Deck 6: Rational Expressions, Functions, and Equations

Full screen (f)
exit full mode
Question
Find the function value.
f(x)=x−47x+12;f(−2)f ( x ) = \frac { x - 4 } { 7 x + 12 } ; f ( - 2 )

A) 0
B) 1
C) −3- 3
D) 3
Use Space or
up arrow
down arrow
to flip the card.
Question
The graph of a rational function, f, is shown in the figure. Use the graph to answer the question. <strong>The graph of a rational function, f, is shown in the figure. Use the graph to answer the question.   Find f(8).</strong> A) 3 B) 8 C) -10.8 D) -8 <div style=padding-top: 35px>
Find f(8).

A) 3
B) 8
C) -10.8
D) -8
Question
 <strong>  Find the domain of the rational function.  f ( x ) = \frac { 2 } { x - 2 } </strong> A) domain of  f : ( \infty , \infty )  B) domain of  f : ( \infty , 0 ) \cup ( 0 , \infty )  C) domain of  f : ( \infty , - 2 ) \cup ( - 2 , \infty )  D) domain of  f : ( \infty , 2 ) \cup ( 2 , \infty )  <div style=padding-top: 35px>  Find the domain of the rational function.
f(x)=2x−2f ( x ) = \frac { 2 } { x - 2 }

A) domain of f:(∞,∞)f : ( \infty , \infty )
B) domain of f:(∞,0)∪(0,∞)f : ( \infty , 0 ) \cup ( 0 , \infty )
C) domain of f:(∞,−2)∪(−2,∞)f : ( \infty , - 2 ) \cup ( - 2 , \infty )
D) domain of f:(∞,2)∪(2,∞)f : ( \infty , 2 ) \cup ( 2 , \infty )
Question
 <strong>  Find the domain of the rational function.  f ( x ) = \frac { x ^ { 2 } - 9 } { x ^ { 2 } - 8 x + 12 } </strong> A) domain of  f : ( \infty , - 3 ) \cup ( - 3,3 ) \cup ( 3 , \infty )  B) domain of  f : ( \infty , 0 ) \cup ( 0 , \infty )  C) domain of  f : ( \infty , 2 ) \cup ( 2,6 ) \cup ( 6 , \infty )  D) domain of  f : ( \infty , - 6 ) \cup ( - 6 , - 2 ) \cup ( - 2 , \infty )  <div style=padding-top: 35px>  Find the domain of the rational function.
f(x)=x2−9x2−8x+12f ( x ) = \frac { x ^ { 2 } - 9 } { x ^ { 2 } - 8 x + 12 }

A) domain of f:(∞,−3)∪(−3,3)∪(3,∞)f : ( \infty , - 3 ) \cup ( - 3,3 ) \cup ( 3 , \infty )
B) domain of f:(∞,0)∪(0,∞)f : ( \infty , 0 ) \cup ( 0 , \infty )
C) domain of f:(∞,2)∪(2,6)∪(6,∞)f : ( \infty , 2 ) \cup ( 2,6 ) \cup ( 6 , \infty )
D) domain of f:(∞,−6)∪(−6,−2)∪(−2,∞)f : ( \infty , - 6 ) \cup ( - 6 , - 2 ) \cup ( - 2 , \infty )
Question
 <strong>  Find the domain of the rational function.  f ( x ) = \frac { x - 3 } { 5 - x } </strong> A) domain of  \mathrm { f } : ( \infty , 5 ) \cup ( 5 , \infty )  B) domain of  f : ( \infty , \infty )  C) domain of  f : ( \infty , - 5 ) \cup ( - 5 , \infty )  D) domain of  f : ( \infty , 0 ) \cup ( 0 , \infty )  <div style=padding-top: 35px>  Find the domain of the rational function.
f(x)=x−35−xf ( x ) = \frac { x - 3 } { 5 - x }

A) domain of f:(∞,5)∪(5,∞)\mathrm { f } : ( \infty , 5 ) \cup ( 5 , \infty )
B) domain of f:(∞,∞)f : ( \infty , \infty )
C) domain of f:(∞,−5)∪(−5,∞)f : ( \infty , - 5 ) \cup ( - 5 , \infty )
D) domain of f:(∞,0)∪(0,∞)f : ( \infty , 0 ) \cup ( 0 , \infty )
Question
Find the function value.
f(x)=x−32x;f(−3)f ( x ) = \frac { x - 3 } { 2 x } ; f ( - 3 )

A) 12\frac { 1 } { 2 }
B) 2
C) 1
D) −3- 3
Question
Solve the problem.
Suppose a cost-benefit model is given by y=5.3x100−xy = \frac { 5.3 x } { 100 - x } , where yy is the cost in thousands of dollars for removing xx percent of a given pollutant. Find the cost for removing 60%60 \% of the pollutant.

A) $79.5\$ 79.5 thousands
B) $9.2\$ 9.2 thousands
C) $8\$ 8 thousands
D) $2\$ 2 thousands
Question
 <strong>  Find the domain of the rational function.  f ( x ) = \frac { x - 3 } { 6 } </strong> A) domain of  \mathrm { f } : ( \infty , \infty )  B) domain of  f : ( \infty , - 3 ) \cup ( - 3 , \infty )  C) domain of  f : ( \infty , 3 ) \cup ( 3 , \infty )  D) domain of  \mathrm { f } : ( \infty , 0 ) \cup ( 0 , \infty )  <div style=padding-top: 35px>  Find the domain of the rational function.
f(x)=x−36f ( x ) = \frac { x - 3 } { 6 }

A) domain of f:(∞,∞)\mathrm { f } : ( \infty , \infty )
B) domain of f:(∞,−3)∪(−3,∞)f : ( \infty , - 3 ) \cup ( - 3 , \infty )
C) domain of f:(∞,3)∪(3,∞)f : ( \infty , 3 ) \cup ( 3 , \infty )
D) domain of f:(∞,0)∪(0,∞)\mathrm { f } : ( \infty , 0 ) \cup ( 0 , \infty )
Question
Solve the problem.
A drug is injected into a patient and the concentration of the drug is monitored. The drug's concentration, C(t)C ( t ) , in milligrams after tt hours is modeled by C(t)=6t3t2+2C ( t ) = \frac { 6 t } { 3 t ^ { 2 } + 2 } . Estimate the drug's concentration after 4 hours. (Round to the nearest hundredth.)

A) 0.48mg0.48 \mathrm { mg }
B) 1.71mg1.71 \mathrm { mg }
C) 0.35mg0.35 \mathrm { mg }
D) 1.58mg1.58 \mathrm { mg }
Question
Solve the problem.
To calculate the drug dosage for a child, a pharmacist may use the formula d(x)=Dxx+10,0≤x≤12\mathrm { d } ( \mathrm { x } ) = \frac { \mathrm { Dx } } { \mathrm { x } + 10 } , 0 \leq \mathrm { x } \leq 12 . The child's age is xx and the adult dosage is D. What is the dosage for an 3 -year old child if the adult dosage is 40 mg? (Round to the nearest tenth.)

A) 3.1mg3.1 \mathrm { mg }
B) 12.0mg12.0 \mathrm { mg }
C) 9.2mg9.2 \mathrm { mg }
D) 40.0mg40.0 \mathrm { mg }
Question
 <strong>  Find the domain of the rational function.  f ( x ) = \frac { x ^ { 2 } - 9 } { x ^ { 2 } + 9 x + 14 } </strong> A) domain of  f : ( \infty , - 3 ) \cup ( - 3,3 ) \cup ( 3 , \infty )  B) domain of  f : ( \infty , 2 ) \cup ( 2,7 ) \cup ( 7 , \infty )  C) domain of  f : ( \infty , - 7 ) \cup ( - 7 , - 2 ) \cup ( - 2 , \infty )  D) domain of  f : ( \infty , 0 ) \cup ( 0 , \infty )  <div style=padding-top: 35px>  Find the domain of the rational function.
f(x)=x2−9x2+9x+14f ( x ) = \frac { x ^ { 2 } - 9 } { x ^ { 2 } + 9 x + 14 }

A) domain of f:(∞,−3)∪(−3,3)∪(3,∞)f : ( \infty , - 3 ) \cup ( - 3,3 ) \cup ( 3 , \infty )
B) domain of f:(∞,2)∪(2,7)∪(7,∞)f : ( \infty , 2 ) \cup ( 2,7 ) \cup ( 7 , \infty )
C) domain of f:(∞,−7)∪(−7,−2)∪(−2,∞)f : ( \infty , - 7 ) \cup ( - 7 , - 2 ) \cup ( - 2 , \infty )
D) domain of f:(∞,0)∪(0,∞)f : ( \infty , 0 ) \cup ( 0 , \infty )
Question
The graph of a rational function, f, is shown in the figure. Use the graph to answer the question. <strong>The graph of a rational function, f, is shown in the figure. Use the graph to answer the question.   Find all horizontal asymptotes of the graph.</strong> A) x = 4, x = -4 B) x = -6 C) y = -6 D) y = 4, y = -4 <div style=padding-top: 35px>
Find all horizontal asymptotes of the graph.

A) x = 4, x = -4
B) x = -6
C) y = -6
D) y = 4, y = -4
Question
Find the function value.
f(x)=x3−2x2−2;f(2)f ( x ) = \frac { x ^ { 3 } - 2 } { x ^ { 2 } - 2 } ; f ( 2 )

A) 32\frac { 3 } { 2 }
B) 4
C) 1
D) 3
Question
Find the function value.
f(x)=x2+4x3−7x;f(−5)f ( x ) = \frac { x ^ { 2 } + 4 } { x ^ { 3 } - 7 x } ; f ( - 5 )

A) −518- \frac { 5 } { 18 }
B) −2990- \frac { 29 } { 90 }
C) −29132- \frac { 29 } { 132 }
D) −29125- \frac { 29 } { 125 }
Question
The graph of a rational function, f, is shown in the figure. Use the graph to answer the question. <strong>The graph of a rational function, f, is shown in the figure. Use the graph to answer the question.   Find f(-2).</strong> A) 1 B) 0 C) -2 D) 2 <div style=padding-top: 35px>
Find f(-2).

A) 1
B) 0
C) -2
D) 2
Question
 <strong>  Find the domain of the rational function.  f ( x ) = \frac { x ^ { 2 } - 81 } { x ^ { 2 } + 7 x - 18 } </strong> A) domain of  f : ( \infty , - 9 ) \cup ( - 9,9 ) \cup ( 9 , \infty )  B) domain of  f : ( \infty , - 9 ) \cup ( - 9,2 ) \cup ( 2 , \infty )  C) domain of  f : ( \infty , - 2 ) \cup ( - 2,9 ) \cup ( 9 , \infty )  D) domain of  f : ( \infty , 0 ) \cup ( 0 , \infty )  <div style=padding-top: 35px>  Find the domain of the rational function.
f(x)=x2−81x2+7x−18f ( x ) = \frac { x ^ { 2 } - 81 } { x ^ { 2 } + 7 x - 18 }

A) domain of f:(∞,−9)∪(−9,9)∪(9,∞)f : ( \infty , - 9 ) \cup ( - 9,9 ) \cup ( 9 , \infty )
B) domain of f:(∞,−9)∪(−9,2)∪(2,∞)f : ( \infty , - 9 ) \cup ( - 9,2 ) \cup ( 2 , \infty )
C) domain of f:(∞,−2)∪(−2,9)∪(9,∞)f : ( \infty , - 2 ) \cup ( - 2,9 ) \cup ( 9 , \infty )
D) domain of f:(∞,0)∪(0,∞)f : ( \infty , 0 ) \cup ( 0 , \infty )
Question
Find the function value.
f(x)=x+614x−13;f(−2)f ( x ) = \frac { x + 6 } { 14 x - 13 } ; f ( - 2 )

A) 441\frac { 4 } { 41 }
B) 471\frac { 4 } { 71 }
C) −415- \frac { 4 } { 15 }
D) −441- \frac { 4 } { 41 }
Question
 <strong>  Find the domain of the rational function.  f ( x ) = \frac { 4 } { x + 4 } </strong> A) domain of  f : ( \infty , - 4 ) \cup ( - 4 , \infty )  B) domain of  f : ( \infty , 0 ) \cup ( 0 , \infty )  C) domain of  \mathrm { f } : ( \infty , 4 ) \cup ( 4 , \infty )  D) domain of  \mathrm { f } : ( \infty , \infty )  <div style=padding-top: 35px>  Find the domain of the rational function.
f(x)=4x+4f ( x ) = \frac { 4 } { x + 4 }

A) domain of f:(∞,−4)∪(−4,∞)f : ( \infty , - 4 ) \cup ( - 4 , \infty )
B) domain of f:(∞,0)∪(0,∞)f : ( \infty , 0 ) \cup ( 0 , \infty )
C) domain of f:(∞,4)∪(4,∞)\mathrm { f } : ( \infty , 4 ) \cup ( 4 , \infty )
D) domain of f:(∞,∞)\mathrm { f } : ( \infty , \infty )
Question
The graph of a rational function, f, is shown in the figure. Use the graph to answer the question. <strong>The graph of a rational function, f, is shown in the figure. Use the graph to answer the question.   Find all vertical asymptotes of the graph.</strong> A) x = 4, x = -4 B) x = -6 C) y = 4, y = -4 D) y = -6 <div style=padding-top: 35px>
Find all vertical asymptotes of the graph.

A) x = 4, x = -4
B) x = -6
C) y = 4, y = -4
D) y = -6
Question
Solve the problem.
A company that produces radios has costs given by the function C(x) = 25x + 25,000, where x is the number of radios manufactured and C(x) is measured in dollars. The average cost to manufacture each radio is given by Cˉ(x)=25x+25,000x\bar { C } ( x ) = \frac { 25 x + 25,000 } { x } . Find Cˉ(50)\bar { C } ( 50 ) . (Round to the nearest dollar, if necessary.)

A) $75\$ 75
B) $525\$ 525
C) $74\$ 74
D) $535\$ 535
Question
Simplify the rational expression. If the rational expression cannot be simplified, so state.
y3−64y−4\frac { y ^ { 3 } - 64 } { y - 4 }

A) y2−16y ^ { 2 } - 16
B) 1y−4\frac { 1 } { y - 4 }
C) y2+4y+16y ^ { 2 } + 4 y + 16
D) Cannot be simplified
Question
Simplify the rational expression. If the rational expression cannot be simplified, so state.
15x2+24x+93x+3\frac { 15 x ^ { 2 } + 24 x + 9 } { 3 x + 3 }

A) 5x+33x\frac { 5 x + 3 } { 3 x }
B) 5x+243x+5\frac { 5 x + 24 } { 3 x + 5 }
C) 5x+35 x + 3
D) Cannot be simplified
Question
 The rational function f(x)=400+5xx models the cost, f(x), in dollars, to produce x bobble-head figures. The graph is show. \text { The rational function } f ( x ) = \frac { 400 + 5 x } { x } \text { models the cost, } f ( x ) \text {, in dollars, to produce } x \text { bobble-head figures. The graph is show. }
According to the cost model, is it possible to remove 100% of the trash from American highways?

A) Yes
B) No
Question
Simplify the rational expression. If the rational expression cannot be simplified, so state.
3x+212x2+23x+10\frac { 3 x + 2 } { 12 x ^ { 2 } + 23 x + 10 }

A) Cannot be simplified
B) 3x+44x+23\frac { 3 x + 4 } { 4 x + 23 }
C) 3x4x+5\frac { 3 x } { 4 x + 5 }
D) 14x+5\frac { 1 } { 4 x + 5 }
Question
The graph of a rational function, f, is shown in the figure. Use the graph to answer the question. <strong>The graph of a rational function, f, is shown in the figure. Use the graph to answer the question.   Is 4 a function value of f?</strong> A) Yes B) No <div style=padding-top: 35px>
Is 4 a function value of f?

A) Yes
B) No
Question
Multiply as indicated.
2x24â‹…8x3\frac { 2 x ^ { 2 } } { 4 } \cdot \frac { 8 } { x ^ { 3 } }

A) 4x2x3\frac { 4 x ^ { 2 } } { x ^ { 3 } }
B) x4\frac { x } { 4 }
C) 16x24x3\frac { 16 x ^ { 2 } } { 4 x ^ { 3 } }
D) 4x\frac { 4 } { x }
Question
The graph of a rational function, f, is shown in the figure. Use the graph to answer the question. <strong>The graph of a rational function, f, is shown in the figure. Use the graph to answer the question.   How does the graph indicate that f(-4) does not exist?</strong> A) There is a horizontal asymptote at x = -4 indicated by a dashed line. B) There is a horizontal asymptote at y = -4 indicated by a dashed line. C) There is a vertical asymptote at y = -4 indicated by a dashed line. D) There is a vertical asymptote at x = -4 indicated by a dashed line. <div style=padding-top: 35px>
How does the graph indicate that f(-4) does not exist?

A) There is a horizontal asymptote at x = -4 indicated by a dashed line.
B) There is a horizontal asymptote at y = -4 indicated by a dashed line.
C) There is a vertical asymptote at y = -4 indicated by a dashed line.
D) There is a vertical asymptote at x = -4 indicated by a dashed line.
Question
The graph of a rational function, f, is shown in the figure. Use the graph to answer the question. <strong>The graph of a rational function, f, is shown in the figure. Use the graph to answer the question.   Is -3 a function value of f?</strong> A) Yes B) No <div style=padding-top: 35px>
Is -3 a function value of f?

A) Yes
B) No
Question
Simplify the rational expression. If the rational expression cannot be simplified, so state.
y2+6y+9y2+9y+18\frac { y ^ { 2 } + 6 y + 9 } { y ^ { 2 } + 9 y + 18 }

A) 6y+19y+2\frac { 6 y + 1 } { 9 y + 2 }
B) 6y+99y+18\frac { 6 y + 9 } { 9 y + 18 }
C) y+3y+6\frac { y + 3 } { y + 6 }
D) Cannot be simplified
Question
Simplify the rational expression. If the rational expression cannot be simplified, so state.
2x2−18x+28x−7\frac { 2 x ^ { 2 } - 18 x + 28 } { x - 7 }

A) Cannot be simplified
B) 1x−7\frac { 1 } { x - 7 }
C) 2x2−222 x ^ { 2 } - 22
D) 2x−42 x - 4
Question
Multiply as indicated.
x2−7x+10x2−21x+110⋅x2−15x+44x2−13x+40\frac { x ^ { 2 } - 7 x + 10 } { x ^ { 2 } - 21 x + 110 } \cdot \frac { x ^ { 2 } - 15 x + 44 } { x ^ { 2 } - 13 x + 40 }

A) (x2−7x+10)(x2−15x+44)(x2−21x+110)(x2−13x+40)\frac { \left( x ^ { 2 } - 7 x + 10 \right) \left( x ^ { 2 } - 15 x + 44 \right) } { \left( x ^ { 2 } - 21 x + 110 \right) \left( x ^ { 2 } - 13 x + 40 \right) }
B) (x−2)(x−8)\frac { ( x - 2 ) } { ( x - 8 ) }
C) (x+2)(x+4)(x+10)(x+8)\frac { ( x + 2 ) ( x + 4 ) } { ( x + 10 ) ( x + 8 ) }
D) (x−2)(x−4)(x−10)(x−8)\frac { ( x - 2 ) ( x - 4 ) } { ( x - 10 ) ( x - 8 ) }
Question
Simplify the rational expression. If the rational expression cannot be simplified, so state.
4x+205x2+31x+30\frac { 4 x + 20 } { 5 x ^ { 2 } + 31 x + 30 }

A) 4x+55x+31\frac { 4 x + 5 } { 5 x + 31 }
B) 4x5x+6\frac { 4 x } { 5 x + 6 }
C) 45x+6\frac { 4 } { 5 x + 6 }
D) Cannot be simplified
Question
Use the equation to solve the problem.  <strong>Use the equation to solve the problem.    \text { Kurberof thures pasetsed }  What is the horizontal asymptote of the graph? What does this mean about the cost to produce x bobble-heads?</strong> A) y = 5; As the number of bobble-head figures produced increases, the cost is approaching $5. B) y = 400; As the number of bobble-head figures produced increases, the cost is approaching $400. C) There is no horizontal asymptote. D) y = 0; As the number of bobble-head figures produced increases, the cost is approaching $0 <div style=padding-top: 35px>
 Kurberof thures pasetsed \text { Kurberof thures pasetsed }
What is the horizontal asymptote of the graph? What does this mean about the cost to produce x bobble-heads?

A) y = 5; As the number of bobble-head figures produced increases, the cost is approaching $5.
B) y = 400; As the number of bobble-head figures produced increases, the cost is approaching $400.
C) There is no horizontal asymptote.
D) y = 0; As the number of bobble-head figures produced increases, the cost is approaching $0
Question
Simplify the rational expression. If the rational expression cannot be simplified, so state.
y2+5y−24y2+3y−40\frac { y ^ { 2 } + 5 y - 24 } { y ^ { 2 } + 3 y - 40 }

A) 5y−33y−5\frac { 5 y - 3 } { 3 y - 5 }
B) Cannot be simplified
C) 5y−243y−40\frac { 5 y - 24 } { 3 y - 40 }
D) y−3y−5\frac { y - 3 } { y - 5 }
Question
 The rational function f(x)=120x100−x models the cost, f(x), in millions of dollars, to remove x% of the trash from American \text { The rational function } f ( x ) = \frac { 120 x } { 100 - x } \text { models the cost, } f ( x ) \text {, in millions of dollars, to remove } x \% \text { of the trash from American } highways. The graph is shown. Use the equation to solve the problem.  <strong> \text { The rational function } f ( x ) = \frac { 120 x } { 100 - x } \text { models the cost, } f ( x ) \text {, in millions of dollars, to remove } x \% \text { of the trash from American }  highways. The graph is shown. Use the equation to solve the problem.    What value of x must be excluded from the rational function's domain?</strong> A) 10 B) 100 C) 1000 D) 1 <div style=padding-top: 35px>

What value of x must be excluded from the rational function's domain?

A) 10
B) 100
C) 1000
D) 1
Question
Use the equation to solve the problem.  <strong>Use the equation to solve the problem.    \text { Kurberof thures pasetsed }  Find and interpret f(40).</strong> A) 15; It costs $15 to produce 40 bobble-head figures. B) 405; It costs $405 to produce 40 bobble-head figures. C) 5; It costs $5 to produce 40 bobble-head figures. D) 600; It costs $600 to produce 40 bobble-head figures. <div style=padding-top: 35px>
 Kurberof thures pasetsed \text { Kurberof thures pasetsed }
Find and interpret f(40).

A) 15; It costs $15 to produce 40 bobble-head figures.
B) 405; It costs $405 to produce 40 bobble-head figures.
C) 5; It costs $5 to produce 40 bobble-head figures.
D) 600; It costs $600 to produce 40 bobble-head figures.
Question
Multiply as indicated.
5y10y+5â‹…4y+27\frac { 5 y } { 10 y + 5 } \cdot \frac { 4 y + 2 } { 7 }

A) y7\frac { y } { 7 }
B) 2y7\frac { 2 y } { 7 }
C) 2y35\frac { 2 y } { 35 }
D) 27\frac { 2 } { 7 }
Question
The graph of a rational function, f, is shown in the figure. Use the graph to answer the question. <strong>The graph of a rational function, f, is shown in the figure. Use the graph to answer the question.   How can you tell that this is not the graph of a polynomial function?</strong> A) The graph is not continuous. B) The value of f(1) is not equal to 1. C) The graph is continuous. D) The graph is not a parabola. <div style=padding-top: 35px>
How can you tell that this is not the graph of a polynomial function?

A) The graph is not continuous.
B) The value of f(1) is not equal to 1.
C) The graph is continuous.
D) The graph is not a parabola.
Question
 The rational function f(x)=120x100−x models the cost, f(x), in millions of dollars, to remove x% of the trash from American \text { The rational function } f ( x ) = \frac { 120 x } { 100 - x } \text { models the cost, } f ( x ) \text {, in millions of dollars, to remove } x \% \text { of the trash from American } highways. The graph is shown. Use the equation to solve the problem.  <strong> \text { The rational function } f ( x ) = \frac { 120 x } { 100 - x } \text { models the cost, } f ( x ) \text {, in millions of dollars, to remove } x \% \text { of the trash from American }  highways. The graph is shown. Use the equation to solve the problem.    Find and interpret f(80).</strong> A) 48; The cost to remove 80% of the trash is $48 million. B) 48; The cost to remove 20% of the trash is $48 million. C) 48; The cost to remove 80% of the trash is $48 . D) 20; The cost to remove 80% of the trash is $20 million. <div style=padding-top: 35px>

Find and interpret f(80).

A) 48; The cost to remove 80% of the trash is $48 million.
B) 48; The cost to remove 20% of the trash is $48 million.
C) 48; The cost to remove 80% of the trash is $48 .
D) 20; The cost to remove 80% of the trash is $20 million.
Question
Simplify the rational expression. If the rational expression cannot be simplified, so state.
7x2+21x311x+33x2\frac { 7 x ^ { 2 } + 21 x ^ { 3 } } { 11 x + 33 x ^ { 2 } }

A) 711\frac { 7 } { 11 }
B) 7+21x311x+33\frac { 7 + 21 x ^ { 3 } } { 11 x + 33 }
C) 7x11\frac { 7 x } { 11 }
D) Cannot be simplified
Question
Multiply as indicated.
x2+7x+12x2+9x+20⋅x2+5xx2−3x−18\frac { x ^ { 2 } + 7 x + 12 } { x ^ { 2 } + 9 x + 20 } \cdot \frac { x ^ { 2 } + 5 x } { x ^ { 2 } - 3 x - 18 }

A) xx2+9x+20\frac { x } { x ^ { 2 } + 9 x + 20 }
B) xx−6\frac { x } { x - 6 }
C) x2+5xx−6\frac { x ^ { 2 } + 5 x } { x - 6 }
D) 1x−6\frac { 1 } { x - 6 }
Question
Divide as indicated.
x2−7x+xy−7y9x2−9y2÷x−710x−10y\frac { x ^ { 2 } - 7 x + x y - 7 y } { 9 x ^ { 2 } - 9 y ^ { 2 } } \div \frac { x - 7 } { 10 x - 10 y }

A) 1
B) 10(x2−7x+xy−7y)9(x+y)(x−7)\frac { 10 \left( x ^ { 2 } - 7 x + x y - 7 y \right) } { 9 ( x + y ) ( x - 7 ) }
C) 109\frac { 10 } { 9 }
D) (x−7)290(x−y)2\frac { ( x - 7 ) ^ { 2 } } { 90 ( x - y ) ^ { 2 } }
Question
Divide as indicated.
x2−17x+6611−x÷(x+6)\frac { x ^ { 2 } - 17 x + 66 } { 11 - x } \div ( x + 6 )

A) −x−6x+6- \frac { x - 6 } { x + 6 }
B) −1- 1
C) −(x−6)(x+6)- ( x - 6 ) ( x + 6 )
D) −x+6x−6- \frac { x + 6 } { x - 6 }
Question
Multiply as indicated.
x3+1x3−x2+x⋅5x−50x−50\frac { x ^ { 3 } + 1 } { x ^ { 3 } - x ^ { 2 } + x } \cdot \frac { 5 x } { - 50 x - 50 }

A) −x2+110- \frac { x ^ { 2 } + 1 } { 10 }
B)=x3+110(x+1)B ) = \frac { x ^ { 3 } + 1 } { 10 ( x + 1 ) }
C) −110- \frac { 1 } { 10 }
D) x+110(−x−1)\frac { x + 1 } { 10 ( - x - 1 ) }
Question
Divide as indicated.
x2−20x+1006x−60÷3x−3018\frac { x ^ { 2 } - 20 x + 100 } { 6 x - 60 } \div \frac { 3 x - 30 } { 18 }

A) x2−20x+100(x−10)2\frac { x ^ { 2 } - 20 x + 100 } { ( x - 10 ) ^ { 2 } }
B) 1
C) 18
D) (x−10)236\frac { ( x - 10 ) ^ { 2 } } { 36 }
Question
Divide as indicated.
x2+16x+64x2+17x+72÷x2+8xx2+3x−54\frac { x ^ { 2 } + 16 x + 64 } { x ^ { 2 } + 17 x + 72 } \div \frac { x ^ { 2 } + 8 x } { x ^ { 2 } + 3 x - 54 }

A) xx2+17x+72\frac { x } { x ^ { 2 } + 17 x + 72 }
B) x−6x2+9x\frac { x - 6 } { x ^ { 2 } + 9 x }
C) x−6x\frac { x - 6 } { x }
D) x−6x - 6
Question
Add. Simplify the result, if possible.
xx+5+−8x+5\frac { x } { x + 5 } + \frac { - 8 } { x + 5 }

A) −85- \frac { 8 } { 5 }
B) −8xx2+10x+25\frac { - 8 x } { x ^ { 2 } + 10 x + 25 }
C) x−8x+5\frac { x - 8 } { x + 5 }
D) −7xx+5\frac { - 7 x } { x + 5 }
Question
Add. Simplify the result, if possible.
78x2+58x2\frac { 7 } { 8 x ^ { 2 } } + \frac { 5 } { 8 x ^ { 2 } }

A) 3
B) 34x4\frac { 3 } { 4 x ^ { 4 } }
C) 32x2\frac { 3 } { 2 x ^ { 2 } }
D) 23x2\frac { 2 } { 3 x ^ { 2 } }
Question
Divide as indicated.
(y−5)23÷3y−159\frac { ( y - 5 ) ^ { 2 } } { 3 } \div \frac { 3 y - 15 } { 9 }

A) y−5y - 5
B) 3(y−5)23y−15\frac { 3 ( y - 5 ) ^ { 2 } } { 3 y - 15 }
C) (y−5)39\frac { ( y - 5 ) ^ { 3 } } { 9 }
D) 1y−5\frac { 1 } { y - 5 }
Question
Multiply as indicated.
2x33â‹…9x2\frac { 2 x ^ { 3 } } { 3 } \cdot \frac { 9 } { x ^ { 2 } }

A) 6x\frac { 6 } { x }
B) 6x6 x
C) x6\frac { x } { 6 }
D) 6x2x3\frac { 6 x ^ { 2 } } { x ^ { 3 } }
Question
Multiply as indicated.
6x−6x⋅9x28x−8\frac { 6 x - 6 } { x } \cdot \frac { 9 x ^ { 2 } } { 8 x - 8 }

A) 48x2+96x+489x3\frac { 48 x ^ { 2 } + 96 x + 48 } { 9 x ^ { 3 } }
B) 27x4\frac { 27 x } { 4 }
C) 54x3−54x28x2−8x\frac { 54 x ^ { 3 } - 54 x ^ { 2 } } { 8 x ^ { 2 } - 8 x }
D) 427x\frac { 4 } { 27 x }
Question
Add. Simplify the result, if possible.
49x2+29x2\frac { 4 } { 9 x ^ { 2 } } + \frac { 2 } { 9 x ^ { 2 } }

A) 23x4\frac { 2 } { 3 x ^ { 4 } }
B) 2
C) 23x2\frac { 2 } { 3 x ^ { 2 } }
D) 32x2\frac { 3 } { 2 x ^ { 2 } }
Question
Divide as indicated.
3x−3x÷4x−42x2\frac { 3 x - 3 } { x } \div \frac { 4 x - 4 } { 2 x ^ { 2 } }

A) 6x3−6x24x2−4x\frac { 6 x ^ { 3 } - 6 x ^ { 2 } } { 4 x ^ { 2 } - 4 x }
B) 3x2\frac { 3 x } { 2 }
C) 23x\frac { 2 } { 3 x }
D) 12x2+24x+122x3\frac { 12 x ^ { 2 } + 24 x + 12 } { 2 x ^ { 3 } }
Question
Divide as indicated.
4x25÷x330\frac { 4 x ^ { 2 } } { 5 } \div \frac { x ^ { 3 } } { 30 }

A) 24x2x3\frac { 24 x ^ { 2 } } { x ^ { 3 } }
B) x24\frac { x } { 24 }
C) 24x\frac { 24 } { x }
D) 120x25x3\frac { 120 x ^ { 2 } } { 5 x ^ { 3 } }
Question
Multiply as indicated.
x2+6x+8x2+8x+12â‹…x2+6xx2+11x+28\frac { x ^ { 2 } + 6 x + 8 } { x ^ { 2 } + 8 x + 12 } \cdot \frac { x ^ { 2 } + 6 x } { x ^ { 2 } + 11 x + 28 }

A) xx+7\frac { x } { x + 7 }
B) x2+6xx+7\frac { x ^ { 2 } + 6 x } { x + 7 }
C) xx2+8x+12\frac { x } { x ^ { 2 } + 8 x + 12 }
D) 1x+7\frac { 1 } { x + 7 }
Question
Divide as indicated.
21x−2111÷7x−766\frac { 21 x - 21 } { 11 } \div \frac { 7 x - 7 } { 66 }

A) 147(x−1)2726\frac { 147 ( x - 1 ) ^ { 2 } } { 726 }
B) 18
C) 6(21x−21)7x−7\frac { 6 ( 21 x - 21 ) } { 7 x - 7 }
D) 118\frac { 1 } { 18 }
Question
Divide as indicated.
x2+15x+54x2+16x+63÷x2+6xx2+17x+70\frac { x ^ { 2 } + 15 x + 54 } { x ^ { 2 } + 16 x + 63 } \div \frac { x ^ { 2 } + 6 x } { x ^ { 2 } + 17 x + 70 }

A) x+10x\frac { x + 10 } { x }
B) x+10x2+7x\frac { x + 10 } { x ^ { 2 } + 7 x }
C) x+10x + 10
D) xx2+16x+63\frac { x } { x ^ { 2 } + 16 x + 63 }
Question
Multiply as indicated.
2x4â‹…x2y6x3y22 x ^ { 4 } \cdot \frac { x ^ { 2 } y } { 6 x ^ { 3 } y ^ { 2 } }

A) x33y\frac { x ^ { 3 } } { 3 y }
B) x53y\frac { x ^ { 5 } } { 3 y }
C) 16xy\frac { 1 } { 6 x y }
D) x6y3x3y2\frac { x ^ { 6 } y } { 3 x ^ { 3 } y ^ { 2 } }
Question
Multiply as indicated.
x2+11x+28x2+13x+42â‹…x2+11x+30x2+9x+20\frac { x ^ { 2 } + 11 x + 28 } { x ^ { 2 } + 13 x + 42 } \cdot \frac { x ^ { 2 } + 11 x + 30 } { x ^ { 2 } + 9 x + 20 }

A) 1x+5\frac { 1 } { x + 5 }
B) x+4x+6\frac { x + 4 } { x + 6 }
C) x+6x+5\frac { x + 6 } { x + 5 }
D) 1
Question
Add. Simplify the result, if possible.
413x+613x\frac { 4 } { 13 x } + \frac { 6 } { 13 x }
B) 1
C) 1026x\frac { 10 } { 26 x }
D) 1013x\frac { 10 } { 13 x }

A) 13x10\frac { 13 x } { 10 }
26x26 x
Question
Subtract. Simplify the result, if possible.
1922x−622x\frac { 19 } { 22 x } - \frac { 6 } { 22 x }

A) 1344x\frac { 13 } { 44 x }
B) 13
C) 22x13\frac { 22 x } { 13 }
D) 1322x\frac { 13 } { 22 x }
Question
Subtract. Simplify the result, if possible.
158x2−128x2\frac { 15 } { 8 x ^ { 2 } } - \frac { 12 } { 8 x ^ { 2 } }

A) 3
B) 38x2\frac { 3 } { 8 x ^ { 2 } }
C) 38x4\frac { 3 } { 8 x ^ { 4 } }
D) 83x2\frac { 8 } { 3 x ^ { 2 } }
Question
Perform the indicated operations. Simplify the result, if possible.
4x+8x−2\frac { 4 } { x } + \frac { 8 } { x - 2 }

A) 12x−8x(x−2)\frac { 12 x - 8 } { x ( x - 2 ) }
B) 12x−8x(2−x)\frac { 12 x - 8 } { x ( 2 - x ) }
C) 8x−12x(2−x)\frac { 8 x - 12 } { x ( 2 - x ) }
D) 8x−12x(x−2)\frac { 8 x - 12 } { x ( x - 2 ) }
Question
Find the least common denominator of the rational expressions.
140x,15x2\frac { 1 } { 40 x } , \frac { 1 } { 5 x ^ { 2 } } , and 18x3\frac { 1 } { 8 x ^ { 3 } }

A) 40x240 x ^ { 2 }
B) 40x540 x ^ { 5 }
C) 8x38 x ^ { 3 }
D) 40x340 x ^ { 3 }
Question
Perform the indicated operations. Simplify the result, if possible.
x+7x2−3x−10+3x+8x2−11x+30\frac { x + 7 } { x ^ { 2 } - 3 x - 10 } + \frac { 3 x + 8 } { x ^ { 2 } - 11 x + 30 }

A) 4x+154 x + 15
B) 4x2+15x−26(x−5)(x+2)(x−6)\frac { 4 x ^ { 2 } + 15 x - 26 } { ( x - 5 ) ( x + 2 ) ( x - 6 ) }
C) 4x2+15x−26(x+5)(x−2)(x+6)\frac { 4 x ^ { 2 } + 15 x - 26 } { ( x + 5 ) ( x - 2 ) ( x + 6 ) }
D) 4x+152x2−14x+20\frac { 4 x + 15 } { 2 x ^ { 2 } - 14 x + 20 }
Question
Subtract. Simplify the result, if possible.
2x2x−1−2xx−1\frac { 2 x ^ { 2 } } { x - 1 } - \frac { 2 x } { x - 1 }

A) 2x2 x
B) 2xx−1\frac { 2 x } { x - 1 }
C) 0
D) 2x(x+1)x−1\frac { 2 x ( x + 1 ) } { x - 1 }
Question
Find the least common denominator of the rational expressions.
15x2+2x−15\frac { 15 } { x ^ { 2 } + 2 x - 15 } and 4x−20−4x−20\frac { 4 x - 20 } { - 4 x - 20 }

A) −4(x−3)(x−5)- 4 ( x - 3 ) ( x - 5 )
B) −4(x−3)(x+5)- 4 ( x - 3 ) ( x + 5 )
C) −4(x+3)(x−5)- 4 ( x + 3 ) ( x - 5 )
D) −4(x+3)(x+5)- 4 ( x + 3 ) ( x + 5 )
Question
Find the least common denominator of the rational expressions.
5y2−4,2yy2+4y+4\frac { 5 } { y ^ { 2 } - 4 } , \frac { 2 y } { y ^ { 2 } + 4 y + 4 } , and 5y2y2+5y+2\frac { 5 y } { 2 y ^ { 2 } + 5 y + 2 }

A) (y−2)(y+2)(2y+1)( y - 2 ) ( y + 2 ) ( 2 y + 1 )
B) (y−2)(y−2)(y+2)(2y+1)( y - 2 ) ( y - 2 ) ( y + 2 ) ( 2 y + 1 )
C) (y−2)(y+2)(y+2)(2y+1)( y - 2 ) ( y + 2 ) ( y + 2 ) ( 2 y + 1 )
D) (y−2)(y+2)( y - 2 ) ( y + 2 )
Question
Find the least common denominator of the rational expressions.
x+5x2−5x−6\frac { x + 5 } { x ^ { 2 } - 5 x - 6 } and x+9x2−9x+18\frac { x + 9 } { x ^ { 2 } - 9 x + 18 }

A) (x+1)(x−6)( x + 1 ) ( x - 6 )
B) (x−6)(x−3)( x - 6 ) ( x - 3 )
C) (x−1)(x+6)(x−3)( x - 1 ) ( x + 6 ) ( x - 3 )
D) (x+1)(x−6)(x−3)( x + 1 ) ( x - 6 ) ( x - 3 )
Question
Perform the indicated operations. Simplify the result, if possible.
3y2−3y+2+7y2−1\frac { 3 } { y ^ { 2 } - 3 y + 2 } + \frac { 7 } { y ^ { 2 } - 1 }

A) 42y−11(y−1)(y+1)(y−2)\frac { 42 y - 11 } { ( y - 1 ) ( y + 1 ) ( y - 2 ) }
B) 10y−11(y−1)(y+1)(y−2)\frac { 10 y - 11 } { ( y - 1 ) ( y + 1 ) ( y - 2 ) }
C) 11y−10(y−1)(y+1)(y−2)\frac { 11 y - 10 } { ( y - 1 ) ( y + 1 ) ( y - 2 ) }
D) 10y−11(y−1)(y−2)\frac { 10 y - 11 } { ( y - 1 ) ( y - 2 ) }
Question
Find the least common denominator of the rational expressions.
1−3x\frac { 1 } { - 3 x } and 2x2+7x\frac { 2 } { x ^ { 2 } + 7 x }

A) −3x(x+7)- 3 x ( x + 7 )
B) −3x+7- 3 x + 7
C) −3x2+2- 3 x ^ { 2 } + 2
D) −3x2+7- 3 x ^ { 2 } + 7
Question
Subtract. Simplify the result, if possible.
xx2−16−7x2+5x+4\frac { x } { x ^ { 2 } - 16 } - \frac { 7 } { x ^ { 2 } + 5 x + 4 }

A) x2−6x+28(x−4)(x+4)\frac { x ^ { 2 } - 6 x + 28 } { ( x - 4 ) ( x + 4 ) }
B) x2−6(x−4)(x+4)(x+1)\frac { x ^ { 2 } - 6 } { ( x - 4 ) ( x + 4 ) ( x + 1 ) }
C) x2+6x+28(x−4)(x+4)(x+1)\frac { x ^ { 2 } + 6 x + 28 } { ( x - 4 ) ( x + 4 ) ( x + 1 ) }
D) x2−6x+28(x−4)(x+4)(x+1)\frac { x ^ { 2 } - 6 x + 28 } { ( x - 4 ) ( x + 4 ) ( x + 1 ) }
Question
Find the least common denominator of the rational expressions.
x−1x2+9x+8\frac { x - 1 } { x ^ { 2 } + 9 x + 8 } and 1x2+x\frac { 1 } { x ^ { 2 } + x }

A) x+1x + 1
B) (x+1)2( x + 1 ) ^ { 2 }
C) x(x+1)2x ( x + 1 ) ^ { 2 }
D) x(x+8)(x+1)x ( x + 8 ) ( x + 1 )
Question
Perform the indicated operations. Simplify the result, if possible.
xx2−16−4x2+5x+4\frac { x } { x ^ { 2 } - 16 } - \frac { 4 } { x ^ { 2 } + 5 x + 4 }

A) x2−3(x−4)(x+4)(x+1)\frac { x ^ { 2 } - 3 } { ( x - 4 ) ( x + 4 ) ( x + 1 ) }
B) x2−3x+16(x−4)(x+4)(x+1)\frac { x ^ { 2 } - 3 x + 16 } { ( x - 4 ) ( x + 4 ) ( x + 1 ) }
C) x2−3x+16(x−4)(x+4)\frac { x ^ { 2 } - 3 x + 16 } { ( x - 4 ) ( x + 4 ) }
D) x2+3x+16(x−4)(x+4)(x+1)\frac { x ^ { 2 } + 3 x + 16 } { ( x - 4 ) ( x + 4 ) ( x + 1 ) }
Question
Find the least common denominator of the rational expressions.
3x\frac { 3 } { x } and 3x+6\frac { 3 } { x + 6 }

A) −6- 6
B) 6
C) x(x+6)x ( x + 6 )
D) x+6x + 6
Question
Add. Simplify the result, if possible.
3x+5x2+7x+10+−3−2xx2+7x+10\frac { 3 x + 5 } { x ^ { 2 } + 7 x + 10 } + \frac { - 3 - 2 x } { x ^ { 2 } + 7 x + 10 }

A) 1x2+7x+10\frac { 1 } { x ^ { 2 } + 7 x + 10 }
B) 1x+5\frac { 1 } { x + 5 }
C) x−2x2+7x+10\frac { x - 2 } { x ^ { 2 } + 7 x + 10 }
D) 1x+2\frac { 1 } { x + 2 }
Question
Find the least common denominator of the rational expressions.
x+5x2−5x\frac { x + 5 } { x ^ { 2 } - 5 x } and −10x2−7x+10\frac { - 10 } { x ^ { 2 } - 7 x + 10 }

A) x(x−5)(x−2)x ( x - 5 ) ( x - 2 )
B) (x−3)2( x - 3 ) ^ { 2 }
C) x(x−3)(x−2)x ( x - 3 ) ( x - 2 )
D) x(x−3)2x ( x - 3 ) ^ { 2 }
Question
Perform the indicated operations. Simplify the result, if possible.
3x+3x−4\frac { 3 } { x } + \frac { 3 } { x - 4 }

A) 12x−6x(4−x)\frac { 12 x - 6 } { x ( 4 - x ) }
B) 6x−12x(x−4)\frac { 6 x - 12 } { x ( x - 4 ) }
C) 6x−12x(4−x)\frac { 6 x - 12 } { x ( 4 - x ) }
D) 12x−6x(x−4)\frac { 12 x - 6 } { x ( x - 4 ) }
Question
Perform the indicated operations. Simplify the result, if possible.
2x2−8x\frac { 2 } { x ^ { 2 } } - \frac { 8 } { x }

A) 8x−2x\frac { 8 x - 2 } { x }
B) 2−8xx2\frac { 2 - 8 x } { x ^ { 2 } }
C) 2+8xx2\frac { 2 + 8 x } { x ^ { 2 } }
D) 2x+8x2\frac { 2 x + 8 } { x ^ { 2 } }
Question
Add. Simplify the result, if possible.
x2−5xx−2+6x−2\frac { x ^ { 2 } - 5 x } { x - 2 } + \frac { 6 } { x - 2 }

A) x+3x + 3
B) x2−5x+62\frac { x ^ { 2 } - 5 x + 6 } { 2 }
C) x−3x - 3
D) x−2x - 2
Unlock Deck
Sign up to unlock the cards in this deck!
Unlock Deck
Unlock Deck
1/102
auto play flashcards
Play
simple tutorial
Full screen (f)
exit full mode
Deck 6: Rational Expressions, Functions, and Equations
1
Find the function value.
f(x)=x−47x+12;f(−2)f ( x ) = \frac { x - 4 } { 7 x + 12 } ; f ( - 2 )

A) 0
B) 1
C) −3- 3
D) 3
D
2
The graph of a rational function, f, is shown in the figure. Use the graph to answer the question. <strong>The graph of a rational function, f, is shown in the figure. Use the graph to answer the question.   Find f(8).</strong> A) 3 B) 8 C) -10.8 D) -8
Find f(8).

A) 3
B) 8
C) -10.8
D) -8
D
3
 <strong>  Find the domain of the rational function.  f ( x ) = \frac { 2 } { x - 2 } </strong> A) domain of  f : ( \infty , \infty )  B) domain of  f : ( \infty , 0 ) \cup ( 0 , \infty )  C) domain of  f : ( \infty , - 2 ) \cup ( - 2 , \infty )  D) domain of  f : ( \infty , 2 ) \cup ( 2 , \infty )   Find the domain of the rational function.
f(x)=2x−2f ( x ) = \frac { 2 } { x - 2 }

A) domain of f:(∞,∞)f : ( \infty , \infty )
B) domain of f:(∞,0)∪(0,∞)f : ( \infty , 0 ) \cup ( 0 , \infty )
C) domain of f:(∞,−2)∪(−2,∞)f : ( \infty , - 2 ) \cup ( - 2 , \infty )
D) domain of f:(∞,2)∪(2,∞)f : ( \infty , 2 ) \cup ( 2 , \infty )
D
4
 <strong>  Find the domain of the rational function.  f ( x ) = \frac { x ^ { 2 } - 9 } { x ^ { 2 } - 8 x + 12 } </strong> A) domain of  f : ( \infty , - 3 ) \cup ( - 3,3 ) \cup ( 3 , \infty )  B) domain of  f : ( \infty , 0 ) \cup ( 0 , \infty )  C) domain of  f : ( \infty , 2 ) \cup ( 2,6 ) \cup ( 6 , \infty )  D) domain of  f : ( \infty , - 6 ) \cup ( - 6 , - 2 ) \cup ( - 2 , \infty )   Find the domain of the rational function.
f(x)=x2−9x2−8x+12f ( x ) = \frac { x ^ { 2 } - 9 } { x ^ { 2 } - 8 x + 12 }

A) domain of f:(∞,−3)∪(−3,3)∪(3,∞)f : ( \infty , - 3 ) \cup ( - 3,3 ) \cup ( 3 , \infty )
B) domain of f:(∞,0)∪(0,∞)f : ( \infty , 0 ) \cup ( 0 , \infty )
C) domain of f:(∞,2)∪(2,6)∪(6,∞)f : ( \infty , 2 ) \cup ( 2,6 ) \cup ( 6 , \infty )
D) domain of f:(∞,−6)∪(−6,−2)∪(−2,∞)f : ( \infty , - 6 ) \cup ( - 6 , - 2 ) \cup ( - 2 , \infty )
Unlock Deck
Unlock for access to all 102 flashcards in this deck.
Unlock Deck
k this deck
5
 <strong>  Find the domain of the rational function.  f ( x ) = \frac { x - 3 } { 5 - x } </strong> A) domain of  \mathrm { f } : ( \infty , 5 ) \cup ( 5 , \infty )  B) domain of  f : ( \infty , \infty )  C) domain of  f : ( \infty , - 5 ) \cup ( - 5 , \infty )  D) domain of  f : ( \infty , 0 ) \cup ( 0 , \infty )   Find the domain of the rational function.
f(x)=x−35−xf ( x ) = \frac { x - 3 } { 5 - x }

A) domain of f:(∞,5)∪(5,∞)\mathrm { f } : ( \infty , 5 ) \cup ( 5 , \infty )
B) domain of f:(∞,∞)f : ( \infty , \infty )
C) domain of f:(∞,−5)∪(−5,∞)f : ( \infty , - 5 ) \cup ( - 5 , \infty )
D) domain of f:(∞,0)∪(0,∞)f : ( \infty , 0 ) \cup ( 0 , \infty )
Unlock Deck
Unlock for access to all 102 flashcards in this deck.
Unlock Deck
k this deck
6
Find the function value.
f(x)=x−32x;f(−3)f ( x ) = \frac { x - 3 } { 2 x } ; f ( - 3 )

A) 12\frac { 1 } { 2 }
B) 2
C) 1
D) −3- 3
Unlock Deck
Unlock for access to all 102 flashcards in this deck.
Unlock Deck
k this deck
7
Solve the problem.
Suppose a cost-benefit model is given by y=5.3x100−xy = \frac { 5.3 x } { 100 - x } , where yy is the cost in thousands of dollars for removing xx percent of a given pollutant. Find the cost for removing 60%60 \% of the pollutant.

A) $79.5\$ 79.5 thousands
B) $9.2\$ 9.2 thousands
C) $8\$ 8 thousands
D) $2\$ 2 thousands
Unlock Deck
Unlock for access to all 102 flashcards in this deck.
Unlock Deck
k this deck
8
 <strong>  Find the domain of the rational function.  f ( x ) = \frac { x - 3 } { 6 } </strong> A) domain of  \mathrm { f } : ( \infty , \infty )  B) domain of  f : ( \infty , - 3 ) \cup ( - 3 , \infty )  C) domain of  f : ( \infty , 3 ) \cup ( 3 , \infty )  D) domain of  \mathrm { f } : ( \infty , 0 ) \cup ( 0 , \infty )   Find the domain of the rational function.
f(x)=x−36f ( x ) = \frac { x - 3 } { 6 }

A) domain of f:(∞,∞)\mathrm { f } : ( \infty , \infty )
B) domain of f:(∞,−3)∪(−3,∞)f : ( \infty , - 3 ) \cup ( - 3 , \infty )
C) domain of f:(∞,3)∪(3,∞)f : ( \infty , 3 ) \cup ( 3 , \infty )
D) domain of f:(∞,0)∪(0,∞)\mathrm { f } : ( \infty , 0 ) \cup ( 0 , \infty )
Unlock Deck
Unlock for access to all 102 flashcards in this deck.
Unlock Deck
k this deck
9
Solve the problem.
A drug is injected into a patient and the concentration of the drug is monitored. The drug's concentration, C(t)C ( t ) , in milligrams after tt hours is modeled by C(t)=6t3t2+2C ( t ) = \frac { 6 t } { 3 t ^ { 2 } + 2 } . Estimate the drug's concentration after 4 hours. (Round to the nearest hundredth.)

A) 0.48mg0.48 \mathrm { mg }
B) 1.71mg1.71 \mathrm { mg }
C) 0.35mg0.35 \mathrm { mg }
D) 1.58mg1.58 \mathrm { mg }
Unlock Deck
Unlock for access to all 102 flashcards in this deck.
Unlock Deck
k this deck
10
Solve the problem.
To calculate the drug dosage for a child, a pharmacist may use the formula d(x)=Dxx+10,0≤x≤12\mathrm { d } ( \mathrm { x } ) = \frac { \mathrm { Dx } } { \mathrm { x } + 10 } , 0 \leq \mathrm { x } \leq 12 . The child's age is xx and the adult dosage is D. What is the dosage for an 3 -year old child if the adult dosage is 40 mg? (Round to the nearest tenth.)

A) 3.1mg3.1 \mathrm { mg }
B) 12.0mg12.0 \mathrm { mg }
C) 9.2mg9.2 \mathrm { mg }
D) 40.0mg40.0 \mathrm { mg }
Unlock Deck
Unlock for access to all 102 flashcards in this deck.
Unlock Deck
k this deck
11
 <strong>  Find the domain of the rational function.  f ( x ) = \frac { x ^ { 2 } - 9 } { x ^ { 2 } + 9 x + 14 } </strong> A) domain of  f : ( \infty , - 3 ) \cup ( - 3,3 ) \cup ( 3 , \infty )  B) domain of  f : ( \infty , 2 ) \cup ( 2,7 ) \cup ( 7 , \infty )  C) domain of  f : ( \infty , - 7 ) \cup ( - 7 , - 2 ) \cup ( - 2 , \infty )  D) domain of  f : ( \infty , 0 ) \cup ( 0 , \infty )   Find the domain of the rational function.
f(x)=x2−9x2+9x+14f ( x ) = \frac { x ^ { 2 } - 9 } { x ^ { 2 } + 9 x + 14 }

A) domain of f:(∞,−3)∪(−3,3)∪(3,∞)f : ( \infty , - 3 ) \cup ( - 3,3 ) \cup ( 3 , \infty )
B) domain of f:(∞,2)∪(2,7)∪(7,∞)f : ( \infty , 2 ) \cup ( 2,7 ) \cup ( 7 , \infty )
C) domain of f:(∞,−7)∪(−7,−2)∪(−2,∞)f : ( \infty , - 7 ) \cup ( - 7 , - 2 ) \cup ( - 2 , \infty )
D) domain of f:(∞,0)∪(0,∞)f : ( \infty , 0 ) \cup ( 0 , \infty )
Unlock Deck
Unlock for access to all 102 flashcards in this deck.
Unlock Deck
k this deck
12
The graph of a rational function, f, is shown in the figure. Use the graph to answer the question. <strong>The graph of a rational function, f, is shown in the figure. Use the graph to answer the question.   Find all horizontal asymptotes of the graph.</strong> A) x = 4, x = -4 B) x = -6 C) y = -6 D) y = 4, y = -4
Find all horizontal asymptotes of the graph.

A) x = 4, x = -4
B) x = -6
C) y = -6
D) y = 4, y = -4
Unlock Deck
Unlock for access to all 102 flashcards in this deck.
Unlock Deck
k this deck
13
Find the function value.
f(x)=x3−2x2−2;f(2)f ( x ) = \frac { x ^ { 3 } - 2 } { x ^ { 2 } - 2 } ; f ( 2 )

A) 32\frac { 3 } { 2 }
B) 4
C) 1
D) 3
Unlock Deck
Unlock for access to all 102 flashcards in this deck.
Unlock Deck
k this deck
14
Find the function value.
f(x)=x2+4x3−7x;f(−5)f ( x ) = \frac { x ^ { 2 } + 4 } { x ^ { 3 } - 7 x } ; f ( - 5 )

A) −518- \frac { 5 } { 18 }
B) −2990- \frac { 29 } { 90 }
C) −29132- \frac { 29 } { 132 }
D) −29125- \frac { 29 } { 125 }
Unlock Deck
Unlock for access to all 102 flashcards in this deck.
Unlock Deck
k this deck
15
The graph of a rational function, f, is shown in the figure. Use the graph to answer the question. <strong>The graph of a rational function, f, is shown in the figure. Use the graph to answer the question.   Find f(-2).</strong> A) 1 B) 0 C) -2 D) 2
Find f(-2).

A) 1
B) 0
C) -2
D) 2
Unlock Deck
Unlock for access to all 102 flashcards in this deck.
Unlock Deck
k this deck
16
 <strong>  Find the domain of the rational function.  f ( x ) = \frac { x ^ { 2 } - 81 } { x ^ { 2 } + 7 x - 18 } </strong> A) domain of  f : ( \infty , - 9 ) \cup ( - 9,9 ) \cup ( 9 , \infty )  B) domain of  f : ( \infty , - 9 ) \cup ( - 9,2 ) \cup ( 2 , \infty )  C) domain of  f : ( \infty , - 2 ) \cup ( - 2,9 ) \cup ( 9 , \infty )  D) domain of  f : ( \infty , 0 ) \cup ( 0 , \infty )   Find the domain of the rational function.
f(x)=x2−81x2+7x−18f ( x ) = \frac { x ^ { 2 } - 81 } { x ^ { 2 } + 7 x - 18 }

A) domain of f:(∞,−9)∪(−9,9)∪(9,∞)f : ( \infty , - 9 ) \cup ( - 9,9 ) \cup ( 9 , \infty )
B) domain of f:(∞,−9)∪(−9,2)∪(2,∞)f : ( \infty , - 9 ) \cup ( - 9,2 ) \cup ( 2 , \infty )
C) domain of f:(∞,−2)∪(−2,9)∪(9,∞)f : ( \infty , - 2 ) \cup ( - 2,9 ) \cup ( 9 , \infty )
D) domain of f:(∞,0)∪(0,∞)f : ( \infty , 0 ) \cup ( 0 , \infty )
Unlock Deck
Unlock for access to all 102 flashcards in this deck.
Unlock Deck
k this deck
17
Find the function value.
f(x)=x+614x−13;f(−2)f ( x ) = \frac { x + 6 } { 14 x - 13 } ; f ( - 2 )

A) 441\frac { 4 } { 41 }
B) 471\frac { 4 } { 71 }
C) −415- \frac { 4 } { 15 }
D) −441- \frac { 4 } { 41 }
Unlock Deck
Unlock for access to all 102 flashcards in this deck.
Unlock Deck
k this deck
18
 <strong>  Find the domain of the rational function.  f ( x ) = \frac { 4 } { x + 4 } </strong> A) domain of  f : ( \infty , - 4 ) \cup ( - 4 , \infty )  B) domain of  f : ( \infty , 0 ) \cup ( 0 , \infty )  C) domain of  \mathrm { f } : ( \infty , 4 ) \cup ( 4 , \infty )  D) domain of  \mathrm { f } : ( \infty , \infty )   Find the domain of the rational function.
f(x)=4x+4f ( x ) = \frac { 4 } { x + 4 }

A) domain of f:(∞,−4)∪(−4,∞)f : ( \infty , - 4 ) \cup ( - 4 , \infty )
B) domain of f:(∞,0)∪(0,∞)f : ( \infty , 0 ) \cup ( 0 , \infty )
C) domain of f:(∞,4)∪(4,∞)\mathrm { f } : ( \infty , 4 ) \cup ( 4 , \infty )
D) domain of f:(∞,∞)\mathrm { f } : ( \infty , \infty )
Unlock Deck
Unlock for access to all 102 flashcards in this deck.
Unlock Deck
k this deck
19
The graph of a rational function, f, is shown in the figure. Use the graph to answer the question. <strong>The graph of a rational function, f, is shown in the figure. Use the graph to answer the question.   Find all vertical asymptotes of the graph.</strong> A) x = 4, x = -4 B) x = -6 C) y = 4, y = -4 D) y = -6
Find all vertical asymptotes of the graph.

A) x = 4, x = -4
B) x = -6
C) y = 4, y = -4
D) y = -6
Unlock Deck
Unlock for access to all 102 flashcards in this deck.
Unlock Deck
k this deck
20
Solve the problem.
A company that produces radios has costs given by the function C(x) = 25x + 25,000, where x is the number of radios manufactured and C(x) is measured in dollars. The average cost to manufacture each radio is given by Cˉ(x)=25x+25,000x\bar { C } ( x ) = \frac { 25 x + 25,000 } { x } . Find Cˉ(50)\bar { C } ( 50 ) . (Round to the nearest dollar, if necessary.)

A) $75\$ 75
B) $525\$ 525
C) $74\$ 74
D) $535\$ 535
Unlock Deck
Unlock for access to all 102 flashcards in this deck.
Unlock Deck
k this deck
21
Simplify the rational expression. If the rational expression cannot be simplified, so state.
y3−64y−4\frac { y ^ { 3 } - 64 } { y - 4 }

A) y2−16y ^ { 2 } - 16
B) 1y−4\frac { 1 } { y - 4 }
C) y2+4y+16y ^ { 2 } + 4 y + 16
D) Cannot be simplified
Unlock Deck
Unlock for access to all 102 flashcards in this deck.
Unlock Deck
k this deck
22
Simplify the rational expression. If the rational expression cannot be simplified, so state.
15x2+24x+93x+3\frac { 15 x ^ { 2 } + 24 x + 9 } { 3 x + 3 }

A) 5x+33x\frac { 5 x + 3 } { 3 x }
B) 5x+243x+5\frac { 5 x + 24 } { 3 x + 5 }
C) 5x+35 x + 3
D) Cannot be simplified
Unlock Deck
Unlock for access to all 102 flashcards in this deck.
Unlock Deck
k this deck
23
 The rational function f(x)=400+5xx models the cost, f(x), in dollars, to produce x bobble-head figures. The graph is show. \text { The rational function } f ( x ) = \frac { 400 + 5 x } { x } \text { models the cost, } f ( x ) \text {, in dollars, to produce } x \text { bobble-head figures. The graph is show. }
According to the cost model, is it possible to remove 100% of the trash from American highways?

A) Yes
B) No
Unlock Deck
Unlock for access to all 102 flashcards in this deck.
Unlock Deck
k this deck
24
Simplify the rational expression. If the rational expression cannot be simplified, so state.
3x+212x2+23x+10\frac { 3 x + 2 } { 12 x ^ { 2 } + 23 x + 10 }

A) Cannot be simplified
B) 3x+44x+23\frac { 3 x + 4 } { 4 x + 23 }
C) 3x4x+5\frac { 3 x } { 4 x + 5 }
D) 14x+5\frac { 1 } { 4 x + 5 }
Unlock Deck
Unlock for access to all 102 flashcards in this deck.
Unlock Deck
k this deck
25
The graph of a rational function, f, is shown in the figure. Use the graph to answer the question. <strong>The graph of a rational function, f, is shown in the figure. Use the graph to answer the question.   Is 4 a function value of f?</strong> A) Yes B) No
Is 4 a function value of f?

A) Yes
B) No
Unlock Deck
Unlock for access to all 102 flashcards in this deck.
Unlock Deck
k this deck
26
Multiply as indicated.
2x24â‹…8x3\frac { 2 x ^ { 2 } } { 4 } \cdot \frac { 8 } { x ^ { 3 } }

A) 4x2x3\frac { 4 x ^ { 2 } } { x ^ { 3 } }
B) x4\frac { x } { 4 }
C) 16x24x3\frac { 16 x ^ { 2 } } { 4 x ^ { 3 } }
D) 4x\frac { 4 } { x }
Unlock Deck
Unlock for access to all 102 flashcards in this deck.
Unlock Deck
k this deck
27
The graph of a rational function, f, is shown in the figure. Use the graph to answer the question. <strong>The graph of a rational function, f, is shown in the figure. Use the graph to answer the question.   How does the graph indicate that f(-4) does not exist?</strong> A) There is a horizontal asymptote at x = -4 indicated by a dashed line. B) There is a horizontal asymptote at y = -4 indicated by a dashed line. C) There is a vertical asymptote at y = -4 indicated by a dashed line. D) There is a vertical asymptote at x = -4 indicated by a dashed line.
How does the graph indicate that f(-4) does not exist?

A) There is a horizontal asymptote at x = -4 indicated by a dashed line.
B) There is a horizontal asymptote at y = -4 indicated by a dashed line.
C) There is a vertical asymptote at y = -4 indicated by a dashed line.
D) There is a vertical asymptote at x = -4 indicated by a dashed line.
Unlock Deck
Unlock for access to all 102 flashcards in this deck.
Unlock Deck
k this deck
28
The graph of a rational function, f, is shown in the figure. Use the graph to answer the question. <strong>The graph of a rational function, f, is shown in the figure. Use the graph to answer the question.   Is -3 a function value of f?</strong> A) Yes B) No
Is -3 a function value of f?

A) Yes
B) No
Unlock Deck
Unlock for access to all 102 flashcards in this deck.
Unlock Deck
k this deck
29
Simplify the rational expression. If the rational expression cannot be simplified, so state.
y2+6y+9y2+9y+18\frac { y ^ { 2 } + 6 y + 9 } { y ^ { 2 } + 9 y + 18 }

A) 6y+19y+2\frac { 6 y + 1 } { 9 y + 2 }
B) 6y+99y+18\frac { 6 y + 9 } { 9 y + 18 }
C) y+3y+6\frac { y + 3 } { y + 6 }
D) Cannot be simplified
Unlock Deck
Unlock for access to all 102 flashcards in this deck.
Unlock Deck
k this deck
30
Simplify the rational expression. If the rational expression cannot be simplified, so state.
2x2−18x+28x−7\frac { 2 x ^ { 2 } - 18 x + 28 } { x - 7 }

A) Cannot be simplified
B) 1x−7\frac { 1 } { x - 7 }
C) 2x2−222 x ^ { 2 } - 22
D) 2x−42 x - 4
Unlock Deck
Unlock for access to all 102 flashcards in this deck.
Unlock Deck
k this deck
31
Multiply as indicated.
x2−7x+10x2−21x+110⋅x2−15x+44x2−13x+40\frac { x ^ { 2 } - 7 x + 10 } { x ^ { 2 } - 21 x + 110 } \cdot \frac { x ^ { 2 } - 15 x + 44 } { x ^ { 2 } - 13 x + 40 }

A) (x2−7x+10)(x2−15x+44)(x2−21x+110)(x2−13x+40)\frac { \left( x ^ { 2 } - 7 x + 10 \right) \left( x ^ { 2 } - 15 x + 44 \right) } { \left( x ^ { 2 } - 21 x + 110 \right) \left( x ^ { 2 } - 13 x + 40 \right) }
B) (x−2)(x−8)\frac { ( x - 2 ) } { ( x - 8 ) }
C) (x+2)(x+4)(x+10)(x+8)\frac { ( x + 2 ) ( x + 4 ) } { ( x + 10 ) ( x + 8 ) }
D) (x−2)(x−4)(x−10)(x−8)\frac { ( x - 2 ) ( x - 4 ) } { ( x - 10 ) ( x - 8 ) }
Unlock Deck
Unlock for access to all 102 flashcards in this deck.
Unlock Deck
k this deck
32
Simplify the rational expression. If the rational expression cannot be simplified, so state.
4x+205x2+31x+30\frac { 4 x + 20 } { 5 x ^ { 2 } + 31 x + 30 }

A) 4x+55x+31\frac { 4 x + 5 } { 5 x + 31 }
B) 4x5x+6\frac { 4 x } { 5 x + 6 }
C) 45x+6\frac { 4 } { 5 x + 6 }
D) Cannot be simplified
Unlock Deck
Unlock for access to all 102 flashcards in this deck.
Unlock Deck
k this deck
33
Use the equation to solve the problem.  <strong>Use the equation to solve the problem.    \text { Kurberof thures pasetsed }  What is the horizontal asymptote of the graph? What does this mean about the cost to produce x bobble-heads?</strong> A) y = 5; As the number of bobble-head figures produced increases, the cost is approaching $5. B) y = 400; As the number of bobble-head figures produced increases, the cost is approaching $400. C) There is no horizontal asymptote. D) y = 0; As the number of bobble-head figures produced increases, the cost is approaching $0
 Kurberof thures pasetsed \text { Kurberof thures pasetsed }
What is the horizontal asymptote of the graph? What does this mean about the cost to produce x bobble-heads?

A) y = 5; As the number of bobble-head figures produced increases, the cost is approaching $5.
B) y = 400; As the number of bobble-head figures produced increases, the cost is approaching $400.
C) There is no horizontal asymptote.
D) y = 0; As the number of bobble-head figures produced increases, the cost is approaching $0
Unlock Deck
Unlock for access to all 102 flashcards in this deck.
Unlock Deck
k this deck
34
Simplify the rational expression. If the rational expression cannot be simplified, so state.
y2+5y−24y2+3y−40\frac { y ^ { 2 } + 5 y - 24 } { y ^ { 2 } + 3 y - 40 }

A) 5y−33y−5\frac { 5 y - 3 } { 3 y - 5 }
B) Cannot be simplified
C) 5y−243y−40\frac { 5 y - 24 } { 3 y - 40 }
D) y−3y−5\frac { y - 3 } { y - 5 }
Unlock Deck
Unlock for access to all 102 flashcards in this deck.
Unlock Deck
k this deck
35
 The rational function f(x)=120x100−x models the cost, f(x), in millions of dollars, to remove x% of the trash from American \text { The rational function } f ( x ) = \frac { 120 x } { 100 - x } \text { models the cost, } f ( x ) \text {, in millions of dollars, to remove } x \% \text { of the trash from American } highways. The graph is shown. Use the equation to solve the problem.  <strong> \text { The rational function } f ( x ) = \frac { 120 x } { 100 - x } \text { models the cost, } f ( x ) \text {, in millions of dollars, to remove } x \% \text { of the trash from American }  highways. The graph is shown. Use the equation to solve the problem.    What value of x must be excluded from the rational function's domain?</strong> A) 10 B) 100 C) 1000 D) 1

What value of x must be excluded from the rational function's domain?

A) 10
B) 100
C) 1000
D) 1
Unlock Deck
Unlock for access to all 102 flashcards in this deck.
Unlock Deck
k this deck
36
Use the equation to solve the problem.  <strong>Use the equation to solve the problem.    \text { Kurberof thures pasetsed }  Find and interpret f(40).</strong> A) 15; It costs $15 to produce 40 bobble-head figures. B) 405; It costs $405 to produce 40 bobble-head figures. C) 5; It costs $5 to produce 40 bobble-head figures. D) 600; It costs $600 to produce 40 bobble-head figures.
 Kurberof thures pasetsed \text { Kurberof thures pasetsed }
Find and interpret f(40).

A) 15; It costs $15 to produce 40 bobble-head figures.
B) 405; It costs $405 to produce 40 bobble-head figures.
C) 5; It costs $5 to produce 40 bobble-head figures.
D) 600; It costs $600 to produce 40 bobble-head figures.
Unlock Deck
Unlock for access to all 102 flashcards in this deck.
Unlock Deck
k this deck
37
Multiply as indicated.
5y10y+5â‹…4y+27\frac { 5 y } { 10 y + 5 } \cdot \frac { 4 y + 2 } { 7 }

A) y7\frac { y } { 7 }
B) 2y7\frac { 2 y } { 7 }
C) 2y35\frac { 2 y } { 35 }
D) 27\frac { 2 } { 7 }
Unlock Deck
Unlock for access to all 102 flashcards in this deck.
Unlock Deck
k this deck
38
The graph of a rational function, f, is shown in the figure. Use the graph to answer the question. <strong>The graph of a rational function, f, is shown in the figure. Use the graph to answer the question.   How can you tell that this is not the graph of a polynomial function?</strong> A) The graph is not continuous. B) The value of f(1) is not equal to 1. C) The graph is continuous. D) The graph is not a parabola.
How can you tell that this is not the graph of a polynomial function?

A) The graph is not continuous.
B) The value of f(1) is not equal to 1.
C) The graph is continuous.
D) The graph is not a parabola.
Unlock Deck
Unlock for access to all 102 flashcards in this deck.
Unlock Deck
k this deck
39
 The rational function f(x)=120x100−x models the cost, f(x), in millions of dollars, to remove x% of the trash from American \text { The rational function } f ( x ) = \frac { 120 x } { 100 - x } \text { models the cost, } f ( x ) \text {, in millions of dollars, to remove } x \% \text { of the trash from American } highways. The graph is shown. Use the equation to solve the problem.  <strong> \text { The rational function } f ( x ) = \frac { 120 x } { 100 - x } \text { models the cost, } f ( x ) \text {, in millions of dollars, to remove } x \% \text { of the trash from American }  highways. The graph is shown. Use the equation to solve the problem.    Find and interpret f(80).</strong> A) 48; The cost to remove 80% of the trash is $48 million. B) 48; The cost to remove 20% of the trash is $48 million. C) 48; The cost to remove 80% of the trash is $48 . D) 20; The cost to remove 80% of the trash is $20 million.

Find and interpret f(80).

A) 48; The cost to remove 80% of the trash is $48 million.
B) 48; The cost to remove 20% of the trash is $48 million.
C) 48; The cost to remove 80% of the trash is $48 .
D) 20; The cost to remove 80% of the trash is $20 million.
Unlock Deck
Unlock for access to all 102 flashcards in this deck.
Unlock Deck
k this deck
40
Simplify the rational expression. If the rational expression cannot be simplified, so state.
7x2+21x311x+33x2\frac { 7 x ^ { 2 } + 21 x ^ { 3 } } { 11 x + 33 x ^ { 2 } }

A) 711\frac { 7 } { 11 }
B) 7+21x311x+33\frac { 7 + 21 x ^ { 3 } } { 11 x + 33 }
C) 7x11\frac { 7 x } { 11 }
D) Cannot be simplified
Unlock Deck
Unlock for access to all 102 flashcards in this deck.
Unlock Deck
k this deck
41
Multiply as indicated.
x2+7x+12x2+9x+20⋅x2+5xx2−3x−18\frac { x ^ { 2 } + 7 x + 12 } { x ^ { 2 } + 9 x + 20 } \cdot \frac { x ^ { 2 } + 5 x } { x ^ { 2 } - 3 x - 18 }

A) xx2+9x+20\frac { x } { x ^ { 2 } + 9 x + 20 }
B) xx−6\frac { x } { x - 6 }
C) x2+5xx−6\frac { x ^ { 2 } + 5 x } { x - 6 }
D) 1x−6\frac { 1 } { x - 6 }
Unlock Deck
Unlock for access to all 102 flashcards in this deck.
Unlock Deck
k this deck
42
Divide as indicated.
x2−7x+xy−7y9x2−9y2÷x−710x−10y\frac { x ^ { 2 } - 7 x + x y - 7 y } { 9 x ^ { 2 } - 9 y ^ { 2 } } \div \frac { x - 7 } { 10 x - 10 y }

A) 1
B) 10(x2−7x+xy−7y)9(x+y)(x−7)\frac { 10 \left( x ^ { 2 } - 7 x + x y - 7 y \right) } { 9 ( x + y ) ( x - 7 ) }
C) 109\frac { 10 } { 9 }
D) (x−7)290(x−y)2\frac { ( x - 7 ) ^ { 2 } } { 90 ( x - y ) ^ { 2 } }
Unlock Deck
Unlock for access to all 102 flashcards in this deck.
Unlock Deck
k this deck
43
Divide as indicated.
x2−17x+6611−x÷(x+6)\frac { x ^ { 2 } - 17 x + 66 } { 11 - x } \div ( x + 6 )

A) −x−6x+6- \frac { x - 6 } { x + 6 }
B) −1- 1
C) −(x−6)(x+6)- ( x - 6 ) ( x + 6 )
D) −x+6x−6- \frac { x + 6 } { x - 6 }
Unlock Deck
Unlock for access to all 102 flashcards in this deck.
Unlock Deck
k this deck
44
Multiply as indicated.
x3+1x3−x2+x⋅5x−50x−50\frac { x ^ { 3 } + 1 } { x ^ { 3 } - x ^ { 2 } + x } \cdot \frac { 5 x } { - 50 x - 50 }

A) −x2+110- \frac { x ^ { 2 } + 1 } { 10 }
B)=x3+110(x+1)B ) = \frac { x ^ { 3 } + 1 } { 10 ( x + 1 ) }
C) −110- \frac { 1 } { 10 }
D) x+110(−x−1)\frac { x + 1 } { 10 ( - x - 1 ) }
Unlock Deck
Unlock for access to all 102 flashcards in this deck.
Unlock Deck
k this deck
45
Divide as indicated.
x2−20x+1006x−60÷3x−3018\frac { x ^ { 2 } - 20 x + 100 } { 6 x - 60 } \div \frac { 3 x - 30 } { 18 }

A) x2−20x+100(x−10)2\frac { x ^ { 2 } - 20 x + 100 } { ( x - 10 ) ^ { 2 } }
B) 1
C) 18
D) (x−10)236\frac { ( x - 10 ) ^ { 2 } } { 36 }
Unlock Deck
Unlock for access to all 102 flashcards in this deck.
Unlock Deck
k this deck
46
Divide as indicated.
x2+16x+64x2+17x+72÷x2+8xx2+3x−54\frac { x ^ { 2 } + 16 x + 64 } { x ^ { 2 } + 17 x + 72 } \div \frac { x ^ { 2 } + 8 x } { x ^ { 2 } + 3 x - 54 }

A) xx2+17x+72\frac { x } { x ^ { 2 } + 17 x + 72 }
B) x−6x2+9x\frac { x - 6 } { x ^ { 2 } + 9 x }
C) x−6x\frac { x - 6 } { x }
D) x−6x - 6
Unlock Deck
Unlock for access to all 102 flashcards in this deck.
Unlock Deck
k this deck
47
Add. Simplify the result, if possible.
xx+5+−8x+5\frac { x } { x + 5 } + \frac { - 8 } { x + 5 }

A) −85- \frac { 8 } { 5 }
B) −8xx2+10x+25\frac { - 8 x } { x ^ { 2 } + 10 x + 25 }
C) x−8x+5\frac { x - 8 } { x + 5 }
D) −7xx+5\frac { - 7 x } { x + 5 }
Unlock Deck
Unlock for access to all 102 flashcards in this deck.
Unlock Deck
k this deck
48
Add. Simplify the result, if possible.
78x2+58x2\frac { 7 } { 8 x ^ { 2 } } + \frac { 5 } { 8 x ^ { 2 } }

A) 3
B) 34x4\frac { 3 } { 4 x ^ { 4 } }
C) 32x2\frac { 3 } { 2 x ^ { 2 } }
D) 23x2\frac { 2 } { 3 x ^ { 2 } }
Unlock Deck
Unlock for access to all 102 flashcards in this deck.
Unlock Deck
k this deck
49
Divide as indicated.
(y−5)23÷3y−159\frac { ( y - 5 ) ^ { 2 } } { 3 } \div \frac { 3 y - 15 } { 9 }

A) y−5y - 5
B) 3(y−5)23y−15\frac { 3 ( y - 5 ) ^ { 2 } } { 3 y - 15 }
C) (y−5)39\frac { ( y - 5 ) ^ { 3 } } { 9 }
D) 1y−5\frac { 1 } { y - 5 }
Unlock Deck
Unlock for access to all 102 flashcards in this deck.
Unlock Deck
k this deck
50
Multiply as indicated.
2x33â‹…9x2\frac { 2 x ^ { 3 } } { 3 } \cdot \frac { 9 } { x ^ { 2 } }

A) 6x\frac { 6 } { x }
B) 6x6 x
C) x6\frac { x } { 6 }
D) 6x2x3\frac { 6 x ^ { 2 } } { x ^ { 3 } }
Unlock Deck
Unlock for access to all 102 flashcards in this deck.
Unlock Deck
k this deck
51
Multiply as indicated.
6x−6x⋅9x28x−8\frac { 6 x - 6 } { x } \cdot \frac { 9 x ^ { 2 } } { 8 x - 8 }

A) 48x2+96x+489x3\frac { 48 x ^ { 2 } + 96 x + 48 } { 9 x ^ { 3 } }
B) 27x4\frac { 27 x } { 4 }
C) 54x3−54x28x2−8x\frac { 54 x ^ { 3 } - 54 x ^ { 2 } } { 8 x ^ { 2 } - 8 x }
D) 427x\frac { 4 } { 27 x }
Unlock Deck
Unlock for access to all 102 flashcards in this deck.
Unlock Deck
k this deck
52
Add. Simplify the result, if possible.
49x2+29x2\frac { 4 } { 9 x ^ { 2 } } + \frac { 2 } { 9 x ^ { 2 } }

A) 23x4\frac { 2 } { 3 x ^ { 4 } }
B) 2
C) 23x2\frac { 2 } { 3 x ^ { 2 } }
D) 32x2\frac { 3 } { 2 x ^ { 2 } }
Unlock Deck
Unlock for access to all 102 flashcards in this deck.
Unlock Deck
k this deck
53
Divide as indicated.
3x−3x÷4x−42x2\frac { 3 x - 3 } { x } \div \frac { 4 x - 4 } { 2 x ^ { 2 } }

A) 6x3−6x24x2−4x\frac { 6 x ^ { 3 } - 6 x ^ { 2 } } { 4 x ^ { 2 } - 4 x }
B) 3x2\frac { 3 x } { 2 }
C) 23x\frac { 2 } { 3 x }
D) 12x2+24x+122x3\frac { 12 x ^ { 2 } + 24 x + 12 } { 2 x ^ { 3 } }
Unlock Deck
Unlock for access to all 102 flashcards in this deck.
Unlock Deck
k this deck
54
Divide as indicated.
4x25÷x330\frac { 4 x ^ { 2 } } { 5 } \div \frac { x ^ { 3 } } { 30 }

A) 24x2x3\frac { 24 x ^ { 2 } } { x ^ { 3 } }
B) x24\frac { x } { 24 }
C) 24x\frac { 24 } { x }
D) 120x25x3\frac { 120 x ^ { 2 } } { 5 x ^ { 3 } }
Unlock Deck
Unlock for access to all 102 flashcards in this deck.
Unlock Deck
k this deck
55
Multiply as indicated.
x2+6x+8x2+8x+12â‹…x2+6xx2+11x+28\frac { x ^ { 2 } + 6 x + 8 } { x ^ { 2 } + 8 x + 12 } \cdot \frac { x ^ { 2 } + 6 x } { x ^ { 2 } + 11 x + 28 }

A) xx+7\frac { x } { x + 7 }
B) x2+6xx+7\frac { x ^ { 2 } + 6 x } { x + 7 }
C) xx2+8x+12\frac { x } { x ^ { 2 } + 8 x + 12 }
D) 1x+7\frac { 1 } { x + 7 }
Unlock Deck
Unlock for access to all 102 flashcards in this deck.
Unlock Deck
k this deck
56
Divide as indicated.
21x−2111÷7x−766\frac { 21 x - 21 } { 11 } \div \frac { 7 x - 7 } { 66 }

A) 147(x−1)2726\frac { 147 ( x - 1 ) ^ { 2 } } { 726 }
B) 18
C) 6(21x−21)7x−7\frac { 6 ( 21 x - 21 ) } { 7 x - 7 }
D) 118\frac { 1 } { 18 }
Unlock Deck
Unlock for access to all 102 flashcards in this deck.
Unlock Deck
k this deck
57
Divide as indicated.
x2+15x+54x2+16x+63÷x2+6xx2+17x+70\frac { x ^ { 2 } + 15 x + 54 } { x ^ { 2 } + 16 x + 63 } \div \frac { x ^ { 2 } + 6 x } { x ^ { 2 } + 17 x + 70 }

A) x+10x\frac { x + 10 } { x }
B) x+10x2+7x\frac { x + 10 } { x ^ { 2 } + 7 x }
C) x+10x + 10
D) xx2+16x+63\frac { x } { x ^ { 2 } + 16 x + 63 }
Unlock Deck
Unlock for access to all 102 flashcards in this deck.
Unlock Deck
k this deck
58
Multiply as indicated.
2x4â‹…x2y6x3y22 x ^ { 4 } \cdot \frac { x ^ { 2 } y } { 6 x ^ { 3 } y ^ { 2 } }

A) x33y\frac { x ^ { 3 } } { 3 y }
B) x53y\frac { x ^ { 5 } } { 3 y }
C) 16xy\frac { 1 } { 6 x y }
D) x6y3x3y2\frac { x ^ { 6 } y } { 3 x ^ { 3 } y ^ { 2 } }
Unlock Deck
Unlock for access to all 102 flashcards in this deck.
Unlock Deck
k this deck
59
Multiply as indicated.
x2+11x+28x2+13x+42â‹…x2+11x+30x2+9x+20\frac { x ^ { 2 } + 11 x + 28 } { x ^ { 2 } + 13 x + 42 } \cdot \frac { x ^ { 2 } + 11 x + 30 } { x ^ { 2 } + 9 x + 20 }

A) 1x+5\frac { 1 } { x + 5 }
B) x+4x+6\frac { x + 4 } { x + 6 }
C) x+6x+5\frac { x + 6 } { x + 5 }
D) 1
Unlock Deck
Unlock for access to all 102 flashcards in this deck.
Unlock Deck
k this deck
60
Add. Simplify the result, if possible.
413x+613x\frac { 4 } { 13 x } + \frac { 6 } { 13 x }
B) 1
C) 1026x\frac { 10 } { 26 x }
D) 1013x\frac { 10 } { 13 x }

A) 13x10\frac { 13 x } { 10 }
26x26 x
Unlock Deck
Unlock for access to all 102 flashcards in this deck.
Unlock Deck
k this deck
61
Subtract. Simplify the result, if possible.
1922x−622x\frac { 19 } { 22 x } - \frac { 6 } { 22 x }

A) 1344x\frac { 13 } { 44 x }
B) 13
C) 22x13\frac { 22 x } { 13 }
D) 1322x\frac { 13 } { 22 x }
Unlock Deck
Unlock for access to all 102 flashcards in this deck.
Unlock Deck
k this deck
62
Subtract. Simplify the result, if possible.
158x2−128x2\frac { 15 } { 8 x ^ { 2 } } - \frac { 12 } { 8 x ^ { 2 } }

A) 3
B) 38x2\frac { 3 } { 8 x ^ { 2 } }
C) 38x4\frac { 3 } { 8 x ^ { 4 } }
D) 83x2\frac { 8 } { 3 x ^ { 2 } }
Unlock Deck
Unlock for access to all 102 flashcards in this deck.
Unlock Deck
k this deck
63
Perform the indicated operations. Simplify the result, if possible.
4x+8x−2\frac { 4 } { x } + \frac { 8 } { x - 2 }

A) 12x−8x(x−2)\frac { 12 x - 8 } { x ( x - 2 ) }
B) 12x−8x(2−x)\frac { 12 x - 8 } { x ( 2 - x ) }
C) 8x−12x(2−x)\frac { 8 x - 12 } { x ( 2 - x ) }
D) 8x−12x(x−2)\frac { 8 x - 12 } { x ( x - 2 ) }
Unlock Deck
Unlock for access to all 102 flashcards in this deck.
Unlock Deck
k this deck
64
Find the least common denominator of the rational expressions.
140x,15x2\frac { 1 } { 40 x } , \frac { 1 } { 5 x ^ { 2 } } , and 18x3\frac { 1 } { 8 x ^ { 3 } }

A) 40x240 x ^ { 2 }
B) 40x540 x ^ { 5 }
C) 8x38 x ^ { 3 }
D) 40x340 x ^ { 3 }
Unlock Deck
Unlock for access to all 102 flashcards in this deck.
Unlock Deck
k this deck
65
Perform the indicated operations. Simplify the result, if possible.
x+7x2−3x−10+3x+8x2−11x+30\frac { x + 7 } { x ^ { 2 } - 3 x - 10 } + \frac { 3 x + 8 } { x ^ { 2 } - 11 x + 30 }

A) 4x+154 x + 15
B) 4x2+15x−26(x−5)(x+2)(x−6)\frac { 4 x ^ { 2 } + 15 x - 26 } { ( x - 5 ) ( x + 2 ) ( x - 6 ) }
C) 4x2+15x−26(x+5)(x−2)(x+6)\frac { 4 x ^ { 2 } + 15 x - 26 } { ( x + 5 ) ( x - 2 ) ( x + 6 ) }
D) 4x+152x2−14x+20\frac { 4 x + 15 } { 2 x ^ { 2 } - 14 x + 20 }
Unlock Deck
Unlock for access to all 102 flashcards in this deck.
Unlock Deck
k this deck
66
Subtract. Simplify the result, if possible.
2x2x−1−2xx−1\frac { 2 x ^ { 2 } } { x - 1 } - \frac { 2 x } { x - 1 }

A) 2x2 x
B) 2xx−1\frac { 2 x } { x - 1 }
C) 0
D) 2x(x+1)x−1\frac { 2 x ( x + 1 ) } { x - 1 }
Unlock Deck
Unlock for access to all 102 flashcards in this deck.
Unlock Deck
k this deck
67
Find the least common denominator of the rational expressions.
15x2+2x−15\frac { 15 } { x ^ { 2 } + 2 x - 15 } and 4x−20−4x−20\frac { 4 x - 20 } { - 4 x - 20 }

A) −4(x−3)(x−5)- 4 ( x - 3 ) ( x - 5 )
B) −4(x−3)(x+5)- 4 ( x - 3 ) ( x + 5 )
C) −4(x+3)(x−5)- 4 ( x + 3 ) ( x - 5 )
D) −4(x+3)(x+5)- 4 ( x + 3 ) ( x + 5 )
Unlock Deck
Unlock for access to all 102 flashcards in this deck.
Unlock Deck
k this deck
68
Find the least common denominator of the rational expressions.
5y2−4,2yy2+4y+4\frac { 5 } { y ^ { 2 } - 4 } , \frac { 2 y } { y ^ { 2 } + 4 y + 4 } , and 5y2y2+5y+2\frac { 5 y } { 2 y ^ { 2 } + 5 y + 2 }

A) (y−2)(y+2)(2y+1)( y - 2 ) ( y + 2 ) ( 2 y + 1 )
B) (y−2)(y−2)(y+2)(2y+1)( y - 2 ) ( y - 2 ) ( y + 2 ) ( 2 y + 1 )
C) (y−2)(y+2)(y+2)(2y+1)( y - 2 ) ( y + 2 ) ( y + 2 ) ( 2 y + 1 )
D) (y−2)(y+2)( y - 2 ) ( y + 2 )
Unlock Deck
Unlock for access to all 102 flashcards in this deck.
Unlock Deck
k this deck
69
Find the least common denominator of the rational expressions.
x+5x2−5x−6\frac { x + 5 } { x ^ { 2 } - 5 x - 6 } and x+9x2−9x+18\frac { x + 9 } { x ^ { 2 } - 9 x + 18 }

A) (x+1)(x−6)( x + 1 ) ( x - 6 )
B) (x−6)(x−3)( x - 6 ) ( x - 3 )
C) (x−1)(x+6)(x−3)( x - 1 ) ( x + 6 ) ( x - 3 )
D) (x+1)(x−6)(x−3)( x + 1 ) ( x - 6 ) ( x - 3 )
Unlock Deck
Unlock for access to all 102 flashcards in this deck.
Unlock Deck
k this deck
70
Perform the indicated operations. Simplify the result, if possible.
3y2−3y+2+7y2−1\frac { 3 } { y ^ { 2 } - 3 y + 2 } + \frac { 7 } { y ^ { 2 } - 1 }

A) 42y−11(y−1)(y+1)(y−2)\frac { 42 y - 11 } { ( y - 1 ) ( y + 1 ) ( y - 2 ) }
B) 10y−11(y−1)(y+1)(y−2)\frac { 10 y - 11 } { ( y - 1 ) ( y + 1 ) ( y - 2 ) }
C) 11y−10(y−1)(y+1)(y−2)\frac { 11 y - 10 } { ( y - 1 ) ( y + 1 ) ( y - 2 ) }
D) 10y−11(y−1)(y−2)\frac { 10 y - 11 } { ( y - 1 ) ( y - 2 ) }
Unlock Deck
Unlock for access to all 102 flashcards in this deck.
Unlock Deck
k this deck
71
Find the least common denominator of the rational expressions.
1−3x\frac { 1 } { - 3 x } and 2x2+7x\frac { 2 } { x ^ { 2 } + 7 x }

A) −3x(x+7)- 3 x ( x + 7 )
B) −3x+7- 3 x + 7
C) −3x2+2- 3 x ^ { 2 } + 2
D) −3x2+7- 3 x ^ { 2 } + 7
Unlock Deck
Unlock for access to all 102 flashcards in this deck.
Unlock Deck
k this deck
72
Subtract. Simplify the result, if possible.
xx2−16−7x2+5x+4\frac { x } { x ^ { 2 } - 16 } - \frac { 7 } { x ^ { 2 } + 5 x + 4 }

A) x2−6x+28(x−4)(x+4)\frac { x ^ { 2 } - 6 x + 28 } { ( x - 4 ) ( x + 4 ) }
B) x2−6(x−4)(x+4)(x+1)\frac { x ^ { 2 } - 6 } { ( x - 4 ) ( x + 4 ) ( x + 1 ) }
C) x2+6x+28(x−4)(x+4)(x+1)\frac { x ^ { 2 } + 6 x + 28 } { ( x - 4 ) ( x + 4 ) ( x + 1 ) }
D) x2−6x+28(x−4)(x+4)(x+1)\frac { x ^ { 2 } - 6 x + 28 } { ( x - 4 ) ( x + 4 ) ( x + 1 ) }
Unlock Deck
Unlock for access to all 102 flashcards in this deck.
Unlock Deck
k this deck
73
Find the least common denominator of the rational expressions.
x−1x2+9x+8\frac { x - 1 } { x ^ { 2 } + 9 x + 8 } and 1x2+x\frac { 1 } { x ^ { 2 } + x }

A) x+1x + 1
B) (x+1)2( x + 1 ) ^ { 2 }
C) x(x+1)2x ( x + 1 ) ^ { 2 }
D) x(x+8)(x+1)x ( x + 8 ) ( x + 1 )
Unlock Deck
Unlock for access to all 102 flashcards in this deck.
Unlock Deck
k this deck
74
Perform the indicated operations. Simplify the result, if possible.
xx2−16−4x2+5x+4\frac { x } { x ^ { 2 } - 16 } - \frac { 4 } { x ^ { 2 } + 5 x + 4 }

A) x2−3(x−4)(x+4)(x+1)\frac { x ^ { 2 } - 3 } { ( x - 4 ) ( x + 4 ) ( x + 1 ) }
B) x2−3x+16(x−4)(x+4)(x+1)\frac { x ^ { 2 } - 3 x + 16 } { ( x - 4 ) ( x + 4 ) ( x + 1 ) }
C) x2−3x+16(x−4)(x+4)\frac { x ^ { 2 } - 3 x + 16 } { ( x - 4 ) ( x + 4 ) }
D) x2+3x+16(x−4)(x+4)(x+1)\frac { x ^ { 2 } + 3 x + 16 } { ( x - 4 ) ( x + 4 ) ( x + 1 ) }
Unlock Deck
Unlock for access to all 102 flashcards in this deck.
Unlock Deck
k this deck
75
Find the least common denominator of the rational expressions.
3x\frac { 3 } { x } and 3x+6\frac { 3 } { x + 6 }

A) −6- 6
B) 6
C) x(x+6)x ( x + 6 )
D) x+6x + 6
Unlock Deck
Unlock for access to all 102 flashcards in this deck.
Unlock Deck
k this deck
76
Add. Simplify the result, if possible.
3x+5x2+7x+10+−3−2xx2+7x+10\frac { 3 x + 5 } { x ^ { 2 } + 7 x + 10 } + \frac { - 3 - 2 x } { x ^ { 2 } + 7 x + 10 }

A) 1x2+7x+10\frac { 1 } { x ^ { 2 } + 7 x + 10 }
B) 1x+5\frac { 1 } { x + 5 }
C) x−2x2+7x+10\frac { x - 2 } { x ^ { 2 } + 7 x + 10 }
D) 1x+2\frac { 1 } { x + 2 }
Unlock Deck
Unlock for access to all 102 flashcards in this deck.
Unlock Deck
k this deck
77
Find the least common denominator of the rational expressions.
x+5x2−5x\frac { x + 5 } { x ^ { 2 } - 5 x } and −10x2−7x+10\frac { - 10 } { x ^ { 2 } - 7 x + 10 }

A) x(x−5)(x−2)x ( x - 5 ) ( x - 2 )
B) (x−3)2( x - 3 ) ^ { 2 }
C) x(x−3)(x−2)x ( x - 3 ) ( x - 2 )
D) x(x−3)2x ( x - 3 ) ^ { 2 }
Unlock Deck
Unlock for access to all 102 flashcards in this deck.
Unlock Deck
k this deck
78
Perform the indicated operations. Simplify the result, if possible.
3x+3x−4\frac { 3 } { x } + \frac { 3 } { x - 4 }

A) 12x−6x(4−x)\frac { 12 x - 6 } { x ( 4 - x ) }
B) 6x−12x(x−4)\frac { 6 x - 12 } { x ( x - 4 ) }
C) 6x−12x(4−x)\frac { 6 x - 12 } { x ( 4 - x ) }
D) 12x−6x(x−4)\frac { 12 x - 6 } { x ( x - 4 ) }
Unlock Deck
Unlock for access to all 102 flashcards in this deck.
Unlock Deck
k this deck
79
Perform the indicated operations. Simplify the result, if possible.
2x2−8x\frac { 2 } { x ^ { 2 } } - \frac { 8 } { x }

A) 8x−2x\frac { 8 x - 2 } { x }
B) 2−8xx2\frac { 2 - 8 x } { x ^ { 2 } }
C) 2+8xx2\frac { 2 + 8 x } { x ^ { 2 } }
D) 2x+8x2\frac { 2 x + 8 } { x ^ { 2 } }
Unlock Deck
Unlock for access to all 102 flashcards in this deck.
Unlock Deck
k this deck
80
Add. Simplify the result, if possible.
x2−5xx−2+6x−2\frac { x ^ { 2 } - 5 x } { x - 2 } + \frac { 6 } { x - 2 }

A) x+3x + 3
B) x2−5x+62\frac { x ^ { 2 } - 5 x + 6 } { 2 }
C) x−3x - 3
D) x−2x - 2
Unlock Deck
Unlock for access to all 102 flashcards in this deck.
Unlock Deck
k this deck
locked card icon
Unlock Deck
Unlock for access to all 102 flashcards in this deck.