Deck 8: Sequences, Induction, and Probability

Full screen (f)
exit full mode
Question
Write the first four terms of the sequence whose general term is given.
an=3n3a _ { n } = 3 n - 3

A) 0,3,6,90,3,6,9
B) 0,1,2,30,1,2,3
C) 6,9,12,156,9,12,15
D) 0,3,6,90 , - 3 , - 6 , - 9
Use Space or
up arrow
down arrow
to flip the card.
Question
Write the first four terms of the sequence whose general term is given.
an=(1)n+1(n+4)a _ { n } = ( - 1 ) ^ { n + 1 } ( n + 4 )

A) 5,6,7,85 , - 6,7 , - 8
B) 5,6,7,8- 5,6 , - 7,8
C) 5,12,21,325 , - 12,21 , - 32
D) 6,7,8,9- 6,7 , - 8,9
Question
Write the first four terms of the sequence whose general term is given.
an=5n2a _ { n } = \frac { 5 } { n ^ { 2 } }

A) 5,54,59,5165 , \frac { 5 } { 4 } , \frac { 5 } { 9 } , \frac { 5 } { 16 }
B) 1,24,39,4161 , \frac { 2 } { 4 } , \frac { 3 } { 9 } , \frac { 4 } { 16 }
C) 54,59,516,525\frac { 5 } { 4 } , \frac { 5 } { 9 } , \frac { 5 } { 16 } , \frac { 5 } { 25 }
D) 1,14,19,1161 , \frac { 1 } { 4 } , \frac { 1 } { 9 } , \frac { 1 } { 16 }
Question
Write the first four terms of the sequence whose general term is given.
an=4(2n1)\mathrm { a } _ { \mathrm { n } } = 4 ( 2 \mathrm { n } - 1 )

A) 4,12,20,284,12,20,28
B) 1,3,5,71,3,5,7
C) 4,4,12,20- 4,4,12,20
D) 4,8,12,164,8,12,16
Question
Write the first four terms of the sequence whose general term is given.
an=4na _ { n } = 4 ^ { n }

A) 4,16,64,2564,16,64,256
B) 1,16,81,2561,16,81,256
C) 1,4,16,641,4,16,64
D) 16,64,256,102416,64,256,1024
Question
Use Recursion Formulas
a1=5a _ { 1 } = - 5 and an=4an1a _ { n } = - 4 a _ { n - 1 } for n2n \geq 2

A) 5,20,80,320- 5,20 , - 80,320
B) 5,20,80,3205 , - 20,80 , - 320
C) 5,20,80,320- 5 , - 20 , - 80 , - 320
D) 5,22,82,322- 5,22 , - 82,322
Question
Write the first four terms of the sequence whose general term is given.
an=6na _ { n } = 6 n

A) 6,12,18,246,12,18,24
B) 0,6,12,180,6,12,18
C) 7,8,9,107,8,9,10
D) 5,4,3,25,4,3,2
Question
Write the first four terms of the sequence whose general term is given.
an=(14)na _ { n } = \left( - \frac { 1 } { 4 } \right) ^ { n }

A) 14,116,164,1256- \frac { 1 } { 4 } , \frac { 1 } { 16 } , - \frac { 1 } { 64 } , \frac { 1 } { 256 }
B) 14,116,164,1256- \frac { 1 } { 4 } , - \frac { 1 } { 16 } , - \frac { 1 } { 64 } , - \frac { 1 } { 256 }
C)14,18,112,116\mathrm { C } ) - \frac { 1 } { 4 } , \frac { 1 } { 8 } , - \frac { 1 } { 12 } , - \frac { 1 } { 16 }
D) 14,18,112,116\frac { 1 } { 4 } , - \frac { 1 } { 8 } , \frac { 1 } { 12 } , - \frac { 1 } { 16 }
Question
Use Recursion Formulas
a1=4a _ { 1 } = 4 and an=an13a _ { n } = a _ { n - 1 } - 3 for n2n \geq 2

A) 4,1,2,54,1 , - 2 , - 5
B) 3,6,9,12- 3 , - 6 , - 9 , - 12
C) 4,7,10,134,7,10,13
D) 4,3,0,34,3,0 , - 3
Question
Solve the problem.
A deposit of $9000 is made in an account that earns 8% interest compounded quarterly. The balance in the account after n quarters is given by the sequence an=9000(1+0.084)nn=1,2,3,a _ { n } = 9000 \left( 1 + \frac { 0.08 } { 4 } \right) ^ { n } \quad n = 1,2,3 , \ldots
Find the balance in the account after 28 quarters.

A) $15,669.22\$ 15,669.22
B) $15,762.22\$ 15,762.22
C) $15,721.22\$ 15,721.22
D) $15,524.22\$ 15,524.22
Question
Use Recursion Formulas
a1=5a _ { 1 } = 5 and an=3an1a _ { n } = 3 a _ { n - 1 } for n2n \geq 2

A) 5,15,45,1355,15,45,135
B) 5,14,13,125,14,13,12
C) 12,36,108,21612,36,108,216
D) 5,17,47,1375,17,47,137
Question
Write the first four terms of the sequence whose general term is given.
an=(1)n+1n+2a _ { n } = \frac { ( - 1 ) ^ { n + 1 } } { n + 2 }

A) 13,14,15,16\frac { 1 } { 3 } , - \frac { 1 } { 4 } , \frac { 1 } { 5 } , - \frac { 1 } { 6 }
B) 13,14,15,16- \frac { 1 } { 3 } , \frac { 1 } { 4 } , - \frac { 1 } { 5 } , \frac { 1 } { 6 }
C) 13,18,115,124\frac { 1 } { 3 } , - \frac { 1 } { 8 } , \frac { 1 } { 15 } , - \frac { 1 } { 24 }
D) 14,15,16,17- \frac { 1 } { 4 } , \frac { 1 } { 5 } , - \frac { 1 } { 6 } , \frac { 1 } { 7 }
Question
Write the first four terms of the sequence whose general term is given.
an=n+12n1a _ { n } = \frac { n + 1 } { 2 n - 1 }

A) 2,1,45,572,1 , \frac { 4 } { 5 } , \frac { 5 } { 7 }
B) 2,1,45,572 , - 1 , \frac { 4 } { 5 } , \frac { 5 } { 7 }
C) 2,1,45,57- 2,1 , \frac { 4 } { 5 } , \frac { 5 } { 7 }
D) 2,1,45,57- 2 , - 1 , \frac { 4 } { 5 } , \frac { 5 } { 7 }
Question
Solve the problem.
A deposit of $11,000 is made in an account that earns 8% interest compounded quarterly. The balance in the account after n quarters is given by the sequence an=11,000(1+0.084)n,n=1,2,3,\mathrm { a } _ { \mathrm { n } } = 11,000 \left( 1 + \frac { 0.08 } { 4 } \right) ^ { \mathrm { n } } , \mathrm { n } = 1,2,3 , \ldots
Find the balance in the account after 4 years.

A) $15,100.64\$ 15,100.64
B) $5491.14\$ 5491.14
C) $11,906.75\$ 11,906.75
D) $4257.14\$ 4257.14
Question
Write the first four terms of the sequence whose general term is given.
an=(3)na _ { n } = ( - 3 ) ^ { n }

A) 3,9,27,81- 3,9 , - 27,81
B) 3,9,27,81- 3 , - 9 , - 27 , - 81
C) 3,9,27,813 , - 9 , - 27 , - 81
D) 3,9,27,813 , - 9,27 , - 81
Question
Use Recursion Formulas
a1=5a _ { 1 } = - 5 and an=an13a _ { n } = a _ { n - 1 } - 3 for n2n \geq 2

A) 5,8,11,14- 5 , - 8 , - 11 , - 14
B) 5,2,1,45,2 , - 1 , - 4
C) 5,8,11,145,8,11,14
D) 5,4,1,2- 5 , - 4 , - 1,2
Question
Write the first four terms of the sequence whose general term is given.
an=(1)n(n+6)a _ { n } = ( - 1 ) ^ { n } ( n + 6 )

A) 7,8,9,10- 7,8 , - 9,10
B) 7,8,9,10- 7 , - 8 , - 9 , - 10
C) 7,16,27,40- 7 , - 16 , - 27 , - 40
D) 7,8,9,107,8,9,10
Question
Write the first four terms of the sequence whose general term is given.
an=(25)na _ { n } = \left( \frac { 2 } { 5 } \right) ^ { n }

A) 25,425,8125,16625\frac { 2 } { 5 } , \frac { 4 } { 25 } , \frac { 8 } { 125 } , \frac { 16 } { 625 }
B) 1,25,425,81251 , \frac { 2 } { 5 } , \frac { 4 } { 25 } , \frac { 8 } { 125 }
C) 25,210,215,220\frac { 2 } { 5 } , \frac { 2 } { 10 } , \frac { 2 } { 15 } , \frac { 2 } { 20 }
D) 1,425,8125,166251 , \frac { 4 } { 25 } , \frac { 8 } { 125 } , \frac { 16 } { 625 }
Question
Write the first four terms of the sequence whose general term is given.
an=n4a _ { n } = n - 4

A) 3,2,1,0- 3 , - 2 , - 1,0
B) 4,3,2,1- 4 , - 3 , - 2 , - 1
C) 1,0,1,2- 1,0,1,2
D) 16,12,8,4- 16 , - 12 , - 8 , - 4
Question
Solve the problem.
A deposit of $7000 is made in an account that earns 8% interest compounded quarterly. The balance in the account after n quarters is given by the sequence an=7000(1+0.084)nn=1,2,3,\mathrm { a } _ { \mathrm { n } } = 7000 \left( 1 + \frac { 0.08 } { 4 } \right) ^ { \mathrm { n } } \quad \mathrm { n } = 1,2,3 , \ldots
Find the balance in the account after 9 years.

A) $14,279.21\$ 14,279.21
B) $14,372.21\$ 14,372.21
C) $14,368.21\$ 14,368.21
D) $14,097.21\$ 14,097.21
Question
Use Factorial Notation
Write the first four terms of the sequence whose general term is given.
an=(n1)!n5a _ { n } = \frac { ( n - 1 ) ! } { n ^ { 5 } }

A) 1,132,2243,35121 , \frac { 1 } { 32 } , \frac { 2 } { 243 } , \frac { 3 } { 512 }
B) 15,110,215,310\frac { 1 } { 5 } , \frac { 1 } { 10 } , \frac { 2 } { 15 } , \frac { 3 } { 10 }
C) 0,0,2243,35120,0 , \frac { 2 } { 243 } , \frac { 3 } { 512 }
D) 0,0,215,3100,0 , \frac { 2 } { 15 } , \frac { 3 } { 10 }
Question
Use Factorial Notation
Write the first four terms of the sequence whose general term is given.
(n+5)!n+5\frac { ( \mathrm { n } + 5 ) ! } { \mathrm { n } + 5 }

A) (n+4)( n + 4 ) !
B) 1
C) 5 !
D) n+5n + 5 !
Question
Use Summation Notation
i=36(2i3)\sum _ { i = 3 } ^ { 6 } ( 2 i - 3 )

A) 24
B) 21
C) 27
D) 15
Question
Use Summation Notation
i=143i\sum _ { i = 1 } ^ { 4 } 3 ^ { i }

A) 120
B) 84
C) 39
D) 30
Question
Use Summation Notation
i=479i\sum _ { i = 4 } ^ { 7 } 9 i

A) 198
B) 63
C) 99
D) 135
Question
Use Summation Notation
i=15(i10)\sum _ { \mathrm { i } = 1 } ^ { 5 } ( \mathrm { i } - 10 )

A) 35- 35
В) 5- 5
C) 14- 14
D) 30- 30
Question
Use Factorial Notation
Write the first four terms of the sequence whose general term is given.
an=n5(n1)!a _ { n } = \frac { n ^ { 5 } } { ( n - 1 ) ! }

A) 1,32,2432,51231,32 , \frac { 243 } { 2 } , \frac { 512 } { 3 }
B) 5,10,152,1035,10 , \frac { 15 } { 2 } , \frac { 10 } { 3 }
C) 10,320,2432,5123\frac { 1 } { 0 } , \frac { 32 } { 0 } , \frac { 243 } { 2 } , \frac { 512 } { 3 }
D) 50,100,152,103\frac { 5 } { 0 } , \frac { 10 } { 0 } , \frac { 15 } { 2 } , \frac { 10 } { 3 }
Question
Use Factorial Notation
Write the first four terms of the sequence whose general term is given.
9!7!2!\frac { 9 ! } { 7 ! 2 ! }

A) 36
B) 9
C) 0 !
D) 1
Question
Use Recursion Formulas
a1 = 3 and an = 4an-1 + 1 for n ≥ 2

A)3, 13, 53, 213
B)3, 13, 49, 193
C)3, 12, 48, 192
D)3, 11, 43, 171
Question
Use Factorial Notation
Write the first four terms of the sequence whose general term is given.
n(n+2)!(n+3)!\frac { n ( n + 2 ) ! } { ( n + 3 ) ! }

A) nn+3\frac { \mathrm { n } } { \mathrm { n } + 3 }
B) n3\frac { \mathrm { n } } { 3 }
C) 1n+3\frac { 1 } { n + 3 }
D) n(n+3)!\frac { \mathrm { n } } { ( \mathrm { n } + 3 ) ! }
Question
Use Summation Notation
i=361i+9\sum _ { i = 3 } ^ { 6 } \frac { 1 } { i + 9 }

A) 5431820\frac { 543 } { 1820 }
B) 5120- \frac { 51 } { 20 }
C) 409\frac { 40 } { 9 }
D) 54
Question
Use Summation Notation
i=35(i2+11)\sum _ { i = 3 } ^ { 5 } \left( i ^ { 2 } + 11 \right)

A) 83
B) 110
C) 57
D) 45
Question
Use Factorial Notation
Write the first four terms of the sequence whose general term is given.
4!6!\frac { 4 ! } { 6 ! }

A) 130\frac { 1 } { 30 }
B) 30
C) 2 !
D) 12!\frac { 1 } { 2 ! }
Question
Use Factorial Notation
Write the first four terms of the sequence whose general term is given.
6!4!\frac { 6 ! } { 4 ! }

A) 30
B) 2!2 !
C) 64\frac { 6 } { 4 }
D) 6
Question
Use Factorial Notation
Write the first four terms of the sequence whose general term is given.
4!3!\frac { 4 ! } { 3 ! }

A) 4
B) 1
C) 43\frac { 4 } { 3 }
D) 4!4 !
Question
Use Factorial Notation
Write the first four terms of the sequence whose general term is given.
an=3n(n+3)!a _ { n } = \frac { 3 ^ { n } } { ( n + 3 ) ! }

A) 18,340,380,9560\frac { 1 } { 8 } , \frac { 3 } { 40 } , \frac { 3 } { 80 } , \frac { 9 } { 560 }
B) 37,98,3,8110\frac { 3 } { 7 } , \frac { 9 } { 8 } , 3 , \frac { 81 } { 10 }
C) 43,95,92,781\frac { 4 } { 3 } , \frac { 9 } { 5 } , \frac { 9 } { 2 } , \frac { 7 } { 81 }
D) 18,340,340,9280\frac { 1 } { 8 } , \frac { 3 } { 40 } , \frac { 3 } { 40 } , \frac { 9 } { 280 }
Question
Use Factorial Notation
Write the first four terms of the sequence whose general term is given.
an=5(n+1)!n!a _ { n } = \frac { 5 ( n + 1 ) ! } { n ! }

A) 10,15,20,2510,15,20,25
B) 10,152,103,252410 , \frac { 15 } { 2 } , \frac { 10 } { 3 } , \frac { 25 } { 24 }
C) 6,7,8,96,7,8,9
D) 10,152,203,25410 , \frac { 15 } { 2 } , \frac { 20 } { 3 } , \frac { 25 } { 4 } Evaluate the factorial expression.
Question
Use Summation Notation
i=1417i\sum _ { i = 1 } ^ { 4 } \frac { 1 } { 7 i }

A) 2584\frac { 25 } { 84 }
B) 128\frac { 1 } { 28 }
C) 528\frac { 5 } { 28 }
D) 1142\frac { 11 } { 42 }
Question
Use Factorial Notation
Write the first four terms of the sequence whose general term is given.
8!4!4!\frac { 8 ! } { 4 ! 4 ! }

A) 70
B) 140
C) 1680
D) 35
Question
Use Factorial Notation
Write the first four terms of the sequence whose general term is given.
an=3(n+2)!a _ { n } = - 3 ( n + 2 ) !

A) 18,72,360,2160- 18 , - 72 , - 360 , - 2160
B) 18,144,1080,8640- 18,144 , - 1080,8640
C) 6,36,216,1440- 6 , - 36 , - 216 , - 1440
D) 6,18,72,360- 6,18 , - 72,360
Question
Use Summation Notation
i=15(i+1)!(i+2)!\sum _ { i = 1 } ^ { 5 } \frac { ( i + 1 ) ! } { ( i + 2 ) ! }

A) 153140\frac { 153 } { 140 }
B) 547140\frac { 547 } { 140 }
C) 3920\frac { 39 } { 20 }
D) 8120\frac { 81 } { 20 } Express the sum using summation notation. Use 1 as the lower limit of summation and i for the index of summation.
Question
Solve the problem.
The bar graph below shows a company's yearly profits from 1991 to 1999. Let an represent the company's profit, in millions, in year n, where n=1 corresponds to 1991, n = 2 corresponds to 1992, and so on.  <strong>Solve the problem. The bar graph below shows a company's yearly profits from 1991 to 1999. Let an represent the company's profit, in millions, in year n, where n=1 corresponds to 1991, n = 2 corresponds to 1992, and so on.   Find  \sum _ { i = 1 } ^ { 9 } a _ { i } </strong> A)  \$ 631  million B)  \$ 593.4  million C)  \$ 140.1  million D)  \$ 650.8  million <div style=padding-top: 35px>
Find i=19ai\sum _ { i = 1 } ^ { 9 } a _ { i }

A) $631\$ 631 million
B) $593.4\$ 593.4 million
C) $140.1\$ 140.1 million
D) $650.8\$ 650.8 million
Question
Use Summation Notation
i=15(1)i+1(i1)!\sum _ { i = 1 } ^ { 5 } \frac { ( - 1 ) ^ { \mathrm { i } + 1 } } { ( \mathrm { i } - 1 ) ! }

A) 38\frac { 3 } { 8 }
B) 38- \frac { 3 } { 8 }
C) 512\frac { 5 } { 12 }
D) 512- \frac { 5 } { 12 }
Question
Use Summation Notation
a+ar+ar2++ar11a + a r + a r ^ { 2 } + \ldots + a r ^ { 11 }

A) i=112ari1\sum _ { \mathrm { i } = 1 } ^ { 12 } a \mathrm { r } ^ { \mathrm { i } - 1 }
B) i=111ari\sum _ { \mathrm { i } = 1 } ^ { 11 } a r ^ { \mathrm { i } }
C) i=111(ar)i\sum _ { \mathrm { i } = 1 } ^ { 11 } ( \mathrm { ar } ) ^ { \mathrm { i } }
D) i=111(ar)i1\sum _ { \mathrm { i } = 1 } ^ { 11 } ( \mathrm { ar } ) ^ { \mathrm { i - 1}} Express the sum using summation notation. Use a lower limit of summation not necessarily 1 and k for the index of summation.
Question
Use Summation Notation
45+56+67+78++1617\frac { 4 } { 5 } + \frac { 5 } { 6 } + \frac { 6 } { 7 } + \frac { 7 } { 8 } + \ldots + \frac { 16 } { 17 }

A) k=416kk+1\sum _ { k = 4 } ^ { 16 } \frac { k } { k + 1 }
B) k=516k+1k\sum _ { \mathrm { k } = 5 } ^ { 16 } \frac { \mathrm { k } + 1 } { \mathrm { k } }
C) k=416k+1k\sum _ { k = 4 } ^ { 16 } \frac { k + 1 } { k }
D) k=516kk+1\sum _ { k = 5 } ^ { 16 } \frac { \mathrm { k } } { \mathrm { k } + 1 }
Question
Use Summation Notation
(a+1)+(a+b)+(a+b2)++(a+bn)( a + 1 ) + ( a + b ) + \left( a + b ^ { 2 } \right) + \ldots + \left( a + b ^ { n } \right)

A) k=0n(a+bk)\sum _ { \mathrm { k } = 0 } ^ { \mathrm { n } } \left( \mathrm { a } + \mathrm { b } ^ { \mathrm { k } } \right)
B) k=1n(a+bk)\sum _ { k = 1 } ^ { n } \left( a + b ^ { k } \right)
C) k=0n1(a+bk)\sum _ { k = 0 } ^ { n - 1 } \left( a + b ^ { k } \right)
D) k=0nabk\sum _ { k = 0 } ^ { n } a b ^ { k }
Question
Use Summation Notation
3+72+4+92++103 + \frac { 7 } { 2 } + 4 + \frac { 9 } { 2 } + \ldots + 10

A) k=620k2\sum _ { k = 6 } ^ { 20 } \frac { k } { 2 }
B) k=120k2\sum _ { \mathrm { k } = 1 } ^ { 20 } \frac { \mathrm { k } } { 2 }
C) k=610k2\sum _ { \mathrm { k } = 6 } ^ { 10 } \frac { \mathrm { k } } { 2 }
D) k=220k2\sum _ { k = 2 } ^ { 20 } \frac { k } { 2 }
Question
Use Summation Notation
32+63+94++2493 ^ { 2 } + 6 ^ { 3 } + 9 ^ { 4 } + \ldots + 24 ^ { 9 }

A) i=18(3i)i+1\sum _ { i = 1 } ^ { 8 } ( 3 i ) ^ { i + 1 }
B) i=18(3i)i\sum _ { \mathrm { i } = 1 } ^ { 8 } ( 3 \mathrm { i } ) ^ { \mathrm { i } }
C) i=182(i1)i+1\sum _ { \mathrm { i } = 1 } ^ { 8 } 2 ( \mathrm { i } - 1 ) ^ { \mathrm { i } + 1 }
D) i=183i2i1\sum _ { i = 1 } ^ { 8 } 3 i ^ { 2 i - 1}
Question
Use Summation Notation
5+6+7+8++295 + 6 + 7 + 8 + \ldots + 29

A) k=428(k+1)\sum _ { k = 4 } ^ { 28 } ( k + 1 )
B) k=529(k+1)\sum _ { k = 5 } ^ { 29 } ( \mathrm { k } + 1 )
C) k=630(k+1)\sum _ { k = 6 } ^ { 30 } ( k + 1 )
D) k=124(k+1)\sum _ { k = 1 } ^ { 24 } ( \mathrm { k } + 1 )
Question
Use Summation Notation
i=47i!(i1)!\sum _ { i = 4 } ^ { 7 } \frac { i ! } { ( i - 1 ) ! }

A) 22
B) 14
C) 73\frac { 7 } { 3 }
D) 7
Question
Use Summation Notation
11+14+17+20++3511 + 14 + 17 + 20 + \ldots + 35

A) k=2103k+5\sum _ { \mathrm { k } = 2 } ^ { 10 } 3 \mathrm { k } + 5
B) k=0243k+5\sum _ { k = 0 } ^ { 24 } 3 k + 5
C) k=1103k+5\sum _ { k = 1 } ^ { 10 } 3 k + 5
D) k=2243k+5\sum _ { k = 2 } ^ { 24 } 3 k + 5
Question
Use Summation Notation
i=594\sum _ { i = 5 } ^ { 9 } 4

A) 20
B) 140
C) 16
D) 120
Question
Use Summation Notation
13+12+35++78\frac { 1 } { 3 } + \frac { 1 } { 2 } + \frac { 3 } { 5 } + \ldots + \frac { 7 } { 8 }

A) i=114ii+2\sum _ { i = 1 } ^ { 14 } \frac { i } { i + 2 }
B) i=014ii+2\sum _ { i = 0 } ^ { 14 } \frac { i } { i + 2 }
C) i=1nii+2\sum _ { i = 1 } ^ { n } \frac { i } { i + 2 }
D) i=214ii+1\sum _ { i = 2 } ^ { 14 } \frac { \mathrm { i } } { \mathrm { i } + 1 }
Question
Use Summation Notation
3+12+27++1083 + 12 + 27 + \ldots + 108

A) i=163i2\sum _ { i = 1 } ^ { 6 } 3 i ^ { 2 }
B) i=063i2\sum _ { i = 0 } ^ { 6 } 3 i ^ { 2 }
C) i=16i2\sum _ { i = 1 } ^ { 6 } i ^ { 2 }
D) i=1632i\sum _ { i = 1 } ^ { 6 } 3 ^ { 2 } i
Question
Use Summation Notation
a+1+a+22++a+55a + 1 + \frac { a + 2 } { 2 } + \ldots + \frac { a + 5 } { 5 }

A) i=15a+ii\sum _ { i = 1 } ^ { 5 } \frac { a + i } { i }
B) i=05a+ii\sum _ { i = 0 } ^ { 5 } \frac { a + i } { i }
C) i=0na+ii\sum _ { i = 0 } ^ { n } \frac { a + i } { i }
D) i=1na+ii\sum _ { i = 1 } ^ { n } \frac { a + i } { i }
Question
Use Summation Notation
i=14(13)i\sum _ { i = 1 } ^ { 4 } \left( - \frac { 1 } { 3 } \right) ^ { i }

A) 2081- \frac { 20 } { 81 }
B) 2081\frac { 20 } { 81 }
C) 1681- \frac { 16 } { 81 }
D) 4081\frac { 40 } { 81 }
Question
Use Summation Notation
k=14(1)k(k+15)\sum _ { k = 1 } ^ { 4 } ( - 1 ) ^ { k } ( k + 15 )

A) 2
B) 70- 70
C) 70
D) 62
Question
Use Summation Notation
a+ar+ar2++ar14a + a r + a r ^ { 2 } + \ldots + a r ^ { 14 }

A) k=014ark\sum _ { \mathrm { k } = 0 } ^ { 14 } a \mathrm { r } ^ { \mathrm { k } }
B) k=115ark\sum _ { \mathrm { k } = 1 } ^ { 15 } a \mathrm { r } ^ { \mathrm { k } }
C) k=014(ar)k\sum _ { \mathrm { k } = 0 } ^ { 14 } ( \mathrm { ar } ) ^ { \mathrm { k } }
D) k=114ark\sum _ { k = 1 } ^ { 14 } a r ^ { k }
Question
Use Summation Notation
3 + 6 + 9 + . . . + 21 A) i=173i\sum _ { i = 1 } ^ { 7 } 3 i
B) i=073i\sum _ { i = 0 } ^ { 7 } 3 i
C) i=17i2\sum _ { i = 1 } ^ { 7 } i ^ { 2 }
D) i=173i2\sum _ { i = 1 } ^ { 7 } 3 i ^ { 2 }
Question
Use Summation Notation
k=24k(k4)\sum _ { k = 2 } ^ { 4 } k ( k - 4 )

A) 7- 7
B) 10- 10
C) 4- 4
D) 6 )6
Question
Write Terms of an Arithmetic Sequence
an=an17;a1=5a _ { n } = a _ { n } - 1 - 7 ; a _ { 1 } = 5

A) 5,2,9,16,235 , - 2 , - 9 , - 16 , - 23
B) 4,3,10,17,244 , - 3 , - 10 , - 17 , - 24
C) 7,2,3,8,13- 7 , - 2,3,8,13
D) 5,7,2,9,165 , - 7 , - 2 , - 9 , - 16
Question
Find the Common Difference for an Arithmetic Sequence
-9, -14, -19, -24, . . .

A)-5B)-15
C)-10
D)15
Question
Find the Common Difference for an Arithmetic Sequence
794, 786, 778, 770, . . .

A)-8
B)8
C)794
D)-794
Question
Write Terms of an Arithmetic Sequence
an=an1+7.3;a1=7a _ { n } = a _ { n } - 1 + 7.3 ; a _ { 1 } = - 7

A) 7,0.3,7.6,14.9,22.2- 7,0.3,7.6,14.9,22.2
В) 8,0.7,6.6,13.9,21.2- 8 , - 0.7,6.6,13.9,21.2
C) 7.3,0.3,6.7,13.7,20.77.3,0.3 , - 6.7 , - 13.7 , - 20.7
D) 7,7.3,0.3,7.6,14.9- 7,7.3,0.3,7.6,14.9
Question
Use the Formula for the General Term of an Arithmetic Sequence
Find a11a _ { 11 } when a1=21,d=3a _ { 1 } = 21 , d = - 3 .

A) 9- 9
B) 12- 12
C) 30- 30
D) 51
Question
Find the Common Difference for an Arithmetic Sequence
8, 13, 18, 23, . . .

A)5
B)15
C)-5D)-15
Question
Write Terms of an Arithmetic Sequence
an=an11.8;a1=6\mathrm { a } _ { \mathrm { n } } = \mathrm { a } _ { \mathrm { n } } - 1 - 1.8 ; \mathrm { a } _ { 1 } = 6

A) 6,4.2,2.4,0.6,1.26,4.2,2.4,0.6 , - 1.2
B) 5,3.2,1.4,0.4,2.25,3.2,1.4 , - 0.4 , - 2.2
C) 1.8,4.2,10.2,16.2,22.2- 1.8,4.2,10.2,16.2,22.2
D) 6,1.8,4.2,2.4,0.66 , - 1.8,4.2,2.4,0.6
Question
Write Terms of an Arithmetic Sequence
a1 = -30; d = 7

A)-30, -23, -16, -9, -2B)-16, -9, -2, 5, 12
C)-2, -9, -16, -23, -30
D)-16, -23, -30, -37, -44
Question
Write Terms of an Arithmetic Sequence
an=an113;a1=12a _ { n } = a _ { n - 1} - \frac { 1 } { 3 } ; a _ { 1 } = - \frac { 1 } { 2 }

A) 12,56,76,32,116- \frac { 1 } { 2 } , - \frac { 5 } { 6 } , - \frac { 7 } { 6 } , - \frac { 3 } { 2 } , - \frac { 11 } { 6 }
B) 12,16,16,12,56- \frac { 1 } { 2 } , - \frac { 1 } { 6 } , \frac { 1 } { 6 } , \frac { 1 } { 2 } , \frac { 5 } { 6 }
C) 12,1,32,2,52- \frac { 1 } { 2 } , - 1 , - \frac { 3 } { 2 } , - 2 , - \frac { 5 } { 2 }
D) 12,56,1,43,53- \frac { 1 } { 2 } , - \frac { 5 } { 6 } , - 1 , - \frac { 4 } { 3 } , - \frac { 5 } { 3 }
Question
Write Terms of an Arithmetic Sequence
a1=73,d=53a _ { 1 } = - \frac { 7 } { 3 } , d = - \frac { 5 } { 3 }

A) 73,4,173,223,9- \frac { 7 } { 3 } , - 4 , - \frac { 17 } { 3 } , - \frac { 22 } { 3 } , - 9
B) 73,23,1,83,133- \frac { 7 } { 3 } , - \frac { 2 } { 3 } , 1 , \frac { 8 } { 3 } , \frac { 13 } { 3 }
C) 73,2,179,116,95- \frac { 7 } { 3 } , - 2 , - \frac { 17 } { 9 } , - \frac { 11 } { 6 } , - \frac { 9 } { 5 }
D) 73,13,13,23,1315- \frac { 7 } { 3 } , - \frac { 1 } { 3 } , \frac { 1 } { 3 } , \frac { 2 } { 3 } , \frac { 13 } { 15 }
Question
Use the Formula for the General Term of an Arithmetic Sequence
Find a32a 32 when a1=6,d=2a 1 = - 6 , d = 2 .

A) 56
B) 58
C) 68- 68
D) 70- 70
Question
Use the Formula for the General Term of an Arithmetic Sequence
Find a8 when a 1=9,d=41 = - 9 , d = - 4 .

A) 37- 37
В) 41- 41
C) 19
D) 23
Question
Find the Common Difference for an Arithmetic Sequence
6, 7, 8, 9, . . .

A)1
B)3
C)0.75
D)6
Question
Write Terms of an Arithmetic Sequence
an=an1+4;a1=18a _ { n } = a _ { n } - 1 + 4 ; a _ { 1 } = - 18

A) 18,14,10,6,2- 18 , - 14 , - 10 , - 6 , - 2
B) 19,15,11,7,3- 19 , - 15 , - 11 , - 7 , - 3
C) 4,14,32,50,684 , - 14 , - 32 , - 50 , - 68
D) 18,4,14,10,6- 18,4 , - 14 , - 10 , - 6
Question
Write Terms of an Arithmetic Sequence
a1 = 6; d = -1

A)6, 5, 4, 3, 2
B)0, 6, 5, 4, 3C)-6, -5, -4, -3, -2D)10, 8, 6, 4, 2
Question
Write Terms of an Arithmetic Sequence
a1 = 5; d = 3

A)5, 8, 11, 14, 17
B)8, 11, 14, 17, 20
C)0, 5, 8, 11, 14
D)5, 7, 9, 11, 13
Question
Write Terms of an Arithmetic Sequence
a1=23;d=19\mathrm { a } _ { 1 } = - \frac { 2 } { 3 } ; \mathrm { d } = - \frac { 1 } { 9 }

A) 23,79,89,1,109- \frac { 2 } { 3 } , - \frac { 7 } { 9 } , - \frac { 8 } { 9 } , - 1 , - \frac { 10 } { 9 }
B) 23,59,49,13,29- \frac { 2 } { 3 } , - \frac { 5 } { 9 } , - \frac { 4 } { 9 } , - \frac { 1 } { 3 } , - \frac { 2 } { 9 }
C) 23,43,2,83,103- \frac { 2 } { 3 } , - \frac { 4 } { 3 } , - 2 , - \frac { 8 } { 3 } , - \frac { 10 } { 3 }
D) 23,79,49,1,29- \frac { 2 } { 3 } , - \frac { 7 } { 9 } , - \frac { 4 } { 9 } , - 1 , - \frac { 2 } { 9 }
Question
Solve the problem.
The finite sequence whose general term is an=0.16n21.06n+7.25a _ { n } = 0.16 n ^ { 2 } - 1.06 n + 7.25
where n=1,2,3,,9\mathrm { n } = 1,2,3 , \ldots , 9 models the total operating costs, in millions of dollars, for a company from 1991 through 1999.1999 .
Find i=15ai\sum _ { i = 1 } ^ { 5 } a _ { i }

A) $29.15\$ 29.15 million
B) $31.75\$ 31.75 million
C) $23.2\$ 23.2 million
D) $25.4\$ 25.4 million
Question
Write Terms of an Arithmetic Sequence
a1 = 13; d = -3

A)13, 10, 7, 4, 1B)16, 13, 10, 7, 4C)10, 7, 4, 1, -2D)13, 10, 6, 4, 1
Question
Use the Formula for the General Term of an Arithmetic Sequence
Find a 21 when a1 = 5, d = 1.

A)25
B)26
C)- 15
D)- 16
Unlock Deck
Sign up to unlock the cards in this deck!
Unlock Deck
Unlock Deck
1/303
auto play flashcards
Play
simple tutorial
Full screen (f)
exit full mode
Deck 8: Sequences, Induction, and Probability
1
Write the first four terms of the sequence whose general term is given.
an=3n3a _ { n } = 3 n - 3

A) 0,3,6,90,3,6,9
B) 0,1,2,30,1,2,3
C) 6,9,12,156,9,12,15
D) 0,3,6,90 , - 3 , - 6 , - 9
A
2
Write the first four terms of the sequence whose general term is given.
an=(1)n+1(n+4)a _ { n } = ( - 1 ) ^ { n + 1 } ( n + 4 )

A) 5,6,7,85 , - 6,7 , - 8
B) 5,6,7,8- 5,6 , - 7,8
C) 5,12,21,325 , - 12,21 , - 32
D) 6,7,8,9- 6,7 , - 8,9
A
3
Write the first four terms of the sequence whose general term is given.
an=5n2a _ { n } = \frac { 5 } { n ^ { 2 } }

A) 5,54,59,5165 , \frac { 5 } { 4 } , \frac { 5 } { 9 } , \frac { 5 } { 16 }
B) 1,24,39,4161 , \frac { 2 } { 4 } , \frac { 3 } { 9 } , \frac { 4 } { 16 }
C) 54,59,516,525\frac { 5 } { 4 } , \frac { 5 } { 9 } , \frac { 5 } { 16 } , \frac { 5 } { 25 }
D) 1,14,19,1161 , \frac { 1 } { 4 } , \frac { 1 } { 9 } , \frac { 1 } { 16 }
A
4
Write the first four terms of the sequence whose general term is given.
an=4(2n1)\mathrm { a } _ { \mathrm { n } } = 4 ( 2 \mathrm { n } - 1 )

A) 4,12,20,284,12,20,28
B) 1,3,5,71,3,5,7
C) 4,4,12,20- 4,4,12,20
D) 4,8,12,164,8,12,16
Unlock Deck
Unlock for access to all 303 flashcards in this deck.
Unlock Deck
k this deck
5
Write the first four terms of the sequence whose general term is given.
an=4na _ { n } = 4 ^ { n }

A) 4,16,64,2564,16,64,256
B) 1,16,81,2561,16,81,256
C) 1,4,16,641,4,16,64
D) 16,64,256,102416,64,256,1024
Unlock Deck
Unlock for access to all 303 flashcards in this deck.
Unlock Deck
k this deck
6
Use Recursion Formulas
a1=5a _ { 1 } = - 5 and an=4an1a _ { n } = - 4 a _ { n - 1 } for n2n \geq 2

A) 5,20,80,320- 5,20 , - 80,320
B) 5,20,80,3205 , - 20,80 , - 320
C) 5,20,80,320- 5 , - 20 , - 80 , - 320
D) 5,22,82,322- 5,22 , - 82,322
Unlock Deck
Unlock for access to all 303 flashcards in this deck.
Unlock Deck
k this deck
7
Write the first four terms of the sequence whose general term is given.
an=6na _ { n } = 6 n

A) 6,12,18,246,12,18,24
B) 0,6,12,180,6,12,18
C) 7,8,9,107,8,9,10
D) 5,4,3,25,4,3,2
Unlock Deck
Unlock for access to all 303 flashcards in this deck.
Unlock Deck
k this deck
8
Write the first four terms of the sequence whose general term is given.
an=(14)na _ { n } = \left( - \frac { 1 } { 4 } \right) ^ { n }

A) 14,116,164,1256- \frac { 1 } { 4 } , \frac { 1 } { 16 } , - \frac { 1 } { 64 } , \frac { 1 } { 256 }
B) 14,116,164,1256- \frac { 1 } { 4 } , - \frac { 1 } { 16 } , - \frac { 1 } { 64 } , - \frac { 1 } { 256 }
C)14,18,112,116\mathrm { C } ) - \frac { 1 } { 4 } , \frac { 1 } { 8 } , - \frac { 1 } { 12 } , - \frac { 1 } { 16 }
D) 14,18,112,116\frac { 1 } { 4 } , - \frac { 1 } { 8 } , \frac { 1 } { 12 } , - \frac { 1 } { 16 }
Unlock Deck
Unlock for access to all 303 flashcards in this deck.
Unlock Deck
k this deck
9
Use Recursion Formulas
a1=4a _ { 1 } = 4 and an=an13a _ { n } = a _ { n - 1 } - 3 for n2n \geq 2

A) 4,1,2,54,1 , - 2 , - 5
B) 3,6,9,12- 3 , - 6 , - 9 , - 12
C) 4,7,10,134,7,10,13
D) 4,3,0,34,3,0 , - 3
Unlock Deck
Unlock for access to all 303 flashcards in this deck.
Unlock Deck
k this deck
10
Solve the problem.
A deposit of $9000 is made in an account that earns 8% interest compounded quarterly. The balance in the account after n quarters is given by the sequence an=9000(1+0.084)nn=1,2,3,a _ { n } = 9000 \left( 1 + \frac { 0.08 } { 4 } \right) ^ { n } \quad n = 1,2,3 , \ldots
Find the balance in the account after 28 quarters.

A) $15,669.22\$ 15,669.22
B) $15,762.22\$ 15,762.22
C) $15,721.22\$ 15,721.22
D) $15,524.22\$ 15,524.22
Unlock Deck
Unlock for access to all 303 flashcards in this deck.
Unlock Deck
k this deck
11
Use Recursion Formulas
a1=5a _ { 1 } = 5 and an=3an1a _ { n } = 3 a _ { n - 1 } for n2n \geq 2

A) 5,15,45,1355,15,45,135
B) 5,14,13,125,14,13,12
C) 12,36,108,21612,36,108,216
D) 5,17,47,1375,17,47,137
Unlock Deck
Unlock for access to all 303 flashcards in this deck.
Unlock Deck
k this deck
12
Write the first four terms of the sequence whose general term is given.
an=(1)n+1n+2a _ { n } = \frac { ( - 1 ) ^ { n + 1 } } { n + 2 }

A) 13,14,15,16\frac { 1 } { 3 } , - \frac { 1 } { 4 } , \frac { 1 } { 5 } , - \frac { 1 } { 6 }
B) 13,14,15,16- \frac { 1 } { 3 } , \frac { 1 } { 4 } , - \frac { 1 } { 5 } , \frac { 1 } { 6 }
C) 13,18,115,124\frac { 1 } { 3 } , - \frac { 1 } { 8 } , \frac { 1 } { 15 } , - \frac { 1 } { 24 }
D) 14,15,16,17- \frac { 1 } { 4 } , \frac { 1 } { 5 } , - \frac { 1 } { 6 } , \frac { 1 } { 7 }
Unlock Deck
Unlock for access to all 303 flashcards in this deck.
Unlock Deck
k this deck
13
Write the first four terms of the sequence whose general term is given.
an=n+12n1a _ { n } = \frac { n + 1 } { 2 n - 1 }

A) 2,1,45,572,1 , \frac { 4 } { 5 } , \frac { 5 } { 7 }
B) 2,1,45,572 , - 1 , \frac { 4 } { 5 } , \frac { 5 } { 7 }
C) 2,1,45,57- 2,1 , \frac { 4 } { 5 } , \frac { 5 } { 7 }
D) 2,1,45,57- 2 , - 1 , \frac { 4 } { 5 } , \frac { 5 } { 7 }
Unlock Deck
Unlock for access to all 303 flashcards in this deck.
Unlock Deck
k this deck
14
Solve the problem.
A deposit of $11,000 is made in an account that earns 8% interest compounded quarterly. The balance in the account after n quarters is given by the sequence an=11,000(1+0.084)n,n=1,2,3,\mathrm { a } _ { \mathrm { n } } = 11,000 \left( 1 + \frac { 0.08 } { 4 } \right) ^ { \mathrm { n } } , \mathrm { n } = 1,2,3 , \ldots
Find the balance in the account after 4 years.

A) $15,100.64\$ 15,100.64
B) $5491.14\$ 5491.14
C) $11,906.75\$ 11,906.75
D) $4257.14\$ 4257.14
Unlock Deck
Unlock for access to all 303 flashcards in this deck.
Unlock Deck
k this deck
15
Write the first four terms of the sequence whose general term is given.
an=(3)na _ { n } = ( - 3 ) ^ { n }

A) 3,9,27,81- 3,9 , - 27,81
B) 3,9,27,81- 3 , - 9 , - 27 , - 81
C) 3,9,27,813 , - 9 , - 27 , - 81
D) 3,9,27,813 , - 9,27 , - 81
Unlock Deck
Unlock for access to all 303 flashcards in this deck.
Unlock Deck
k this deck
16
Use Recursion Formulas
a1=5a _ { 1 } = - 5 and an=an13a _ { n } = a _ { n - 1 } - 3 for n2n \geq 2

A) 5,8,11,14- 5 , - 8 , - 11 , - 14
B) 5,2,1,45,2 , - 1 , - 4
C) 5,8,11,145,8,11,14
D) 5,4,1,2- 5 , - 4 , - 1,2
Unlock Deck
Unlock for access to all 303 flashcards in this deck.
Unlock Deck
k this deck
17
Write the first four terms of the sequence whose general term is given.
an=(1)n(n+6)a _ { n } = ( - 1 ) ^ { n } ( n + 6 )

A) 7,8,9,10- 7,8 , - 9,10
B) 7,8,9,10- 7 , - 8 , - 9 , - 10
C) 7,16,27,40- 7 , - 16 , - 27 , - 40
D) 7,8,9,107,8,9,10
Unlock Deck
Unlock for access to all 303 flashcards in this deck.
Unlock Deck
k this deck
18
Write the first four terms of the sequence whose general term is given.
an=(25)na _ { n } = \left( \frac { 2 } { 5 } \right) ^ { n }

A) 25,425,8125,16625\frac { 2 } { 5 } , \frac { 4 } { 25 } , \frac { 8 } { 125 } , \frac { 16 } { 625 }
B) 1,25,425,81251 , \frac { 2 } { 5 } , \frac { 4 } { 25 } , \frac { 8 } { 125 }
C) 25,210,215,220\frac { 2 } { 5 } , \frac { 2 } { 10 } , \frac { 2 } { 15 } , \frac { 2 } { 20 }
D) 1,425,8125,166251 , \frac { 4 } { 25 } , \frac { 8 } { 125 } , \frac { 16 } { 625 }
Unlock Deck
Unlock for access to all 303 flashcards in this deck.
Unlock Deck
k this deck
19
Write the first four terms of the sequence whose general term is given.
an=n4a _ { n } = n - 4

A) 3,2,1,0- 3 , - 2 , - 1,0
B) 4,3,2,1- 4 , - 3 , - 2 , - 1
C) 1,0,1,2- 1,0,1,2
D) 16,12,8,4- 16 , - 12 , - 8 , - 4
Unlock Deck
Unlock for access to all 303 flashcards in this deck.
Unlock Deck
k this deck
20
Solve the problem.
A deposit of $7000 is made in an account that earns 8% interest compounded quarterly. The balance in the account after n quarters is given by the sequence an=7000(1+0.084)nn=1,2,3,\mathrm { a } _ { \mathrm { n } } = 7000 \left( 1 + \frac { 0.08 } { 4 } \right) ^ { \mathrm { n } } \quad \mathrm { n } = 1,2,3 , \ldots
Find the balance in the account after 9 years.

A) $14,279.21\$ 14,279.21
B) $14,372.21\$ 14,372.21
C) $14,368.21\$ 14,368.21
D) $14,097.21\$ 14,097.21
Unlock Deck
Unlock for access to all 303 flashcards in this deck.
Unlock Deck
k this deck
21
Use Factorial Notation
Write the first four terms of the sequence whose general term is given.
an=(n1)!n5a _ { n } = \frac { ( n - 1 ) ! } { n ^ { 5 } }

A) 1,132,2243,35121 , \frac { 1 } { 32 } , \frac { 2 } { 243 } , \frac { 3 } { 512 }
B) 15,110,215,310\frac { 1 } { 5 } , \frac { 1 } { 10 } , \frac { 2 } { 15 } , \frac { 3 } { 10 }
C) 0,0,2243,35120,0 , \frac { 2 } { 243 } , \frac { 3 } { 512 }
D) 0,0,215,3100,0 , \frac { 2 } { 15 } , \frac { 3 } { 10 }
Unlock Deck
Unlock for access to all 303 flashcards in this deck.
Unlock Deck
k this deck
22
Use Factorial Notation
Write the first four terms of the sequence whose general term is given.
(n+5)!n+5\frac { ( \mathrm { n } + 5 ) ! } { \mathrm { n } + 5 }

A) (n+4)( n + 4 ) !
B) 1
C) 5 !
D) n+5n + 5 !
Unlock Deck
Unlock for access to all 303 flashcards in this deck.
Unlock Deck
k this deck
23
Use Summation Notation
i=36(2i3)\sum _ { i = 3 } ^ { 6 } ( 2 i - 3 )

A) 24
B) 21
C) 27
D) 15
Unlock Deck
Unlock for access to all 303 flashcards in this deck.
Unlock Deck
k this deck
24
Use Summation Notation
i=143i\sum _ { i = 1 } ^ { 4 } 3 ^ { i }

A) 120
B) 84
C) 39
D) 30
Unlock Deck
Unlock for access to all 303 flashcards in this deck.
Unlock Deck
k this deck
25
Use Summation Notation
i=479i\sum _ { i = 4 } ^ { 7 } 9 i

A) 198
B) 63
C) 99
D) 135
Unlock Deck
Unlock for access to all 303 flashcards in this deck.
Unlock Deck
k this deck
26
Use Summation Notation
i=15(i10)\sum _ { \mathrm { i } = 1 } ^ { 5 } ( \mathrm { i } - 10 )

A) 35- 35
В) 5- 5
C) 14- 14
D) 30- 30
Unlock Deck
Unlock for access to all 303 flashcards in this deck.
Unlock Deck
k this deck
27
Use Factorial Notation
Write the first four terms of the sequence whose general term is given.
an=n5(n1)!a _ { n } = \frac { n ^ { 5 } } { ( n - 1 ) ! }

A) 1,32,2432,51231,32 , \frac { 243 } { 2 } , \frac { 512 } { 3 }
B) 5,10,152,1035,10 , \frac { 15 } { 2 } , \frac { 10 } { 3 }
C) 10,320,2432,5123\frac { 1 } { 0 } , \frac { 32 } { 0 } , \frac { 243 } { 2 } , \frac { 512 } { 3 }
D) 50,100,152,103\frac { 5 } { 0 } , \frac { 10 } { 0 } , \frac { 15 } { 2 } , \frac { 10 } { 3 }
Unlock Deck
Unlock for access to all 303 flashcards in this deck.
Unlock Deck
k this deck
28
Use Factorial Notation
Write the first four terms of the sequence whose general term is given.
9!7!2!\frac { 9 ! } { 7 ! 2 ! }

A) 36
B) 9
C) 0 !
D) 1
Unlock Deck
Unlock for access to all 303 flashcards in this deck.
Unlock Deck
k this deck
29
Use Recursion Formulas
a1 = 3 and an = 4an-1 + 1 for n ≥ 2

A)3, 13, 53, 213
B)3, 13, 49, 193
C)3, 12, 48, 192
D)3, 11, 43, 171
Unlock Deck
Unlock for access to all 303 flashcards in this deck.
Unlock Deck
k this deck
30
Use Factorial Notation
Write the first four terms of the sequence whose general term is given.
n(n+2)!(n+3)!\frac { n ( n + 2 ) ! } { ( n + 3 ) ! }

A) nn+3\frac { \mathrm { n } } { \mathrm { n } + 3 }
B) n3\frac { \mathrm { n } } { 3 }
C) 1n+3\frac { 1 } { n + 3 }
D) n(n+3)!\frac { \mathrm { n } } { ( \mathrm { n } + 3 ) ! }
Unlock Deck
Unlock for access to all 303 flashcards in this deck.
Unlock Deck
k this deck
31
Use Summation Notation
i=361i+9\sum _ { i = 3 } ^ { 6 } \frac { 1 } { i + 9 }

A) 5431820\frac { 543 } { 1820 }
B) 5120- \frac { 51 } { 20 }
C) 409\frac { 40 } { 9 }
D) 54
Unlock Deck
Unlock for access to all 303 flashcards in this deck.
Unlock Deck
k this deck
32
Use Summation Notation
i=35(i2+11)\sum _ { i = 3 } ^ { 5 } \left( i ^ { 2 } + 11 \right)

A) 83
B) 110
C) 57
D) 45
Unlock Deck
Unlock for access to all 303 flashcards in this deck.
Unlock Deck
k this deck
33
Use Factorial Notation
Write the first four terms of the sequence whose general term is given.
4!6!\frac { 4 ! } { 6 ! }

A) 130\frac { 1 } { 30 }
B) 30
C) 2 !
D) 12!\frac { 1 } { 2 ! }
Unlock Deck
Unlock for access to all 303 flashcards in this deck.
Unlock Deck
k this deck
34
Use Factorial Notation
Write the first four terms of the sequence whose general term is given.
6!4!\frac { 6 ! } { 4 ! }

A) 30
B) 2!2 !
C) 64\frac { 6 } { 4 }
D) 6
Unlock Deck
Unlock for access to all 303 flashcards in this deck.
Unlock Deck
k this deck
35
Use Factorial Notation
Write the first four terms of the sequence whose general term is given.
4!3!\frac { 4 ! } { 3 ! }

A) 4
B) 1
C) 43\frac { 4 } { 3 }
D) 4!4 !
Unlock Deck
Unlock for access to all 303 flashcards in this deck.
Unlock Deck
k this deck
36
Use Factorial Notation
Write the first four terms of the sequence whose general term is given.
an=3n(n+3)!a _ { n } = \frac { 3 ^ { n } } { ( n + 3 ) ! }

A) 18,340,380,9560\frac { 1 } { 8 } , \frac { 3 } { 40 } , \frac { 3 } { 80 } , \frac { 9 } { 560 }
B) 37,98,3,8110\frac { 3 } { 7 } , \frac { 9 } { 8 } , 3 , \frac { 81 } { 10 }
C) 43,95,92,781\frac { 4 } { 3 } , \frac { 9 } { 5 } , \frac { 9 } { 2 } , \frac { 7 } { 81 }
D) 18,340,340,9280\frac { 1 } { 8 } , \frac { 3 } { 40 } , \frac { 3 } { 40 } , \frac { 9 } { 280 }
Unlock Deck
Unlock for access to all 303 flashcards in this deck.
Unlock Deck
k this deck
37
Use Factorial Notation
Write the first four terms of the sequence whose general term is given.
an=5(n+1)!n!a _ { n } = \frac { 5 ( n + 1 ) ! } { n ! }

A) 10,15,20,2510,15,20,25
B) 10,152,103,252410 , \frac { 15 } { 2 } , \frac { 10 } { 3 } , \frac { 25 } { 24 }
C) 6,7,8,96,7,8,9
D) 10,152,203,25410 , \frac { 15 } { 2 } , \frac { 20 } { 3 } , \frac { 25 } { 4 } Evaluate the factorial expression.
Unlock Deck
Unlock for access to all 303 flashcards in this deck.
Unlock Deck
k this deck
38
Use Summation Notation
i=1417i\sum _ { i = 1 } ^ { 4 } \frac { 1 } { 7 i }

A) 2584\frac { 25 } { 84 }
B) 128\frac { 1 } { 28 }
C) 528\frac { 5 } { 28 }
D) 1142\frac { 11 } { 42 }
Unlock Deck
Unlock for access to all 303 flashcards in this deck.
Unlock Deck
k this deck
39
Use Factorial Notation
Write the first four terms of the sequence whose general term is given.
8!4!4!\frac { 8 ! } { 4 ! 4 ! }

A) 70
B) 140
C) 1680
D) 35
Unlock Deck
Unlock for access to all 303 flashcards in this deck.
Unlock Deck
k this deck
40
Use Factorial Notation
Write the first four terms of the sequence whose general term is given.
an=3(n+2)!a _ { n } = - 3 ( n + 2 ) !

A) 18,72,360,2160- 18 , - 72 , - 360 , - 2160
B) 18,144,1080,8640- 18,144 , - 1080,8640
C) 6,36,216,1440- 6 , - 36 , - 216 , - 1440
D) 6,18,72,360- 6,18 , - 72,360
Unlock Deck
Unlock for access to all 303 flashcards in this deck.
Unlock Deck
k this deck
41
Use Summation Notation
i=15(i+1)!(i+2)!\sum _ { i = 1 } ^ { 5 } \frac { ( i + 1 ) ! } { ( i + 2 ) ! }

A) 153140\frac { 153 } { 140 }
B) 547140\frac { 547 } { 140 }
C) 3920\frac { 39 } { 20 }
D) 8120\frac { 81 } { 20 } Express the sum using summation notation. Use 1 as the lower limit of summation and i for the index of summation.
Unlock Deck
Unlock for access to all 303 flashcards in this deck.
Unlock Deck
k this deck
42
Solve the problem.
The bar graph below shows a company's yearly profits from 1991 to 1999. Let an represent the company's profit, in millions, in year n, where n=1 corresponds to 1991, n = 2 corresponds to 1992, and so on.  <strong>Solve the problem. The bar graph below shows a company's yearly profits from 1991 to 1999. Let an represent the company's profit, in millions, in year n, where n=1 corresponds to 1991, n = 2 corresponds to 1992, and so on.   Find  \sum _ { i = 1 } ^ { 9 } a _ { i } </strong> A)  \$ 631  million B)  \$ 593.4  million C)  \$ 140.1  million D)  \$ 650.8  million
Find i=19ai\sum _ { i = 1 } ^ { 9 } a _ { i }

A) $631\$ 631 million
B) $593.4\$ 593.4 million
C) $140.1\$ 140.1 million
D) $650.8\$ 650.8 million
Unlock Deck
Unlock for access to all 303 flashcards in this deck.
Unlock Deck
k this deck
43
Use Summation Notation
i=15(1)i+1(i1)!\sum _ { i = 1 } ^ { 5 } \frac { ( - 1 ) ^ { \mathrm { i } + 1 } } { ( \mathrm { i } - 1 ) ! }

A) 38\frac { 3 } { 8 }
B) 38- \frac { 3 } { 8 }
C) 512\frac { 5 } { 12 }
D) 512- \frac { 5 } { 12 }
Unlock Deck
Unlock for access to all 303 flashcards in this deck.
Unlock Deck
k this deck
44
Use Summation Notation
a+ar+ar2++ar11a + a r + a r ^ { 2 } + \ldots + a r ^ { 11 }

A) i=112ari1\sum _ { \mathrm { i } = 1 } ^ { 12 } a \mathrm { r } ^ { \mathrm { i } - 1 }
B) i=111ari\sum _ { \mathrm { i } = 1 } ^ { 11 } a r ^ { \mathrm { i } }
C) i=111(ar)i\sum _ { \mathrm { i } = 1 } ^ { 11 } ( \mathrm { ar } ) ^ { \mathrm { i } }
D) i=111(ar)i1\sum _ { \mathrm { i } = 1 } ^ { 11 } ( \mathrm { ar } ) ^ { \mathrm { i - 1}} Express the sum using summation notation. Use a lower limit of summation not necessarily 1 and k for the index of summation.
Unlock Deck
Unlock for access to all 303 flashcards in this deck.
Unlock Deck
k this deck
45
Use Summation Notation
45+56+67+78++1617\frac { 4 } { 5 } + \frac { 5 } { 6 } + \frac { 6 } { 7 } + \frac { 7 } { 8 } + \ldots + \frac { 16 } { 17 }

A) k=416kk+1\sum _ { k = 4 } ^ { 16 } \frac { k } { k + 1 }
B) k=516k+1k\sum _ { \mathrm { k } = 5 } ^ { 16 } \frac { \mathrm { k } + 1 } { \mathrm { k } }
C) k=416k+1k\sum _ { k = 4 } ^ { 16 } \frac { k + 1 } { k }
D) k=516kk+1\sum _ { k = 5 } ^ { 16 } \frac { \mathrm { k } } { \mathrm { k } + 1 }
Unlock Deck
Unlock for access to all 303 flashcards in this deck.
Unlock Deck
k this deck
46
Use Summation Notation
(a+1)+(a+b)+(a+b2)++(a+bn)( a + 1 ) + ( a + b ) + \left( a + b ^ { 2 } \right) + \ldots + \left( a + b ^ { n } \right)

A) k=0n(a+bk)\sum _ { \mathrm { k } = 0 } ^ { \mathrm { n } } \left( \mathrm { a } + \mathrm { b } ^ { \mathrm { k } } \right)
B) k=1n(a+bk)\sum _ { k = 1 } ^ { n } \left( a + b ^ { k } \right)
C) k=0n1(a+bk)\sum _ { k = 0 } ^ { n - 1 } \left( a + b ^ { k } \right)
D) k=0nabk\sum _ { k = 0 } ^ { n } a b ^ { k }
Unlock Deck
Unlock for access to all 303 flashcards in this deck.
Unlock Deck
k this deck
47
Use Summation Notation
3+72+4+92++103 + \frac { 7 } { 2 } + 4 + \frac { 9 } { 2 } + \ldots + 10

A) k=620k2\sum _ { k = 6 } ^ { 20 } \frac { k } { 2 }
B) k=120k2\sum _ { \mathrm { k } = 1 } ^ { 20 } \frac { \mathrm { k } } { 2 }
C) k=610k2\sum _ { \mathrm { k } = 6 } ^ { 10 } \frac { \mathrm { k } } { 2 }
D) k=220k2\sum _ { k = 2 } ^ { 20 } \frac { k } { 2 }
Unlock Deck
Unlock for access to all 303 flashcards in this deck.
Unlock Deck
k this deck
48
Use Summation Notation
32+63+94++2493 ^ { 2 } + 6 ^ { 3 } + 9 ^ { 4 } + \ldots + 24 ^ { 9 }

A) i=18(3i)i+1\sum _ { i = 1 } ^ { 8 } ( 3 i ) ^ { i + 1 }
B) i=18(3i)i\sum _ { \mathrm { i } = 1 } ^ { 8 } ( 3 \mathrm { i } ) ^ { \mathrm { i } }
C) i=182(i1)i+1\sum _ { \mathrm { i } = 1 } ^ { 8 } 2 ( \mathrm { i } - 1 ) ^ { \mathrm { i } + 1 }
D) i=183i2i1\sum _ { i = 1 } ^ { 8 } 3 i ^ { 2 i - 1}
Unlock Deck
Unlock for access to all 303 flashcards in this deck.
Unlock Deck
k this deck
49
Use Summation Notation
5+6+7+8++295 + 6 + 7 + 8 + \ldots + 29

A) k=428(k+1)\sum _ { k = 4 } ^ { 28 } ( k + 1 )
B) k=529(k+1)\sum _ { k = 5 } ^ { 29 } ( \mathrm { k } + 1 )
C) k=630(k+1)\sum _ { k = 6 } ^ { 30 } ( k + 1 )
D) k=124(k+1)\sum _ { k = 1 } ^ { 24 } ( \mathrm { k } + 1 )
Unlock Deck
Unlock for access to all 303 flashcards in this deck.
Unlock Deck
k this deck
50
Use Summation Notation
i=47i!(i1)!\sum _ { i = 4 } ^ { 7 } \frac { i ! } { ( i - 1 ) ! }

A) 22
B) 14
C) 73\frac { 7 } { 3 }
D) 7
Unlock Deck
Unlock for access to all 303 flashcards in this deck.
Unlock Deck
k this deck
51
Use Summation Notation
11+14+17+20++3511 + 14 + 17 + 20 + \ldots + 35

A) k=2103k+5\sum _ { \mathrm { k } = 2 } ^ { 10 } 3 \mathrm { k } + 5
B) k=0243k+5\sum _ { k = 0 } ^ { 24 } 3 k + 5
C) k=1103k+5\sum _ { k = 1 } ^ { 10 } 3 k + 5
D) k=2243k+5\sum _ { k = 2 } ^ { 24 } 3 k + 5
Unlock Deck
Unlock for access to all 303 flashcards in this deck.
Unlock Deck
k this deck
52
Use Summation Notation
i=594\sum _ { i = 5 } ^ { 9 } 4

A) 20
B) 140
C) 16
D) 120
Unlock Deck
Unlock for access to all 303 flashcards in this deck.
Unlock Deck
k this deck
53
Use Summation Notation
13+12+35++78\frac { 1 } { 3 } + \frac { 1 } { 2 } + \frac { 3 } { 5 } + \ldots + \frac { 7 } { 8 }

A) i=114ii+2\sum _ { i = 1 } ^ { 14 } \frac { i } { i + 2 }
B) i=014ii+2\sum _ { i = 0 } ^ { 14 } \frac { i } { i + 2 }
C) i=1nii+2\sum _ { i = 1 } ^ { n } \frac { i } { i + 2 }
D) i=214ii+1\sum _ { i = 2 } ^ { 14 } \frac { \mathrm { i } } { \mathrm { i } + 1 }
Unlock Deck
Unlock for access to all 303 flashcards in this deck.
Unlock Deck
k this deck
54
Use Summation Notation
3+12+27++1083 + 12 + 27 + \ldots + 108

A) i=163i2\sum _ { i = 1 } ^ { 6 } 3 i ^ { 2 }
B) i=063i2\sum _ { i = 0 } ^ { 6 } 3 i ^ { 2 }
C) i=16i2\sum _ { i = 1 } ^ { 6 } i ^ { 2 }
D) i=1632i\sum _ { i = 1 } ^ { 6 } 3 ^ { 2 } i
Unlock Deck
Unlock for access to all 303 flashcards in this deck.
Unlock Deck
k this deck
55
Use Summation Notation
a+1+a+22++a+55a + 1 + \frac { a + 2 } { 2 } + \ldots + \frac { a + 5 } { 5 }

A) i=15a+ii\sum _ { i = 1 } ^ { 5 } \frac { a + i } { i }
B) i=05a+ii\sum _ { i = 0 } ^ { 5 } \frac { a + i } { i }
C) i=0na+ii\sum _ { i = 0 } ^ { n } \frac { a + i } { i }
D) i=1na+ii\sum _ { i = 1 } ^ { n } \frac { a + i } { i }
Unlock Deck
Unlock for access to all 303 flashcards in this deck.
Unlock Deck
k this deck
56
Use Summation Notation
i=14(13)i\sum _ { i = 1 } ^ { 4 } \left( - \frac { 1 } { 3 } \right) ^ { i }

A) 2081- \frac { 20 } { 81 }
B) 2081\frac { 20 } { 81 }
C) 1681- \frac { 16 } { 81 }
D) 4081\frac { 40 } { 81 }
Unlock Deck
Unlock for access to all 303 flashcards in this deck.
Unlock Deck
k this deck
57
Use Summation Notation
k=14(1)k(k+15)\sum _ { k = 1 } ^ { 4 } ( - 1 ) ^ { k } ( k + 15 )

A) 2
B) 70- 70
C) 70
D) 62
Unlock Deck
Unlock for access to all 303 flashcards in this deck.
Unlock Deck
k this deck
58
Use Summation Notation
a+ar+ar2++ar14a + a r + a r ^ { 2 } + \ldots + a r ^ { 14 }

A) k=014ark\sum _ { \mathrm { k } = 0 } ^ { 14 } a \mathrm { r } ^ { \mathrm { k } }
B) k=115ark\sum _ { \mathrm { k } = 1 } ^ { 15 } a \mathrm { r } ^ { \mathrm { k } }
C) k=014(ar)k\sum _ { \mathrm { k } = 0 } ^ { 14 } ( \mathrm { ar } ) ^ { \mathrm { k } }
D) k=114ark\sum _ { k = 1 } ^ { 14 } a r ^ { k }
Unlock Deck
Unlock for access to all 303 flashcards in this deck.
Unlock Deck
k this deck
59
Use Summation Notation
3 + 6 + 9 + . . . + 21 A) i=173i\sum _ { i = 1 } ^ { 7 } 3 i
B) i=073i\sum _ { i = 0 } ^ { 7 } 3 i
C) i=17i2\sum _ { i = 1 } ^ { 7 } i ^ { 2 }
D) i=173i2\sum _ { i = 1 } ^ { 7 } 3 i ^ { 2 }
Unlock Deck
Unlock for access to all 303 flashcards in this deck.
Unlock Deck
k this deck
60
Use Summation Notation
k=24k(k4)\sum _ { k = 2 } ^ { 4 } k ( k - 4 )

A) 7- 7
B) 10- 10
C) 4- 4
D) 6 )6
Unlock Deck
Unlock for access to all 303 flashcards in this deck.
Unlock Deck
k this deck
61
Write Terms of an Arithmetic Sequence
an=an17;a1=5a _ { n } = a _ { n } - 1 - 7 ; a _ { 1 } = 5

A) 5,2,9,16,235 , - 2 , - 9 , - 16 , - 23
B) 4,3,10,17,244 , - 3 , - 10 , - 17 , - 24
C) 7,2,3,8,13- 7 , - 2,3,8,13
D) 5,7,2,9,165 , - 7 , - 2 , - 9 , - 16
Unlock Deck
Unlock for access to all 303 flashcards in this deck.
Unlock Deck
k this deck
62
Find the Common Difference for an Arithmetic Sequence
-9, -14, -19, -24, . . .

A)-5B)-15
C)-10
D)15
Unlock Deck
Unlock for access to all 303 flashcards in this deck.
Unlock Deck
k this deck
63
Find the Common Difference for an Arithmetic Sequence
794, 786, 778, 770, . . .

A)-8
B)8
C)794
D)-794
Unlock Deck
Unlock for access to all 303 flashcards in this deck.
Unlock Deck
k this deck
64
Write Terms of an Arithmetic Sequence
an=an1+7.3;a1=7a _ { n } = a _ { n } - 1 + 7.3 ; a _ { 1 } = - 7

A) 7,0.3,7.6,14.9,22.2- 7,0.3,7.6,14.9,22.2
В) 8,0.7,6.6,13.9,21.2- 8 , - 0.7,6.6,13.9,21.2
C) 7.3,0.3,6.7,13.7,20.77.3,0.3 , - 6.7 , - 13.7 , - 20.7
D) 7,7.3,0.3,7.6,14.9- 7,7.3,0.3,7.6,14.9
Unlock Deck
Unlock for access to all 303 flashcards in this deck.
Unlock Deck
k this deck
65
Use the Formula for the General Term of an Arithmetic Sequence
Find a11a _ { 11 } when a1=21,d=3a _ { 1 } = 21 , d = - 3 .

A) 9- 9
B) 12- 12
C) 30- 30
D) 51
Unlock Deck
Unlock for access to all 303 flashcards in this deck.
Unlock Deck
k this deck
66
Find the Common Difference for an Arithmetic Sequence
8, 13, 18, 23, . . .

A)5
B)15
C)-5D)-15
Unlock Deck
Unlock for access to all 303 flashcards in this deck.
Unlock Deck
k this deck
67
Write Terms of an Arithmetic Sequence
an=an11.8;a1=6\mathrm { a } _ { \mathrm { n } } = \mathrm { a } _ { \mathrm { n } } - 1 - 1.8 ; \mathrm { a } _ { 1 } = 6

A) 6,4.2,2.4,0.6,1.26,4.2,2.4,0.6 , - 1.2
B) 5,3.2,1.4,0.4,2.25,3.2,1.4 , - 0.4 , - 2.2
C) 1.8,4.2,10.2,16.2,22.2- 1.8,4.2,10.2,16.2,22.2
D) 6,1.8,4.2,2.4,0.66 , - 1.8,4.2,2.4,0.6
Unlock Deck
Unlock for access to all 303 flashcards in this deck.
Unlock Deck
k this deck
68
Write Terms of an Arithmetic Sequence
a1 = -30; d = 7

A)-30, -23, -16, -9, -2B)-16, -9, -2, 5, 12
C)-2, -9, -16, -23, -30
D)-16, -23, -30, -37, -44
Unlock Deck
Unlock for access to all 303 flashcards in this deck.
Unlock Deck
k this deck
69
Write Terms of an Arithmetic Sequence
an=an113;a1=12a _ { n } = a _ { n - 1} - \frac { 1 } { 3 } ; a _ { 1 } = - \frac { 1 } { 2 }

A) 12,56,76,32,116- \frac { 1 } { 2 } , - \frac { 5 } { 6 } , - \frac { 7 } { 6 } , - \frac { 3 } { 2 } , - \frac { 11 } { 6 }
B) 12,16,16,12,56- \frac { 1 } { 2 } , - \frac { 1 } { 6 } , \frac { 1 } { 6 } , \frac { 1 } { 2 } , \frac { 5 } { 6 }
C) 12,1,32,2,52- \frac { 1 } { 2 } , - 1 , - \frac { 3 } { 2 } , - 2 , - \frac { 5 } { 2 }
D) 12,56,1,43,53- \frac { 1 } { 2 } , - \frac { 5 } { 6 } , - 1 , - \frac { 4 } { 3 } , - \frac { 5 } { 3 }
Unlock Deck
Unlock for access to all 303 flashcards in this deck.
Unlock Deck
k this deck
70
Write Terms of an Arithmetic Sequence
a1=73,d=53a _ { 1 } = - \frac { 7 } { 3 } , d = - \frac { 5 } { 3 }

A) 73,4,173,223,9- \frac { 7 } { 3 } , - 4 , - \frac { 17 } { 3 } , - \frac { 22 } { 3 } , - 9
B) 73,23,1,83,133- \frac { 7 } { 3 } , - \frac { 2 } { 3 } , 1 , \frac { 8 } { 3 } , \frac { 13 } { 3 }
C) 73,2,179,116,95- \frac { 7 } { 3 } , - 2 , - \frac { 17 } { 9 } , - \frac { 11 } { 6 } , - \frac { 9 } { 5 }
D) 73,13,13,23,1315- \frac { 7 } { 3 } , - \frac { 1 } { 3 } , \frac { 1 } { 3 } , \frac { 2 } { 3 } , \frac { 13 } { 15 }
Unlock Deck
Unlock for access to all 303 flashcards in this deck.
Unlock Deck
k this deck
71
Use the Formula for the General Term of an Arithmetic Sequence
Find a32a 32 when a1=6,d=2a 1 = - 6 , d = 2 .

A) 56
B) 58
C) 68- 68
D) 70- 70
Unlock Deck
Unlock for access to all 303 flashcards in this deck.
Unlock Deck
k this deck
72
Use the Formula for the General Term of an Arithmetic Sequence
Find a8 when a 1=9,d=41 = - 9 , d = - 4 .

A) 37- 37
В) 41- 41
C) 19
D) 23
Unlock Deck
Unlock for access to all 303 flashcards in this deck.
Unlock Deck
k this deck
73
Find the Common Difference for an Arithmetic Sequence
6, 7, 8, 9, . . .

A)1
B)3
C)0.75
D)6
Unlock Deck
Unlock for access to all 303 flashcards in this deck.
Unlock Deck
k this deck
74
Write Terms of an Arithmetic Sequence
an=an1+4;a1=18a _ { n } = a _ { n } - 1 + 4 ; a _ { 1 } = - 18

A) 18,14,10,6,2- 18 , - 14 , - 10 , - 6 , - 2
B) 19,15,11,7,3- 19 , - 15 , - 11 , - 7 , - 3
C) 4,14,32,50,684 , - 14 , - 32 , - 50 , - 68
D) 18,4,14,10,6- 18,4 , - 14 , - 10 , - 6
Unlock Deck
Unlock for access to all 303 flashcards in this deck.
Unlock Deck
k this deck
75
Write Terms of an Arithmetic Sequence
a1 = 6; d = -1

A)6, 5, 4, 3, 2
B)0, 6, 5, 4, 3C)-6, -5, -4, -3, -2D)10, 8, 6, 4, 2
Unlock Deck
Unlock for access to all 303 flashcards in this deck.
Unlock Deck
k this deck
76
Write Terms of an Arithmetic Sequence
a1 = 5; d = 3

A)5, 8, 11, 14, 17
B)8, 11, 14, 17, 20
C)0, 5, 8, 11, 14
D)5, 7, 9, 11, 13
Unlock Deck
Unlock for access to all 303 flashcards in this deck.
Unlock Deck
k this deck
77
Write Terms of an Arithmetic Sequence
a1=23;d=19\mathrm { a } _ { 1 } = - \frac { 2 } { 3 } ; \mathrm { d } = - \frac { 1 } { 9 }

A) 23,79,89,1,109- \frac { 2 } { 3 } , - \frac { 7 } { 9 } , - \frac { 8 } { 9 } , - 1 , - \frac { 10 } { 9 }
B) 23,59,49,13,29- \frac { 2 } { 3 } , - \frac { 5 } { 9 } , - \frac { 4 } { 9 } , - \frac { 1 } { 3 } , - \frac { 2 } { 9 }
C) 23,43,2,83,103- \frac { 2 } { 3 } , - \frac { 4 } { 3 } , - 2 , - \frac { 8 } { 3 } , - \frac { 10 } { 3 }
D) 23,79,49,1,29- \frac { 2 } { 3 } , - \frac { 7 } { 9 } , - \frac { 4 } { 9 } , - 1 , - \frac { 2 } { 9 }
Unlock Deck
Unlock for access to all 303 flashcards in this deck.
Unlock Deck
k this deck
78
Solve the problem.
The finite sequence whose general term is an=0.16n21.06n+7.25a _ { n } = 0.16 n ^ { 2 } - 1.06 n + 7.25
where n=1,2,3,,9\mathrm { n } = 1,2,3 , \ldots , 9 models the total operating costs, in millions of dollars, for a company from 1991 through 1999.1999 .
Find i=15ai\sum _ { i = 1 } ^ { 5 } a _ { i }

A) $29.15\$ 29.15 million
B) $31.75\$ 31.75 million
C) $23.2\$ 23.2 million
D) $25.4\$ 25.4 million
Unlock Deck
Unlock for access to all 303 flashcards in this deck.
Unlock Deck
k this deck
79
Write Terms of an Arithmetic Sequence
a1 = 13; d = -3

A)13, 10, 7, 4, 1B)16, 13, 10, 7, 4C)10, 7, 4, 1, -2D)13, 10, 6, 4, 1
Unlock Deck
Unlock for access to all 303 flashcards in this deck.
Unlock Deck
k this deck
80
Use the Formula for the General Term of an Arithmetic Sequence
Find a 21 when a1 = 5, d = 1.

A)25
B)26
C)- 15
D)- 16
Unlock Deck
Unlock for access to all 303 flashcards in this deck.
Unlock Deck
k this deck
locked card icon
Unlock Deck
Unlock for access to all 303 flashcards in this deck.