Deck 7: Linear Systems

Full screen (f)
exit full mode
Question
Let B=[32],C=[21]B = \left[ \begin{array} { l l } - & 3 \\ 2 \end{array} \right] , C = \left[ \begin{array} { l l } 2 & 1 \end{array} \right] .
Perform the operation: (BC)2( B C ) ^ { 2 } .
a. [168]\left[ \begin{array} { c } - 16 \\ - 8 \end{array} \right]

b. [2412168]\left[ \begin{array} { c c } 24 & 12 \\ - 16 & - 8 \end{array} \right]

c. [2412]\left[ \begin{array} { l l } 24 & 12 \end{array} \right]
d. [24][ 24 ]
e. none of these
Use Space or
up arrow
down arrow
to flip the card.
Question
Which fraction appears in the partial fraction decomposition of 5x2+17x+12x(x+2)2\frac { 5 x ^ { 2 } + 17 x + 12 } { x ( x + 2 ) ^ { 2 } } ?
a. 1(x+2)2\frac { 1 } { ( x + 2 ) ^ { 2 } }
b. 2x\frac { 2 } { x }
c. 5x\frac { 5 } { x }
d. 3(x+2)2\frac { 3 } { ( x + 2 ) ^ { 2 } }
e. 1x+2\frac { 1 } { x + 2 }
Question
Illustration shows three circles traced out by a figure skater during her performance.If the centers of the circles are the given distances apart, find the radius of each circle.  Illustration shows three circles traced out by a figure skater during her performance.If the centers of the circles are the given distances apart, find the radius of each circle.    A = 10 , B = 14 , C = 20  a.  \quad r _ { 1 } = 2 , r _ { 2 } = 12 , r _ { 3 } = 8  b.  \quad r _ { 1 } = 12 , r _ { 2 } = 2 , r _ { 3 } = 8  c.  \quad r _ { 1 } = 8 , r _ { 2 } = 12 , r _ { 3 } = 2  d.  \quad r _ { 1 } = 1 , r _ { 2 } = 8 , r _ { 3 } = 13  e.  \quad r _ { 1 } = 2 , r _ { 2 } = 8 , r _ { 3 } = 12 <div style=padding-top: 35px>
A=10,B=14,C=20A = 10 , B = 14 , C = 20
a. r1=2,r2=12,r3=8\quad r _ { 1 } = 2 , r _ { 2 } = 12 , r _ { 3 } = 8
b. r1=12,r2=2,r3=8\quad r _ { 1 } = 12 , r _ { 2 } = 2 , r _ { 3 } = 8
c. r1=8,r2=12,r3=2\quad r _ { 1 } = 8 , r _ { 2 } = 12 , r _ { 3 } = 2
d. r1=1,r2=8,r3=13\quad r _ { 1 } = 1 , r _ { 2 } = 8 , r _ { 3 } = 13
e. r1=2,r2=8,r3=12\quad r _ { 1 } = 2 , r _ { 2 } = 8 , r _ { 3 } = 12
Question
Solve the system by the addition method, if possible. If a solution exists, give the value of y. {x105+y+33=3715x+33+y107=1721\left\{ \begin{array} { l } \frac { x - 10 } { 5 } + \frac { y + 3 } { 3 } = - \frac { 37 } { 15 } \\\frac { x + 3 } { 3 } + \frac { y - 10 } { 7 } = - \frac { 17 } { 21 }\end{array} \right.
a. 5- 5
b. 1
 c. 3 d. 7\begin{array} { l l } \text { c. } & - 3 \\ \text { d. } & 7 \end{array}
d. 7
e. no solution
Question
Find 7A7 A .
A=[4546]A = \left[ \begin{array} { l l } 4 & 5 \\4 & 6\end{array} \right]
a. [4352842]\left[ \begin{array} { c c } 4 & 35 \\ 28 & 42 \end{array} \right]
b. [28546]\left[ \begin{array} { c c } 28 & 5 \\ 4 & 6 \end{array} \right]
c. [2852842]\left[ \begin{array} { c c } 28 & 5 \\ 28 & 42 \end{array} \right]
d. [435442]\left[ \begin{array} { l l } 4 & 35 \\ 4 & 42 \end{array} \right]
e. [28352842]\left[ \begin{array} { l l } 28 & 35 \\ 28 & 42 \end{array} \right]
Question
What is element a11a _ { 11 } of the inverse of the following matrix?
[81116]\left[ \begin{array} { c c } 8 & 1 \\1 & 16\end{array} \right]
a. 8127- \frac { 8 } { 127 }
b. 16127\frac { 16 } { 127 }
c. 16127- \frac { 16 } { 127 }
d. 8127\quad \frac { 8 } { 127 }
e. 1665\frac { 16 } { 65 }
Question
Find the inverse of the matrix.
[21116]\left[ \begin{array} { c c } 2 & 1 \\- 1 & 16\end{array} \right]
a. [1633133133233]\left[ \begin{array} { c c } \frac { 16 } { 33 } & - \frac { 1 } { 33 } \\ - \frac { 1 } { 33 } & \frac { 2 } { 33 } \end{array} \right]

b. [1633133133233]\left[ \begin{array} { c c } \frac { 16 } { 33 } & \frac { 1 } { 33 } \\ \frac { 1 } { 33 } & \frac { 2 } { 33 } \end{array} \right]

c.
[1633133133233]\left[ \begin{array} { c c } \frac { 16 } { 33 } & - \frac { 1 } { 33 } \\\frac { 1 } { 33 } & - \frac { 2 } { 33 }\end{array} \right]
d. [1633133133233]\left[ \begin{array} { c c } - \frac { 16 } { 33 } & - \frac { 1 } { 33 } \\ \frac { 1 } { 33 } & \frac { 2 } { 33 } \end{array} \right]

e. [1633133133233]\left[ \begin{array} { c c } \frac { 16 } { 33 } & - \frac { 1 } { 33 } \\ \frac { 1 } { 33 } & \frac { 2 } { 33 } \end{array} \right]
Question
Find the inverse of the matrix. [411441111]\left[ \begin{array} { c c c } 4 & 1 & - 1 \\4 & 4 & - 1 \\- 1 & - 1 & 1\end{array} \right]
a. [131131313051343]\left[ \begin{array} { c c c } \frac { 1 } { 3 } & 1 & \frac { 1 } { 3 } \\ - \frac { 1 } { 3 } & \frac { 1 } { 3 } & 0 \\ - 5 & \frac { 1 } { 3 } & \frac { 4 } { 3 } \end{array} \right] \quad

b. [130131313001343]\left[ \begin{array} { c c c } - \frac { 1 } { 3 } & 0 & \frac { 1 } { 3 } \\ \frac { 1 } { 3 } & \frac { 1 } { 3 } & 0 \\ 0 & \frac { 1 } { 3 } & \frac { 4 } { 3 } \end{array} \right]


c. [130131313001343]\left[ \begin{array} { c c c } \frac { 1 } { 3 } & 0 & \frac { 1 } { 3 } \\ - \frac { 1 } { 3 } & \frac { 1 } { 3 } & 0 \\ 0 & \frac { 1 } { 3 } & \frac { 4 } { 3 } \end{array} \right]

d. [130131313001343]\quad \left[ \begin{array} { c c c } \frac { 1 } { 3 } & 0 & \frac { 1 } { 3 } \\ \frac { 1 } { 3 } & - \frac { 1 } { 3 } & 0 \\ 0 & \frac { 1 } { 3 } & \frac { 4 } { 3 } \end{array} \right]

e. [130131313001343]\left[ \begin{array} { c c c } - \frac { 1 } { 3 } & 0 & \frac { 1 } { 3 } \\ - \frac { 1 } { 3 } & \frac { 1 } { 3 } & 0 \\ 0 & \frac { 1 } { 3 } & \frac { 4 } { 3 } \end{array} \right]
Question
Find the graph of the linear inequality. 5y2x105 y \geq 2 x - 10
a.
 Find the graph of the linear inequality.  5 y \geq 2 x - 10  a.   b.   c.    d.  <div style=padding-top: 35px>
b.
 Find the graph of the linear inequality.  5 y \geq 2 x - 10  a.   b.   c.    d.  <div style=padding-top: 35px>
c.
 Find the graph of the linear inequality.  5 y \geq 2 x - 10  a.   b.   c.    d.  <div style=padding-top: 35px>

d.
 Find the graph of the linear inequality.  5 y \geq 2 x - 10  a.   b.   c.    d.  <div style=padding-top: 35px>
Question
Evaluate the determinant. 81084\left| \begin{array} { c c } 8 & 10 \\ - 8 & 4 \end{array} \right|
a. D=2,560\quad D = 2,560
b. D=112\quad D = 112
c. D=117\quad D = - 117
d. D=112\quad D = - 112
e. D=48\quad D = - 48
Question
Solve the system by the addition method, if possible. If a solution exists, give the value of x. {4(x+y)=y+177(x+1)=y+18\left\{ \begin{array} { l } 4 ( x + y ) = y + 17 \\7 ( x + 1 ) = y + 18\end{array} \right.
 a. 2 b. 5\begin{array} { l l } \text { a. } & 2 \\ \text { b. } & 5 \end{array}
c. 4
d. 1- 1
e. no solution
Question
Solve the system by Gauss-Jordan elimination, if possible. If (x,y)( x , y ) is the solution to the system, give the value of xx .
{x2y=35y=15\left\{ \begin{array} { r } x - 2 y = 35 \\y = - 15\end{array} \right.
a. 6- 6
b. 5
c. 6
d. 5- 5
e. no solution
Question
Use Cramer's rule to find the solution of the system, if possible. {xyz=1x+y+z=19xy+z=11\left\{ \begin{array} { c } x - y - z = 1 \\x + y + z = 19 \\- x - y + z = - 11\end{array} \right.
a. x=10,y=5,z=4x = 10 , y = 5 , z = 4
b. x=5,y=10,z=4x = 5 , y = 10 , z = 4
c. x=4,y=5,z=10x = 4 , y = 5 , z = 10
d. The system is inconsistent.
e. The equations are dependent.
Question
Find the graph of the linear inequality. 2x4y>22 x - 4 y > 2
a.
 Find the graph of the linear inequality.  2 x - 4 y > 2  a.   b.   c.    \mathrm { d } .  <div style=padding-top: 35px>
b.
 Find the graph of the linear inequality.  2 x - 4 y > 2  a.   b.   c.    \mathrm { d } .  <div style=padding-top: 35px>
c.
 Find the graph of the linear inequality.  2 x - 4 y > 2  a.   b.   c.    \mathrm { d } .  <div style=padding-top: 35px>
d\mathrm { d } .
 Find the graph of the linear inequality.  2 x - 4 y > 2  a.   b.   c.    \mathrm { d } .  <div style=padding-top: 35px>
Question
Solve the system using Gaussian elimination. If (x,y)( x , y ) is the solution to the system, give the value of 2xy2 x - y .
{x+y=24x2y=3\left\{ \begin{array} { c } x + y = 24 \\x - 2 y = - 3\end{array} \right.
a. 19\quad 19
b. 20\quad 20
c. 21
d. 24
e. 18\quad 18
Question
Decompose the fraction into partial fractions. 7x2+6x+7x3+x\frac { 7 x ^ { 2 } + 6 x + 7 } { x ^ { 3 } + x }
a. 7x6x2+1\frac { 7 } { x } - \frac { 6 } { x ^ { 2 } + 1 }
b. 6x7x2+1\frac { 6 } { x } - \frac { 7 } { x ^ { 2 } + 1 }
c. 7x+6x2+1\frac { 7 } { x } + \frac { 6 } { x ^ { 2 } + 1 }
d. 6x+7x2+1\frac { 6 } { x } + \frac { 7 } { x ^ { 2 } + 1 }
e. none of these
Question
Decompose the fraction into partial fractions. 7x15x2+6x7\frac { 7 x - 15 } { x ^ { 2 } + 6 x - 7 }
a. 8x+7+1x2\quad \frac { 8 } { x + 7 } + \frac { 1 } { x - 2 }
b. 8x+71x1\quad \frac { 8 } { x + 7 } - \frac { 1 } { x - 1 }
c. 6x71x+1\quad \frac { 6 } { x - 7 } - \frac { 1 } { x + 1 }
d. 6x7+1x+1\quad \frac { 6 } { x - 7 } + \frac { 1 } { x + 1 }
e. none of these
Question
Use a graphing calculator to approximate the solutions of the system. {3.8x+3.9y=38.039x+4y=14.5\left\{ \begin{array} { c } 3.8 x + 3.9 y = 38.03 \\- 9 x + 4 y = 14.5\end{array} \right.
a. (7.9,1.9)\quad ( 7.9,1.9 )
b. (6,10.8)\quad ( - 6,10.8 )
c. (1.9,7.9)\quad ( - 1.9 , - 7.9 )
d. (1.9,7.9)\quad ( 1.9,7.9 )
e. (9.8,5)\quad ( 9.8 , - 5 )
Question
Find values of x and y, if any, that will make the matrices equal. [xy16]=[2916]\left[ \begin{array} { l l } x & y \\1 & 6\end{array} \right] = \left[ \begin{array} { l l } 2 & 9 \\1 & 6\end{array} \right]
a. x=2,y=9\quad x = - 2 , y = 9
b. x=2,y=9\quad x = 2 , y = 9
c. x=2,y=9\quad x = - 2 , y = - 9
d. x=9,y=2\quad x = 9 , y = 2
e. no solution
Question
Find the inverse of the matrix. [1221]\left[ \begin{array} { c c } 1 & 2 \\- 2 & - 1\end{array} \right]
a. [13232313]\left[ \begin{array} { c c } - \frac { 1 } { 3 } & - \frac { 2 } { 3 } \\ \frac { 2 } { 3 } & \frac { 1 } { 3 } \end{array} \right]

b.
[13232313]\left[ \begin{array} { c c } - \frac { 1 } { 3 } & \frac { 2 } { 3 } \\ \frac { 2 } { 3 } & \frac { 1 } { 3 } \end{array} \right]

c.
[13232313]\left[ \begin{array} { c c } \frac { 1 } { 3 } & - \frac { 2 } { 3 } \\\frac { 2 } { 3 } & \frac { 1 } { 3 }\end{array} \right]

d. [13232313]\left[ \begin{array} { c c } - \frac { 1 } { 3 } & - \frac { 2 } { 3 } \\ \frac { 2 } { 3 } & - \frac { 1 } { 3 } \end{array} \right]

e. [13232313]\left[ \begin{array} { c c } - \frac { 1 } { 3 } & - \frac { 2 } { 3 } \\ - \frac { 2 } { 3 } & \frac { 1 } { 3 } \end{array} \right]
Question
Use Cramer's rule to find the solution of the system, if possible. {xyz=2x+y+z=18xy+z=12\left\{ \begin{array} { c } x - y - z = 2 \\x + y + z = 18 \\- x - y + z = - 12\end{array} \right.
a. x=3,y=5,z=10\quad x = 3 , y = 5 , z = 10
b. x=5,y=10,z=3\quad x = 5 , y = 10 , z = 3
c. x=10,y=5,z=3x = 10 , y = 5 , z = 3
d. The system is inconsistent.
e. The equations are dependent.
Question
Let B=[32],C=[41]B = \left[ \begin{array} { l l } - & 3 \\ 2 \end{array} \right] , C = \left[ \begin{array} { l l } 4 & 1 \end{array} \right] .
Perform the operation: (BC)2( B C ) ^ { 2 } .
a.
[8020]\left[ \begin{array} { l } - 80 \\ - 20 \end{array} \right]

b. [120][ 120 ]

c. [120308020]\left[ \begin{array} { r r } 120 & 30 \\ - 80 & - 20 \end{array} \right]

d. [12030]\left[ \begin{array} { l l } 120 & 30 \end{array} \right]

e. none of these
Question
Use a graphing calculator to approximate the solutions of the system. {4.2x+7.1y=39.355x+4y=6.7\left\{ \begin{array} { c } 4.2 x + 7.1 y = 39.35 \\- 5 x + 4 y = 6.7\end{array} \right.
a. (4.3,2.1)\quad ( 4.3,2.1 )
b. (2.1,4.3)\quad ( - 2.1 , - 4.3 )
c. (2.2,7.4)\quad ( - 2.2,7.4 )
d. (6.4,1.2)\quad ( 6.4 , - 1.2 )
e. (2.1,4.3)\quad ( 2.1,4.3 )
Question
Two artists make winter yard ornaments. They get $97\$ 97 for each wooden snowman they make and $77\$ 77 for each wooden Santa Claus. On average, Nina must work 4 hours and Roberta 3 hours to make a snowman. Nina must work 2 hours and Roberta 4 hours to make a Santa Claus. If neither wishes to work more than 20 hours per week, how many of each ornament should they make each week to maximize their income? The information is summarized in the table below.
 Two artists make winter yard ornaments. They get  \$ 97  for each wooden snowman they make and  \$ 77  for each wooden Santa Claus. On average, Nina must work 4 hours and Roberta 3 hours to make a snowman. Nina must work 2 hours and Roberta 4 hours to make a Santa Claus. If neither wishes to work more than 20 hours per week, how many of each ornament should they make each week to maximize their income? The information is summarized in the table below.    a.  \quad 4  snowmen and 3 ornaments of Santa Claus:  \$ 19  b.  \quad 3  snowmen and 4 ornaments of Santa Claus:  \$ 19  c.  \quad 2  snowmen and 5 ornaments of Santa Claus:  \$ 23  d.  \quad 5  snowmen and no ornaments of Santa Claus: \$485 e. 4 snowmen and 2 ornaments of Santa Claus:  \$ 542 <div style=padding-top: 35px>

a. 4\quad 4 snowmen and 3 ornaments of Santa Claus: $19\$ 19
b. 3\quad 3 snowmen and 4 ornaments of Santa Claus: $19\$ 19
c. 2\quad 2 snowmen and 5 ornaments of Santa Claus: $23\$ 23
d. 5\quad 5 snowmen and no ornaments of Santa Claus: \$485
e. 4 snowmen and 2 ornaments of Santa Claus: $542\$ 542
Question
Minimize P=16x+2yP = 16 x + 2 y subject to the given constraints.
{x0y0x+2y82x+y8\left\{\begin{aligned}x & \geq 0 \\y & \geq 0 \\x+2 y & \geq 8 \\2 x+y & \geq 8\end{aligned}\right.

a. P=72\quad P = 72 at (4,4)( 4,4 )
b. P=16\quad P = 16 at (0,8)( 0,8 )
c. P=8\quad P = 8 at (0,2)( 0,2 )
d. P=32\quad P = - 32 at (2,0)( - 2,0 )
e. none of these
Question
Find the inverse of the matrix. [321132321111]\left[ \begin{array} { c c c } 32 & 1 & - 1 \\32 & 32 & - 1 \\- 1 & - 1 & 1\end{array} \right]
a. [1310131131131001313231]\left[ \begin{array} { c c c } - \frac { 1 } { 31 } & 0 & \frac { 1 } { 31 } \\ \frac { 1 } { 31 } & \frac { 1 } { 31 } & 0 \\ 0 & \frac { 1 } { 31 } & \frac { 32 } { 31 } \end{array} \right]

b. [1310131131131001313231]\left[ \begin{array} { c c c } \frac { 1 } { 31 } & 0 & \frac { 1 } { 31 } \\ - \frac { 1 } { 31 } & \frac { 1 } { 31 } & 0 \\ 0 & \frac { 1 } { 31 } & \frac { 32 } { 31 } \end{array} \right]

c.
[1310131131131001313231]\left[ \begin{array} { c c c } \frac { 1 } { 31 } & 0 & \frac { 1 } { 31 } \\\frac { 1 } { 31 } & - \frac { 1 } { 31 } & 0 \\0 & \frac { 1 } { 31 } & \frac { 32 } { 31 }\end{array} \right]

d. [13111311311310251313231]\left[ \begin{array} { c c c } \frac { 1 } { 31 } & 1 & \frac { 1 } { 31 } \\ - \frac { 1 } { 31 } & \frac { 1 } { 31 } & 0 \\ 25 & \frac { 1 } { 31 } & \frac { 32 } { 31 } \end{array} \right]

e. [1310131131131001313231]\left[ \begin{array} { c c c } - \frac { 1 } { 31 } & 0 & \frac { 1 } { 31 } \\ - \frac { 1 } { 31 } & \frac { 1 } { 31 } & 0 \\ 0 & \frac { 1 } { 31 } & \frac { 32 } { 31 } \end{array} \right]
Question
Solve the system by Gauss-Jordan elimination, if possible. If (x, y) is the solution to the system, give the value of x. {x2y=14y=2\left\{ \begin{array} { r } x - 2 y = 14 \\y = - 2\end{array} \right.
a. 11
b. 10- 10
c. 11- 11
d. 10
e. no solution
Question
Find the inverse of the matrix. [2118]\left[ \begin{array} { c c } 2 & 1 \\- 1 & 8\end{array} \right]
a. [817117117217]\left[ \begin{array} { c c } \frac { 8 } { 17 } & - \frac { 1 } { 17 } \\ - \frac { 1 } { 17 } & \frac { 2 } { 17 } \end{array} \right]

b. [817117117217]\left[ \begin{array} { c c } \frac { 8 } { 17 } & \frac { 1 } { 17 } \\ \frac { 1 } { 17 } & \frac { 2 } { 17 } \end{array} \right]

c.
[817117117217]\left[ \begin{array} { c c } - \frac { 8 } { 17 } & - \frac { 1 } { 17 } \\\frac { 1 } { 17 } & \frac { 2 } { 17 }\end{array} \right]

d. [817117117217]\left[ \begin{array} { c c } \frac { 8 } { 17 } & - \frac { 1 } { 17 } \\ \frac { 1 } { 17 } & \frac { 2 } { 17 } \end{array} \right]

e. [817117117217]\left[ \begin{array} { c c } \frac { 8 } { 17 } & - \frac { 1 } { 17 } \\ \frac { 1 } { 17 } & - \frac { 2 } { 17 } \end{array} \right]
Question
Find the solution set of the system. {y4x>4\left\{ \begin{array} { l } y \leq - 4 \\x > - 4\end{array} \right.
a.\mathrm { a } .
 Find the solution set of the system.  \left\{ \begin{array} { l } y \leq - 4 \\ x > - 4 \end{array} \right.   \mathrm { a } .    b.   c.    d.  <div style=padding-top: 35px>
b.
 Find the solution set of the system.  \left\{ \begin{array} { l } y \leq - 4 \\ x > - 4 \end{array} \right.   \mathrm { a } .    b.   c.    d.  <div style=padding-top: 35px>
c.
 Find the solution set of the system.  \left\{ \begin{array} { l } y \leq - 4 \\ x > - 4 \end{array} \right.   \mathrm { a } .    b.   c.    d.  <div style=padding-top: 35px>

d.
 Find the solution set of the system.  \left\{ \begin{array} { l } y \leq - 4 \\ x > - 4 \end{array} \right.   \mathrm { a } .    b.   c.    d.  <div style=padding-top: 35px>
Question
Find 7A7 A .
A=[8832]A = \left[ \begin{array} { l l } 8 & 8 \\3 & 2\end{array} \right]
a. [56832]\left[ \begin{array} { c c } 56 & 8 \\ 3 & 2 \end{array} \right]

b.
[5682114]\left[ \begin{array} { c c } 56 & 8 \\ 21 & 14 \end{array} \right]

c. [8562114]\left[ \begin{array} { c c } 8 & 56 \\ 21 & 14 \end{array} \right]

d. [856314]\left[ \begin{array} { c c } 8 & 56 \\ 3 & 14 \end{array} \right]

e. [56562114]\left[ \begin{array} { l l } 56 & 56 \\ 21 & 14 \end{array} \right]
Question
What is element a11a _ { 11 } of the inverse of the following matrix?
[16118]\left[ \begin{array} { c c } 16 & 1 \\1 & 8\end{array} \right]
a. 8257\frac { 8 } { 257 }
b. 8127\frac { 8 } { 127 }
c. 16127- \frac { 16 } { 127 }
d. 8127- \frac { 8 } { 127 }
e. 16127\frac { 16 } { 127 }
Question
Illustration shows three circles traced out by a figure skater during her performance.If the centers of the circles are the given distances apart, find the radius of each circle.  Illustration shows three circles traced out by a figure skater during her performance.If the centers of the circles are the given distances apart, find the radius of each circle.    A = 10 , B = 18 , C = 20  a.  \quad r _ { 1 } = 4 , r _ { 2 } = 6 , r _ { 3 } = 14  b.  \quad r _ { 1 } = 3 , r _ { 2 } = 6 , r _ { 3 } = 15  c.  \quad r _ { 1 } = 4 , r _ { 2 } = 14 , r _ { 3 } = 6  d.  \quad r _ { 1 } = 14 , r _ { 2 } = 4 , r _ { 3 } = 6  e.  \quad r _ { 1 } = 6 , r _ { 2 } = 14 , r _ { 3 } = 4 <div style=padding-top: 35px>
A=10,B=18,C=20A = 10 , B = 18 , C = 20
a. r1=4,r2=6,r3=14\quad r _ { 1 } = 4 , r _ { 2 } = 6 , r _ { 3 } = 14
b. r1=3,r2=6,r3=15\quad r _ { 1 } = 3 , r _ { 2 } = 6 , r _ { 3 } = 15
c. r1=4,r2=14,r3=6\quad r _ { 1 } = 4 , r _ { 2 } = 14 , r _ { 3 } = 6
d. r1=14,r2=4,r3=6\quad r _ { 1 } = 14 , r _ { 2 } = 4 , r _ { 3 } = 6
e. r1=6,r2=14,r3=4\quad r _ { 1 } = 6 , r _ { 2 } = 14 , r _ { 3 } = 4
Question
Find the inverse of the matrix. [1441]\left[ \begin{array} { c c } 1 & 4 \\- 4 & - 1\end{array} \right]
a. [115415415115]\left[ \begin{array} { c c } \frac { 1 } { 15 } & - \frac { 4 } { 15 } \\ \frac { 4 } { 15 } & \frac { 1 } { 15 } \end{array} \right]

b.
[115415415115]\left[ \begin{array} { c c } - \frac { 1 } { 15 } & - \frac { 4 } { 15 } \\ - \frac { 4 } { 15 } & \frac { 1 } { 15 } \end{array} \right]

c.
[115415415115]\left[\begin{array}{cc}-\frac{1}{15} & \frac{4}{15} \\\frac{4}{15} & \frac{1}{15}\end{array}\right]

d. [115415415115]\left[ \begin{array} { c c } - \frac { 1 } { 15 } & - \frac { 4 } { 15 } \\ \frac { 4 } { 15 } & \frac { 1 } { 15 } \end{array} \right]


e. [115415415115]\left[ \begin{array} { c c } - \frac { 1 } { 15 } & - \frac { 4 } { 15 } \\ \frac { 4 } { 15 } & - \frac { 1 } { 15 } \end{array} \right]

Question
Solve the system by the addition method, if possible. If a solution exists, give the value of y. {x105+y+73=815x+73+y107=5221\left\{ \begin{array} { l } \frac { x - 10 } { 5 } + \frac { y + 7 } { 3 } = \frac { 8 } { 15 } \\\frac { x + 7 } { 3 } + \frac { y - 10 } { 7 } = \frac { 52 } { 21 }\end{array} \right.
a. 10
b. 6
c. 3- 3
d. 4
e. no solution
Question
Solve the system using Gaussian elimination. If (x,y)( x , y ) is the solution to the system, give the value of 2xy2 x - y .
{x+y=23x2y=13\left\{ \begin{array} { c } x + y = 23 \\x - 2 y = - 13\end{array} \right.
a. 10\quad 10
b. 13
c. 7\quad 7
d. 8\quad 8
e. 9\quad 9
Question
Evaluate the determinant. 81084\left| \begin{array} { c c } 8 & 10 \\ - 8 & 4 \end{array} \right|
a. D=48\quad D = - 48
b. D=2,560\quad D = 2,560
c. D=112D = - 112
d. D=117\quad D = - 117
e. D=112\quad D = 112
Question
Solve the system by the addition method, if possible. If a solution exists, give the value of x. {2(x+y)=y197(x+10)=y+17\left\{ \begin{array} { c } 2 ( x + y ) = y - 19 \\7 ( x + 10 ) = y + 17\end{array} \right.
a. 5- 5
b. 11- 11
c. 2- 2
d. 8- 8
e. no solution
Question
Find the solution set of the system. {y<5x+4y<4x+5\left\{ \begin{array} { l } y < 5 x + 4 \\y < - 4 x + 5\end{array} \right.
a.
 Find the solution set of the system.  \left\{ \begin{array} { l } y < 5 x + 4 \\ y < - 4 x + 5 \end{array} \right.  a.   b.   c.   d.  <div style=padding-top: 35px>
b.
 Find the solution set of the system.  \left\{ \begin{array} { l } y < 5 x + 4 \\ y < - 4 x + 5 \end{array} \right.  a.   b.   c.   d.  <div style=padding-top: 35px>
c.
 Find the solution set of the system.  \left\{ \begin{array} { l } y < 5 x + 4 \\ y < - 4 x + 5 \end{array} \right.  a.   b.   c.   d.  <div style=padding-top: 35px>
d.
 Find the solution set of the system.  \left\{ \begin{array} { l } y < 5 x + 4 \\ y < - 4 x + 5 \end{array} \right.  a.   b.   c.   d.  <div style=padding-top: 35px>
Question
Find values of x and y, if any, that will make the matrices equal. [xy39]=[2839]\left[ \begin{array} { l l } x & y \\3 & 9\end{array} \right] = \left[ \begin{array} { l l } 2 & 8 \\3 & 9\end{array} \right]
a. x=2,y=8x = 2 , y = 8
b. x=2,y=8x = - 2 , y = 8
c. x=8,y=2x = 8 , y = 2
d. x=2,y=8x = - 2 , y = - 8
e. no solution
Question
A diet requires at least 24 units of vitamin C and at least 26 units of vitamin B complex.Two food supplements are available that provide these nutrients, in the amounts and costs shown in the table
Below.How much of each should be used to minimize the cost?  A diet requires at least 24 units of vitamin C and at least 26 units of vitamin B complex.Two food supplements are available that provide these nutrients, in the amounts and costs shown in the table Below.How much of each should be used to minimize the cost?    a.  \quad 3  grams of  A  and 9 grams of  B : 33  cents b. 1 gram of  A  and 5 grams of B: 27 cents c.  \quad 5  grams of  A  and 7 grams of B: 39 cents d.  \quad 7  grams of  A  and 5 grams of B: 45 cents e. 5 grams of  A  and 2 grams of B: 20 cents<div style=padding-top: 35px>

a. 3\quad 3 grams of AA and 9 grams of B:33B : 33 cents
b. 1 gram of AA and 5 grams of B: 27 cents
c. 5\quad 5 grams of AA and 7 grams of B: 39 cents
d. 7\quad 7 grams of AA and 5 grams of B: 45 cents
e. 5 grams of AA and 2 grams of B: 20 cents
Question
Two artists make winter yard ornaments.They get $83 for each wooden snowman they make and $74 for each wooden Santa Claus.On average, Nina must work 8 hours and Roberta 6 hours to make a
Snowman.Nina must work 4 hours and Roberta 8 hours to make a Santa Claus.If neither wishes to
Work more than 40 hours per week, how many of each ornament should they make each week to
Maximize their income? The information is summarized in the table below.  Two artists make winter yard ornaments.They get $83 for each wooden snowman they make and $74 for each wooden Santa Claus.On average, Nina must work 8 hours and Roberta 6 hours to make a Snowman.Nina must work 4 hours and Roberta 8 hours to make a Santa Claus.If neither wishes to Work more than 40 hours per week, how many of each ornament should they make each week to Maximize their income? The information is summarized in the table below.    a. 4 snowmen and 3 ornaments of Santa Claus:  \$ 34  b.  \quad 3  snowmen and 4 ornaments of Santa Claus:  \$ 34  c. 4 snowmen and 2 ornaments of Santa Claus:  \$ 480  d.  \quad 2  snowmen and 5 ornaments of Santa Claus:  \$ 46  e.  \quad 5  snowmen and no ornaments of Santa Claus:  \$ 415 <div style=padding-top: 35px>

a. 4 snowmen and 3 ornaments of Santa Claus: $34\$ 34
b. 3\quad 3 snowmen and 4 ornaments of Santa Claus: $34\$ 34
c. 4 snowmen and 2 ornaments of Santa Claus: $480\$ 480
d. 2\quad 2 snowmen and 5 ornaments of Santa Claus: $46\$ 46
e. 5\quad 5 snowmen and no ornaments of Santa Claus: $415\$ 415
Question
Find the solution set of the system. {y4x>4\left\{ \begin{array} { l } y \leq - 4 \\x > - 4\end{array} \right.
a.
 Find the solution set of the system.  \left\{ \begin{array} { l } y \leq - 4 \\ x > - 4 \end{array} \right.  a.   b.    C.    d.  <div style=padding-top: 35px>
b.
 Find the solution set of the system.  \left\{ \begin{array} { l } y \leq - 4 \\ x > - 4 \end{array} \right.  a.   b.    C.    d.  <div style=padding-top: 35px>

C.
 Find the solution set of the system.  \left\{ \begin{array} { l } y \leq - 4 \\ x > - 4 \end{array} \right.  a.   b.    C.    d.  <div style=padding-top: 35px>

d.
 Find the solution set of the system.  \left\{ \begin{array} { l } y \leq - 4 \\ x > - 4 \end{array} \right.  a.   b.    C.    d.  <div style=padding-top: 35px>
Question
Find the graph of the linear inequality. 3y2x93 y \geq 2 x - 9
a.
 Find the graph of the linear inequality.  3 y \geq 2 x - 9  a.   b.   C.    d.  <div style=padding-top: 35px>
b.
 Find the graph of the linear inequality.  3 y \geq 2 x - 9  a.   b.   C.    d.  <div style=padding-top: 35px>
C.
 Find the graph of the linear inequality.  3 y \geq 2 x - 9  a.   b.   C.    d.  <div style=padding-top: 35px>

d.
 Find the graph of the linear inequality.  3 y \geq 2 x - 9  a.   b.   C.    d.  <div style=padding-top: 35px>
Question
Find the solution set of the system. {y<7x+3y<3x+7\left\{ \begin{array} { l } y < 7 x + 3 \\y < - 3 x + 7\end{array} \right.
a.
 Find the solution set of the system.  \left\{ \begin{array} { l } y < 7 x + 3 \\ y < - 3 x + 7 \end{array} \right.  a.   b.   c.    d.  <div style=padding-top: 35px>
b.
 Find the solution set of the system.  \left\{ \begin{array} { l } y < 7 x + 3 \\ y < - 3 x + 7 \end{array} \right.  a.   b.   c.    d.  <div style=padding-top: 35px>
c.
 Find the solution set of the system.  \left\{ \begin{array} { l } y < 7 x + 3 \\ y < - 3 x + 7 \end{array} \right.  a.   b.   c.    d.  <div style=padding-top: 35px>

d.
 Find the solution set of the system.  \left\{ \begin{array} { l } y < 7 x + 3 \\ y < - 3 x + 7 \end{array} \right.  a.   b.   c.    d.  <div style=padding-top: 35px>
Question
Decompose the fraction into partial fractions. 9x2+8x+9x3+x\frac { 9 x ^ { 2 } + 8 x + 9 } { x ^ { 3 } + x }
a. 8x9x2+1\quad \frac { 8 } { x } - \frac { 9 } { x ^ { 2 } + 1 }
b. 9x8x2+1\quad \frac { 9 } { x } - \frac { 8 } { x ^ { 2 } + 1 }
c. 8x+9x2+1\frac { 8 } { x } + \frac { 9 } { x ^ { 2 } + 1 }
d. 9x+8x2+1\frac { 9 } { x } + \frac { 8 } { x ^ { 2 } + 1 }
e. none of these
Question
Decompose the fraction into partial fractions. 7x11x2+2x3\frac { 7 x - 11 } { x ^ { 2 } + 2 x - 3 }
a. 8x+31x1\quad \frac { 8 } { x + 3 } - \frac { 1 } { x - 1 }
b. 8x+3+1x2\quad \frac { 8 } { x + 3 } + \frac { 1 } { x - 2 }
c. 6x3+1x+1\quad \frac { 6 } { x - 3 } + \frac { 1 } { x + 1 }
d. 6x31x+1\quad \frac { 6 } { x - 3 } - \frac { 1 } { x + 1 }
e. none of these
Question
A diet requires at least 26 units of vitamin C and at least 31 units of vitamin B complex.Two food supplements are available that provide these nutrients, in the amounts and costs shown in the table
Below.How much of each should be used to minimize the cost?  A diet requires at least 26 units of vitamin C and at least 31 units of vitamin B complex.Two food supplements are available that provide these nutrients, in the amounts and costs shown in the table Below.How much of each should be used to minimize the cost?    a.  \quad 7  grams of  A  and 5 grams of B: 62 cents b. 5 grams of A and 2 grams of B: 32 cents c. 5 grams of A and 7 grams of B: 58 cents d.  \quad 3  grams of  A  and 9 grams of B: 54 cents e. 1 gram of  A  and 5 grams of  B : 34  cents<div style=padding-top: 35px>

a. 7\quad 7 grams of AA and 5 grams of B: 62 cents
b. 5 grams of A and 2 grams of B: 32 cents
c. 5 grams of A and 7 grams of B: 58 cents
d. 3\quad 3 grams of AA and 9 grams of B: 54 cents
e. 1 gram of AA and 5 grams of B:34B : 34 cents
Question
Minimize P=18x+4yP = 18 x + 4 y subject to the given constraints.
{x0y0x+4y94x+y9\left\{\begin{array}{rll}x & \geq & 0 \\y & \geq & 0 \\x+4 y & \geq & 9 \\4 x+y & \geq & 9\end{array}\right.

a. P=99\quad P = 99 at (4.5,4.5)( 4.5,4.5 )
b. P=9\quad P = 9 at (0,4)( 0,4 )
c. P=72\quad P = - 72 at (4,0)( - 4,0 )
d. P=36\quad P = 36 at (0,9)( 0,9 )
e. none of these
Question
Which fraction appears in the partial fraction decomposition of 5x2+49x+108x(x+6)2\frac { 5 x ^ { 2 } + 49 x + 108 } { x ( x + 6 ) ^ { 2 } } ?
a. 3(x+6)2\quad \frac { 3 } { ( x + 6 ) ^ { 2 } }
b. 1x+6\frac { 1 } { x + 6 }
c. 6x\frac { 6 } { x }
d. 9x\frac { 9 } { x }
e. 1(x+6)2\frac { 1 } { ( x + 6 ) ^ { 2 } }
Question
Find the graph of the linear inequality. 4x2y>114 x - 2 y > 11
a.
 Find the graph of the linear inequality.  4 x - 2 y > 11  a.    b.   c.   d.   <div style=padding-top: 35px>

b.
 Find the graph of the linear inequality.  4 x - 2 y > 11  a.    b.   c.   d.   <div style=padding-top: 35px>
c.
 Find the graph of the linear inequality.  4 x - 2 y > 11  a.    b.   c.   d.   <div style=padding-top: 35px>
d.
 Find the graph of the linear inequality.  4 x - 2 y > 11  a.    b.   c.   d.   <div style=padding-top: 35px>
Unlock Deck
Sign up to unlock the cards in this deck!
Unlock Deck
Unlock Deck
1/50
auto play flashcards
Play
simple tutorial
Full screen (f)
exit full mode
Deck 7: Linear Systems
1
Let B=[32],C=[21]B = \left[ \begin{array} { l l } - & 3 \\ 2 \end{array} \right] , C = \left[ \begin{array} { l l } 2 & 1 \end{array} \right] .
Perform the operation: (BC)2( B C ) ^ { 2 } .
a. [168]\left[ \begin{array} { c } - 16 \\ - 8 \end{array} \right]

b. [2412168]\left[ \begin{array} { c c } 24 & 12 \\ - 16 & - 8 \end{array} \right]

c. [2412]\left[ \begin{array} { l l } 24 & 12 \end{array} \right]
d. [24][ 24 ]
e. none of these
B
2
Which fraction appears in the partial fraction decomposition of 5x2+17x+12x(x+2)2\frac { 5 x ^ { 2 } + 17 x + 12 } { x ( x + 2 ) ^ { 2 } } ?
a. 1(x+2)2\frac { 1 } { ( x + 2 ) ^ { 2 } }
b. 2x\frac { 2 } { x }
c. 5x\frac { 5 } { x }
d. 3(x+2)2\frac { 3 } { ( x + 2 ) ^ { 2 } }
e. 1x+2\frac { 1 } { x + 2 }
A
3
Illustration shows three circles traced out by a figure skater during her performance.If the centers of the circles are the given distances apart, find the radius of each circle.  Illustration shows three circles traced out by a figure skater during her performance.If the centers of the circles are the given distances apart, find the radius of each circle.    A = 10 , B = 14 , C = 20  a.  \quad r _ { 1 } = 2 , r _ { 2 } = 12 , r _ { 3 } = 8  b.  \quad r _ { 1 } = 12 , r _ { 2 } = 2 , r _ { 3 } = 8  c.  \quad r _ { 1 } = 8 , r _ { 2 } = 12 , r _ { 3 } = 2  d.  \quad r _ { 1 } = 1 , r _ { 2 } = 8 , r _ { 3 } = 13  e.  \quad r _ { 1 } = 2 , r _ { 2 } = 8 , r _ { 3 } = 12
A=10,B=14,C=20A = 10 , B = 14 , C = 20
a. r1=2,r2=12,r3=8\quad r _ { 1 } = 2 , r _ { 2 } = 12 , r _ { 3 } = 8
b. r1=12,r2=2,r3=8\quad r _ { 1 } = 12 , r _ { 2 } = 2 , r _ { 3 } = 8
c. r1=8,r2=12,r3=2\quad r _ { 1 } = 8 , r _ { 2 } = 12 , r _ { 3 } = 2
d. r1=1,r2=8,r3=13\quad r _ { 1 } = 1 , r _ { 2 } = 8 , r _ { 3 } = 13
e. r1=2,r2=8,r3=12\quad r _ { 1 } = 2 , r _ { 2 } = 8 , r _ { 3 } = 12
A
4
Solve the system by the addition method, if possible. If a solution exists, give the value of y. {x105+y+33=3715x+33+y107=1721\left\{ \begin{array} { l } \frac { x - 10 } { 5 } + \frac { y + 3 } { 3 } = - \frac { 37 } { 15 } \\\frac { x + 3 } { 3 } + \frac { y - 10 } { 7 } = - \frac { 17 } { 21 }\end{array} \right.
a. 5- 5
b. 1
 c. 3 d. 7\begin{array} { l l } \text { c. } & - 3 \\ \text { d. } & 7 \end{array}
d. 7
e. no solution
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
5
Find 7A7 A .
A=[4546]A = \left[ \begin{array} { l l } 4 & 5 \\4 & 6\end{array} \right]
a. [4352842]\left[ \begin{array} { c c } 4 & 35 \\ 28 & 42 \end{array} \right]
b. [28546]\left[ \begin{array} { c c } 28 & 5 \\ 4 & 6 \end{array} \right]
c. [2852842]\left[ \begin{array} { c c } 28 & 5 \\ 28 & 42 \end{array} \right]
d. [435442]\left[ \begin{array} { l l } 4 & 35 \\ 4 & 42 \end{array} \right]
e. [28352842]\left[ \begin{array} { l l } 28 & 35 \\ 28 & 42 \end{array} \right]
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
6
What is element a11a _ { 11 } of the inverse of the following matrix?
[81116]\left[ \begin{array} { c c } 8 & 1 \\1 & 16\end{array} \right]
a. 8127- \frac { 8 } { 127 }
b. 16127\frac { 16 } { 127 }
c. 16127- \frac { 16 } { 127 }
d. 8127\quad \frac { 8 } { 127 }
e. 1665\frac { 16 } { 65 }
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
7
Find the inverse of the matrix.
[21116]\left[ \begin{array} { c c } 2 & 1 \\- 1 & 16\end{array} \right]
a. [1633133133233]\left[ \begin{array} { c c } \frac { 16 } { 33 } & - \frac { 1 } { 33 } \\ - \frac { 1 } { 33 } & \frac { 2 } { 33 } \end{array} \right]

b. [1633133133233]\left[ \begin{array} { c c } \frac { 16 } { 33 } & \frac { 1 } { 33 } \\ \frac { 1 } { 33 } & \frac { 2 } { 33 } \end{array} \right]

c.
[1633133133233]\left[ \begin{array} { c c } \frac { 16 } { 33 } & - \frac { 1 } { 33 } \\\frac { 1 } { 33 } & - \frac { 2 } { 33 }\end{array} \right]
d. [1633133133233]\left[ \begin{array} { c c } - \frac { 16 } { 33 } & - \frac { 1 } { 33 } \\ \frac { 1 } { 33 } & \frac { 2 } { 33 } \end{array} \right]

e. [1633133133233]\left[ \begin{array} { c c } \frac { 16 } { 33 } & - \frac { 1 } { 33 } \\ \frac { 1 } { 33 } & \frac { 2 } { 33 } \end{array} \right]
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
8
Find the inverse of the matrix. [411441111]\left[ \begin{array} { c c c } 4 & 1 & - 1 \\4 & 4 & - 1 \\- 1 & - 1 & 1\end{array} \right]
a. [131131313051343]\left[ \begin{array} { c c c } \frac { 1 } { 3 } & 1 & \frac { 1 } { 3 } \\ - \frac { 1 } { 3 } & \frac { 1 } { 3 } & 0 \\ - 5 & \frac { 1 } { 3 } & \frac { 4 } { 3 } \end{array} \right] \quad

b. [130131313001343]\left[ \begin{array} { c c c } - \frac { 1 } { 3 } & 0 & \frac { 1 } { 3 } \\ \frac { 1 } { 3 } & \frac { 1 } { 3 } & 0 \\ 0 & \frac { 1 } { 3 } & \frac { 4 } { 3 } \end{array} \right]


c. [130131313001343]\left[ \begin{array} { c c c } \frac { 1 } { 3 } & 0 & \frac { 1 } { 3 } \\ - \frac { 1 } { 3 } & \frac { 1 } { 3 } & 0 \\ 0 & \frac { 1 } { 3 } & \frac { 4 } { 3 } \end{array} \right]

d. [130131313001343]\quad \left[ \begin{array} { c c c } \frac { 1 } { 3 } & 0 & \frac { 1 } { 3 } \\ \frac { 1 } { 3 } & - \frac { 1 } { 3 } & 0 \\ 0 & \frac { 1 } { 3 } & \frac { 4 } { 3 } \end{array} \right]

e. [130131313001343]\left[ \begin{array} { c c c } - \frac { 1 } { 3 } & 0 & \frac { 1 } { 3 } \\ - \frac { 1 } { 3 } & \frac { 1 } { 3 } & 0 \\ 0 & \frac { 1 } { 3 } & \frac { 4 } { 3 } \end{array} \right]
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
9
Find the graph of the linear inequality. 5y2x105 y \geq 2 x - 10
a.
 Find the graph of the linear inequality.  5 y \geq 2 x - 10  a.   b.   c.    d.
b.
 Find the graph of the linear inequality.  5 y \geq 2 x - 10  a.   b.   c.    d.
c.
 Find the graph of the linear inequality.  5 y \geq 2 x - 10  a.   b.   c.    d.

d.
 Find the graph of the linear inequality.  5 y \geq 2 x - 10  a.   b.   c.    d.
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
10
Evaluate the determinant. 81084\left| \begin{array} { c c } 8 & 10 \\ - 8 & 4 \end{array} \right|
a. D=2,560\quad D = 2,560
b. D=112\quad D = 112
c. D=117\quad D = - 117
d. D=112\quad D = - 112
e. D=48\quad D = - 48
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
11
Solve the system by the addition method, if possible. If a solution exists, give the value of x. {4(x+y)=y+177(x+1)=y+18\left\{ \begin{array} { l } 4 ( x + y ) = y + 17 \\7 ( x + 1 ) = y + 18\end{array} \right.
 a. 2 b. 5\begin{array} { l l } \text { a. } & 2 \\ \text { b. } & 5 \end{array}
c. 4
d. 1- 1
e. no solution
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
12
Solve the system by Gauss-Jordan elimination, if possible. If (x,y)( x , y ) is the solution to the system, give the value of xx .
{x2y=35y=15\left\{ \begin{array} { r } x - 2 y = 35 \\y = - 15\end{array} \right.
a. 6- 6
b. 5
c. 6
d. 5- 5
e. no solution
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
13
Use Cramer's rule to find the solution of the system, if possible. {xyz=1x+y+z=19xy+z=11\left\{ \begin{array} { c } x - y - z = 1 \\x + y + z = 19 \\- x - y + z = - 11\end{array} \right.
a. x=10,y=5,z=4x = 10 , y = 5 , z = 4
b. x=5,y=10,z=4x = 5 , y = 10 , z = 4
c. x=4,y=5,z=10x = 4 , y = 5 , z = 10
d. The system is inconsistent.
e. The equations are dependent.
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
14
Find the graph of the linear inequality. 2x4y>22 x - 4 y > 2
a.
 Find the graph of the linear inequality.  2 x - 4 y > 2  a.   b.   c.    \mathrm { d } .
b.
 Find the graph of the linear inequality.  2 x - 4 y > 2  a.   b.   c.    \mathrm { d } .
c.
 Find the graph of the linear inequality.  2 x - 4 y > 2  a.   b.   c.    \mathrm { d } .
d\mathrm { d } .
 Find the graph of the linear inequality.  2 x - 4 y > 2  a.   b.   c.    \mathrm { d } .
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
15
Solve the system using Gaussian elimination. If (x,y)( x , y ) is the solution to the system, give the value of 2xy2 x - y .
{x+y=24x2y=3\left\{ \begin{array} { c } x + y = 24 \\x - 2 y = - 3\end{array} \right.
a. 19\quad 19
b. 20\quad 20
c. 21
d. 24
e. 18\quad 18
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
16
Decompose the fraction into partial fractions. 7x2+6x+7x3+x\frac { 7 x ^ { 2 } + 6 x + 7 } { x ^ { 3 } + x }
a. 7x6x2+1\frac { 7 } { x } - \frac { 6 } { x ^ { 2 } + 1 }
b. 6x7x2+1\frac { 6 } { x } - \frac { 7 } { x ^ { 2 } + 1 }
c. 7x+6x2+1\frac { 7 } { x } + \frac { 6 } { x ^ { 2 } + 1 }
d. 6x+7x2+1\frac { 6 } { x } + \frac { 7 } { x ^ { 2 } + 1 }
e. none of these
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
17
Decompose the fraction into partial fractions. 7x15x2+6x7\frac { 7 x - 15 } { x ^ { 2 } + 6 x - 7 }
a. 8x+7+1x2\quad \frac { 8 } { x + 7 } + \frac { 1 } { x - 2 }
b. 8x+71x1\quad \frac { 8 } { x + 7 } - \frac { 1 } { x - 1 }
c. 6x71x+1\quad \frac { 6 } { x - 7 } - \frac { 1 } { x + 1 }
d. 6x7+1x+1\quad \frac { 6 } { x - 7 } + \frac { 1 } { x + 1 }
e. none of these
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
18
Use a graphing calculator to approximate the solutions of the system. {3.8x+3.9y=38.039x+4y=14.5\left\{ \begin{array} { c } 3.8 x + 3.9 y = 38.03 \\- 9 x + 4 y = 14.5\end{array} \right.
a. (7.9,1.9)\quad ( 7.9,1.9 )
b. (6,10.8)\quad ( - 6,10.8 )
c. (1.9,7.9)\quad ( - 1.9 , - 7.9 )
d. (1.9,7.9)\quad ( 1.9,7.9 )
e. (9.8,5)\quad ( 9.8 , - 5 )
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
19
Find values of x and y, if any, that will make the matrices equal. [xy16]=[2916]\left[ \begin{array} { l l } x & y \\1 & 6\end{array} \right] = \left[ \begin{array} { l l } 2 & 9 \\1 & 6\end{array} \right]
a. x=2,y=9\quad x = - 2 , y = 9
b. x=2,y=9\quad x = 2 , y = 9
c. x=2,y=9\quad x = - 2 , y = - 9
d. x=9,y=2\quad x = 9 , y = 2
e. no solution
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
20
Find the inverse of the matrix. [1221]\left[ \begin{array} { c c } 1 & 2 \\- 2 & - 1\end{array} \right]
a. [13232313]\left[ \begin{array} { c c } - \frac { 1 } { 3 } & - \frac { 2 } { 3 } \\ \frac { 2 } { 3 } & \frac { 1 } { 3 } \end{array} \right]

b.
[13232313]\left[ \begin{array} { c c } - \frac { 1 } { 3 } & \frac { 2 } { 3 } \\ \frac { 2 } { 3 } & \frac { 1 } { 3 } \end{array} \right]

c.
[13232313]\left[ \begin{array} { c c } \frac { 1 } { 3 } & - \frac { 2 } { 3 } \\\frac { 2 } { 3 } & \frac { 1 } { 3 }\end{array} \right]

d. [13232313]\left[ \begin{array} { c c } - \frac { 1 } { 3 } & - \frac { 2 } { 3 } \\ \frac { 2 } { 3 } & - \frac { 1 } { 3 } \end{array} \right]

e. [13232313]\left[ \begin{array} { c c } - \frac { 1 } { 3 } & - \frac { 2 } { 3 } \\ - \frac { 2 } { 3 } & \frac { 1 } { 3 } \end{array} \right]
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
21
Use Cramer's rule to find the solution of the system, if possible. {xyz=2x+y+z=18xy+z=12\left\{ \begin{array} { c } x - y - z = 2 \\x + y + z = 18 \\- x - y + z = - 12\end{array} \right.
a. x=3,y=5,z=10\quad x = 3 , y = 5 , z = 10
b. x=5,y=10,z=3\quad x = 5 , y = 10 , z = 3
c. x=10,y=5,z=3x = 10 , y = 5 , z = 3
d. The system is inconsistent.
e. The equations are dependent.
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
22
Let B=[32],C=[41]B = \left[ \begin{array} { l l } - & 3 \\ 2 \end{array} \right] , C = \left[ \begin{array} { l l } 4 & 1 \end{array} \right] .
Perform the operation: (BC)2( B C ) ^ { 2 } .
a.
[8020]\left[ \begin{array} { l } - 80 \\ - 20 \end{array} \right]

b. [120][ 120 ]

c. [120308020]\left[ \begin{array} { r r } 120 & 30 \\ - 80 & - 20 \end{array} \right]

d. [12030]\left[ \begin{array} { l l } 120 & 30 \end{array} \right]

e. none of these
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
23
Use a graphing calculator to approximate the solutions of the system. {4.2x+7.1y=39.355x+4y=6.7\left\{ \begin{array} { c } 4.2 x + 7.1 y = 39.35 \\- 5 x + 4 y = 6.7\end{array} \right.
a. (4.3,2.1)\quad ( 4.3,2.1 )
b. (2.1,4.3)\quad ( - 2.1 , - 4.3 )
c. (2.2,7.4)\quad ( - 2.2,7.4 )
d. (6.4,1.2)\quad ( 6.4 , - 1.2 )
e. (2.1,4.3)\quad ( 2.1,4.3 )
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
24
Two artists make winter yard ornaments. They get $97\$ 97 for each wooden snowman they make and $77\$ 77 for each wooden Santa Claus. On average, Nina must work 4 hours and Roberta 3 hours to make a snowman. Nina must work 2 hours and Roberta 4 hours to make a Santa Claus. If neither wishes to work more than 20 hours per week, how many of each ornament should they make each week to maximize their income? The information is summarized in the table below.
 Two artists make winter yard ornaments. They get  \$ 97  for each wooden snowman they make and  \$ 77  for each wooden Santa Claus. On average, Nina must work 4 hours and Roberta 3 hours to make a snowman. Nina must work 2 hours and Roberta 4 hours to make a Santa Claus. If neither wishes to work more than 20 hours per week, how many of each ornament should they make each week to maximize their income? The information is summarized in the table below.    a.  \quad 4  snowmen and 3 ornaments of Santa Claus:  \$ 19  b.  \quad 3  snowmen and 4 ornaments of Santa Claus:  \$ 19  c.  \quad 2  snowmen and 5 ornaments of Santa Claus:  \$ 23  d.  \quad 5  snowmen and no ornaments of Santa Claus: \$485 e. 4 snowmen and 2 ornaments of Santa Claus:  \$ 542

a. 4\quad 4 snowmen and 3 ornaments of Santa Claus: $19\$ 19
b. 3\quad 3 snowmen and 4 ornaments of Santa Claus: $19\$ 19
c. 2\quad 2 snowmen and 5 ornaments of Santa Claus: $23\$ 23
d. 5\quad 5 snowmen and no ornaments of Santa Claus: \$485
e. 4 snowmen and 2 ornaments of Santa Claus: $542\$ 542
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
25
Minimize P=16x+2yP = 16 x + 2 y subject to the given constraints.
{x0y0x+2y82x+y8\left\{\begin{aligned}x & \geq 0 \\y & \geq 0 \\x+2 y & \geq 8 \\2 x+y & \geq 8\end{aligned}\right.

a. P=72\quad P = 72 at (4,4)( 4,4 )
b. P=16\quad P = 16 at (0,8)( 0,8 )
c. P=8\quad P = 8 at (0,2)( 0,2 )
d. P=32\quad P = - 32 at (2,0)( - 2,0 )
e. none of these
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
26
Find the inverse of the matrix. [321132321111]\left[ \begin{array} { c c c } 32 & 1 & - 1 \\32 & 32 & - 1 \\- 1 & - 1 & 1\end{array} \right]
a. [1310131131131001313231]\left[ \begin{array} { c c c } - \frac { 1 } { 31 } & 0 & \frac { 1 } { 31 } \\ \frac { 1 } { 31 } & \frac { 1 } { 31 } & 0 \\ 0 & \frac { 1 } { 31 } & \frac { 32 } { 31 } \end{array} \right]

b. [1310131131131001313231]\left[ \begin{array} { c c c } \frac { 1 } { 31 } & 0 & \frac { 1 } { 31 } \\ - \frac { 1 } { 31 } & \frac { 1 } { 31 } & 0 \\ 0 & \frac { 1 } { 31 } & \frac { 32 } { 31 } \end{array} \right]

c.
[1310131131131001313231]\left[ \begin{array} { c c c } \frac { 1 } { 31 } & 0 & \frac { 1 } { 31 } \\\frac { 1 } { 31 } & - \frac { 1 } { 31 } & 0 \\0 & \frac { 1 } { 31 } & \frac { 32 } { 31 }\end{array} \right]

d. [13111311311310251313231]\left[ \begin{array} { c c c } \frac { 1 } { 31 } & 1 & \frac { 1 } { 31 } \\ - \frac { 1 } { 31 } & \frac { 1 } { 31 } & 0 \\ 25 & \frac { 1 } { 31 } & \frac { 32 } { 31 } \end{array} \right]

e. [1310131131131001313231]\left[ \begin{array} { c c c } - \frac { 1 } { 31 } & 0 & \frac { 1 } { 31 } \\ - \frac { 1 } { 31 } & \frac { 1 } { 31 } & 0 \\ 0 & \frac { 1 } { 31 } & \frac { 32 } { 31 } \end{array} \right]
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
27
Solve the system by Gauss-Jordan elimination, if possible. If (x, y) is the solution to the system, give the value of x. {x2y=14y=2\left\{ \begin{array} { r } x - 2 y = 14 \\y = - 2\end{array} \right.
a. 11
b. 10- 10
c. 11- 11
d. 10
e. no solution
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
28
Find the inverse of the matrix. [2118]\left[ \begin{array} { c c } 2 & 1 \\- 1 & 8\end{array} \right]
a. [817117117217]\left[ \begin{array} { c c } \frac { 8 } { 17 } & - \frac { 1 } { 17 } \\ - \frac { 1 } { 17 } & \frac { 2 } { 17 } \end{array} \right]

b. [817117117217]\left[ \begin{array} { c c } \frac { 8 } { 17 } & \frac { 1 } { 17 } \\ \frac { 1 } { 17 } & \frac { 2 } { 17 } \end{array} \right]

c.
[817117117217]\left[ \begin{array} { c c } - \frac { 8 } { 17 } & - \frac { 1 } { 17 } \\\frac { 1 } { 17 } & \frac { 2 } { 17 }\end{array} \right]

d. [817117117217]\left[ \begin{array} { c c } \frac { 8 } { 17 } & - \frac { 1 } { 17 } \\ \frac { 1 } { 17 } & \frac { 2 } { 17 } \end{array} \right]

e. [817117117217]\left[ \begin{array} { c c } \frac { 8 } { 17 } & - \frac { 1 } { 17 } \\ \frac { 1 } { 17 } & - \frac { 2 } { 17 } \end{array} \right]
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
29
Find the solution set of the system. {y4x>4\left\{ \begin{array} { l } y \leq - 4 \\x > - 4\end{array} \right.
a.\mathrm { a } .
 Find the solution set of the system.  \left\{ \begin{array} { l } y \leq - 4 \\ x > - 4 \end{array} \right.   \mathrm { a } .    b.   c.    d.
b.
 Find the solution set of the system.  \left\{ \begin{array} { l } y \leq - 4 \\ x > - 4 \end{array} \right.   \mathrm { a } .    b.   c.    d.
c.
 Find the solution set of the system.  \left\{ \begin{array} { l } y \leq - 4 \\ x > - 4 \end{array} \right.   \mathrm { a } .    b.   c.    d.

d.
 Find the solution set of the system.  \left\{ \begin{array} { l } y \leq - 4 \\ x > - 4 \end{array} \right.   \mathrm { a } .    b.   c.    d.
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
30
Find 7A7 A .
A=[8832]A = \left[ \begin{array} { l l } 8 & 8 \\3 & 2\end{array} \right]
a. [56832]\left[ \begin{array} { c c } 56 & 8 \\ 3 & 2 \end{array} \right]

b.
[5682114]\left[ \begin{array} { c c } 56 & 8 \\ 21 & 14 \end{array} \right]

c. [8562114]\left[ \begin{array} { c c } 8 & 56 \\ 21 & 14 \end{array} \right]

d. [856314]\left[ \begin{array} { c c } 8 & 56 \\ 3 & 14 \end{array} \right]

e. [56562114]\left[ \begin{array} { l l } 56 & 56 \\ 21 & 14 \end{array} \right]
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
31
What is element a11a _ { 11 } of the inverse of the following matrix?
[16118]\left[ \begin{array} { c c } 16 & 1 \\1 & 8\end{array} \right]
a. 8257\frac { 8 } { 257 }
b. 8127\frac { 8 } { 127 }
c. 16127- \frac { 16 } { 127 }
d. 8127- \frac { 8 } { 127 }
e. 16127\frac { 16 } { 127 }
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
32
Illustration shows three circles traced out by a figure skater during her performance.If the centers of the circles are the given distances apart, find the radius of each circle.  Illustration shows three circles traced out by a figure skater during her performance.If the centers of the circles are the given distances apart, find the radius of each circle.    A = 10 , B = 18 , C = 20  a.  \quad r _ { 1 } = 4 , r _ { 2 } = 6 , r _ { 3 } = 14  b.  \quad r _ { 1 } = 3 , r _ { 2 } = 6 , r _ { 3 } = 15  c.  \quad r _ { 1 } = 4 , r _ { 2 } = 14 , r _ { 3 } = 6  d.  \quad r _ { 1 } = 14 , r _ { 2 } = 4 , r _ { 3 } = 6  e.  \quad r _ { 1 } = 6 , r _ { 2 } = 14 , r _ { 3 } = 4
A=10,B=18,C=20A = 10 , B = 18 , C = 20
a. r1=4,r2=6,r3=14\quad r _ { 1 } = 4 , r _ { 2 } = 6 , r _ { 3 } = 14
b. r1=3,r2=6,r3=15\quad r _ { 1 } = 3 , r _ { 2 } = 6 , r _ { 3 } = 15
c. r1=4,r2=14,r3=6\quad r _ { 1 } = 4 , r _ { 2 } = 14 , r _ { 3 } = 6
d. r1=14,r2=4,r3=6\quad r _ { 1 } = 14 , r _ { 2 } = 4 , r _ { 3 } = 6
e. r1=6,r2=14,r3=4\quad r _ { 1 } = 6 , r _ { 2 } = 14 , r _ { 3 } = 4
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
33
Find the inverse of the matrix. [1441]\left[ \begin{array} { c c } 1 & 4 \\- 4 & - 1\end{array} \right]
a. [115415415115]\left[ \begin{array} { c c } \frac { 1 } { 15 } & - \frac { 4 } { 15 } \\ \frac { 4 } { 15 } & \frac { 1 } { 15 } \end{array} \right]

b.
[115415415115]\left[ \begin{array} { c c } - \frac { 1 } { 15 } & - \frac { 4 } { 15 } \\ - \frac { 4 } { 15 } & \frac { 1 } { 15 } \end{array} \right]

c.
[115415415115]\left[\begin{array}{cc}-\frac{1}{15} & \frac{4}{15} \\\frac{4}{15} & \frac{1}{15}\end{array}\right]

d. [115415415115]\left[ \begin{array} { c c } - \frac { 1 } { 15 } & - \frac { 4 } { 15 } \\ \frac { 4 } { 15 } & \frac { 1 } { 15 } \end{array} \right]


e. [115415415115]\left[ \begin{array} { c c } - \frac { 1 } { 15 } & - \frac { 4 } { 15 } \\ \frac { 4 } { 15 } & - \frac { 1 } { 15 } \end{array} \right]

Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
34
Solve the system by the addition method, if possible. If a solution exists, give the value of y. {x105+y+73=815x+73+y107=5221\left\{ \begin{array} { l } \frac { x - 10 } { 5 } + \frac { y + 7 } { 3 } = \frac { 8 } { 15 } \\\frac { x + 7 } { 3 } + \frac { y - 10 } { 7 } = \frac { 52 } { 21 }\end{array} \right.
a. 10
b. 6
c. 3- 3
d. 4
e. no solution
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
35
Solve the system using Gaussian elimination. If (x,y)( x , y ) is the solution to the system, give the value of 2xy2 x - y .
{x+y=23x2y=13\left\{ \begin{array} { c } x + y = 23 \\x - 2 y = - 13\end{array} \right.
a. 10\quad 10
b. 13
c. 7\quad 7
d. 8\quad 8
e. 9\quad 9
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
36
Evaluate the determinant. 81084\left| \begin{array} { c c } 8 & 10 \\ - 8 & 4 \end{array} \right|
a. D=48\quad D = - 48
b. D=2,560\quad D = 2,560
c. D=112D = - 112
d. D=117\quad D = - 117
e. D=112\quad D = 112
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
37
Solve the system by the addition method, if possible. If a solution exists, give the value of x. {2(x+y)=y197(x+10)=y+17\left\{ \begin{array} { c } 2 ( x + y ) = y - 19 \\7 ( x + 10 ) = y + 17\end{array} \right.
a. 5- 5
b. 11- 11
c. 2- 2
d. 8- 8
e. no solution
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
38
Find the solution set of the system. {y<5x+4y<4x+5\left\{ \begin{array} { l } y < 5 x + 4 \\y < - 4 x + 5\end{array} \right.
a.
 Find the solution set of the system.  \left\{ \begin{array} { l } y < 5 x + 4 \\ y < - 4 x + 5 \end{array} \right.  a.   b.   c.   d.
b.
 Find the solution set of the system.  \left\{ \begin{array} { l } y < 5 x + 4 \\ y < - 4 x + 5 \end{array} \right.  a.   b.   c.   d.
c.
 Find the solution set of the system.  \left\{ \begin{array} { l } y < 5 x + 4 \\ y < - 4 x + 5 \end{array} \right.  a.   b.   c.   d.
d.
 Find the solution set of the system.  \left\{ \begin{array} { l } y < 5 x + 4 \\ y < - 4 x + 5 \end{array} \right.  a.   b.   c.   d.
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
39
Find values of x and y, if any, that will make the matrices equal. [xy39]=[2839]\left[ \begin{array} { l l } x & y \\3 & 9\end{array} \right] = \left[ \begin{array} { l l } 2 & 8 \\3 & 9\end{array} \right]
a. x=2,y=8x = 2 , y = 8
b. x=2,y=8x = - 2 , y = 8
c. x=8,y=2x = 8 , y = 2
d. x=2,y=8x = - 2 , y = - 8
e. no solution
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
40
A diet requires at least 24 units of vitamin C and at least 26 units of vitamin B complex.Two food supplements are available that provide these nutrients, in the amounts and costs shown in the table
Below.How much of each should be used to minimize the cost?  A diet requires at least 24 units of vitamin C and at least 26 units of vitamin B complex.Two food supplements are available that provide these nutrients, in the amounts and costs shown in the table Below.How much of each should be used to minimize the cost?    a.  \quad 3  grams of  A  and 9 grams of  B : 33  cents b. 1 gram of  A  and 5 grams of B: 27 cents c.  \quad 5  grams of  A  and 7 grams of B: 39 cents d.  \quad 7  grams of  A  and 5 grams of B: 45 cents e. 5 grams of  A  and 2 grams of B: 20 cents

a. 3\quad 3 grams of AA and 9 grams of B:33B : 33 cents
b. 1 gram of AA and 5 grams of B: 27 cents
c. 5\quad 5 grams of AA and 7 grams of B: 39 cents
d. 7\quad 7 grams of AA and 5 grams of B: 45 cents
e. 5 grams of AA and 2 grams of B: 20 cents
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
41
Two artists make winter yard ornaments.They get $83 for each wooden snowman they make and $74 for each wooden Santa Claus.On average, Nina must work 8 hours and Roberta 6 hours to make a
Snowman.Nina must work 4 hours and Roberta 8 hours to make a Santa Claus.If neither wishes to
Work more than 40 hours per week, how many of each ornament should they make each week to
Maximize their income? The information is summarized in the table below.  Two artists make winter yard ornaments.They get $83 for each wooden snowman they make and $74 for each wooden Santa Claus.On average, Nina must work 8 hours and Roberta 6 hours to make a Snowman.Nina must work 4 hours and Roberta 8 hours to make a Santa Claus.If neither wishes to Work more than 40 hours per week, how many of each ornament should they make each week to Maximize their income? The information is summarized in the table below.    a. 4 snowmen and 3 ornaments of Santa Claus:  \$ 34  b.  \quad 3  snowmen and 4 ornaments of Santa Claus:  \$ 34  c. 4 snowmen and 2 ornaments of Santa Claus:  \$ 480  d.  \quad 2  snowmen and 5 ornaments of Santa Claus:  \$ 46  e.  \quad 5  snowmen and no ornaments of Santa Claus:  \$ 415

a. 4 snowmen and 3 ornaments of Santa Claus: $34\$ 34
b. 3\quad 3 snowmen and 4 ornaments of Santa Claus: $34\$ 34
c. 4 snowmen and 2 ornaments of Santa Claus: $480\$ 480
d. 2\quad 2 snowmen and 5 ornaments of Santa Claus: $46\$ 46
e. 5\quad 5 snowmen and no ornaments of Santa Claus: $415\$ 415
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
42
Find the solution set of the system. {y4x>4\left\{ \begin{array} { l } y \leq - 4 \\x > - 4\end{array} \right.
a.
 Find the solution set of the system.  \left\{ \begin{array} { l } y \leq - 4 \\ x > - 4 \end{array} \right.  a.   b.    C.    d.
b.
 Find the solution set of the system.  \left\{ \begin{array} { l } y \leq - 4 \\ x > - 4 \end{array} \right.  a.   b.    C.    d.

C.
 Find the solution set of the system.  \left\{ \begin{array} { l } y \leq - 4 \\ x > - 4 \end{array} \right.  a.   b.    C.    d.

d.
 Find the solution set of the system.  \left\{ \begin{array} { l } y \leq - 4 \\ x > - 4 \end{array} \right.  a.   b.    C.    d.
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
43
Find the graph of the linear inequality. 3y2x93 y \geq 2 x - 9
a.
 Find the graph of the linear inequality.  3 y \geq 2 x - 9  a.   b.   C.    d.
b.
 Find the graph of the linear inequality.  3 y \geq 2 x - 9  a.   b.   C.    d.
C.
 Find the graph of the linear inequality.  3 y \geq 2 x - 9  a.   b.   C.    d.

d.
 Find the graph of the linear inequality.  3 y \geq 2 x - 9  a.   b.   C.    d.
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
44
Find the solution set of the system. {y<7x+3y<3x+7\left\{ \begin{array} { l } y < 7 x + 3 \\y < - 3 x + 7\end{array} \right.
a.
 Find the solution set of the system.  \left\{ \begin{array} { l } y < 7 x + 3 \\ y < - 3 x + 7 \end{array} \right.  a.   b.   c.    d.
b.
 Find the solution set of the system.  \left\{ \begin{array} { l } y < 7 x + 3 \\ y < - 3 x + 7 \end{array} \right.  a.   b.   c.    d.
c.
 Find the solution set of the system.  \left\{ \begin{array} { l } y < 7 x + 3 \\ y < - 3 x + 7 \end{array} \right.  a.   b.   c.    d.

d.
 Find the solution set of the system.  \left\{ \begin{array} { l } y < 7 x + 3 \\ y < - 3 x + 7 \end{array} \right.  a.   b.   c.    d.
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
45
Decompose the fraction into partial fractions. 9x2+8x+9x3+x\frac { 9 x ^ { 2 } + 8 x + 9 } { x ^ { 3 } + x }
a. 8x9x2+1\quad \frac { 8 } { x } - \frac { 9 } { x ^ { 2 } + 1 }
b. 9x8x2+1\quad \frac { 9 } { x } - \frac { 8 } { x ^ { 2 } + 1 }
c. 8x+9x2+1\frac { 8 } { x } + \frac { 9 } { x ^ { 2 } + 1 }
d. 9x+8x2+1\frac { 9 } { x } + \frac { 8 } { x ^ { 2 } + 1 }
e. none of these
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
46
Decompose the fraction into partial fractions. 7x11x2+2x3\frac { 7 x - 11 } { x ^ { 2 } + 2 x - 3 }
a. 8x+31x1\quad \frac { 8 } { x + 3 } - \frac { 1 } { x - 1 }
b. 8x+3+1x2\quad \frac { 8 } { x + 3 } + \frac { 1 } { x - 2 }
c. 6x3+1x+1\quad \frac { 6 } { x - 3 } + \frac { 1 } { x + 1 }
d. 6x31x+1\quad \frac { 6 } { x - 3 } - \frac { 1 } { x + 1 }
e. none of these
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
47
A diet requires at least 26 units of vitamin C and at least 31 units of vitamin B complex.Two food supplements are available that provide these nutrients, in the amounts and costs shown in the table
Below.How much of each should be used to minimize the cost?  A diet requires at least 26 units of vitamin C and at least 31 units of vitamin B complex.Two food supplements are available that provide these nutrients, in the amounts and costs shown in the table Below.How much of each should be used to minimize the cost?    a.  \quad 7  grams of  A  and 5 grams of B: 62 cents b. 5 grams of A and 2 grams of B: 32 cents c. 5 grams of A and 7 grams of B: 58 cents d.  \quad 3  grams of  A  and 9 grams of B: 54 cents e. 1 gram of  A  and 5 grams of  B : 34  cents

a. 7\quad 7 grams of AA and 5 grams of B: 62 cents
b. 5 grams of A and 2 grams of B: 32 cents
c. 5 grams of A and 7 grams of B: 58 cents
d. 3\quad 3 grams of AA and 9 grams of B: 54 cents
e. 1 gram of AA and 5 grams of B:34B : 34 cents
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
48
Minimize P=18x+4yP = 18 x + 4 y subject to the given constraints.
{x0y0x+4y94x+y9\left\{\begin{array}{rll}x & \geq & 0 \\y & \geq & 0 \\x+4 y & \geq & 9 \\4 x+y & \geq & 9\end{array}\right.

a. P=99\quad P = 99 at (4.5,4.5)( 4.5,4.5 )
b. P=9\quad P = 9 at (0,4)( 0,4 )
c. P=72\quad P = - 72 at (4,0)( - 4,0 )
d. P=36\quad P = 36 at (0,9)( 0,9 )
e. none of these
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
49
Which fraction appears in the partial fraction decomposition of 5x2+49x+108x(x+6)2\frac { 5 x ^ { 2 } + 49 x + 108 } { x ( x + 6 ) ^ { 2 } } ?
a. 3(x+6)2\quad \frac { 3 } { ( x + 6 ) ^ { 2 } }
b. 1x+6\frac { 1 } { x + 6 }
c. 6x\frac { 6 } { x }
d. 9x\frac { 9 } { x }
e. 1(x+6)2\frac { 1 } { ( x + 6 ) ^ { 2 } }
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
50
Find the graph of the linear inequality. 4x2y>114 x - 2 y > 11
a.
 Find the graph of the linear inequality.  4 x - 2 y > 11  a.    b.   c.   d.

b.
 Find the graph of the linear inequality.  4 x - 2 y > 11  a.    b.   c.   d.
c.
 Find the graph of the linear inequality.  4 x - 2 y > 11  a.    b.   c.   d.
d.
 Find the graph of the linear inequality.  4 x - 2 y > 11  a.    b.   c.   d.
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
locked card icon
Unlock Deck
Unlock for access to all 50 flashcards in this deck.