } & \mathbf { 4 . 6 5 } & 1.36 & \mathbf { 3 . 4 3 } & \mathbf { 0 . 0 0 1 9 } \\\text { LNS } & \mathbf { - 0 . 4 4 } & \mathbf { 0 . 2 4 } & - 1.83 & \mathbf { 0 . 0 7 7 4 } \\\text { LNT } & \mathbf { 8 . 2 8 } & \mathbf { 4 . 6 } & \mathbf { 1 . 8 0 } & \mathbf { 0 . 0 8 2 6 }\end{array}

-If R = 1, S = 2, and T = 3, what value do you expect Y will have?

A) 143
B) 1,345
C) 3,289
D) 6,578
E) -4,559
Question
Tests for statistical significance must be performed

A) because the TRUE values of the intercept and slope parameters are random variables.
B) because the ESTIMATED values of the intercept and slope parameters are not, in general, equal to the true values of the intercept and slope parameters.
C) because the computed t-ratios are random variables and may be too large to provide evidence that b is not equal to zero.
D) in order to determine whether or not the parameter estimates are far enough away from zero to conclude that the true parameter values are not equal to zero.
E) both b and d
Question
Refer to the following nonlinear model which relates W to P, Q, and R:
W=aPbQcRdW = a P ^ { b } Q ^ { c } R ^ { d }
The computer output form the regression analysis is:
 DEPENDENTVARIAELE:  LNW  R-SQUARE  F-RATIO  P-VALUE ONF  OESERVATIONS:  19 0.902343.120.0001 PARAMETER  STANDARD  VARIAELE  ESTMMATE  ERROR  T-RATIO  P-VALUE  INTERCEPT 2.500.455.560.0001 LNP 5.101.752.910.0113 LNQ 12.43.23.830.0017 LNR 6.001.54000.0010\begin{array} { r l l l l l } \text { DEPENDENTVARIAELE: } & \text { LNW } & \text { R-SQUARE } & \text { F-RATIO } & \text { P-VALUE ONF } \\\text { OESERVATIONS: } & \text { 19 } & \mathbf { 0 . 9 0 2 3 } & 43.12 & \mathbf { 0 . 0 0 0 1 } & \\\\& \text { PARAMETER } & \text { STANDARD } & & \\\text { VARIAELE } & \text { ESTMMATE } & \text { ERROR } & \text { T-RATIO } & \text { P-VALUE } \\\text { INTERCEPT } & \mathbf { 2 . 5 0 } & \mathbf { 0 . 4 5 } & \mathbf { 5 . 5 6 } & \mathbf { 0 . 0 0 0 1 } \\\text { LNP } & - 5.10 & 1.75 & - \mathbf { 2 . 9 1 } & \mathbf { 0 . 0 1 1 3 } \\\text { LNQ } & 12.4 & \mathbf { 3 . 2 } & \mathbf { 3 . 8 3 } & \mathbf { 0 . 0 0 1 7 } \\\text { LNR } & \mathbf { - 6 . 0 0 } & 1.5 & - 400 & \mathbf { 0 . 0 0 1 0 }\end{array}

-Which of the parameter estimates are statistically significant at the 5% level of significance?

A) All the parameter estimates are statistically significant.
B) All parameter estimates except a^\hat { a } and
b^\hat { b } are statistically significant.
C) a^\hat { a } is not statistically significant, but all the rest of the parameter estimates are significant.
D) c^\hat {c} is not statistically significant, but all the rest of the parameter estimates are significant.
Question
Refer to the following computer output from estimating the parameters of the nonlinear model
 DEPENDENT VARIAELE:  LNY  R-SQUARE  F-RATIO  P-VALUE ONF  OESERVATIONS:  32 0.775632.440.0001 PARAMETER  STANDARD  VARIAELE  ESTMATE  ERROR  T-RATIO  P-VALUE  INTEREEPT 0.59310.322.170.0390 LNRR 4.651.363.430.0019 LNS 0.440.241.830.0774 LNT 8.284.61.800.0826\begin{array} { r l l l l l } \text { DEPENDENT VARIAELE: } & \text { LNY } & \text { R-SQUARE } & \text { F-RATIO } & \text { P-VALUE ONF } \\\text { OESERVATIONS: } & \text { 32 } & \mathbf { 0 . 7 7 5 6 } & \mathbf { 3 2 . 4 4 } & \mathbf { 0 . 0 0 0 1 } & \\\\& \text { PARAMETER } & \text { STANDARD } & & \\\text { VARIAELE } & \text { ESTMATE } & \text { ERROR } & \text { T-RATIO } & \text { P-VALUE } \\\text { INTEREEPT } & \mathbf { - 0 . 5 9 3 1 } & \mathbf { 0 . 3 2 } & \mathbf { - 2 . 1 7 } & \mathbf { 0 . 0 3 9 0 } \\\text { LNRR } & \mathbf { 4 . 6 5 } & 1.36 & \mathbf { 3 . 4 3 } & \mathbf { 0 . 0 0 1 9 } \\\text { LNS } & \mathbf { - 0 . 4 4 } & \mathbf { 0 . 2 4 } & - 1.83 & \mathbf { 0 . 0 7 7 4 } \\\text { LNT } & \mathbf { 8 . 2 8 } & \mathbf { 4 . 6 } & \mathbf { 1 . 8 0 } & \mathbf { 0 . 0 8 2 6 }\end{array}

-If S increases by 8% (all other things constant), Y will

A) decrease by 3.52%.
B) decrease by 0.44%.
C) decrease by 4.4%.
D) increase by 0.44%.
E) decrease by 2.4%.
Question
Refer to the following nonlinear model which relates W to P, Q, and R:
W=aPbQcRdW = a P ^ { b } Q ^ { c } R ^ { d }
The computer output form the regression analysis is:
 DEPENDENTVARIAELE:  LNW  R-SQUARE  F-RATIO  P-VALUE ONF  OESERVATIONS:  19 0.902343.120.0001 PARAMETER  STANDARD  VARIAELE  ESTMMATE  ERROR  T-RATIO  P-VALUE  INTERCEPT 2.500.455.560.0001 LNP 5.101.752.910.0113 LNQ 12.43.23.830.0017 LNR 6.001.54000.0010\begin{array} { r l l l l l } \text { DEPENDENTVARIAELE: } & \text { LNW } & \text { R-SQUARE } & \text { F-RATIO } & \text { P-VALUE ONF } \\\text { OESERVATIONS: } & \text { 19 } & \mathbf { 0 . 9 0 2 3 } & 43.12 & \mathbf { 0 . 0 0 0 1 } & \\\\& \text { PARAMETER } & \text { STANDARD } & & \\\text { VARIAELE } & \text { ESTMMATE } & \text { ERROR } & \text { T-RATIO } & \text { P-VALUE } \\\text { INTERCEPT } & \mathbf { 2 . 5 0 } & \mathbf { 0 . 4 5 } & \mathbf { 5 . 5 6 } & \mathbf { 0 . 0 0 0 1 } \\\text { LNP } & - 5.10 & 1.75 & - \mathbf { 2 . 9 1 } & \mathbf { 0 . 0 1 1 3 } \\\text { LNQ } & 12.4 & \mathbf { 3 . 2 } & \mathbf { 3 . 8 3 } & \mathbf { 0 . 0 0 1 7 } \\\text { LNR } & \mathbf { - 6 . 0 0 } & 1.5 & - 400 & \mathbf { 0 . 0 0 1 0 }\end{array}

-If P = 0.5, Q = 1.5, and R = 0.8, what value do you expect W will have?

A) 16,712
B) 243,200
C) 1,345
D) 3,289
Question
Refer to the following computer output from estimating the parameters of the nonlinear model
 DEPENDENT VARIAELE:  LNY  R-SQUARE  F-RATIO  P-VALUE ONF  OESERVATIONS:  32 0.775632.440.0001 PARAMETER  STANDARD  VARIAELE  ESTMATE  ERROR  T-RATIO  P-VALUE  INTEREEPT 0.59310.322.170.0390 LNRR 4.651.363.430.0019 LNS 0.440.241.830.0774 LNT 8.284.61.800.0826\begin{array} { r l l l l l } \text { DEPENDENT VARIAELE: } & \text { LNY } & \text { R-SQUARE } & \text { F-RATIO } & \text { P-VALUE ONF } \\\text { OESERVATIONS: } & \text { 32 } & \mathbf { 0 . 7 7 5 6 } & \mathbf { 3 2 . 4 4 } & \mathbf { 0 . 0 0 0 1 } & \\\\& \text { PARAMETER } & \text { STANDARD } & & \\\text { VARIAELE } & \text { ESTMATE } & \text { ERROR } & \text { T-RATIO } & \text { P-VALUE } \\\text { INTEREEPT } & \mathbf { - 0 . 5 9 3 1 } & \mathbf { 0 . 3 2 } & \mathbf { - 2 . 1 7 } & \mathbf { 0 . 0 3 9 0 } \\\text { LNRR } & \mathbf { 4 . 6 5 } & 1.36 & \mathbf { 3 . 4 3 } & \mathbf { 0 . 0 0 1 9 } \\\text { LNS } & \mathbf { - 0 . 4 4 } & \mathbf { 0 . 2 4 } & - 1.83 & \mathbf { 0 . 0 7 7 4 } \\\text { LNT } & \mathbf { 8 . 2 8 } & \mathbf { 4 . 6 } & \mathbf { 1 . 8 0 } & \mathbf { 0 . 0 8 2 6 }\end{array}

-If R decreases by 10% (all other things constant), Y will

A) increase by 4.66%.
B) increase by 46.6%.
C) decrease by 4.66%.
D) decrease by 46.6%.
Question
The linear regression equation G = a + bD is estimated using 24 observations on R and W. The least-squares estimate of b is -22.5, and the standard error of the estimate is 8.36. Perform a t-test for statistical significance of b^\hat { b } at the 1% level of significance.
a. There are _____ degrees of freedom for the t-test.
b. The value of the t-statistic is _________. The critical t-value for the test is _________.
c. The parameter estimate
b^\hat { b } _________ (is, is not) statistically significant at the 1% level.
Question
Refer to the following nonlinear model which relates W to P, Q, and R:
W=aPbQcRdW = a P ^ { b } Q ^ { c } R ^ { d }
The computer output form the regression analysis is:
 DEPENDENTVARIAELE:  LNW  R-SQUARE  F-RATIO  P-VALUE ONF  OESERVATIONS:  19 0.902343.120.0001 PARAMETER  STANDARD  VARIAELE  ESTMMATE  ERROR  T-RATIO  P-VALUE  INTERCEPT 2.500.455.560.0001 LNP 5.101.752.910.0113 LNQ 12.43.23.830.0017 LNR 6.001.54000.0010\begin{array} { r l l l l l } \text { DEPENDENTVARIAELE: } & \text { LNW } & \text { R-SQUARE } & \text { F-RATIO } & \text { P-VALUE ONF } \\\text { OESERVATIONS: } & \text { 19 } & \mathbf { 0 . 9 0 2 3 } & 43.12 & \mathbf { 0 . 0 0 0 1 } & \\\\& \text { PARAMETER } & \text { STANDARD } & & \\\text { VARIAELE } & \text { ESTMMATE } & \text { ERROR } & \text { T-RATIO } & \text { P-VALUE } \\\text { INTERCEPT } & \mathbf { 2 . 5 0 } & \mathbf { 0 . 4 5 } & \mathbf { 5 . 5 6 } & \mathbf { 0 . 0 0 0 1 } \\\text { LNP } & - 5.10 & 1.75 & - \mathbf { 2 . 9 1 } & \mathbf { 0 . 0 1 1 3 } \\\text { LNQ } & 12.4 & \mathbf { 3 . 2 } & \mathbf { 3 . 8 3 } & \mathbf { 0 . 0 0 1 7 } \\\text { LNR } & \mathbf { - 6 . 0 0 } & 1.5 & - 400 & \mathbf { 0 . 0 0 1 0 }\end{array}

-If P = Q = R = 1, what value do you expect W will have?

A) 0
B) 1
C) 12.182
D) 2.50
Question
A simple linear regression equation relates G and D as follows:
G = a + bD
a. The explanatory variable is _______, and the dependent variable is ________.
b. The slope parameter is ______, and the intercept parameter _______.
c. When D is zero, G equals _______.
d. For each one-unit increase in D, the change in R is ______ units.
Question

A manager wishes to estimate an average cost equation of the following form:
 <strong> A manager wishes to estimate an average cost equation of the following form:   where Q is the level of output. Letting Z = Q<sup>2</sup> and using least-squares estimation, the manager obtains the following computer output:   \begin{array} { | c l l l l l | } \hline \text { DEPENDENT VARIABLE: } & \text { C } & \text { R-SQUARE } & \text { F-RATIO } & \text { P-VALUE ON F } \\ \text { OBSERVATIONS: } & 28 & 0.7679 & 26.47 & 0.0001 & \\ \text { VARIABLE }  & \begin{array} { l } \text { PARAMETER } \\ \text { ESTIMATE } \end{array} & \begin{array} { l } \text { STANDARD } \\ \text { ERROR } \end{array}& \text { T-RATIO } & \text { P-VALUE } \\ \text { INTERCEPT }&  200 & 38.00 & 5.26 & 0.0001 \\ \text { Q }   & - 12.00 & 4.36 & - 2.75 & 0.0111 \\ \text { Z } & 0.50 & 0.16 & 3.13 & 0.0046 \\ \hline \end{array}   -When output is 40 units, what is average cost?</strong> A) $200 B) $280 C) $360 D) $480 E) $520 <div style=padding-top: 35px>
where Q is the level of output. Letting Z = Q2 and using least-squares estimation, the manager obtains the following computer output:

 DEPENDENT VARIABLE:  C  R-SQUARE  F-RATIO  P-VALUE ON F  OBSERVATIONS: 280.767926.470.0001 VARIABLE  PARAMETER  ESTIMATE  STANDARD  ERROR  T-RATIO  P-VALUE  INTERCEPT 20038.005.260.0001 Q 12.004.362.750.0111 Z 0.500.163.130.0046\begin{array} { | c l l l l l | } \hline \text { DEPENDENT VARIABLE: } & \text { C } & \text { R-SQUARE } & \text { F-RATIO } & \text { P-VALUE ON F } \\\text { OBSERVATIONS: } & 28 & 0.7679 & 26.47 & 0.0001 & \\ \text { VARIABLE } & \begin{array} { l } \text { PARAMETER } \\\text { ESTIMATE }\end{array} & \begin{array} { l } \text { STANDARD } \\\text { ERROR }\end{array}& \text { T-RATIO } & \text { P-VALUE } \\\text { INTERCEPT }& 200 & 38.00 & 5.26 & 0.0001 \\\text { Q } & - 12.00 & 4.36 & - 2.75 & 0.0111 \\ \text { Z } & 0.50 & 0.16 & 3.13 & 0.0046 \\\hline\end{array}

-When output is 40 units, what is average cost?

A) $200
B) $280
C) $360
D) $480
E) $520
Question
In a multiple regression model, the coefficients on the independent variables measure

A) the percent of the variation in the dependent variable explained by a change in that independent variable, all other influences held constant.
B) the change in the dependent variable from a one-unit change in that independent variable, all other influences held constant.
C) the change in that independent variable from a one-unit change in the dependent variable, all other influences held constant.
D) the change in the dependent variable explained by the random error, all other influences held constant.
Question
The quadratic equation Y = a + bX +cX2 can be estimated using linear regression by estimating

A) Y = a + bX + ZX where Z = c2
B) Y = a + ZX where Z = (b + c)
C) Y = a + bZ where Z = X2
D) Y = a + ZX where Z = (b + c)2
E) none of the above will work
Question

A manager wishes to estimate an average cost equation of the following form:
 <strong> A manager wishes to estimate an average cost equation of the following form:   where Q is the level of output. Letting Z = Q<sup>2</sup> and using least-squares estimation, the manager obtains the following computer output:   \begin{array} { | c l l l l l | } \hline \text { DEPENDENT VARIABLE: } & \text { C } & \text { R-SQUARE } & \text { F-RATIO } & \text { P-VALUE ON F } \\ \text { OBSERVATIONS: } & 28 & 0.7679 & 26.47 & 0.0001 & \\ \text { VARIABLE }  & \begin{array} { l } \text { PARAMETER } \\ \text { ESTIMATE } \end{array} & \begin{array} { l } \text { STANDARD } \\ \text { ERROR } \end{array}& \text { T-RATIO } & \text { P-VALUE } \\ \text { INTERCEPT }&  200 & 38.00 & 5.26 & 0.0001 \\ \text { Q }   & - 12.00 & 4.36 & - 2.75 & 0.0111 \\ \text { Z } & 0.50 & 0.16 & 3.13 & 0.0046 \\ \hline \end{array}   -The value of R<sup>2</sup> indicates that _______ of the total variation in C is explained by the regression equation.</strong> A) 0.7679% B) 76.79% C) 7.679% D) 7679% <div style=padding-top: 35px>
where Q is the level of output. Letting Z = Q2 and using least-squares estimation, the manager obtains the following computer output:

 DEPENDENT VARIABLE:  C  R-SQUARE  F-RATIO  P-VALUE ON F  OBSERVATIONS: 280.767926.470.0001 VARIABLE  PARAMETER  ESTIMATE  STANDARD  ERROR  T-RATIO  P-VALUE  INTERCEPT 20038.005.260.0001 Q 12.004.362.750.0111 Z 0.500.163.130.0046\begin{array} { | c l l l l l | } \hline \text { DEPENDENT VARIABLE: } & \text { C } & \text { R-SQUARE } & \text { F-RATIO } & \text { P-VALUE ON F } \\\text { OBSERVATIONS: } & 28 & 0.7679 & 26.47 & 0.0001 & \\ \text { VARIABLE } & \begin{array} { l } \text { PARAMETER } \\\text { ESTIMATE }\end{array} & \begin{array} { l } \text { STANDARD } \\\text { ERROR }\end{array}& \text { T-RATIO } & \text { P-VALUE } \\\text { INTERCEPT }& 200 & 38.00 & 5.26 & 0.0001 \\\text { Q } & - 12.00 & 4.36 & - 2.75 & 0.0111 \\ \text { Z } & 0.50 & 0.16 & 3.13 & 0.0046 \\\hline\end{array}

-The value of R2 indicates that _______ of the total variation in C is explained by the regression equation.

A) 0.7679%
B) 76.79%
C) 7.679%
D) 7679%
Question

A manager wishes to estimate an average cost equation of the following form:
 <strong> A manager wishes to estimate an average cost equation of the following form:   where Q is the level of output. Letting Z = Q<sup>2</sup> and using least-squares estimation, the manager obtains the following computer output:   \begin{array} { | c l l l l l | } \hline \text { DEPENDENT VARIABLE: } & \text { C } & \text { R-SQUARE } & \text { F-RATIO } & \text { P-VALUE ON F } \\ \text { OBSERVATIONS: } & 28 & 0.7679 & 26.47 & 0.0001 & \\ \text { VARIABLE }  & \begin{array} { l } \text { PARAMETER } \\ \text { ESTIMATE } \end{array} & \begin{array} { l } \text { STANDARD } \\ \text { ERROR } \end{array}& \text { T-RATIO } & \text { P-VALUE } \\ \text { INTERCEPT }&  200 & 38.00 & 5.26 & 0.0001 \\ \text { Q }   & - 12.00 & 4.36 & - 2.75 & 0.0111 \\ \text { Z } & 0.50 & 0.16 & 3.13 & 0.0046 \\ \hline \end{array}   -Which of the parameter estimates are statistically significant at the 1% significance level?</strong> A) All the parameter estimates are statistically significant. B) All parameter estimates except  \hat { b }  are statistically significant. C)  \hat { a }  is not statistically significant, but all the rest of the parameter estimates are significant. D)  \hat { c }  is not statistically significant, but all the rest of the parameter estimates are significant. <div style=padding-top: 35px>
where Q is the level of output. Letting Z = Q2 and using least-squares estimation, the manager obtains the following computer output:

 DEPENDENT VARIABLE:  C  R-SQUARE  F-RATIO  P-VALUE ON F  OBSERVATIONS: 280.767926.470.0001 VARIABLE  PARAMETER  ESTIMATE  STANDARD  ERROR  T-RATIO  P-VALUE  INTERCEPT 20038.005.260.0001 Q 12.004.362.750.0111 Z 0.500.163.130.0046\begin{array} { | c l l l l l | } \hline \text { DEPENDENT VARIABLE: } & \text { C } & \text { R-SQUARE } & \text { F-RATIO } & \text { P-VALUE ON F } \\\text { OBSERVATIONS: } & 28 & 0.7679 & 26.47 & 0.0001 & \\ \text { VARIABLE } & \begin{array} { l } \text { PARAMETER } \\\text { ESTIMATE }\end{array} & \begin{array} { l } \text { STANDARD } \\\text { ERROR }\end{array}& \text { T-RATIO } & \text { P-VALUE } \\\text { INTERCEPT }& 200 & 38.00 & 5.26 & 0.0001 \\\text { Q } & - 12.00 & 4.36 & - 2.75 & 0.0111 \\ \text { Z } & 0.50 & 0.16 & 3.13 & 0.0046 \\\hline\end{array}

-Which of the parameter estimates are statistically significant at the 1% significance level?

A) All the parameter estimates are statistically significant.
B) All parameter estimates except b^\hat { b } are statistically significant.
C) a^\hat { a } is not statistically significant, but all the rest of the parameter estimates are significant.
D) c^\hat { c } is not statistically significant, but all the rest of the parameter estimates are significant.
Question
Refer to the following nonlinear model which relates W to P, Q, and R:
W=aPbQcRdW = a P ^ { b } Q ^ { c } R ^ { d }
The computer output form the regression analysis is:
 DEPENDENTVARIAELE:  LNW  R-SQUARE  F-RATIO  P-VALUE ONF  OESERVATIONS:  19 0.902343.120.0001 PARAMETER  STANDARD  VARIAELE  ESTMMATE  ERROR  T-RATIO  P-VALUE  INTERCEPT 2.500.455.560.0001 LNP 5.101.752.910.0113 LNQ 12.43.23.830.0017 LNR 6.001.54000.0010\begin{array} { r l l l l l } \text { DEPENDENTVARIAELE: } & \text { LNW } & \text { R-SQUARE } & \text { F-RATIO } & \text { P-VALUE ONF } \\\text { OESERVATIONS: } & \text { 19 } & \mathbf { 0 . 9 0 2 3 } & 43.12 & \mathbf { 0 . 0 0 0 1 } & \\\\& \text { PARAMETER } & \text { STANDARD } & & \\\text { VARIAELE } & \text { ESTMMATE } & \text { ERROR } & \text { T-RATIO } & \text { P-VALUE } \\\text { INTERCEPT } & \mathbf { 2 . 5 0 } & \mathbf { 0 . 4 5 } & \mathbf { 5 . 5 6 } & \mathbf { 0 . 0 0 0 1 } \\\text { LNP } & - 5.10 & 1.75 & - \mathbf { 2 . 9 1 } & \mathbf { 0 . 0 1 1 3 } \\\text { LNQ } & 12.4 & \mathbf { 3 . 2 } & \mathbf { 3 . 8 3 } & \mathbf { 0 . 0 0 1 7 } \\\text { LNR } & \mathbf { - 6 . 0 0 } & 1.5 & - 400 & \mathbf { 0 . 0 0 1 0 }\end{array}

-The value of R2 tells us that

A) 0.9023% of the total variation in ln W is explained by the regression equation.
B) 90.23% of the total variation in ln W is explained by the regression equation.
C) 0.9023% of the total variation in P, W, and R is explained by the regression equation.
D) 0.9023% of the total variation in ln P, ln Q, and ln R is explained by the regression equation.
Question

A manager wishes to estimate an average cost equation of the following form:
 <strong> A manager wishes to estimate an average cost equation of the following form:   where Q is the level of output. Letting Z = Q<sup>2</sup> and using least-squares estimation, the manager obtains the following computer output:   \begin{array} { | c l l l l l | } \hline \text { DEPENDENT VARIABLE: } & \text { C } & \text { R-SQUARE } & \text { F-RATIO } & \text { P-VALUE ON F } \\ \text { OBSERVATIONS: } & 28 & 0.7679 & 26.47 & 0.0001 & \\ \text { VARIABLE }  & \begin{array} { l } \text { PARAMETER } \\ \text { ESTIMATE } \end{array} & \begin{array} { l } \text { STANDARD } \\ \text { ERROR } \end{array}& \text { T-RATIO } & \text { P-VALUE } \\ \text { INTERCEPT }&  200 & 38.00 & 5.26 & 0.0001 \\ \text { Q }   & - 12.00 & 4.36 & - 2.75 & 0.0111 \\ \text { Z } & 0.50 & 0.16 & 3.13 & 0.0046 \\ \hline \end{array}   -When output is 20 units, what is average cost?</strong> A) $160 B) $200 C) $280 D) $340 E) $360 <div style=padding-top: 35px>
where Q is the level of output. Letting Z = Q2 and using least-squares estimation, the manager obtains the following computer output:

 DEPENDENT VARIABLE:  C  R-SQUARE  F-RATIO  P-VALUE ON F  OBSERVATIONS: 280.767926.470.0001 VARIABLE  PARAMETER  ESTIMATE  STANDARD  ERROR  T-RATIO  P-VALUE  INTERCEPT 20038.005.260.0001 Q 12.004.362.750.0111 Z 0.500.163.130.0046\begin{array} { | c l l l l l | } \hline \text { DEPENDENT VARIABLE: } & \text { C } & \text { R-SQUARE } & \text { F-RATIO } & \text { P-VALUE ON F } \\\text { OBSERVATIONS: } & 28 & 0.7679 & 26.47 & 0.0001 & \\ \text { VARIABLE } & \begin{array} { l } \text { PARAMETER } \\\text { ESTIMATE }\end{array} & \begin{array} { l } \text { STANDARD } \\\text { ERROR }\end{array}& \text { T-RATIO } & \text { P-VALUE } \\\text { INTERCEPT }& 200 & 38.00 & 5.26 & 0.0001 \\\text { Q } & - 12.00 & 4.36 & - 2.75 & 0.0111 \\ \text { Z } & 0.50 & 0.16 & 3.13 & 0.0046 \\\hline\end{array}

-When output is 20 units, what is average cost?

A) $160
B) $200
C) $280
D) $340
E) $360
Question
Refer to the following nonlinear model which relates W to P, Q, and R:
W=aPbQcRdW = a P ^ { b } Q ^ { c } R ^ { d }
The computer output form the regression analysis is:
 DEPENDENTVARIAELE:  LNW  R-SQUARE  F-RATIO  P-VALUE ONF  OESERVATIONS:  19 0.902343.120.0001 PARAMETER  STANDARD  VARIAELE  ESTMMATE  ERROR  T-RATIO  P-VALUE  INTERCEPT 2.500.455.560.0001 LNP 5.101.752.910.0113 LNQ 12.43.23.830.0017 LNR 6.001.54000.0010\begin{array} { r l l l l l } \text { DEPENDENTVARIAELE: } & \text { LNW } & \text { R-SQUARE } & \text { F-RATIO } & \text { P-VALUE ONF } \\\text { OESERVATIONS: } & \text { 19 } & \mathbf { 0 . 9 0 2 3 } & 43.12 & \mathbf { 0 . 0 0 0 1 } & \\\\& \text { PARAMETER } & \text { STANDARD } & & \\\text { VARIAELE } & \text { ESTMMATE } & \text { ERROR } & \text { T-RATIO } & \text { P-VALUE } \\\text { INTERCEPT } & \mathbf { 2 . 5 0 } & \mathbf { 0 . 4 5 } & \mathbf { 5 . 5 6 } & \mathbf { 0 . 0 0 0 1 } \\\text { LNP } & - 5.10 & 1.75 & - \mathbf { 2 . 9 1 } & \mathbf { 0 . 0 1 1 3 } \\\text { LNQ } & 12.4 & \mathbf { 3 . 2 } & \mathbf { 3 . 8 3 } & \mathbf { 0 . 0 0 1 7 } \\\text { LNR } & \mathbf { - 6 . 0 0 } & 1.5 & - 400 & \mathbf { 0 . 0 0 1 0 }\end{array}

-If Q increases by 8% (all other things constant), W will

A) decrease by 99.2%.
B) decrease by 12.5%.
C) increase by 0.99%.
D) increase by 99.2%.
Unlock Deck
Sign up to unlock the cards in this deck!
Unlock Deck
Unlock Deck
1/51
auto play flashcards
Play
simple tutorial
Full screen (f)
exit full mode
Deck 4: Basic Estimation Techniques
1
In a linear regression equation of the form Y = a + bX, the intercept parameter a shows

A) the value of X when Y is zero.
B) the value of Y when X is zero.
C) the amount that Y changes when X changes by one unit.
D) the amount that X changes when Y changes by one unit.
the value of Y when X is zero.
2

The linear regression equation, Y = a + bX, was estimated. The following computer printout was
obtained:
 DEPENDENT VARIABLE:  Y  R-SQUARE  F-RATIO  P-VALUE ON F  OBSERVATIONS: 180.30667.0760.0171\begin{array}{rllll}\text { DEPENDENT VARIABLE: } & \text { Y } & \text { R-SQUARE } & \text { F-RATIO } & \text { P-VALUE ON F } \\\text { OBSERVATIONS: } &18 & 0.3066 & 7.076 & 0.0171\end{array}

 VARIABLE  PARAMETER  ESTIMATE  STANDARD  ERROR  T-RATIO  P-VALUE  INTERCEPT 15.485.093.040.0008X21.368.032.660.0171\begin{array}{lllll}\text { VARIABLE } & \begin{array}{llll}\text { PARAMETER } \\\text { ESTIMATE }\end{array} & \begin{array}{l}\text { STANDARD } \\\text { ERROR }\end{array} & \text { T-RATIO } & \text { P-VALUE } \\\text { INTERCEPT } & 15.48 & 5.09 & 3.04 & 0.0008\\X&-21.36&8.03&-2.66&0.0171\end{array}

-Which of the following statements is correct at the 1% level of significance?

A) Both a^\hat { a } and
b^\hat { b } are statistically significant.
B) Neither a^\hat { a } nor
b^\hat { b } is statistically significant.
C) a^\hat { a } is statistically significant, but
b^\hat { b } is not.
D) b^\hat { b } is statistically significant, but
a^\hat { a } is not.
a^\hat { a } is statistically significant, but
b^\hat { b } is not.
3
In a linear regression equation Y = a + bX, the fitted or predicted value of Y is

A) the value of Y obtained by substituting specific values of X into the sample regression equation.
B) the value of X associated with a particular value of Y.
C) the value of X that the regression equation predicts.
D) the values of the parameters predicted by the estimators.
E) the value of Y associated with a particular value of X in the sample.
the value of Y obtained by substituting specific values of X into the sample regression equation.
4
The sample regression line

A) shows the actual (or true) relation between the dependent and independent variables.
B) is used to estimate the population regression line.
C) connects the data points in a sample.
D) is estimated by the population regression line.
E) maximizes the sum of the squared differences between the data points in a sample and the sample regression line.
Unlock Deck
Unlock for access to all 51 flashcards in this deck.
Unlock Deck
k this deck
5

The linear regression equation, Y = a + bX, was estimated. The following computer printout was
obtained:
 DEPENDENT VARIABLE:  Y  R-SQUARE  F-RATIO  P-VALUE ON F  OBSERVATIONS: 180.30667.0760.0171\begin{array}{rllll}\text { DEPENDENT VARIABLE: } & \text { Y } & \text { R-SQUARE } & \text { F-RATIO } & \text { P-VALUE ON F } \\\text { OBSERVATIONS: } &18 & 0.3066 & 7.076 & 0.0171\end{array}

 VARIABLE  PARAMETER  ESTIMATE  STANDARD  ERROR  T-RATIO  P-VALUE  INTERCEPT 15.485.093.040.0008X21.368.032.660.0171\begin{array}{lllll}\text { VARIABLE } & \begin{array}{llll}\text { PARAMETER } \\\text { ESTIMATE }\end{array} & \begin{array}{l}\text { STANDARD } \\\text { ERROR }\end{array} & \text { T-RATIO } & \text { P-VALUE } \\\text { INTERCEPT } & 15.48 & 5.09 & 3.04 & 0.0008\\X&-21.36&8.03&-2.66&0.0171\end{array}

-If X equals 20, what is the predicted value of Y?

A) 186.42
B) 165.69
C) -186.42
D) -411.72
Unlock Deck
Unlock for access to all 51 flashcards in this deck.
Unlock Deck
k this deck
6
The critical value of t is the value that a t-statistic must exceed in order to

A) reject the hypothesis that the true value of a parameter equals zero.
B) accept the hypothesis that the estimated value of parameter equals the true value.
C) reject the hypothesis that the estimated value of the parameter equals the true value.
D) reject the hypothesis that the estimated value of the parameter exceeds the true value.
Unlock Deck
Unlock for access to all 51 flashcards in this deck.
Unlock Deck
k this deck
7

The linear regression equation, Y = a + bX, was estimated. The following computer printout was
obtained:
 DEPENDENT VARIABLE:  Y  R-SQUARE  F-RATIO  P-VALUE ON F  OBSERVATIONS: 180.30667.0760.0171\begin{array}{rllll}\text { DEPENDENT VARIABLE: } & \text { Y } & \text { R-SQUARE } & \text { F-RATIO } & \text { P-VALUE ON F } \\\text { OBSERVATIONS: } &18 & 0.3066 & 7.076 & 0.0171\end{array}

 VARIABLE  PARAMETER  ESTIMATE  STANDARD  ERROR  T-RATIO  P-VALUE  INTERCEPT 15.485.093.040.0008X21.368.032.660.0171\begin{array}{lllll}\text { VARIABLE } & \begin{array}{llll}\text { PARAMETER } \\\text { ESTIMATE }\end{array} & \begin{array}{l}\text { STANDARD } \\\text { ERROR }\end{array} & \text { T-RATIO } & \text { P-VALUE } \\\text { INTERCEPT } & 15.48 & 5.09 & 3.04 & 0.0008\\X&-21.36&8.03&-2.66&0.0171\end{array}

-The exact level of significance of b^\hat { b } is

A) 0.171 percent.
B) 1 percent.
C) 1.71 percent.
D) 2.66 percent.
E) 2.921 percent.
Unlock Deck
Unlock for access to all 51 flashcards in this deck.
Unlock Deck
k this deck
8

The linear regression equation, Y = a + bX, was estimated. The following computer printout was
obtained:
 DEPENDENT VARIABLE:  Y  R-SQUARE  F-RATIO  P-VALUE ON F  OBSERVATIONS: 180.30667.0760.0171\begin{array}{rllll}\text { DEPENDENT VARIABLE: } & \text { Y } & \text { R-SQUARE } & \text { F-RATIO } & \text { P-VALUE ON F } \\\text { OBSERVATIONS: } &18 & 0.3066 & 7.076 & 0.0171\end{array}

 VARIABLE  PARAMETER  ESTIMATE  STANDARD  ERROR  T-RATIO  P-VALUE  INTERCEPT 15.485.093.040.0008X21.368.032.660.0171\begin{array}{lllll}\text { VARIABLE } & \begin{array}{llll}\text { PARAMETER } \\\text { ESTIMATE }\end{array} & \begin{array}{l}\text { STANDARD } \\\text { ERROR }\end{array} & \text { T-RATIO } & \text { P-VALUE } \\\text { INTERCEPT } & 15.48 & 5.09 & 3.04 & 0.0008\\X&-21.36&8.03&-2.66&0.0171\end{array}

-What is the critical value of t at the 1% level of significance?

A) 1.746
B) 2.120
C) 2.878
D) 2.921
Unlock Deck
Unlock for access to all 51 flashcards in this deck.
Unlock Deck
k this deck
9
A parameter estimate is said to be statistically significant if there is sufficient evidence that the

A) sample regression equals the population regression.
B) parameter estimated from the sample equals the true value of the parameter.
C) value of the t-ratio equals the critical value.
D) true value of the parameter does not equal zero.
Unlock Deck
Unlock for access to all 51 flashcards in this deck.
Unlock Deck
k this deck
10
The method of least squares

A) can be used to estimate the explanatory variables in a linear regression equation.
B) can be used to estimate the slope parameters of a linear equation.
C) minimizes the distance between the population regression line and the sample regression line.
D) all of the above
Unlock Deck
Unlock for access to all 51 flashcards in this deck.
Unlock Deck
k this deck
11

The linear regression equation, Y = a + bX, was estimated. The following computer printout was
obtained:
 DEPENDENT VARIABLE:  Y  R-SQUARE  F-RATIO  P-VALUE ON F  OBSERVATIONS: 180.30667.0760.0171\begin{array}{rllll}\text { DEPENDENT VARIABLE: } & \text { Y } & \text { R-SQUARE } & \text { F-RATIO } & \text { P-VALUE ON F } \\\text { OBSERVATIONS: } &18 & 0.3066 & 7.076 & 0.0171\end{array}

 VARIABLE  PARAMETER  ESTIMATE  STANDARD  ERROR  T-RATIO  P-VALUE  INTERCEPT 15.485.093.040.0008X21.368.032.660.0171\begin{array}{lllll}\text { VARIABLE } & \begin{array}{llll}\text { PARAMETER } \\\text { ESTIMATE }\end{array} & \begin{array}{l}\text { STANDARD } \\\text { ERROR }\end{array} & \text { T-RATIO } & \text { P-VALUE } \\\text { INTERCEPT } & 15.48 & 5.09 & 3.04 & 0.0008\\X&-21.36&8.03&-2.66&0.0171\end{array}

-The value of the R2 statistic indicates that

A) 0.3066% of the total variation in Y is explained by the regression equation.
B) 0.3066% of the total variation in X is explained by the regression equation.
C) 30.66% of the total variation in Y is explained by the regression equation.
D) 30.66% of the total variation in X is explained by the regression equation.
Unlock Deck
Unlock for access to all 51 flashcards in this deck.
Unlock Deck
k this deck
12
In the linear model Y=a+bX+cZY = a + b X + c Z , a test of the hypothesis that parameter c equals zero is

A) an F-test.
B) an R2-test.
C) a zero-statistic.
D) a t-test.
E) a Z-test.
Unlock Deck
Unlock for access to all 51 flashcards in this deck.
Unlock Deck
k this deck
13
In a regression equation, the ______ captures the effects of factors that might influence the dependent variable but aren't used as explanatory variables.

A) intercept
B) slope parameter
C) R-square
D) random error term
Unlock Deck
Unlock for access to all 51 flashcards in this deck.
Unlock Deck
k this deck
14
Which of the following is an example of a time-series data set?

A) amount of labor employed in each factory in the U.S. in 2010.
B) amount of labor employed yearly in a specific factory from 1990 through 2010.
C) average amount of labor employed at specific times of the day at a specific factory in 2010.
D) All of the above are time-series data sets.
Unlock Deck
Unlock for access to all 51 flashcards in this deck.
Unlock Deck
k this deck
15
An estimator is unbiased if it produces

A) a parameter from the sample that equals the true parameter.
B) estimates of a parameter that are close to the true parameter.
C) estimates of a parameter that are statistically significant.
D) estimates of a parameter that are on average equal to the true parameter.
E) both b and c
Unlock Deck
Unlock for access to all 51 flashcards in this deck.
Unlock Deck
k this deck
16
In a linear regression equation of the form Y = a + bX, the slope parameter b shows

A) Δ\Delta X / Δ\Delta Y.
B) Δ\Delta Y / Δ\Delta X.
C) Δ\Delta Y / Δ\Delta b.
D) Δ\Delta X / Δ\Delta b.
E) none of the above
Unlock Deck
Unlock for access to all 51 flashcards in this deck.
Unlock Deck
k this deck
17

The linear regression equation, Y = a + bX, was estimated. The following computer printout was
obtained:
 DEPENDENT VARIABLE:  Y  R-SQUARE  F-RATIO  P-VALUE ON F  OBSERVATIONS: 180.30667.0760.0171\begin{array}{rllll}\text { DEPENDENT VARIABLE: } & \text { Y } & \text { R-SQUARE } & \text { F-RATIO } & \text { P-VALUE ON F } \\\text { OBSERVATIONS: } &18 & 0.3066 & 7.076 & 0.0171\end{array}

 VARIABLE  PARAMETER  ESTIMATE  STANDARD  ERROR  T-RATIO  P-VALUE  INTERCEPT 15.485.093.040.0008X21.368.032.660.0171\begin{array}{lllll}\text { VARIABLE } & \begin{array}{llll}\text { PARAMETER } \\\text { ESTIMATE }\end{array} & \begin{array}{l}\text { STANDARD } \\\text { ERROR }\end{array} & \text { T-RATIO } & \text { P-VALUE } \\\text { INTERCEPT } & 15.48 & 5.09 & 3.04 & 0.0008\\X&-21.36&8.03&-2.66&0.0171\end{array}

-The parameter estimate of b indicates

A) X increases by 8.03 units when Y increases by one unit.
B) X decreases by 21.36 units when Y increases by one unit.
C) Y decreases by 2.66 units when X increases by one unit.
D) a 10-unit decrease in X results in a 213.6 unit increase in Y.
Unlock Deck
Unlock for access to all 51 flashcards in this deck.
Unlock Deck
k this deck
18
To test whether the overall regression equation is statistically significant one uses

A) the t-statistic.
B) the R2-statistic.
C) the F-statistic.
D) the standard error statistic.
Unlock Deck
Unlock for access to all 51 flashcards in this deck.
Unlock Deck
k this deck
19
If an analyst believes that more than one explanatory variable explains the variation in the dependent variable, what model should be used?

A) a simple linear regression model
B) a multiple regression model
C) a nonlinear regression model
D) a log-linear model
Unlock Deck
Unlock for access to all 51 flashcards in this deck.
Unlock Deck
k this deck
20

The linear regression equation, Y = a + bX, was estimated. The following computer printout was
obtained:
 DEPENDENT VARIABLE:  Y  R-SQUARE  F-RATIO  P-VALUE ON F  OBSERVATIONS: 180.30667.0760.0171\begin{array}{rllll}\text { DEPENDENT VARIABLE: } & \text { Y } & \text { R-SQUARE } & \text { F-RATIO } & \text { P-VALUE ON F } \\\text { OBSERVATIONS: } &18 & 0.3066 & 7.076 & 0.0171\end{array}

 VARIABLE  PARAMETER  ESTIMATE  STANDARD  ERROR  T-RATIO  P-VALUE  INTERCEPT 15.485.093.040.0008X21.368.032.660.0171\begin{array}{lllll}\text { VARIABLE } & \begin{array}{llll}\text { PARAMETER } \\\text { ESTIMATE }\end{array} & \begin{array}{l}\text { STANDARD } \\\text { ERROR }\end{array} & \text { T-RATIO } & \text { P-VALUE } \\\text { INTERCEPT } & 15.48 & 5.09 & 3.04 & 0.0008\\X&-21.36&8.03&-2.66&0.0171\end{array}

-The parameter estimate of a indicates

A) when X is zero, Y is 5.09.
B) when X is zero, Y is 15.48.
C) when Y is zero, X is -21.36.
D) when Y is zero, X is 8.03.
Unlock Deck
Unlock for access to all 51 flashcards in this deck.
Unlock Deck
k this deck
21
Suppose you are testing the statistical significance (at the 1% significance level) of a parameter estimate from the estimated regression model: M = a + bR + cI
Which is estimated using a cross-section data set on 22 firms. The critical value of the appropriate test statistic is

A) tcritical = 2.861.
B) tcritical = -.845.
C) tcritical = 2.845.
D) Fcritical = 5.93.
E) Fcritical = 19.44.
Unlock Deck
Unlock for access to all 51 flashcards in this deck.
Unlock Deck
k this deck
22

A firm is experiencing theft problems at its warehouse. A consultant to the firm believes that the dollar loss from theft each week (T) depends on the number of security guards (G) and on the unemployment rate in the county where the warehouse is located (U measured as a percent). In order to test this hypothesis, the consultant estimated the regression equation T = a + bG + cU and obtained the following results:
 DEPENDENT VARIAELE:  T  R-SQUARE  F-RATIO  P-VALUE ONF  OESERVATIONS: 270.779342.380.0001 PARAMETER  STANDARD  VARIAELE  ESTMATE  ERROR  T-RATIO  P-VALUE  INTERCEPT 5150.431740.722.960.0068 G 480.92130.653.680.0012 U 211.075.02.810.0095\begin{array} { c l l l l l } \text { DEPENDENT VARIAELE: } & \text { T } & \text { R-SQUARE } & \text { F-RATIO } & \text { P-VALUE ONF } \\\text { OESERVATIONS: } & 27 & \mathbf { 0 . 7 7 9 3 } & 42.38 & \mathbf { 0 . 0 0 0 1 } & \\& & \text { PARAMETER } & \text { STANDARD } & & \\\text { VARIAELE } & & \text { ESTMATE } & \text { ERROR } & \text { T-RATIO } & \text { P-VALUE } \\\text { INTERCEPT } & & 5150.43 & 1740.72 & \mathbf { 2 . 9 6 } & \mathbf { 0 . 0 0 6 8 } \\\text { G } & & - 480.92 & 130.65 & - \mathbf { 3 . 6 8 } & \mathbf { 0 . 0 0 1 2 } \\\text { U } & & 211.0 & 75.0 & \mathbf { 2 . 8 1 } & \mathbf { 0 . 0 0 9 5 }\end{array}

-If the firm hires 6 guards and the unemployment rate in the county is 10% (U = 10), what is the predicted dollar loss to theft per week?

A) $4,375 per week
B) $5,150 per week
C) $8,300 per week
D) $9,955 per week
Unlock Deck
Unlock for access to all 51 flashcards in this deck.
Unlock Deck
k this deck
23

A firm is experiencing theft problems at its warehouse. A consultant to the firm believes that the dollar loss from theft each week (T) depends on the number of security guards (G) and on the unemployment rate in the county where the warehouse is located (U measured as a percent). In order to test this hypothesis, the consultant estimated the regression equation T = a + bG + cU and obtained the following results:
 DEPENDENT VARIAELE:  T  R-SQUARE  F-RATIO  P-VALUE ONF  OESERVATIONS: 270.779342.380.0001 PARAMETER  STANDARD  VARIAELE  ESTMATE  ERROR  T-RATIO  P-VALUE  INTERCEPT 5150.431740.722.960.0068 G 480.92130.653.680.0012 U 211.075.02.810.0095\begin{array} { c l l l l l } \text { DEPENDENT VARIAELE: } & \text { T } & \text { R-SQUARE } & \text { F-RATIO } & \text { P-VALUE ONF } \\\text { OESERVATIONS: } & 27 & \mathbf { 0 . 7 7 9 3 } & 42.38 & \mathbf { 0 . 0 0 0 1 } & \\& & \text { PARAMETER } & \text { STANDARD } & & \\\text { VARIAELE } & & \text { ESTMATE } & \text { ERROR } & \text { T-RATIO } & \text { P-VALUE } \\\text { INTERCEPT } & & 5150.43 & 1740.72 & \mathbf { 2 . 9 6 } & \mathbf { 0 . 0 0 6 8 } \\\text { G } & & - 480.92 & 130.65 & - \mathbf { 3 . 6 8 } & \mathbf { 0 . 0 0 1 2 } \\\text { U } & & 211.0 & 75.0 & \mathbf { 2 . 8 1 } & \mathbf { 0 . 0 0 9 5 }\end{array}

-Which of the following is correct at the 1% level of significance?

A) The regression equation as a whole is statistically significant because the p-value of F is smaller than 0.01.
B) The estimates of the parameters a, b, and c are all statistically significant because the absolute values of their t-ratios exceed 2.797.
C) The estimates of the parameters a, b, and c are all statistically significant because the p- values for, a^\hat { a } , b^\hat { b } and c^\hat { c } are all less than 0.01.
D) The critical value of t is 2.797.
E) all of the above
Unlock Deck
Unlock for access to all 51 flashcards in this deck.
Unlock Deck
k this deck
24
If the p-value is 10%, then the

A) level of significance is 10%.
B) level of confidence is 90%.
C) probability of a Type I error is 90%.
D) both a and b
E) all of the above
Unlock Deck
Unlock for access to all 51 flashcards in this deck.
Unlock Deck
k this deck
25
Refer to the following nonlinear model which relates W to P, Q, and R:
W=aPbQcRdW = a P ^ { b } Q ^ { c } R ^ { d }
The computer output form the regression analysis is:
 DEPENDENTVARIAELE:  LNW  R-SQUARE  F-RATIO  P-VALUE ONF  OESERVATIONS:  19 0.902343.120.0001 PARAMETER  STANDARD  VARIAELE  ESTMMATE  ERROR  T-RATIO  P-VALUE  INTERCEPT 2.500.455.560.0001 LNP 5.101.752.910.0113 LNQ 12.43.23.830.0017 LNR 6.001.54000.0010\begin{array} { r l l l l l } \text { DEPENDENTVARIAELE: } & \text { LNW } & \text { R-SQUARE } & \text { F-RATIO } & \text { P-VALUE ONF } \\\text { OESERVATIONS: } & \text { 19 } & \mathbf { 0 . 9 0 2 3 } & 43.12 & \mathbf { 0 . 0 0 0 1 } & \\\\& \text { PARAMETER } & \text { STANDARD } & & \\\text { VARIAELE } & \text { ESTMMATE } & \text { ERROR } & \text { T-RATIO } & \text { P-VALUE } \\\text { INTERCEPT } & \mathbf { 2 . 5 0 } & \mathbf { 0 . 4 5 } & \mathbf { 5 . 5 6 } & \mathbf { 0 . 0 0 0 1 } \\\text { LNP } & - 5.10 & 1.75 & - \mathbf { 2 . 9 1 } & \mathbf { 0 . 0 1 1 3 } \\\text { LNQ } & 12.4 & \mathbf { 3 . 2 } & \mathbf { 3 . 8 3 } & \mathbf { 0 . 0 0 1 7 } \\\text { LNR } & \mathbf { - 6 . 0 0 } & 1.5 & - 400 & \mathbf { 0 . 0 0 1 0 }\end{array}

-The estimated value of a is

A) 0.916
B) 12.182
C) 2.50
D) 2.66
Unlock Deck
Unlock for access to all 51 flashcards in this deck.
Unlock Deck
k this deck
26
Suppose you are testing the statistical significance (at the 5% significance level) of a parameter estimate from the estimated regression equation: Y = a + bR + cS + dW
Which is estimated using a time-series sample containing monthly observations over a 30-month time period. The critical value of the appropriate test statistic is

A) tcritical = 2.042.
B) tcritical = 2.056.
C) Fcritical = 4.22.
D) Fcritical = 7.76.
Unlock Deck
Unlock for access to all 51 flashcards in this deck.
Unlock Deck
k this deck
27
Refer to the following computer output from estimating the parameters of the nonlinear model
 DEPENDENT VARIAELE:  LNY  R-SQUARE  F-RATIO  P-VALUE ONF  OESERVATIONS:  32 0.775632.440.0001 PARAMETER  STANDARD  VARIAELE  ESTMATE  ERROR  T-RATIO  P-VALUE  INTEREEPT 0.59310.322.170.0390 LNRR 4.651.363.430.0019 LNS 0.440.241.830.0774 LNT 8.284.61.800.0826\begin{array} { r l l l l l } \text { DEPENDENT VARIAELE: } & \text { LNY } & \text { R-SQUARE } & \text { F-RATIO } & \text { P-VALUE ONF } \\\text { OESERVATIONS: } & \text { 32 } & \mathbf { 0 . 7 7 5 6 } & \mathbf { 3 2 . 4 4 } & \mathbf { 0 . 0 0 0 1 } & \\\\& \text { PARAMETER } & \text { STANDARD } & & \\\text { VARIAELE } & \text { ESTMATE } & \text { ERROR } & \text { T-RATIO } & \text { P-VALUE } \\\text { INTEREEPT } & \mathbf { - 0 . 5 9 3 1 } & \mathbf { 0 . 3 2 } & \mathbf { - 2 . 1 7 } & \mathbf { 0 . 0 3 9 0 } \\\text { LNRR } & \mathbf { 4 . 6 5 } & 1.36 & \mathbf { 3 . 4 3 } & \mathbf { 0 . 0 0 1 9 } \\\text { LNS } & \mathbf { - 0 . 4 4 } & \mathbf { 0 . 2 4 } & - 1.83 & \mathbf { 0 . 0 7 7 4 } \\\text { LNT } & \mathbf { 8 . 2 8 } & \mathbf { 4 . 6 } & \mathbf { 1 . 8 0 } & \mathbf { 0 . 0 8 2 6 }\end{array}

-The nonlinear relation can be transformed into the following linear regression model:

A) Y=ln(aRbScTd)Y = \ln \left( a R ^ { b } S ^ { c } T ^ { d } \right)
B) lnY=ln(aRbScTd)\ln Y = \ln \left( a R ^ { \mathrm { b } } S ^ { \mathrm { c } } T ^ { \mathrm { d } } \right)
C) lnY=lnalnRlnSlnT\ln Y = \ln a \cdot \ln R \cdot \ln S \cdot \ln T
D) lnY=lna+blnR+clnS+dlnT\ln Y = \ln a + b \ln R + c \ln S + d \ln T
Unlock Deck
Unlock for access to all 51 flashcards in this deck.
Unlock Deck
k this deck
28
Refer to the following nonlinear model which relates W to P, Q, and R:
W=aPbQcRdW = a P ^ { b } Q ^ { c } R ^ { d }
The computer output form the regression analysis is:
 DEPENDENTVARIAELE:  LNW  R-SQUARE  F-RATIO  P-VALUE ONF  OESERVATIONS:  19 0.902343.120.0001 PARAMETER  STANDARD  VARIAELE  ESTMMATE  ERROR  T-RATIO  P-VALUE  INTERCEPT 2.500.455.560.0001 LNP 5.101.752.910.0113 LNQ 12.43.23.830.0017 LNR 6.001.54000.0010\begin{array} { r l l l l l } \text { DEPENDENTVARIAELE: } & \text { LNW } & \text { R-SQUARE } & \text { F-RATIO } & \text { P-VALUE ONF } \\\text { OESERVATIONS: } & \text { 19 } & \mathbf { 0 . 9 0 2 3 } & 43.12 & \mathbf { 0 . 0 0 0 1 } & \\\\& \text { PARAMETER } & \text { STANDARD } & & \\\text { VARIAELE } & \text { ESTMMATE } & \text { ERROR } & \text { T-RATIO } & \text { P-VALUE } \\\text { INTERCEPT } & \mathbf { 2 . 5 0 } & \mathbf { 0 . 4 5 } & \mathbf { 5 . 5 6 } & \mathbf { 0 . 0 0 0 1 } \\\text { LNP } & - 5.10 & 1.75 & - \mathbf { 2 . 9 1 } & \mathbf { 0 . 0 1 1 3 } \\\text { LNQ } & 12.4 & \mathbf { 3 . 2 } & \mathbf { 3 . 8 3 } & \mathbf { 0 . 0 0 1 7 } \\\text { LNR } & \mathbf { - 6 . 0 0 } & 1.5 & - 400 & \mathbf { 0 . 0 0 1 0 }\end{array}

-If R decreases by 12% (all other things constant), W will

A) decrease by 72%.
B) decrease by 6%.
C) increase by 6%.
D) increase by 72%.
Unlock Deck
Unlock for access to all 51 flashcards in this deck.
Unlock Deck
k this deck
29
Refer to the following computer output from estimating the parameters of the nonlinear model
 DEPENDENT VARIAELE:  LNY  R-SQUARE  F-RATIO  P-VALUE ONF  OESERVATIONS:  32 0.775632.440.0001 PARAMETER  STANDARD  VARIAELE  ESTMATE  ERROR  T-RATIO  P-VALUE  INTEREEPT 0.59310.322.170.0390 LNRR 4.651.363.430.0019 LNS 0.440.241.830.0774 LNT 8.284.61.800.0826\begin{array} { r l l l l l } \text { DEPENDENT VARIAELE: } & \text { LNY } & \text { R-SQUARE } & \text { F-RATIO } & \text { P-VALUE ONF } \\\text { OESERVATIONS: } & \text { 32 } & \mathbf { 0 . 7 7 5 6 } & \mathbf { 3 2 . 4 4 } & \mathbf { 0 . 0 0 0 1 } & \\\\& \text { PARAMETER } & \text { STANDARD } & & \\\text { VARIAELE } & \text { ESTMATE } & \text { ERROR } & \text { T-RATIO } & \text { P-VALUE } \\\text { INTEREEPT } & \mathbf { - 0 . 5 9 3 1 } & \mathbf { 0 . 3 2 } & \mathbf { - 2 . 1 7 } & \mathbf { 0 . 0 3 9 0 } \\\text { LNRR } & \mathbf { 4 . 6 5 } & 1.36 & \mathbf { 3 . 4 3 } & \mathbf { 0 . 0 0 1 9 } \\\text { LNS } & \mathbf { - 0 . 4 4 } & \mathbf { 0 . 2 4 } & - 1.83 & \mathbf { 0 . 0 7 7 4 } \\\text { LNT } & \mathbf { 8 . 2 8 } & \mathbf { 4 . 6 } & \mathbf { 1 . 8 0 } & \mathbf { 0 . 0 8 2 6 }\end{array}

-The estimated value of a is

A) -0.6931
B) 0.50
C) -3.67
D) 2.66
Unlock Deck
Unlock for access to all 51 flashcards in this deck.
Unlock Deck
k this deck
30
In the nonlinear function Y=aXbZ2Y = a X ^ { b } Z ^ { 2 } , the parameter c measures

A) If Δ\Delta Y / Δ\Delta Z.
B) the percent change in Y for a 1 percent change in Z.
C) the elasticity of Y with respect to Z.
D) both a and c
E) both b and c
Unlock Deck
Unlock for access to all 51 flashcards in this deck.
Unlock Deck
k this deck
31

A firm is experiencing theft problems at its warehouse. A consultant to the firm believes that the dollar loss from theft each week (T) depends on the number of security guards (G) and on the unemployment rate in the county where the warehouse is located (U measured as a percent). In order to test this hypothesis, the consultant estimated the regression equation T = a + bG + cU and obtained the following results:
 DEPENDENT VARIAELE:  T  R-SQUARE  F-RATIO  P-VALUE ONF  OESERVATIONS: 270.779342.380.0001 PARAMETER  STANDARD  VARIAELE  ESTMATE  ERROR  T-RATIO  P-VALUE  INTERCEPT 5150.431740.722.960.0068 G 480.92130.653.680.0012 U 211.075.02.810.0095\begin{array} { c l l l l l } \text { DEPENDENT VARIAELE: } & \text { T } & \text { R-SQUARE } & \text { F-RATIO } & \text { P-VALUE ONF } \\\text { OESERVATIONS: } & 27 & \mathbf { 0 . 7 7 9 3 } & 42.38 & \mathbf { 0 . 0 0 0 1 } & \\& & \text { PARAMETER } & \text { STANDARD } & & \\\text { VARIAELE } & & \text { ESTMATE } & \text { ERROR } & \text { T-RATIO } & \text { P-VALUE } \\\text { INTERCEPT } & & 5150.43 & 1740.72 & \mathbf { 2 . 9 6 } & \mathbf { 0 . 0 0 6 8 } \\\text { G } & & - 480.92 & 130.65 & - \mathbf { 3 . 6 8 } & \mathbf { 0 . 0 0 1 2 } \\\text { U } & & 211.0 & 75.0 & \mathbf { 2 . 8 1 } & \mathbf { 0 . 0 0 9 5 }\end{array}

-Hiring one more guard per week will decrease the losses due to theft at the warehouse by _________ per week.

A) $5,150
B) $211
C) $130
D) $480.92
Unlock Deck
Unlock for access to all 51 flashcards in this deck.
Unlock Deck
k this deck
32
Refer to the following computer output from estimating the parameters of the nonlinear model
 DEPENDENT VARIAELE:  LNY  R-SQUARE  F-RATIO  P-VALUE ONF  OESERVATIONS:  32 0.775632.440.0001 PARAMETER  STANDARD  VARIAELE  ESTMATE  ERROR  T-RATIO  P-VALUE  INTEREEPT 0.59310.322.170.0390 LNRR 4.651.363.430.0019 LNS 0.440.241.830.0774 LNT 8.284.61.800.0826\begin{array} { r l l l l l } \text { DEPENDENT VARIAELE: } & \text { LNY } & \text { R-SQUARE } & \text { F-RATIO } & \text { P-VALUE ONF } \\\text { OESERVATIONS: } & \text { 32 } & \mathbf { 0 . 7 7 5 6 } & \mathbf { 3 2 . 4 4 } & \mathbf { 0 . 0 0 0 1 } & \\\\& \text { PARAMETER } & \text { STANDARD } & & \\\text { VARIAELE } & \text { ESTMATE } & \text { ERROR } & \text { T-RATIO } & \text { P-VALUE } \\\text { INTEREEPT } & \mathbf { - 0 . 5 9 3 1 } & \mathbf { 0 . 3 2 } & \mathbf { - 2 . 1 7 } & \mathbf { 0 . 0 3 9 0 } \\\text { LNRR } & \mathbf { 4 . 6 5 } & 1.36 & \mathbf { 3 . 4 3 } & \mathbf { 0 . 0 0 1 9 } \\\text { LNS } & \mathbf { - 0 . 4 4 } & \mathbf { 0 . 2 4 } & - 1.83 & \mathbf { 0 . 0 7 7 4 } \\\text { LNT } & \mathbf { 8 . 2 8 } & \mathbf { 4 . 6 } & \mathbf { 1 . 8 0 } & \mathbf { 0 . 0 8 2 6 }\end{array}

-Which of the parameter estimates are statistically significant at the 90% level of confidence?

A) All the parameter estimates are statistically significant.
B) All parameter estimates except a^\hat { a } and
b^\hat { b } are statistically significant.
C) a^\hat { a } is not statistically significant, but all the rest of the parameter estimates are significant.
D) c^\hat { c } is not statistically significant, but all the rest of the parameter estimates are significant.
Unlock Deck
Unlock for access to all 51 flashcards in this deck.
Unlock Deck
k this deck
33
Refer to the following nonlinear model which relates W to P, Q, and R:
W=aPbQcRdW = a P ^ { b } Q ^ { c } R ^ { d }
The computer output form the regression analysis is:
 DEPENDENTVARIAELE:  LNW  R-SQUARE  F-RATIO  P-VALUE ONF  OESERVATIONS:  19 0.902343.120.0001 PARAMETER  STANDARD  VARIAELE  ESTMMATE  ERROR  T-RATIO  P-VALUE  INTERCEPT 2.500.455.560.0001 LNP 5.101.752.910.0113 LNQ 12.43.23.830.0017 LNR 6.001.54000.0010\begin{array} { r l l l l l } \text { DEPENDENTVARIAELE: } & \text { LNW } & \text { R-SQUARE } & \text { F-RATIO } & \text { P-VALUE ONF } \\\text { OESERVATIONS: } & \text { 19 } & \mathbf { 0 . 9 0 2 3 } & 43.12 & \mathbf { 0 . 0 0 0 1 } & \\\\& \text { PARAMETER } & \text { STANDARD } & & \\\text { VARIAELE } & \text { ESTMMATE } & \text { ERROR } & \text { T-RATIO } & \text { P-VALUE } \\\text { INTERCEPT } & \mathbf { 2 . 5 0 } & \mathbf { 0 . 4 5 } & \mathbf { 5 . 5 6 } & \mathbf { 0 . 0 0 0 1 } \\\text { LNP } & - 5.10 & 1.75 & - \mathbf { 2 . 9 1 } & \mathbf { 0 . 0 1 1 3 } \\\text { LNQ } & 12.4 & \mathbf { 3 . 2 } & \mathbf { 3 . 8 3 } & \mathbf { 0 . 0 0 1 7 } \\\text { LNR } & \mathbf { - 6 . 0 0 } & 1.5 & - 400 & \mathbf { 0 . 0 0 1 0 }\end{array}

-The nonlinear relation can be transformed into the following linear regression model:

A) W=ln(aPbQcRh)W = \ln \left( a P ^ { b } Q ^ { c } R ^ { \mathrm { h } } \right)
B) lnW=ln(aPbQcRd)\ln W = \ln \left( a P ^ { \mathrm { b } } Q ^ { \mathrm { c } } R ^ { \mathrm { d } } \right)
C) lnW=lnalnPlnQlnR\ln W = \ln a \cdot \ln P \cdot \ln Q \cdot \ln R
D) lnW=lna+blnP+clnQ+dlnR\ln W = \ln a + b \ln P + c \ln Q + d \ln R
Unlock Deck
Unlock for access to all 51 flashcards in this deck.
Unlock Deck
k this deck
34

A firm is experiencing theft problems at its warehouse. A consultant to the firm believes that the dollar loss from theft each week (T) depends on the number of security guards (G) and on the unemployment rate in the county where the warehouse is located (U measured as a percent). In order to test this hypothesis, the consultant estimated the regression equation T = a + bG + cU and obtained the following results:
 DEPENDENT VARIAELE:  T  R-SQUARE  F-RATIO  P-VALUE ONF  OESERVATIONS: 270.779342.380.0001 PARAMETER  STANDARD  VARIAELE  ESTMATE  ERROR  T-RATIO  P-VALUE  INTERCEPT 5150.431740.722.960.0068 G 480.92130.653.680.0012 U 211.075.02.810.0095\begin{array} { c l l l l l } \text { DEPENDENT VARIAELE: } & \text { T } & \text { R-SQUARE } & \text { F-RATIO } & \text { P-VALUE ONF } \\\text { OESERVATIONS: } & 27 & \mathbf { 0 . 7 7 9 3 } & 42.38 & \mathbf { 0 . 0 0 0 1 } & \\& & \text { PARAMETER } & \text { STANDARD } & & \\\text { VARIAELE } & & \text { ESTMATE } & \text { ERROR } & \text { T-RATIO } & \text { P-VALUE } \\\text { INTERCEPT } & & 5150.43 & 1740.72 & \mathbf { 2 . 9 6 } & \mathbf { 0 . 0 0 6 8 } \\\text { G } & & - 480.92 & 130.65 & - \mathbf { 3 . 6 8 } & \mathbf { 0 . 0 0 1 2 } \\\text { U } & & 211.0 & 75.0 & \mathbf { 2 . 8 1 } & \mathbf { 0 . 0 0 9 5 }\end{array}

-Aone percent increase in the level of unemployment in the county results in an increase in losses due to theft of __________ more losses per week.

A) $75
B) $211
C) $280
D) $460
Unlock Deck
Unlock for access to all 51 flashcards in this deck.
Unlock Deck
k this deck
35
Refer to the following computer output from estimating the parameters of the nonlinear model
 DEPENDENT VARIAELE:  LNY  R-SQUARE  F-RATIO  P-VALUE ONF  OESERVATIONS:  32 0.775632.440.0001 PARAMETER  STANDARD  VARIAELE  ESTMATE  ERROR  T-RATIO  P-VALUE  INTEREEPT 0.59310.322.170.0390 LNRR 4.651.363.430.0019 LNS 0.440.241.830.0774 LNT 8.284.61.800.0826\begin{array} { r l l l l l } \text { DEPENDENT VARIAELE: } & \text { LNY } & \text { R-SQUARE } & \text { F-RATIO } & \text { P-VALUE ONF } \\\text { OESERVATIONS: } & \text { 32 } & \mathbf { 0 . 7 7 5 6 } & \mathbf { 3 2 . 4 4 } & \mathbf { 0 . 0 0 0 1 } & \\\\& \text { PARAMETER } & \text { STANDARD } & & \\\text { VARIAELE } & \text { ESTMATE } & \text { ERROR } & \text { T-RATIO } & \text { P-VALUE } \\\text { INTEREEPT } & \mathbf { - 0 . 5 9 3 1 } & \mathbf { 0 . 3 2 } & \mathbf { - 2 . 1 7 } & \mathbf { 0 . 0 3 9 0 } \\\text { LNRR } & \mathbf { 4 . 6 5 } & 1.36 & \mathbf { 3 . 4 3 } & \mathbf { 0 . 0 0 1 9 } \\\text { LNS } & \mathbf { - 0 . 4 4 } & \mathbf { 0 . 2 4 } & - 1.83 & \mathbf { 0 . 0 7 7 4 } \\\text { LNT } & \mathbf { 8 . 2 8 } & \mathbf { 4 . 6 } & \mathbf { 1 . 8 0 } & \mathbf { 0 . 0 8 2 6 }\end{array}

-If R = 1, S = 2, and T = 3, what value do you expect Y will have?

A) 143
B) 1,345
C) 3,289
D) 6,578
E) -4,559
Unlock Deck
Unlock for access to all 51 flashcards in this deck.
Unlock Deck
k this deck
36
Tests for statistical significance must be performed

A) because the TRUE values of the intercept and slope parameters are random variables.
B) because the ESTIMATED values of the intercept and slope parameters are not, in general, equal to the true values of the intercept and slope parameters.
C) because the computed t-ratios are random variables and may be too large to provide evidence that b is not equal to zero.
D) in order to determine whether or not the parameter estimates are far enough away from zero to conclude that the true parameter values are not equal to zero.
E) both b and d
Unlock Deck
Unlock for access to all 51 flashcards in this deck.
Unlock Deck
k this deck
37
Refer to the following nonlinear model which relates W to P, Q, and R:
W=aPbQcRdW = a P ^ { b } Q ^ { c } R ^ { d }
The computer output form the regression analysis is:
 DEPENDENTVARIAELE:  LNW  R-SQUARE  F-RATIO  P-VALUE ONF  OESERVATIONS:  19 0.902343.120.0001 PARAMETER  STANDARD  VARIAELE  ESTMMATE  ERROR  T-RATIO  P-VALUE  INTERCEPT 2.500.455.560.0001 LNP 5.101.752.910.0113 LNQ 12.43.23.830.0017 LNR 6.001.54000.0010\begin{array} { r l l l l l } \text { DEPENDENTVARIAELE: } & \text { LNW } & \text { R-SQUARE } & \text { F-RATIO } & \text { P-VALUE ONF } \\\text { OESERVATIONS: } & \text { 19 } & \mathbf { 0 . 9 0 2 3 } & 43.12 & \mathbf { 0 . 0 0 0 1 } & \\\\& \text { PARAMETER } & \text { STANDARD } & & \\\text { VARIAELE } & \text { ESTMMATE } & \text { ERROR } & \text { T-RATIO } & \text { P-VALUE } \\\text { INTERCEPT } & \mathbf { 2 . 5 0 } & \mathbf { 0 . 4 5 } & \mathbf { 5 . 5 6 } & \mathbf { 0 . 0 0 0 1 } \\\text { LNP } & - 5.10 & 1.75 & - \mathbf { 2 . 9 1 } & \mathbf { 0 . 0 1 1 3 } \\\text { LNQ } & 12.4 & \mathbf { 3 . 2 } & \mathbf { 3 . 8 3 } & \mathbf { 0 . 0 0 1 7 } \\\text { LNR } & \mathbf { - 6 . 0 0 } & 1.5 & - 400 & \mathbf { 0 . 0 0 1 0 }\end{array}

-Which of the parameter estimates are statistically significant at the 5% level of significance?

A) All the parameter estimates are statistically significant.
B) All parameter estimates except a^\hat { a } and
b^\hat { b } are statistically significant.
C) a^\hat { a } is not statistically significant, but all the rest of the parameter estimates are significant.
D) c^\hat {c} is not statistically significant, but all the rest of the parameter estimates are significant.
Unlock Deck
Unlock for access to all 51 flashcards in this deck.
Unlock Deck
k this deck
38
Refer to the following computer output from estimating the parameters of the nonlinear model
 DEPENDENT VARIAELE:  LNY  R-SQUARE  F-RATIO  P-VALUE ONF  OESERVATIONS:  32 0.775632.440.0001 PARAMETER  STANDARD  VARIAELE  ESTMATE  ERROR  T-RATIO  P-VALUE  INTEREEPT 0.59310.322.170.0390 LNRR 4.651.363.430.0019 LNS 0.440.241.830.0774 LNT 8.284.61.800.0826\begin{array} { r l l l l l } \text { DEPENDENT VARIAELE: } & \text { LNY } & \text { R-SQUARE } & \text { F-RATIO } & \text { P-VALUE ONF } \\\text { OESERVATIONS: } & \text { 32 } & \mathbf { 0 . 7 7 5 6 } & \mathbf { 3 2 . 4 4 } & \mathbf { 0 . 0 0 0 1 } & \\\\& \text { PARAMETER } & \text { STANDARD } & & \\\text { VARIAELE } & \text { ESTMATE } & \text { ERROR } & \text { T-RATIO } & \text { P-VALUE } \\\text { INTEREEPT } & \mathbf { - 0 . 5 9 3 1 } & \mathbf { 0 . 3 2 } & \mathbf { - 2 . 1 7 } & \mathbf { 0 . 0 3 9 0 } \\\text { LNRR } & \mathbf { 4 . 6 5 } & 1.36 & \mathbf { 3 . 4 3 } & \mathbf { 0 . 0 0 1 9 } \\\text { LNS } & \mathbf { - 0 . 4 4 } & \mathbf { 0 . 2 4 } & - 1.83 & \mathbf { 0 . 0 7 7 4 } \\\text { LNT } & \mathbf { 8 . 2 8 } & \mathbf { 4 . 6 } & \mathbf { 1 . 8 0 } & \mathbf { 0 . 0 8 2 6 }\end{array}

-If S increases by 8% (all other things constant), Y will

A) decrease by 3.52%.
B) decrease by 0.44%.
C) decrease by 4.4%.
D) increase by 0.44%.
E) decrease by 2.4%.
Unlock Deck
Unlock for access to all 51 flashcards in this deck.
Unlock Deck
k this deck
39
Refer to the following nonlinear model which relates W to P, Q, and R:
W=aPbQcRdW = a P ^ { b } Q ^ { c } R ^ { d }
The computer output form the regression analysis is:
 DEPENDENTVARIAELE:  LNW  R-SQUARE  F-RATIO  P-VALUE ONF  OESERVATIONS:  19 0.902343.120.0001 PARAMETER  STANDARD  VARIAELE  ESTMMATE  ERROR  T-RATIO  P-VALUE  INTERCEPT 2.500.455.560.0001 LNP 5.101.752.910.0113 LNQ 12.43.23.830.0017 LNR 6.001.54000.0010\begin{array} { r l l l l l } \text { DEPENDENTVARIAELE: } & \text { LNW } & \text { R-SQUARE } & \text { F-RATIO } & \text { P-VALUE ONF } \\\text { OESERVATIONS: } & \text { 19 } & \mathbf { 0 . 9 0 2 3 } & 43.12 & \mathbf { 0 . 0 0 0 1 } & \\\\& \text { PARAMETER } & \text { STANDARD } & & \\\text { VARIAELE } & \text { ESTMMATE } & \text { ERROR } & \text { T-RATIO } & \text { P-VALUE } \\\text { INTERCEPT } & \mathbf { 2 . 5 0 } & \mathbf { 0 . 4 5 } & \mathbf { 5 . 5 6 } & \mathbf { 0 . 0 0 0 1 } \\\text { LNP } & - 5.10 & 1.75 & - \mathbf { 2 . 9 1 } & \mathbf { 0 . 0 1 1 3 } \\\text { LNQ } & 12.4 & \mathbf { 3 . 2 } & \mathbf { 3 . 8 3 } & \mathbf { 0 . 0 0 1 7 } \\\text { LNR } & \mathbf { - 6 . 0 0 } & 1.5 & - 400 & \mathbf { 0 . 0 0 1 0 }\end{array}

-If P = 0.5, Q = 1.5, and R = 0.8, what value do you expect W will have?

A) 16,712
B) 243,200
C) 1,345
D) 3,289
Unlock Deck
Unlock for access to all 51 flashcards in this deck.
Unlock Deck
k this deck
40
Refer to the following computer output from estimating the parameters of the nonlinear model
 DEPENDENT VARIAELE:  LNY  R-SQUARE  F-RATIO  P-VALUE ONF  OESERVATIONS:  32 0.775632.440.0001 PARAMETER  STANDARD  VARIAELE  ESTMATE  ERROR  T-RATIO  P-VALUE  INTEREEPT 0.59310.322.170.0390 LNRR 4.651.363.430.0019 LNS 0.440.241.830.0774 LNT 8.284.61.800.0826\begin{array} { r l l l l l } \text { DEPENDENT VARIAELE: } & \text { LNY } & \text { R-SQUARE } & \text { F-RATIO } & \text { P-VALUE ONF } \\\text { OESERVATIONS: } & \text { 32 } & \mathbf { 0 . 7 7 5 6 } & \mathbf { 3 2 . 4 4 } & \mathbf { 0 . 0 0 0 1 } & \\\\& \text { PARAMETER } & \text { STANDARD } & & \\\text { VARIAELE } & \text { ESTMATE } & \text { ERROR } & \text { T-RATIO } & \text { P-VALUE } \\\text { INTEREEPT } & \mathbf { - 0 . 5 9 3 1 } & \mathbf { 0 . 3 2 } & \mathbf { - 2 . 1 7 } & \mathbf { 0 . 0 3 9 0 } \\\text { LNRR } & \mathbf { 4 . 6 5 } & 1.36 & \mathbf { 3 . 4 3 } & \mathbf { 0 . 0 0 1 9 } \\\text { LNS } & \mathbf { - 0 . 4 4 } & \mathbf { 0 . 2 4 } & - 1.83 & \mathbf { 0 . 0 7 7 4 } \\\text { LNT } & \mathbf { 8 . 2 8 } & \mathbf { 4 . 6 } & \mathbf { 1 . 8 0 } & \mathbf { 0 . 0 8 2 6 }\end{array}

-If R decreases by 10% (all other things constant), Y will

A) increase by 4.66%.
B) increase by 46.6%.
C) decrease by 4.66%.
D) decrease by 46.6%.
Unlock Deck
Unlock for access to all 51 flashcards in this deck.
Unlock Deck
k this deck
41
The linear regression equation G = a + bD is estimated using 24 observations on R and W. The least-squares estimate of b is -22.5, and the standard error of the estimate is 8.36. Perform a t-test for statistical significance of b^\hat { b } at the 1% level of significance.
a. There are _____ degrees of freedom for the t-test.
b. The value of the t-statistic is _________. The critical t-value for the test is _________.
c. The parameter estimate
b^\hat { b } _________ (is, is not) statistically significant at the 1% level.
Unlock Deck
Unlock for access to all 51 flashcards in this deck.
Unlock Deck
k this deck
42
Refer to the following nonlinear model which relates W to P, Q, and R:
W=aPbQcRdW = a P ^ { b } Q ^ { c } R ^ { d }
The computer output form the regression analysis is:
 DEPENDENTVARIAELE:  LNW  R-SQUARE  F-RATIO  P-VALUE ONF  OESERVATIONS:  19 0.902343.120.0001 PARAMETER  STANDARD  VARIAELE  ESTMMATE  ERROR  T-RATIO  P-VALUE  INTERCEPT 2.500.455.560.0001 LNP 5.101.752.910.0113 LNQ 12.43.23.830.0017 LNR 6.001.54000.0010\begin{array} { r l l l l l } \text { DEPENDENTVARIAELE: } & \text { LNW } & \text { R-SQUARE } & \text { F-RATIO } & \text { P-VALUE ONF } \\\text { OESERVATIONS: } & \text { 19 } & \mathbf { 0 . 9 0 2 3 } & 43.12 & \mathbf { 0 . 0 0 0 1 } & \\\\& \text { PARAMETER } & \text { STANDARD } & & \\\text { VARIAELE } & \text { ESTMMATE } & \text { ERROR } & \text { T-RATIO } & \text { P-VALUE } \\\text { INTERCEPT } & \mathbf { 2 . 5 0 } & \mathbf { 0 . 4 5 } & \mathbf { 5 . 5 6 } & \mathbf { 0 . 0 0 0 1 } \\\text { LNP } & - 5.10 & 1.75 & - \mathbf { 2 . 9 1 } & \mathbf { 0 . 0 1 1 3 } \\\text { LNQ } & 12.4 & \mathbf { 3 . 2 } & \mathbf { 3 . 8 3 } & \mathbf { 0 . 0 0 1 7 } \\\text { LNR } & \mathbf { - 6 . 0 0 } & 1.5 & - 400 & \mathbf { 0 . 0 0 1 0 }\end{array}

-If P = Q = R = 1, what value do you expect W will have?

A) 0
B) 1
C) 12.182
D) 2.50
Unlock Deck
Unlock for access to all 51 flashcards in this deck.
Unlock Deck
k this deck
43
A simple linear regression equation relates G and D as follows:
G = a + bD
a. The explanatory variable is _______, and the dependent variable is ________.
b. The slope parameter is ______, and the intercept parameter _______.
c. When D is zero, G equals _______.
d. For each one-unit increase in D, the change in R is ______ units.
Unlock Deck
Unlock for access to all 51 flashcards in this deck.
Unlock Deck
k this deck
44

A manager wishes to estimate an average cost equation of the following form:
 <strong> A manager wishes to estimate an average cost equation of the following form:   where Q is the level of output. Letting Z = Q<sup>2</sup> and using least-squares estimation, the manager obtains the following computer output:   \begin{array} { | c l l l l l | } \hline \text { DEPENDENT VARIABLE: } & \text { C } & \text { R-SQUARE } & \text { F-RATIO } & \text { P-VALUE ON F } \\ \text { OBSERVATIONS: } & 28 & 0.7679 & 26.47 & 0.0001 & \\ \text { VARIABLE }  & \begin{array} { l } \text { PARAMETER } \\ \text { ESTIMATE } \end{array} & \begin{array} { l } \text { STANDARD } \\ \text { ERROR } \end{array}& \text { T-RATIO } & \text { P-VALUE } \\ \text { INTERCEPT }&  200 & 38.00 & 5.26 & 0.0001 \\ \text { Q }   & - 12.00 & 4.36 & - 2.75 & 0.0111 \\ \text { Z } & 0.50 & 0.16 & 3.13 & 0.0046 \\ \hline \end{array}   -When output is 40 units, what is average cost?</strong> A) $200 B) $280 C) $360 D) $480 E) $520
where Q is the level of output. Letting Z = Q2 and using least-squares estimation, the manager obtains the following computer output:

 DEPENDENT VARIABLE:  C  R-SQUARE  F-RATIO  P-VALUE ON F  OBSERVATIONS: 280.767926.470.0001 VARIABLE  PARAMETER  ESTIMATE  STANDARD  ERROR  T-RATIO  P-VALUE  INTERCEPT 20038.005.260.0001 Q 12.004.362.750.0111 Z 0.500.163.130.0046\begin{array} { | c l l l l l | } \hline \text { DEPENDENT VARIABLE: } & \text { C } & \text { R-SQUARE } & \text { F-RATIO } & \text { P-VALUE ON F } \\\text { OBSERVATIONS: } & 28 & 0.7679 & 26.47 & 0.0001 & \\ \text { VARIABLE } & \begin{array} { l } \text { PARAMETER } \\\text { ESTIMATE }\end{array} & \begin{array} { l } \text { STANDARD } \\\text { ERROR }\end{array}& \text { T-RATIO } & \text { P-VALUE } \\\text { INTERCEPT }& 200 & 38.00 & 5.26 & 0.0001 \\\text { Q } & - 12.00 & 4.36 & - 2.75 & 0.0111 \\ \text { Z } & 0.50 & 0.16 & 3.13 & 0.0046 \\\hline\end{array}

-When output is 40 units, what is average cost?

A) $200
B) $280
C) $360
D) $480
E) $520
Unlock Deck
Unlock for access to all 51 flashcards in this deck.
Unlock Deck
k this deck
45
In a multiple regression model, the coefficients on the independent variables measure

A) the percent of the variation in the dependent variable explained by a change in that independent variable, all other influences held constant.
B) the change in the dependent variable from a one-unit change in that independent variable, all other influences held constant.
C) the change in that independent variable from a one-unit change in the dependent variable, all other influences held constant.
D) the change in the dependent variable explained by the random error, all other influences held constant.
Unlock Deck
Unlock for access to all 51 flashcards in this deck.
Unlock Deck
k this deck
46
The quadratic equation Y = a + bX +cX2 can be estimated using linear regression by estimating

A) Y = a + bX + ZX where Z = c2
B) Y = a + ZX where Z = (b + c)
C) Y = a + bZ where Z = X2
D) Y = a + ZX where Z = (b + c)2
E) none of the above will work
Unlock Deck
Unlock for access to all 51 flashcards in this deck.
Unlock Deck
k this deck
47

A manager wishes to estimate an average cost equation of the following form:
 <strong> A manager wishes to estimate an average cost equation of the following form:   where Q is the level of output. Letting Z = Q<sup>2</sup> and using least-squares estimation, the manager obtains the following computer output:   \begin{array} { | c l l l l l | } \hline \text { DEPENDENT VARIABLE: } & \text { C } & \text { R-SQUARE } & \text { F-RATIO } & \text { P-VALUE ON F } \\ \text { OBSERVATIONS: } & 28 & 0.7679 & 26.47 & 0.0001 & \\ \text { VARIABLE }  & \begin{array} { l } \text { PARAMETER } \\ \text { ESTIMATE } \end{array} & \begin{array} { l } \text { STANDARD } \\ \text { ERROR } \end{array}& \text { T-RATIO } & \text { P-VALUE } \\ \text { INTERCEPT }&  200 & 38.00 & 5.26 & 0.0001 \\ \text { Q }   & - 12.00 & 4.36 & - 2.75 & 0.0111 \\ \text { Z } & 0.50 & 0.16 & 3.13 & 0.0046 \\ \hline \end{array}   -The value of R<sup>2</sup> indicates that _______ of the total variation in C is explained by the regression equation.</strong> A) 0.7679% B) 76.79% C) 7.679% D) 7679%
where Q is the level of output. Letting Z = Q2 and using least-squares estimation, the manager obtains the following computer output:

 DEPENDENT VARIABLE:  C  R-SQUARE  F-RATIO  P-VALUE ON F  OBSERVATIONS: 280.767926.470.0001 VARIABLE  PARAMETER  ESTIMATE  STANDARD  ERROR  T-RATIO  P-VALUE  INTERCEPT 20038.005.260.0001 Q 12.004.362.750.0111 Z 0.500.163.130.0046\begin{array} { | c l l l l l | } \hline \text { DEPENDENT VARIABLE: } & \text { C } & \text { R-SQUARE } & \text { F-RATIO } & \text { P-VALUE ON F } \\\text { OBSERVATIONS: } & 28 & 0.7679 & 26.47 & 0.0001 & \\ \text { VARIABLE } & \begin{array} { l } \text { PARAMETER } \\\text { ESTIMATE }\end{array} & \begin{array} { l } \text { STANDARD } \\\text { ERROR }\end{array}& \text { T-RATIO } & \text { P-VALUE } \\\text { INTERCEPT }& 200 & 38.00 & 5.26 & 0.0001 \\\text { Q } & - 12.00 & 4.36 & - 2.75 & 0.0111 \\ \text { Z } & 0.50 & 0.16 & 3.13 & 0.0046 \\\hline\end{array}

-The value of R2 indicates that _______ of the total variation in C is explained by the regression equation.

A) 0.7679%
B) 76.79%
C) 7.679%
D) 7679%
Unlock Deck
Unlock for access to all 51 flashcards in this deck.
Unlock Deck
k this deck
48

A manager wishes to estimate an average cost equation of the following form:
 <strong> A manager wishes to estimate an average cost equation of the following form:   where Q is the level of output. Letting Z = Q<sup>2</sup> and using least-squares estimation, the manager obtains the following computer output:   \begin{array} { | c l l l l l | } \hline \text { DEPENDENT VARIABLE: } & \text { C } & \text { R-SQUARE } & \text { F-RATIO } & \text { P-VALUE ON F } \\ \text { OBSERVATIONS: } & 28 & 0.7679 & 26.47 & 0.0001 & \\ \text { VARIABLE }  & \begin{array} { l } \text { PARAMETER } \\ \text { ESTIMATE } \end{array} & \begin{array} { l } \text { STANDARD } \\ \text { ERROR } \end{array}& \text { T-RATIO } & \text { P-VALUE } \\ \text { INTERCEPT }&  200 & 38.00 & 5.26 & 0.0001 \\ \text { Q }   & - 12.00 & 4.36 & - 2.75 & 0.0111 \\ \text { Z } & 0.50 & 0.16 & 3.13 & 0.0046 \\ \hline \end{array}   -Which of the parameter estimates are statistically significant at the 1% significance level?</strong> A) All the parameter estimates are statistically significant. B) All parameter estimates except  \hat { b }  are statistically significant. C)  \hat { a }  is not statistically significant, but all the rest of the parameter estimates are significant. D)  \hat { c }  is not statistically significant, but all the rest of the parameter estimates are significant.
where Q is the level of output. Letting Z = Q2 and using least-squares estimation, the manager obtains the following computer output:

 DEPENDENT VARIABLE:  C  R-SQUARE  F-RATIO  P-VALUE ON F  OBSERVATIONS: 280.767926.470.0001 VARIABLE  PARAMETER  ESTIMATE  STANDARD  ERROR  T-RATIO  P-VALUE  INTERCEPT 20038.005.260.0001 Q 12.004.362.750.0111 Z 0.500.163.130.0046\begin{array} { | c l l l l l | } \hline \text { DEPENDENT VARIABLE: } & \text { C } & \text { R-SQUARE } & \text { F-RATIO } & \text { P-VALUE ON F } \\\text { OBSERVATIONS: } & 28 & 0.7679 & 26.47 & 0.0001 & \\ \text { VARIABLE } & \begin{array} { l } \text { PARAMETER } \\\text { ESTIMATE }\end{array} & \begin{array} { l } \text { STANDARD } \\\text { ERROR }\end{array}& \text { T-RATIO } & \text { P-VALUE } \\\text { INTERCEPT }& 200 & 38.00 & 5.26 & 0.0001 \\\text { Q } & - 12.00 & 4.36 & - 2.75 & 0.0111 \\ \text { Z } & 0.50 & 0.16 & 3.13 & 0.0046 \\\hline\end{array}

-Which of the parameter estimates are statistically significant at the 1% significance level?

A) All the parameter estimates are statistically significant.
B) All parameter estimates except b^\hat { b } are statistically significant.
C) a^\hat { a } is not statistically significant, but all the rest of the parameter estimates are significant.
D) c^\hat { c } is not statistically significant, but all the rest of the parameter estimates are significant.
Unlock Deck
Unlock for access to all 51 flashcards in this deck.
Unlock Deck
k this deck
49
Refer to the following nonlinear model which relates W to P, Q, and R:
W=aPbQcRdW = a P ^ { b } Q ^ { c } R ^ { d }
The computer output form the regression analysis is:
 DEPENDENTVARIAELE:  LNW  R-SQUARE  F-RATIO  P-VALUE ONF  OESERVATIONS:  19 0.902343.120.0001 PARAMETER  STANDARD  VARIAELE  ESTMMATE  ERROR  T-RATIO  P-VALUE  INTERCEPT 2.500.455.560.0001 LNP 5.101.752.910.0113 LNQ 12.43.23.830.0017 LNR 6.001.54000.0010\begin{array} { r l l l l l } \text { DEPENDENTVARIAELE: } & \text { LNW } & \text { R-SQUARE } & \text { F-RATIO } & \text { P-VALUE ONF } \\\text { OESERVATIONS: } & \text { 19 } & \mathbf { 0 . 9 0 2 3 } & 43.12 & \mathbf { 0 . 0 0 0 1 } & \\\\& \text { PARAMETER } & \text { STANDARD } & & \\\text { VARIAELE } & \text { ESTMMATE } & \text { ERROR } & \text { T-RATIO } & \text { P-VALUE } \\\text { INTERCEPT } & \mathbf { 2 . 5 0 } & \mathbf { 0 . 4 5 } & \mathbf { 5 . 5 6 } & \mathbf { 0 . 0 0 0 1 } \\\text { LNP } & - 5.10 & 1.75 & - \mathbf { 2 . 9 1 } & \mathbf { 0 . 0 1 1 3 } \\\text { LNQ } & 12.4 & \mathbf { 3 . 2 } & \mathbf { 3 . 8 3 } & \mathbf { 0 . 0 0 1 7 } \\\text { LNR } & \mathbf { - 6 . 0 0 } & 1.5 & - 400 & \mathbf { 0 . 0 0 1 0 }\end{array}

-The value of R2 tells us that

A) 0.9023% of the total variation in ln W is explained by the regression equation.
B) 90.23% of the total variation in ln W is explained by the regression equation.
C) 0.9023% of the total variation in P, W, and R is explained by the regression equation.
D) 0.9023% of the total variation in ln P, ln Q, and ln R is explained by the regression equation.
Unlock Deck
Unlock for access to all 51 flashcards in this deck.
Unlock Deck
k this deck
50

A manager wishes to estimate an average cost equation of the following form:
 <strong> A manager wishes to estimate an average cost equation of the following form:   where Q is the level of output. Letting Z = Q<sup>2</sup> and using least-squares estimation, the manager obtains the following computer output:   \begin{array} { | c l l l l l | } \hline \text { DEPENDENT VARIABLE: } & \text { C } & \text { R-SQUARE } & \text { F-RATIO } & \text { P-VALUE ON F } \\ \text { OBSERVATIONS: } & 28 & 0.7679 & 26.47 & 0.0001 & \\ \text { VARIABLE }  & \begin{array} { l } \text { PARAMETER } \\ \text { ESTIMATE } \end{array} & \begin{array} { l } \text { STANDARD } \\ \text { ERROR } \end{array}& \text { T-RATIO } & \text { P-VALUE } \\ \text { INTERCEPT }&  200 & 38.00 & 5.26 & 0.0001 \\ \text { Q }   & - 12.00 & 4.36 & - 2.75 & 0.0111 \\ \text { Z } & 0.50 & 0.16 & 3.13 & 0.0046 \\ \hline \end{array}   -When output is 20 units, what is average cost?</strong> A) $160 B) $200 C) $280 D) $340 E) $360
where Q is the level of output. Letting Z = Q2 and using least-squares estimation, the manager obtains the following computer output:

 DEPENDENT VARIABLE:  C  R-SQUARE  F-RATIO  P-VALUE ON F  OBSERVATIONS: 280.767926.470.0001 VARIABLE  PARAMETER  ESTIMATE  STANDARD  ERROR  T-RATIO  P-VALUE  INTERCEPT 20038.005.260.0001 Q 12.004.362.750.0111 Z 0.500.163.130.0046\begin{array} { | c l l l l l | } \hline \text { DEPENDENT VARIABLE: } & \text { C } & \text { R-SQUARE } & \text { F-RATIO } & \text { P-VALUE ON F } \\\text { OBSERVATIONS: } & 28 & 0.7679 & 26.47 & 0.0001 & \\ \text { VARIABLE } & \begin{array} { l } \text { PARAMETER } \\\text { ESTIMATE }\end{array} & \begin{array} { l } \text { STANDARD } \\\text { ERROR }\end{array}& \text { T-RATIO } & \text { P-VALUE } \\\text { INTERCEPT }& 200 & 38.00 & 5.26 & 0.0001 \\\text { Q } & - 12.00 & 4.36 & - 2.75 & 0.0111 \\ \text { Z } & 0.50 & 0.16 & 3.13 & 0.0046 \\\hline\end{array}

-When output is 20 units, what is average cost?

A) $160
B) $200
C) $280
D) $340
E) $360
Unlock Deck
Unlock for access to all 51 flashcards in this deck.
Unlock Deck
k this deck
51
Refer to the following nonlinear model which relates W to P, Q, and R:
W=aPbQcRdW = a P ^ { b } Q ^ { c } R ^ { d }
The computer output form the regression analysis is:
 DEPENDENTVARIAELE:  LNW  R-SQUARE  F-RATIO  P-VALUE ONF  OESERVATIONS:  19 0.902343.120.0001 PARAMETER  STANDARD  VARIAELE  ESTMMATE  ERROR  T-RATIO  P-VALUE  INTERCEPT 2.500.455.560.0001 LNP 5.101.752.910.0113 LNQ 12.43.23.830.0017 LNR 6.001.54000.0010\begin{array} { r l l l l l } \text { DEPENDENTVARIAELE: } & \text { LNW } & \text { R-SQUARE } & \text { F-RATIO } & \text { P-VALUE ONF } \\\text { OESERVATIONS: } & \text { 19 } & \mathbf { 0 . 9 0 2 3 } & 43.12 & \mathbf { 0 . 0 0 0 1 } & \\\\& \text { PARAMETER } & \text { STANDARD } & & \\\text { VARIAELE } & \text { ESTMMATE } & \text { ERROR } & \text { T-RATIO } & \text { P-VALUE } \\\text { INTERCEPT } & \mathbf { 2 . 5 0 } & \mathbf { 0 . 4 5 } & \mathbf { 5 . 5 6 } & \mathbf { 0 . 0 0 0 1 } \\\text { LNP } & - 5.10 & 1.75 & - \mathbf { 2 . 9 1 } & \mathbf { 0 . 0 1 1 3 } \\\text { LNQ } & 12.4 & \mathbf { 3 . 2 } & \mathbf { 3 . 8 3 } & \mathbf { 0 . 0 0 1 7 } \\\text { LNR } & \mathbf { - 6 . 0 0 } & 1.5 & - 400 & \mathbf { 0 . 0 0 1 0 }\end{array}

-If Q increases by 8% (all other things constant), W will

A) decrease by 99.2%.
B) decrease by 12.5%.
C) increase by 0.99%.
D) increase by 99.2%.
Unlock Deck
Unlock for access to all 51 flashcards in this deck.
Unlock Deck
k this deck
locked card icon
Unlock Deck
Unlock for access to all 51 flashcards in this deck.