Deck 7: Calculus of Several Variables

Full screen (f)
exit full mode
Question
Let f(x,y)=7x2yf ( x , y ) = 7 x ^ { 2 } - y . Compute f (2, 0).
Use Space or
up arrow
down arrow
to flip the card.
Question
f(x,y)=4x2yf ( x , y ) = 4 x ^ { 2 } - y . Compute f (3, 0).
Question
Let f (x, y) = 7xy. Compute f (5, 0).
Question
Compute f (7, 1) if f(x,y)=7xy3f ( x , y ) = 7 x y ^ { 3 }

A) 49
B) 2,401
C) 7
D) 343
Question
Let f (x, y) = 5xy. Compute f (9, 0).
Question
Compute f (ln 5, ln 6) if f(x,y)=e2x+yf ( x , y ) = e ^ { 2 x + y } .

A) 150
B) 30
C) 16
D) None of the above
Question
Let f(x,y)=xeyf ( x , y ) = \frac { x } { e ^ { y } } . Compute f (3, 0).

A) 0
B) 3
C) Undefined
D) 4
Question
Compute f (6, 0) if f(x,y)=xeyf ( x , y ) = \frac { x } { e ^ { y } } .

A) 6
B) 0
C) 16\frac { 1 } { 6 }
D) Undefined
Question
Let f(x,y)=5x2eyf ( x , y ) = 5 x ^ { 2 } - e ^ { y } . Compute f (3, 0).
Question
Given the function of three variables f (x, y, z) = xy + xz + yz, evaluate f (-9, 9, -3).

A) -72
B) -78
C) -86
D) -81
Question
What is the domain of f(x,y)=x(x2+y216)1/2f ( x , y ) = \frac { x } { \left( x ^ { 2 } + y ^ { 2 } - 16 \right) ^ { 1 / 2 } } ?
Question
What is the domain of f(x,y)=x(x2+y264)1/2f ( x , y ) = \frac { x } { \left( x ^ { 2 } + y ^ { 2 } - 64 \right) ^ { 1 / 2 } } ?
Question
Q(x,y)=3xy3Q ( x , y ) = 3 x y ^ { 3 } is the daily production for x skilled and y unskilled workers. What is the exact change in daily production if x changes from 4 to 3 and y from 2 to 1?
Question
Compute fyf _ { y } for f(x,y)=5xy3f ( x , y ) = 5 x y ^ { 3 }

A) 5x
B) 15xy215 x y ^ { 2 }
C) 15xy2+5y315 x y ^ { 2 } + 5 y ^ { 3 }
D) y3y ^ { 3 }
Question
Compute fxf _ { x } for f(x,y)=5xy3f ( x , y ) = 5 x y ^ { 3 }

A) 5x
B) 15xy215 x y ^ { 2 }
C) 15xy2+5y315 x y ^ { 2 } + 5 y ^ { 3 }
D) 5y35 y ^ { 3 }
Question
Compute fx for f (x, y) = 3x8y - 4x +exy.
Question
Compute fxf _ { x } for f(x,y)=4x6y3x+exyf ( x , y ) = 4 x ^ { 6 } y - 3 x + e ^ { x y } .
Question
Compute fyf _ { y } for f(x,y)=2xy8f ( x , y ) = 2 x y ^ { 8 } .

A) 16xy716 x y ^ { 7 }
B) 2x
C) 2y82 y ^ { 8 }
D) 16xy7+2y816 x y ^ { 7 } + 2 y ^ { 8 }
Question
Compute fxf _ { x } for f(x,y)=2xy9f ( x , y ) = 2 x y ^ { 9 } .

A) 2y92 y ^ { 9 }
B) 18xy818 x y ^ { 8 }
C) 2x
D) 18xy8+2y918 x y ^ { 8 } + 2 y ^ { 9 }
Question
Compute all first-order partial derivatives of the given function. f(x,y)=(5x+8y)3f ( x , y ) = ( 5 x + 8 y ) ^ { 3 }

A) fx=15(5x+8y)2f _ { x } = 15 ( 5 x + 8 y ) ^ { 2 } fy=24(5x+8y)2f _ { y } = 24 ( 5 x + 8 y ) ^ { 2 }
B) fx=15(5x+8y)4f _ { x } = 15 ( 5 x + 8 y ) ^ { 4 } fy=24(5x+8y)4f _ { y } = 24 ( 5 x + 8 y ) ^ { 4 }
C) fx=15(x+8y)2f _ { x } = 15 ( x + 8 y ) ^ { 2 } fy=24(5x+8)2f _ { y } = 24 ( 5 x + 8 ) ^ { 2 }
D) fx=15(8y)2f _ { x } = 15 ( 8 y ) ^ { 2 } fy=24(5x)2f _ { y } = 24 ( 5 x ) ^ { 2 }
Question
Compute fxf _ { x } for f(x,y)=e2xyf ( x , y ) = e ^ { 2 x y } .

A) 2ye2xy2 y e ^ { 2 x y }
B) 2xe2xy2 x e ^ { 2 xy }
C) 2e2xy2 e ^ { 2 x y }
D) 2xye2xy2 x y e ^ { 2 x y }
Question
Compute fxf _ { x } for f(x,y)=exyf ( x , y ) = e ^ { xy } .

A) exye ^ { x y }
B) xexyx e ^ { x y }
C) yexyy e ^ { xy }
D) xyexyx y e ^ { x y }
Question
Compute fyf _ { y } for f(x,y)=6xeyf ( x , y ) = 6 x e ^ { y } .
Question
If f(x,y)=xexyf ( x , y ) = x e ^ {x y } , find fy(2,3)f _ { y } ( 2,3 ) .
Question
If f(x,y)=xexyf ( x , y ) = x e ^ { xy } , find fy(6,2)f _ { y } ( 6,2 ) .
Question
If f (y) = x ln y, find fy(2,1)f _ { y } ( 2,1 ) .
Question
Find fxyf _ { x y } for f(x,y)=x3+y3f ( x , y ) = x ^ { 3 } + y ^ { 3 } .

A) 6x
B) 3x2+3y23 x ^ { 2 } + 3 y ^ { 2 }
C) 0
D) 6y
Question
Let f (x, y) = x ln(1 + 2x - 5y). Find fxx(x,y)f _ { x x } ( x , y ) .
Question
Compute fyyf _ { y y } for f(x,y)=e6xyf ( x , y ) = e ^ { 6 x y } .

A) 36x2e6xy36 x ^ { 2 } e ^ { 6 xy }
B) 36y2e6xy36 y ^ { 2 } e ^ { 6 x y }
C) 36e6xy36 e ^ { 6 x y }
D) 36x2y2e6xy36 x ^ { 2 } y ^ { 2 } e ^ { 6 xy }
Question
Find fyyf _ { y y } for f(x,y)=exyf ( x , y ) = e ^ { xy } .

A) y2exyy ^ { 2 } e ^ { x y }
B) xyexyx y e ^ { x y }
C) x2exyx ^ { 2 } e ^ {x y }
D) exye ^ { x y }
Question
Let f(x,y)=ye5x2yf ( x , y ) = y e ^ { - 5 x ^ { 2 } y } . Find fyy(x,y)f _ { y y } ( x , y ) .
Question
The weekly output for a manufacturer is Q(x,y)=12x+50y2x2+y2Q ( x , y ) = 12 x + 50 y - 2 x ^ { 2 } + y ^ { 2 } units. Use marginal analysis to estimate the change in weekly output as a result of changing x from 20 to 21 while y remains constant at 10.
Question
The daily output for a manufacturer is Q(K,L)=10K1/3L1/2Q ( K , L ) = 10 K ^ { 1 / 3 } L ^ { 1 / 2 } units. Use marginal analysis to estimate the change in daily output as a result of changing L from 625 to 626 while K remains constant at 216. Round your answer to one decimal place, if necessary.
Question
A mall kiosk sells two different models of pagers, the Elite and the Diamond. Their monthly profit from pager sales is P(x,y)=(x40)(205x+6y)+(y50)(30+3x4y)P ( x , y ) = ( x - 40 ) ( 20 - 5 x + 6 y ) + ( y - 50 ) ( 30 + 3 x - 4 y ) where x and y are the prices of the Elite and the Diamond respectively, in dollars. At the moment, the Elite sells for $32 and the Diamond sells for $40. Use calculus to estimate the change in monthly profit if the kiosk operator raises the price of the Elite to $33 and lowers the price of the Diamond to $38.

A) Profit will increase by about $26.
B) Profit will decrease by about $310.
C) Profit will increase by about $194.
D) Profit will stay the same.
Question
If z=x2+y2z = x ^ { 2 } + y ^ { 2 } , x=5tx = 5 \sqrt { t } , and y=t2ty = t ^ { 2 } - t , find dzdt\frac { d z } { d t } when t = 9.

A) -2,111
B) 10,618
C) -8,100
D) 2,473
Question
Find the extrema (minima, maxima, saddle points), if any, for f (x, y) = (x - 1)(y + 2).
Question
Find the extrema (minima, maxima, saddle points), if any, for f (x, y) = (x - 9)(y + 1).
Question
Find the extrema (minima, maxima, saddle points), if any, for f(x,y)=8x24y2f ( x , y ) = 8 x ^ { 2 } - 4 y ^ { 2 } .
Question
Find the extrema (minima, maxima, saddle points), if any, for f(x,y)=5x26y2f ( x , y ) = 5 x ^ { 2 } - 6 y ^ { 2 } .
Question
Find the extrema (minima, maxima, saddle points), if any, for f(x,y)=x26x+y28yf ( x , y ) = x ^ { 2 } - 6 x + y ^ { 2 } - 8 y .
Question
Find the critical points and classify each as being a minimum, maximum, saddle point, or other, for f(x,y)=x2+y36xyf ( x , y ) = x ^ { 2 } + y ^ { 3 } - 6 x y .
Question
Find the extrema (minima, maxima, saddle points), if any, for f(x,y)=x214x+y26yf ( x , y ) = x ^ { 2 } - 14 x + y ^ { 2 } - 6 y .
Question
Find the critical points and classify each as being a minimum, maximum, saddle point, or other, for f(x,y)=x4+y42x22y2f ( x , y ) = x ^ { 4 } + y ^ { 4 } - 2 x ^ { 2 } - 2 y ^ { 2 } .
Question
Find the critical points and classify each as being a minimum, maximum, saddle point, or other, for f(x,y)=x2+y36xyf ( x , y ) = x ^ { 2 } + y ^ { 3 } - 6 x y .
Question
Find the critical points and classify each as being a minimum, maximum, saddle point, or other, for f(x,y)=x2+xyy2+5x5yf ( x , y ) = x ^ { 2 } + x y - y ^ { 2 } + 5 x - 5 y .
Question
Find the critical points and classify each as being a minimum, maximum, saddle point, or other, for f(x,y)=x2+xyy2+20x20yf ( x , y ) = x ^ { 2 } + x y - y ^ { 2 } + 20 x - 20 y .
Question
A manufacturer with exclusive rights to a sophisticated new industrial machine is planning to sell a limited number of the machines to both foreign and domestic firms. The price the manufacturer can expect to receive for the machines will depend on the number of machines made available. (For example, if only a few of the machines are placed on the market, competitive bidding among prospective purchasers will tend to drive the price up.) It is estimated that if the manufacturer supplies x machines to the domestic market and y machines to the foreign market, the machines will sell for 60x5+y2060 - \frac { x } { 5 } + \frac { y } { 20 } thousand dollars apiece at home and for 50y10+x2050 - \frac { y } { 10 } + \frac { x } { 20 } thousand dollars apiece abroad. If the manufacturer can produce the machines at a cost of $31,000 apiece, how many should be supplied to each market to generate the largest possible profit?

A) x = 150, y = 11
B) x = 38, y = 593
C) x = 110, y = 150
D) x = 55, y = 750
Question
Given the following points in the plane, find the corresponding least squares line: (1, 2), (2, 1), (4, 2), and (5, 1)
Question
Given the following points in the plane, find the slope of the least squares line: (1, 2), (2, 1), (3, 3), and (5, 13) round your answer to two decimal places, if necessary.

A) 2.94
B) 2.89
C) 2.83
D) 2.77
Question
The following data shows the age and income for a small number of people.  Age (years) 2432395460 Incomes ($) 30,00034,00053,00072,00090,000\begin{array} { c l l l l l } \text { Age (years) } & 24 & 32 & 39 & 54 & 60 \\\text { Incomes (\$) } & 30,000 & 34,000 & 53,000 & 72,000 & 90,000\end{array} Find the best fit straight line of this data, rounding coefficients and constants to the nearest whole number. Let x represent age and y represent income.

A) y = 1,666x - 13,842
B) y = 4,012x - 13,837
C) y = 3,288x - 13,849
D) None of the above
Question
The accompanying table lists the high-school GPA and college GPA for a number of students  High school GPA 2.02.53.13.73.74.0 College GPA 3.22.63.03.63.83.7\begin{array} { l l l l l l l } \text { High school GPA } & 2.0 & 2.5 & 3.1 & 3.7 & 3.7 & 4.0 \\\text { College GPA } & 3.2 & 2.6 & 3.0 & 3.6 & 3.8 & 3.7\end{array}
Using the best fit straight line, predict the college GPA (to one decimal place) for a student whose high school GPA was 3.5.

A) 3.4
B) 3.3
C) 3.6
D) 3.5
Question
The accompanying table gives the Dow Jones Industrial Average (DJIA) at the close of the first trading day of the indicated years  Year 199019921996199820012002 DJLA 2,8103,1725,1777,96510,64610,073\begin{array} { l l l l l l l } \text { Year } & 1990 & 1992 & 1996 & 1998 & 2001 & 2002 \\\text { DJLA } & 2,810 & 3,172 & 5,177 & 7,965 & 10,646 & 10,073\end{array}
Find the least squares line for the DJIA, D, as a function of the year after 1990, t. Round numbers to two decimal places.
Question
The accompanying table lists the Gross Domestic Product (GNP) figures for China (in billions of yuan) for the period from 1996 to 2000  Year 19961997199819992000 GNP 6,7887,4467,8358,1918,940\begin{array} { c l l l l l } \text { Year } & 1996 & 1997 & 1998 & 1999 & 2000 \\\text { GNP } & 6,788 & 7,446 & 7,835 & 8,191 & 8,940\end{array}
Use the best fit straight line to extrapolate the GNP to the nearest yuan in 1990?

A) 3,801 billion yuan
B) 3,876 billion yuan
C) 3,942 billion yuan
D) 3,989 billion yuan
Question
A military radar is measuring the distance to a jet fighter. The radar has received the following measuremens:  time t (minutes) 123456 distance (miles) 280291296301308310\begin{array} { l l l l l l l } \text { time } t \text { (minutes) } & 1 & 2 & 3 & 4 & 5 & 6 \\\text { distance (miles) } & 280 & 291 & 296 & 301 & 308 & 310\end{array}
Using a least squares fit to the data, extrapolate to the nearest tenth of a minute when the jet will be 388 miles away?

A) 18.8 minutes
B) 17.7 minutes
C) 21 minutes
D) 20.2 minutes
Question
Find the maximum value of f(x,y)=xy2f ( x , y ) = x y ^ { 2 } subject to the constraint g(x, y) = x - y = 2.
Question
Find the minimum value (if any) of f(x,y)=xy2f ( x , y ) = x y ^ { 2 } subject to the constraint g(x, y) = x - y = 2.
Question
Find the minimum value of f (x, y) = x + 2y subject to the constraint g(x,y)=xy2=8g ( x , y ) = x y ^ { 2 } = 8 .
Question
Use Lagrange multipliers to find the maximum value of f (x, y) = 9xy subject to the constraint 9x + 5y = 45.

A)
f(54,94)=40516f \left( \frac { 5 } { 4 } , \frac { 9 } { 4 } \right) = \frac { 405 } { 16 }
B)
f(52,92)=4054f \left( \frac { 5 } { 2 } , \frac { 9 } { 2 } \right) = \frac { 405 } { 4 }

C) f (5, 9) = 405

D) f (0, 0) = 0
Question
Find the maximum value of f(x,y)=xy2f ( x , y ) = x y ^ { 2 } subject to the constraint g(x, y) = x - y = 4.
Question
Find the minimum value of f(x,y)=xy2f ( x , y ) = x y ^ { 2 } subject to the constraint g(x, y) = x - y = 2.
Question
Find the minimum value of f(x,y)=x2+y24y+4f ( x , y ) = x ^ { 2 } + y ^ { 2 } - 4 y + 4 on the hyperbola x2y2=4x ^ { 2 } - y ^ { 2 } = 4 .

A) 12312 \sqrt { 3 }
B) 43
C) 6
D) No minimum, unbounded below
Question
Find the minimum and maximum value of f(x,y)=x2+y2f ( x , y ) = x ^ { 2 } + y ^ { 2 } on the ellipse 3x2+2y2=13 x ^ { 2 } + 2 y ^ { 2 } = 1 .

A) Minimum 14\frac { 1 } { 4 } , maximum 512\frac { 5 } { 12 }
B) Minimum 13\frac { 1 } { 3 } , maximum 12\frac { 1 } { 2 }
C) Minimum 16\frac { 1 } { 6 } , maximum 56\frac { 5 } { 6 }
D) No maximum or minimum, unbounded
Question
Find the maximum value of f (x, y) = xy on the ellipse 4x2+9y2=364 x ^ { 2 } + 9 y ^ { 2 } = 36 .
Question
Find the maximum value of f (x, y, z) = xyz on the sphere x2+y2+z2=12x ^ { 2 } + y ^ { 2 } + z ^ { 2 } = 12 .

A) 8
B) 838 \sqrt { 3 }
C) 16
D) No maximum, unbounded
Question
Use Lagrange multipliers to find the maximum value of f (x, y, z) = 6xyz subject to 4x + 3y + 4z = 144.

A) f (0, 0, 0) = 0
B) f (15, 17, 10) = 15,300
C) f (12, 16, 12) = 13,824
D) f (13, 14, 12) = 13,104
Question
Find the maximum value of the function f (x, y, z) = 4x + 5y + 7z on the sphere x2+y2+z2=360x ^ { 2 } + y ^ { 2 } + z ^ { 2 } = 360 .

A) 630
B) 480.0
C) 90
D) 180
Question
A manufacturer is planning to sell a new product at the price of $260 per unit and estimates that if x thousand dollars is spent on development and y thousand dollars is spent on promotion, approximately 360yy+7+180xx+14\frac { 360 y } { y + 7 } + \frac { 180 x } { x + 14 } units of the product will be sold. The cost of manufacturing the product is $200 per unit. If the manufacturer has a total of $360,000 to spend on development and promotion, how should this money be allocated to generate the largest possible profit? [Hint: Profit equals (number of units)(price per unit minus cost per unit) minus total amount spent on development and promotion.]

A) $177,000 on development, $183,000 on promotion
B) $183,000 on development, $177,000 on promotion
C) $183,500 on development, $177,000 on promotion
D) $176,500 on development, $183,500 on promotion
Question
Evaluate the following double integral: 2322x2y3dydx\int _ { - 2 } ^ { 3 } \int _ { - 2 } ^ { 2 } x ^ { 2 } y ^ { 3 } d y d x

A) 12\frac { 1 } { 2 }
B) 3
C) 0
D) The integral can't be evaluated.
Question
Use inequalities to describe R in terms of its vertical and horizontal cross sections. R is the region bounded by y = x2 and y = 7x.

A) Vertical cross sections:
0y49y7xy\begin{array} { c } 0 \leq y \leq 49 \\\frac { y } { 7 } \leq x \leq \sqrt { y }\end{array}

Horizontal cross sections:
0x7x2y7x\begin{array} { c } 0 \leq x \leq 7 \\x ^ { 2 } \leq y \leq 7 x\end{array}


B) Vertical cross sections:
0x7x2y7x\begin{array} { c } 0 \leq x \leq 7 \\x ^ { 2 } \leq y \leq 7 x\end{array}

Horizontal cross sections:
0y49y7xy\begin{array} { c } 0 \leq y \leq 49 \\\frac { y } { 7 } \leq x \leq \sqrt { y }\end{array}


C) Vertical cross sections:
0x49x2y7x\begin{array} { c } 0 \leq x \leq 49 \\x ^ { 2 } \leq y \leq 7 x\end{array}

Horizontal cross sections:
0y7y7xy\begin{array} { c } 0 \leq y \leq 7 \\\frac { y } { 7 } \leq x \leq \sqrt { y }\end{array}

D) Vertical cross sections:
0y7y7xy\begin{array} { c } 0 \leq y \leq 7 \\\frac { y } { 7 } \leq x \leq \sqrt { y }\end{array}
Horizontal cross sections:
0x49x2y7x\begin{array} { c } 0 \leq x \leq 49 \\x ^ { 2 } \leq y \leq 7 x\end{array}
Question
Use inequalities to describe R in terms of its vertical and horizontal cross sections. R is the rectangle with vertices (1, -3), (5, -3), (5, 2), (1, 2).

A) Vertical cross sections: 3x21y5\begin{array} { r } - 3 \leq x \leq 2 \\1 \leq y \leq 5\end{array} Horizontal cross sections: 3y21x5\begin{array} { r } - 3 \leq y \leq 2 \\1 \leq x \leq 5\end{array}


B) Vertical cross sections: 1x53y2\begin{array} { r } 1 \leq x \leq 5 \\- 3 \leq y \leq 2\end{array} Horizontal cross sections: 1y53x2\begin{array} { r } 1 \leq y \leq 5 \\- 3 \leq x \leq 2\end{array}


C) Vertical cross sections: 3x21y5\begin{array} { r } - 3 \leq x \leq 2 \\1 \leq y \leq 5\end{array} Horizontal cross sections: 1y53x2\begin{array} { r } 1 \leq y \leq 5 \\- 3 \leq x \leq 2\end{array}


D) Vertical cross sections: 1x53y2\begin{array} { r } 1 \leq x \leq 5 \\- 3 \leq y \leq 2\end{array} Horizontal cross sections: 3y21x5\begin{array} { r } - 3 \leq y \leq 2 \\1 \leq x \leq 5\end{array}
Question
Use inequalities to describe R in terms of its vertical and horizontal cross sections. R is the region bounded by y = ex, y = 4, and x = 0.

A) Vertical cross sections: 0xln4exy4\begin{aligned}0 & \leq x \leq \ln 4 \\e ^ { x } & \leq y \leq 4\end{aligned} Horizontal cross sections: 1y40xlny\begin{array} { c } 1 \leq y \leq 4 \\0 \leq x \leq \ln y\end{array}

B) Vertical cross sections: 0xlnyexy4\begin{aligned}0 & \leq x \leq \ln y \\e ^ { x } & \leq y \leq 4\end{aligned} Horizontal cross sections: 1y40xln4\begin{array} { c } 1 \leq y \leq 4 \\0 \leq x \leq \ln 4\end{array}

C) Vertical cross sections: exx40yln4\begin{aligned}e ^ { x } & \leq x \leq 4 \\0 & \leq y \leq \ln 4\end{aligned} Horizontal cross sections: 0yln41x4\begin{array} { l } 0 \leq y \leq \ln 4 \\1 \leq x \leq 4\end{array}

D) Vertical cross sections: exxln40y4\begin{array} { c } e ^ { x } \leq x \leq \ln 4 \\0 \leq y \leq 4\end{array} Horizontal cross sections: 0y41xln4\begin{array} { l } 0 \leq y \leq 4 \\1 \leq x \leq \ln 4\end{array}
Question
Evaluate the given double integral for the specified region R. R2xydA\iint _ { R } 2 x y d A , where R is the rectangle bounded by the lines x = -1, x = 2, y = -1, and y = 0.

A) -3
B) 3
C)
32- \frac { 3 } { 2 }
D)
32\frac { 3 } { 2 }
Question
Evaluate the given double integral for the specified region R. R(8x+2y)dA\iint _ { R } ( 8 x + 2 y ) d A , where R is the triangle with vertices (0, 0), (2, 0), and (0, 1).

A)
683\frac { 68 } { 3 }
B)
943\frac { 94 } { 3 }
C) 12
D) 18
Question
Use a double integral to find the area of R. R is the triangle with vertices (-4, 6), (4, 6), and (0, 2).

A) x=4x4y=x+2yx+21dydx=32\int _ { x = - 4 } ^ { x - 4 } \int _ { y = - x + 2 } ^ { y - x + 2 } 1 d y d x = 32

B) y2y6xy+2xy21dxdy=32\int _ { y - 2 } ^ { y - 6 } \int _ { x - - y + 2 } ^ { x - y - 2 } 1 d x d y = 32

C) y2y6xy+2xy21dxdy=16\int _ { y - 2 } ^ { y - 6 } \int _ { x - - y + 2 } ^ { x - y - 2 } 1 d x d y = 16

D) x=4x4y=x+2yx+21dydx=16\int _ { x = - 4 } ^ { x - 4 } \int _ { y = - x + 2 } ^ { y - x + 2 } 1 d y d x = 16
Question
Use a double integral to find the area of R. R is the region bounded by y = 9x, y = ln x, y = 0, and y = 1.

A) x=0x2ylnxy9x1dydx=9e22\int _ { x = 0 } ^ { x - 2 } \int _ { y - lnx } ^ { y - 9 x } 1 d y d x = \frac { 9 e ^ { 2 } } { 2 }

B) y=0y1xy9xey1dxdy=e1918\int _ { y = 0 } ^ { y - 1 } \int _ { x - \frac { y } { 9 } } ^ { x - e ^ { y } } 1 d x d y = e - \frac { 19 } { 18 }

C) y0y1x0xey1dxdy=e1\int _ { y - 0 } ^ { y - 1 } \int _ { x - 0 } ^ { x - e ^ { y } } 1 d x d y = e - 1

D) x0x2ylnxy11dydx=e\int _ { x - 0 } ^ { x - 2 } \int _ { y - \ln x } ^ { y - 1 } 1 d y d x = e
Question
Find the volume of the solid bounded above by the graph of the function f (x, y) = 4x - y + 8 and below by the rectangular region R defined by: 0 \le x \le 2 and 0 \le y \le 1.
Question
Find the volume of the solid bounded above by the graph of the function f (x, y) = xy and below by the rectangular region R defined by: 0 \le x \le 3 and 0 \le y \le 4.
Question
Find the volume of the solid bounded above by the graph of the function f(x,y)=yexf ( x , y ) = y e ^ { x } and below by the rectangular region R define by: 0 \le x \le 4 and 0 \le y \le 2.
Question
Use double integration to find the average value of f(x,y)=18xy2f ( x , y ) = 18 x y ^ { 2 } over the triangle with vertices (0, 0), (0, 2), and (3, 2).
Question
Use double integration to find the average value of f (x, y) = y over the region bounded by x=9y2x = 9 - y ^ { 2 } and the y axis.
Unlock Deck
Sign up to unlock the cards in this deck!
Unlock Deck
Unlock Deck
1/113
auto play flashcards
Play
simple tutorial
Full screen (f)
exit full mode
Deck 7: Calculus of Several Variables
1
Let f(x,y)=7x2yf ( x , y ) = 7 x ^ { 2 } - y . Compute f (2, 0).
28
2
f(x,y)=4x2yf ( x , y ) = 4 x ^ { 2 } - y . Compute f (3, 0).
36
3
Let f (x, y) = 7xy. Compute f (5, 0).
0
4
Compute f (7, 1) if f(x,y)=7xy3f ( x , y ) = 7 x y ^ { 3 }

A) 49
B) 2,401
C) 7
D) 343
Unlock Deck
Unlock for access to all 113 flashcards in this deck.
Unlock Deck
k this deck
5
Let f (x, y) = 5xy. Compute f (9, 0).
Unlock Deck
Unlock for access to all 113 flashcards in this deck.
Unlock Deck
k this deck
6
Compute f (ln 5, ln 6) if f(x,y)=e2x+yf ( x , y ) = e ^ { 2 x + y } .

A) 150
B) 30
C) 16
D) None of the above
Unlock Deck
Unlock for access to all 113 flashcards in this deck.
Unlock Deck
k this deck
7
Let f(x,y)=xeyf ( x , y ) = \frac { x } { e ^ { y } } . Compute f (3, 0).

A) 0
B) 3
C) Undefined
D) 4
Unlock Deck
Unlock for access to all 113 flashcards in this deck.
Unlock Deck
k this deck
8
Compute f (6, 0) if f(x,y)=xeyf ( x , y ) = \frac { x } { e ^ { y } } .

A) 6
B) 0
C) 16\frac { 1 } { 6 }
D) Undefined
Unlock Deck
Unlock for access to all 113 flashcards in this deck.
Unlock Deck
k this deck
9
Let f(x,y)=5x2eyf ( x , y ) = 5 x ^ { 2 } - e ^ { y } . Compute f (3, 0).
Unlock Deck
Unlock for access to all 113 flashcards in this deck.
Unlock Deck
k this deck
10
Given the function of three variables f (x, y, z) = xy + xz + yz, evaluate f (-9, 9, -3).

A) -72
B) -78
C) -86
D) -81
Unlock Deck
Unlock for access to all 113 flashcards in this deck.
Unlock Deck
k this deck
11
What is the domain of f(x,y)=x(x2+y216)1/2f ( x , y ) = \frac { x } { \left( x ^ { 2 } + y ^ { 2 } - 16 \right) ^ { 1 / 2 } } ?
Unlock Deck
Unlock for access to all 113 flashcards in this deck.
Unlock Deck
k this deck
12
What is the domain of f(x,y)=x(x2+y264)1/2f ( x , y ) = \frac { x } { \left( x ^ { 2 } + y ^ { 2 } - 64 \right) ^ { 1 / 2 } } ?
Unlock Deck
Unlock for access to all 113 flashcards in this deck.
Unlock Deck
k this deck
13
Q(x,y)=3xy3Q ( x , y ) = 3 x y ^ { 3 } is the daily production for x skilled and y unskilled workers. What is the exact change in daily production if x changes from 4 to 3 and y from 2 to 1?
Unlock Deck
Unlock for access to all 113 flashcards in this deck.
Unlock Deck
k this deck
14
Compute fyf _ { y } for f(x,y)=5xy3f ( x , y ) = 5 x y ^ { 3 }

A) 5x
B) 15xy215 x y ^ { 2 }
C) 15xy2+5y315 x y ^ { 2 } + 5 y ^ { 3 }
D) y3y ^ { 3 }
Unlock Deck
Unlock for access to all 113 flashcards in this deck.
Unlock Deck
k this deck
15
Compute fxf _ { x } for f(x,y)=5xy3f ( x , y ) = 5 x y ^ { 3 }

A) 5x
B) 15xy215 x y ^ { 2 }
C) 15xy2+5y315 x y ^ { 2 } + 5 y ^ { 3 }
D) 5y35 y ^ { 3 }
Unlock Deck
Unlock for access to all 113 flashcards in this deck.
Unlock Deck
k this deck
16
Compute fx for f (x, y) = 3x8y - 4x +exy.
Unlock Deck
Unlock for access to all 113 flashcards in this deck.
Unlock Deck
k this deck
17
Compute fxf _ { x } for f(x,y)=4x6y3x+exyf ( x , y ) = 4 x ^ { 6 } y - 3 x + e ^ { x y } .
Unlock Deck
Unlock for access to all 113 flashcards in this deck.
Unlock Deck
k this deck
18
Compute fyf _ { y } for f(x,y)=2xy8f ( x , y ) = 2 x y ^ { 8 } .

A) 16xy716 x y ^ { 7 }
B) 2x
C) 2y82 y ^ { 8 }
D) 16xy7+2y816 x y ^ { 7 } + 2 y ^ { 8 }
Unlock Deck
Unlock for access to all 113 flashcards in this deck.
Unlock Deck
k this deck
19
Compute fxf _ { x } for f(x,y)=2xy9f ( x , y ) = 2 x y ^ { 9 } .

A) 2y92 y ^ { 9 }
B) 18xy818 x y ^ { 8 }
C) 2x
D) 18xy8+2y918 x y ^ { 8 } + 2 y ^ { 9 }
Unlock Deck
Unlock for access to all 113 flashcards in this deck.
Unlock Deck
k this deck
20
Compute all first-order partial derivatives of the given function. f(x,y)=(5x+8y)3f ( x , y ) = ( 5 x + 8 y ) ^ { 3 }

A) fx=15(5x+8y)2f _ { x } = 15 ( 5 x + 8 y ) ^ { 2 } fy=24(5x+8y)2f _ { y } = 24 ( 5 x + 8 y ) ^ { 2 }
B) fx=15(5x+8y)4f _ { x } = 15 ( 5 x + 8 y ) ^ { 4 } fy=24(5x+8y)4f _ { y } = 24 ( 5 x + 8 y ) ^ { 4 }
C) fx=15(x+8y)2f _ { x } = 15 ( x + 8 y ) ^ { 2 } fy=24(5x+8)2f _ { y } = 24 ( 5 x + 8 ) ^ { 2 }
D) fx=15(8y)2f _ { x } = 15 ( 8 y ) ^ { 2 } fy=24(5x)2f _ { y } = 24 ( 5 x ) ^ { 2 }
Unlock Deck
Unlock for access to all 113 flashcards in this deck.
Unlock Deck
k this deck
21
Compute fxf _ { x } for f(x,y)=e2xyf ( x , y ) = e ^ { 2 x y } .

A) 2ye2xy2 y e ^ { 2 x y }
B) 2xe2xy2 x e ^ { 2 xy }
C) 2e2xy2 e ^ { 2 x y }
D) 2xye2xy2 x y e ^ { 2 x y }
Unlock Deck
Unlock for access to all 113 flashcards in this deck.
Unlock Deck
k this deck
22
Compute fxf _ { x } for f(x,y)=exyf ( x , y ) = e ^ { xy } .

A) exye ^ { x y }
B) xexyx e ^ { x y }
C) yexyy e ^ { xy }
D) xyexyx y e ^ { x y }
Unlock Deck
Unlock for access to all 113 flashcards in this deck.
Unlock Deck
k this deck
23
Compute fyf _ { y } for f(x,y)=6xeyf ( x , y ) = 6 x e ^ { y } .
Unlock Deck
Unlock for access to all 113 flashcards in this deck.
Unlock Deck
k this deck
24
If f(x,y)=xexyf ( x , y ) = x e ^ {x y } , find fy(2,3)f _ { y } ( 2,3 ) .
Unlock Deck
Unlock for access to all 113 flashcards in this deck.
Unlock Deck
k this deck
25
If f(x,y)=xexyf ( x , y ) = x e ^ { xy } , find fy(6,2)f _ { y } ( 6,2 ) .
Unlock Deck
Unlock for access to all 113 flashcards in this deck.
Unlock Deck
k this deck
26
If f (y) = x ln y, find fy(2,1)f _ { y } ( 2,1 ) .
Unlock Deck
Unlock for access to all 113 flashcards in this deck.
Unlock Deck
k this deck
27
Find fxyf _ { x y } for f(x,y)=x3+y3f ( x , y ) = x ^ { 3 } + y ^ { 3 } .

A) 6x
B) 3x2+3y23 x ^ { 2 } + 3 y ^ { 2 }
C) 0
D) 6y
Unlock Deck
Unlock for access to all 113 flashcards in this deck.
Unlock Deck
k this deck
28
Let f (x, y) = x ln(1 + 2x - 5y). Find fxx(x,y)f _ { x x } ( x , y ) .
Unlock Deck
Unlock for access to all 113 flashcards in this deck.
Unlock Deck
k this deck
29
Compute fyyf _ { y y } for f(x,y)=e6xyf ( x , y ) = e ^ { 6 x y } .

A) 36x2e6xy36 x ^ { 2 } e ^ { 6 xy }
B) 36y2e6xy36 y ^ { 2 } e ^ { 6 x y }
C) 36e6xy36 e ^ { 6 x y }
D) 36x2y2e6xy36 x ^ { 2 } y ^ { 2 } e ^ { 6 xy }
Unlock Deck
Unlock for access to all 113 flashcards in this deck.
Unlock Deck
k this deck
30
Find fyyf _ { y y } for f(x,y)=exyf ( x , y ) = e ^ { xy } .

A) y2exyy ^ { 2 } e ^ { x y }
B) xyexyx y e ^ { x y }
C) x2exyx ^ { 2 } e ^ {x y }
D) exye ^ { x y }
Unlock Deck
Unlock for access to all 113 flashcards in this deck.
Unlock Deck
k this deck
31
Let f(x,y)=ye5x2yf ( x , y ) = y e ^ { - 5 x ^ { 2 } y } . Find fyy(x,y)f _ { y y } ( x , y ) .
Unlock Deck
Unlock for access to all 113 flashcards in this deck.
Unlock Deck
k this deck
32
The weekly output for a manufacturer is Q(x,y)=12x+50y2x2+y2Q ( x , y ) = 12 x + 50 y - 2 x ^ { 2 } + y ^ { 2 } units. Use marginal analysis to estimate the change in weekly output as a result of changing x from 20 to 21 while y remains constant at 10.
Unlock Deck
Unlock for access to all 113 flashcards in this deck.
Unlock Deck
k this deck
33
The daily output for a manufacturer is Q(K,L)=10K1/3L1/2Q ( K , L ) = 10 K ^ { 1 / 3 } L ^ { 1 / 2 } units. Use marginal analysis to estimate the change in daily output as a result of changing L from 625 to 626 while K remains constant at 216. Round your answer to one decimal place, if necessary.
Unlock Deck
Unlock for access to all 113 flashcards in this deck.
Unlock Deck
k this deck
34
A mall kiosk sells two different models of pagers, the Elite and the Diamond. Their monthly profit from pager sales is P(x,y)=(x40)(205x+6y)+(y50)(30+3x4y)P ( x , y ) = ( x - 40 ) ( 20 - 5 x + 6 y ) + ( y - 50 ) ( 30 + 3 x - 4 y ) where x and y are the prices of the Elite and the Diamond respectively, in dollars. At the moment, the Elite sells for $32 and the Diamond sells for $40. Use calculus to estimate the change in monthly profit if the kiosk operator raises the price of the Elite to $33 and lowers the price of the Diamond to $38.

A) Profit will increase by about $26.
B) Profit will decrease by about $310.
C) Profit will increase by about $194.
D) Profit will stay the same.
Unlock Deck
Unlock for access to all 113 flashcards in this deck.
Unlock Deck
k this deck
35
If z=x2+y2z = x ^ { 2 } + y ^ { 2 } , x=5tx = 5 \sqrt { t } , and y=t2ty = t ^ { 2 } - t , find dzdt\frac { d z } { d t } when t = 9.

A) -2,111
B) 10,618
C) -8,100
D) 2,473
Unlock Deck
Unlock for access to all 113 flashcards in this deck.
Unlock Deck
k this deck
36
Find the extrema (minima, maxima, saddle points), if any, for f (x, y) = (x - 1)(y + 2).
Unlock Deck
Unlock for access to all 113 flashcards in this deck.
Unlock Deck
k this deck
37
Find the extrema (minima, maxima, saddle points), if any, for f (x, y) = (x - 9)(y + 1).
Unlock Deck
Unlock for access to all 113 flashcards in this deck.
Unlock Deck
k this deck
38
Find the extrema (minima, maxima, saddle points), if any, for f(x,y)=8x24y2f ( x , y ) = 8 x ^ { 2 } - 4 y ^ { 2 } .
Unlock Deck
Unlock for access to all 113 flashcards in this deck.
Unlock Deck
k this deck
39
Find the extrema (minima, maxima, saddle points), if any, for f(x,y)=5x26y2f ( x , y ) = 5 x ^ { 2 } - 6 y ^ { 2 } .
Unlock Deck
Unlock for access to all 113 flashcards in this deck.
Unlock Deck
k this deck
40
Find the extrema (minima, maxima, saddle points), if any, for f(x,y)=x26x+y28yf ( x , y ) = x ^ { 2 } - 6 x + y ^ { 2 } - 8 y .
Unlock Deck
Unlock for access to all 113 flashcards in this deck.
Unlock Deck
k this deck
41
Find the critical points and classify each as being a minimum, maximum, saddle point, or other, for f(x,y)=x2+y36xyf ( x , y ) = x ^ { 2 } + y ^ { 3 } - 6 x y .
Unlock Deck
Unlock for access to all 113 flashcards in this deck.
Unlock Deck
k this deck
42
Find the extrema (minima, maxima, saddle points), if any, for f(x,y)=x214x+y26yf ( x , y ) = x ^ { 2 } - 14 x + y ^ { 2 } - 6 y .
Unlock Deck
Unlock for access to all 113 flashcards in this deck.
Unlock Deck
k this deck
43
Find the critical points and classify each as being a minimum, maximum, saddle point, or other, for f(x,y)=x4+y42x22y2f ( x , y ) = x ^ { 4 } + y ^ { 4 } - 2 x ^ { 2 } - 2 y ^ { 2 } .
Unlock Deck
Unlock for access to all 113 flashcards in this deck.
Unlock Deck
k this deck
44
Find the critical points and classify each as being a minimum, maximum, saddle point, or other, for f(x,y)=x2+y36xyf ( x , y ) = x ^ { 2 } + y ^ { 3 } - 6 x y .
Unlock Deck
Unlock for access to all 113 flashcards in this deck.
Unlock Deck
k this deck
45
Find the critical points and classify each as being a minimum, maximum, saddle point, or other, for f(x,y)=x2+xyy2+5x5yf ( x , y ) = x ^ { 2 } + x y - y ^ { 2 } + 5 x - 5 y .
Unlock Deck
Unlock for access to all 113 flashcards in this deck.
Unlock Deck
k this deck
46
Find the critical points and classify each as being a minimum, maximum, saddle point, or other, for f(x,y)=x2+xyy2+20x20yf ( x , y ) = x ^ { 2 } + x y - y ^ { 2 } + 20 x - 20 y .
Unlock Deck
Unlock for access to all 113 flashcards in this deck.
Unlock Deck
k this deck
47
A manufacturer with exclusive rights to a sophisticated new industrial machine is planning to sell a limited number of the machines to both foreign and domestic firms. The price the manufacturer can expect to receive for the machines will depend on the number of machines made available. (For example, if only a few of the machines are placed on the market, competitive bidding among prospective purchasers will tend to drive the price up.) It is estimated that if the manufacturer supplies x machines to the domestic market and y machines to the foreign market, the machines will sell for 60x5+y2060 - \frac { x } { 5 } + \frac { y } { 20 } thousand dollars apiece at home and for 50y10+x2050 - \frac { y } { 10 } + \frac { x } { 20 } thousand dollars apiece abroad. If the manufacturer can produce the machines at a cost of $31,000 apiece, how many should be supplied to each market to generate the largest possible profit?

A) x = 150, y = 11
B) x = 38, y = 593
C) x = 110, y = 150
D) x = 55, y = 750
Unlock Deck
Unlock for access to all 113 flashcards in this deck.
Unlock Deck
k this deck
48
Given the following points in the plane, find the corresponding least squares line: (1, 2), (2, 1), (4, 2), and (5, 1)
Unlock Deck
Unlock for access to all 113 flashcards in this deck.
Unlock Deck
k this deck
49
Given the following points in the plane, find the slope of the least squares line: (1, 2), (2, 1), (3, 3), and (5, 13) round your answer to two decimal places, if necessary.

A) 2.94
B) 2.89
C) 2.83
D) 2.77
Unlock Deck
Unlock for access to all 113 flashcards in this deck.
Unlock Deck
k this deck
50
The following data shows the age and income for a small number of people.  Age (years) 2432395460 Incomes ($) 30,00034,00053,00072,00090,000\begin{array} { c l l l l l } \text { Age (years) } & 24 & 32 & 39 & 54 & 60 \\\text { Incomes (\$) } & 30,000 & 34,000 & 53,000 & 72,000 & 90,000\end{array} Find the best fit straight line of this data, rounding coefficients and constants to the nearest whole number. Let x represent age and y represent income.

A) y = 1,666x - 13,842
B) y = 4,012x - 13,837
C) y = 3,288x - 13,849
D) None of the above
Unlock Deck
Unlock for access to all 113 flashcards in this deck.
Unlock Deck
k this deck
51
The accompanying table lists the high-school GPA and college GPA for a number of students  High school GPA 2.02.53.13.73.74.0 College GPA 3.22.63.03.63.83.7\begin{array} { l l l l l l l } \text { High school GPA } & 2.0 & 2.5 & 3.1 & 3.7 & 3.7 & 4.0 \\\text { College GPA } & 3.2 & 2.6 & 3.0 & 3.6 & 3.8 & 3.7\end{array}
Using the best fit straight line, predict the college GPA (to one decimal place) for a student whose high school GPA was 3.5.

A) 3.4
B) 3.3
C) 3.6
D) 3.5
Unlock Deck
Unlock for access to all 113 flashcards in this deck.
Unlock Deck
k this deck
52
The accompanying table gives the Dow Jones Industrial Average (DJIA) at the close of the first trading day of the indicated years  Year 199019921996199820012002 DJLA 2,8103,1725,1777,96510,64610,073\begin{array} { l l l l l l l } \text { Year } & 1990 & 1992 & 1996 & 1998 & 2001 & 2002 \\\text { DJLA } & 2,810 & 3,172 & 5,177 & 7,965 & 10,646 & 10,073\end{array}
Find the least squares line for the DJIA, D, as a function of the year after 1990, t. Round numbers to two decimal places.
Unlock Deck
Unlock for access to all 113 flashcards in this deck.
Unlock Deck
k this deck
53
The accompanying table lists the Gross Domestic Product (GNP) figures for China (in billions of yuan) for the period from 1996 to 2000  Year 19961997199819992000 GNP 6,7887,4467,8358,1918,940\begin{array} { c l l l l l } \text { Year } & 1996 & 1997 & 1998 & 1999 & 2000 \\\text { GNP } & 6,788 & 7,446 & 7,835 & 8,191 & 8,940\end{array}
Use the best fit straight line to extrapolate the GNP to the nearest yuan in 1990?

A) 3,801 billion yuan
B) 3,876 billion yuan
C) 3,942 billion yuan
D) 3,989 billion yuan
Unlock Deck
Unlock for access to all 113 flashcards in this deck.
Unlock Deck
k this deck
54
A military radar is measuring the distance to a jet fighter. The radar has received the following measuremens:  time t (minutes) 123456 distance (miles) 280291296301308310\begin{array} { l l l l l l l } \text { time } t \text { (minutes) } & 1 & 2 & 3 & 4 & 5 & 6 \\\text { distance (miles) } & 280 & 291 & 296 & 301 & 308 & 310\end{array}
Using a least squares fit to the data, extrapolate to the nearest tenth of a minute when the jet will be 388 miles away?

A) 18.8 minutes
B) 17.7 minutes
C) 21 minutes
D) 20.2 minutes
Unlock Deck
Unlock for access to all 113 flashcards in this deck.
Unlock Deck
k this deck
55
Find the maximum value of f(x,y)=xy2f ( x , y ) = x y ^ { 2 } subject to the constraint g(x, y) = x - y = 2.
Unlock Deck
Unlock for access to all 113 flashcards in this deck.
Unlock Deck
k this deck
56
Find the minimum value (if any) of f(x,y)=xy2f ( x , y ) = x y ^ { 2 } subject to the constraint g(x, y) = x - y = 2.
Unlock Deck
Unlock for access to all 113 flashcards in this deck.
Unlock Deck
k this deck
57
Find the minimum value of f (x, y) = x + 2y subject to the constraint g(x,y)=xy2=8g ( x , y ) = x y ^ { 2 } = 8 .
Unlock Deck
Unlock for access to all 113 flashcards in this deck.
Unlock Deck
k this deck
58
Use Lagrange multipliers to find the maximum value of f (x, y) = 9xy subject to the constraint 9x + 5y = 45.

A)
f(54,94)=40516f \left( \frac { 5 } { 4 } , \frac { 9 } { 4 } \right) = \frac { 405 } { 16 }
B)
f(52,92)=4054f \left( \frac { 5 } { 2 } , \frac { 9 } { 2 } \right) = \frac { 405 } { 4 }

C) f (5, 9) = 405

D) f (0, 0) = 0
Unlock Deck
Unlock for access to all 113 flashcards in this deck.
Unlock Deck
k this deck
59
Find the maximum value of f(x,y)=xy2f ( x , y ) = x y ^ { 2 } subject to the constraint g(x, y) = x - y = 4.
Unlock Deck
Unlock for access to all 113 flashcards in this deck.
Unlock Deck
k this deck
60
Find the minimum value of f(x,y)=xy2f ( x , y ) = x y ^ { 2 } subject to the constraint g(x, y) = x - y = 2.
Unlock Deck
Unlock for access to all 113 flashcards in this deck.
Unlock Deck
k this deck
61
Find the minimum value of f(x,y)=x2+y24y+4f ( x , y ) = x ^ { 2 } + y ^ { 2 } - 4 y + 4 on the hyperbola x2y2=4x ^ { 2 } - y ^ { 2 } = 4 .

A) 12312 \sqrt { 3 }
B) 43
C) 6
D) No minimum, unbounded below
Unlock Deck
Unlock for access to all 113 flashcards in this deck.
Unlock Deck
k this deck
62
Find the minimum and maximum value of f(x,y)=x2+y2f ( x , y ) = x ^ { 2 } + y ^ { 2 } on the ellipse 3x2+2y2=13 x ^ { 2 } + 2 y ^ { 2 } = 1 .

A) Minimum 14\frac { 1 } { 4 } , maximum 512\frac { 5 } { 12 }
B) Minimum 13\frac { 1 } { 3 } , maximum 12\frac { 1 } { 2 }
C) Minimum 16\frac { 1 } { 6 } , maximum 56\frac { 5 } { 6 }
D) No maximum or minimum, unbounded
Unlock Deck
Unlock for access to all 113 flashcards in this deck.
Unlock Deck
k this deck
63
Find the maximum value of f (x, y) = xy on the ellipse 4x2+9y2=364 x ^ { 2 } + 9 y ^ { 2 } = 36 .
Unlock Deck
Unlock for access to all 113 flashcards in this deck.
Unlock Deck
k this deck
64
Find the maximum value of f (x, y, z) = xyz on the sphere x2+y2+z2=12x ^ { 2 } + y ^ { 2 } + z ^ { 2 } = 12 .

A) 8
B) 838 \sqrt { 3 }
C) 16
D) No maximum, unbounded
Unlock Deck
Unlock for access to all 113 flashcards in this deck.
Unlock Deck
k this deck
65
Use Lagrange multipliers to find the maximum value of f (x, y, z) = 6xyz subject to 4x + 3y + 4z = 144.

A) f (0, 0, 0) = 0
B) f (15, 17, 10) = 15,300
C) f (12, 16, 12) = 13,824
D) f (13, 14, 12) = 13,104
Unlock Deck
Unlock for access to all 113 flashcards in this deck.
Unlock Deck
k this deck
66
Find the maximum value of the function f (x, y, z) = 4x + 5y + 7z on the sphere x2+y2+z2=360x ^ { 2 } + y ^ { 2 } + z ^ { 2 } = 360 .

A) 630
B) 480.0
C) 90
D) 180
Unlock Deck
Unlock for access to all 113 flashcards in this deck.
Unlock Deck
k this deck
67
A manufacturer is planning to sell a new product at the price of $260 per unit and estimates that if x thousand dollars is spent on development and y thousand dollars is spent on promotion, approximately 360yy+7+180xx+14\frac { 360 y } { y + 7 } + \frac { 180 x } { x + 14 } units of the product will be sold. The cost of manufacturing the product is $200 per unit. If the manufacturer has a total of $360,000 to spend on development and promotion, how should this money be allocated to generate the largest possible profit? [Hint: Profit equals (number of units)(price per unit minus cost per unit) minus total amount spent on development and promotion.]

A) $177,000 on development, $183,000 on promotion
B) $183,000 on development, $177,000 on promotion
C) $183,500 on development, $177,000 on promotion
D) $176,500 on development, $183,500 on promotion
Unlock Deck
Unlock for access to all 113 flashcards in this deck.
Unlock Deck
k this deck
68
Evaluate the following double integral: 2322x2y3dydx\int _ { - 2 } ^ { 3 } \int _ { - 2 } ^ { 2 } x ^ { 2 } y ^ { 3 } d y d x

A) 12\frac { 1 } { 2 }
B) 3
C) 0
D) The integral can't be evaluated.
Unlock Deck
Unlock for access to all 113 flashcards in this deck.
Unlock Deck
k this deck
69
Use inequalities to describe R in terms of its vertical and horizontal cross sections. R is the region bounded by y = x2 and y = 7x.

A) Vertical cross sections:
0y49y7xy\begin{array} { c } 0 \leq y \leq 49 \\\frac { y } { 7 } \leq x \leq \sqrt { y }\end{array}

Horizontal cross sections:
0x7x2y7x\begin{array} { c } 0 \leq x \leq 7 \\x ^ { 2 } \leq y \leq 7 x\end{array}


B) Vertical cross sections:
0x7x2y7x\begin{array} { c } 0 \leq x \leq 7 \\x ^ { 2 } \leq y \leq 7 x\end{array}

Horizontal cross sections:
0y49y7xy\begin{array} { c } 0 \leq y \leq 49 \\\frac { y } { 7 } \leq x \leq \sqrt { y }\end{array}


C) Vertical cross sections:
0x49x2y7x\begin{array} { c } 0 \leq x \leq 49 \\x ^ { 2 } \leq y \leq 7 x\end{array}

Horizontal cross sections:
0y7y7xy\begin{array} { c } 0 \leq y \leq 7 \\\frac { y } { 7 } \leq x \leq \sqrt { y }\end{array}

D) Vertical cross sections:
0y7y7xy\begin{array} { c } 0 \leq y \leq 7 \\\frac { y } { 7 } \leq x \leq \sqrt { y }\end{array}
Horizontal cross sections:
0x49x2y7x\begin{array} { c } 0 \leq x \leq 49 \\x ^ { 2 } \leq y \leq 7 x\end{array}
Unlock Deck
Unlock for access to all 113 flashcards in this deck.
Unlock Deck
k this deck
70
Use inequalities to describe R in terms of its vertical and horizontal cross sections. R is the rectangle with vertices (1, -3), (5, -3), (5, 2), (1, 2).

A) Vertical cross sections: 3x21y5\begin{array} { r } - 3 \leq x \leq 2 \\1 \leq y \leq 5\end{array} Horizontal cross sections: 3y21x5\begin{array} { r } - 3 \leq y \leq 2 \\1 \leq x \leq 5\end{array}


B) Vertical cross sections: 1x53y2\begin{array} { r } 1 \leq x \leq 5 \\- 3 \leq y \leq 2\end{array} Horizontal cross sections: 1y53x2\begin{array} { r } 1 \leq y \leq 5 \\- 3 \leq x \leq 2\end{array}


C) Vertical cross sections: 3x21y5\begin{array} { r } - 3 \leq x \leq 2 \\1 \leq y \leq 5\end{array} Horizontal cross sections: 1y53x2\begin{array} { r } 1 \leq y \leq 5 \\- 3 \leq x \leq 2\end{array}


D) Vertical cross sections: 1x53y2\begin{array} { r } 1 \leq x \leq 5 \\- 3 \leq y \leq 2\end{array} Horizontal cross sections: 3y21x5\begin{array} { r } - 3 \leq y \leq 2 \\1 \leq x \leq 5\end{array}
Unlock Deck
Unlock for access to all 113 flashcards in this deck.
Unlock Deck
k this deck
71
Use inequalities to describe R in terms of its vertical and horizontal cross sections. R is the region bounded by y = ex, y = 4, and x = 0.

A) Vertical cross sections: 0xln4exy4\begin{aligned}0 & \leq x \leq \ln 4 \\e ^ { x } & \leq y \leq 4\end{aligned} Horizontal cross sections: 1y40xlny\begin{array} { c } 1 \leq y \leq 4 \\0 \leq x \leq \ln y\end{array}

B) Vertical cross sections: 0xlnyexy4\begin{aligned}0 & \leq x \leq \ln y \\e ^ { x } & \leq y \leq 4\end{aligned} Horizontal cross sections: 1y40xln4\begin{array} { c } 1 \leq y \leq 4 \\0 \leq x \leq \ln 4\end{array}

C) Vertical cross sections: exx40yln4\begin{aligned}e ^ { x } & \leq x \leq 4 \\0 & \leq y \leq \ln 4\end{aligned} Horizontal cross sections: 0yln41x4\begin{array} { l } 0 \leq y \leq \ln 4 \\1 \leq x \leq 4\end{array}

D) Vertical cross sections: exxln40y4\begin{array} { c } e ^ { x } \leq x \leq \ln 4 \\0 \leq y \leq 4\end{array} Horizontal cross sections: 0y41xln4\begin{array} { l } 0 \leq y \leq 4 \\1 \leq x \leq \ln 4\end{array}
Unlock Deck
Unlock for access to all 113 flashcards in this deck.
Unlock Deck
k this deck
72
Evaluate the given double integral for the specified region R. R2xydA\iint _ { R } 2 x y d A , where R is the rectangle bounded by the lines x = -1, x = 2, y = -1, and y = 0.

A) -3
B) 3
C)
32- \frac { 3 } { 2 }
D)
32\frac { 3 } { 2 }
Unlock Deck
Unlock for access to all 113 flashcards in this deck.
Unlock Deck
k this deck
73
Evaluate the given double integral for the specified region R. R(8x+2y)dA\iint _ { R } ( 8 x + 2 y ) d A , where R is the triangle with vertices (0, 0), (2, 0), and (0, 1).

A)
683\frac { 68 } { 3 }
B)
943\frac { 94 } { 3 }
C) 12
D) 18
Unlock Deck
Unlock for access to all 113 flashcards in this deck.
Unlock Deck
k this deck
74
Use a double integral to find the area of R. R is the triangle with vertices (-4, 6), (4, 6), and (0, 2).

A) x=4x4y=x+2yx+21dydx=32\int _ { x = - 4 } ^ { x - 4 } \int _ { y = - x + 2 } ^ { y - x + 2 } 1 d y d x = 32

B) y2y6xy+2xy21dxdy=32\int _ { y - 2 } ^ { y - 6 } \int _ { x - - y + 2 } ^ { x - y - 2 } 1 d x d y = 32

C) y2y6xy+2xy21dxdy=16\int _ { y - 2 } ^ { y - 6 } \int _ { x - - y + 2 } ^ { x - y - 2 } 1 d x d y = 16

D) x=4x4y=x+2yx+21dydx=16\int _ { x = - 4 } ^ { x - 4 } \int _ { y = - x + 2 } ^ { y - x + 2 } 1 d y d x = 16
Unlock Deck
Unlock for access to all 113 flashcards in this deck.
Unlock Deck
k this deck
75
Use a double integral to find the area of R. R is the region bounded by y = 9x, y = ln x, y = 0, and y = 1.

A) x=0x2ylnxy9x1dydx=9e22\int _ { x = 0 } ^ { x - 2 } \int _ { y - lnx } ^ { y - 9 x } 1 d y d x = \frac { 9 e ^ { 2 } } { 2 }

B) y=0y1xy9xey1dxdy=e1918\int _ { y = 0 } ^ { y - 1 } \int _ { x - \frac { y } { 9 } } ^ { x - e ^ { y } } 1 d x d y = e - \frac { 19 } { 18 }

C) y0y1x0xey1dxdy=e1\int _ { y - 0 } ^ { y - 1 } \int _ { x - 0 } ^ { x - e ^ { y } } 1 d x d y = e - 1

D) x0x2ylnxy11dydx=e\int _ { x - 0 } ^ { x - 2 } \int _ { y - \ln x } ^ { y - 1 } 1 d y d x = e
Unlock Deck
Unlock for access to all 113 flashcards in this deck.
Unlock Deck
k this deck
76
Find the volume of the solid bounded above by the graph of the function f (x, y) = 4x - y + 8 and below by the rectangular region R defined by: 0 \le x \le 2 and 0 \le y \le 1.
Unlock Deck
Unlock for access to all 113 flashcards in this deck.
Unlock Deck
k this deck
77
Find the volume of the solid bounded above by the graph of the function f (x, y) = xy and below by the rectangular region R defined by: 0 \le x \le 3 and 0 \le y \le 4.
Unlock Deck
Unlock for access to all 113 flashcards in this deck.
Unlock Deck
k this deck
78
Find the volume of the solid bounded above by the graph of the function f(x,y)=yexf ( x , y ) = y e ^ { x } and below by the rectangular region R define by: 0 \le x \le 4 and 0 \le y \le 2.
Unlock Deck
Unlock for access to all 113 flashcards in this deck.
Unlock Deck
k this deck
79
Use double integration to find the average value of f(x,y)=18xy2f ( x , y ) = 18 x y ^ { 2 } over the triangle with vertices (0, 0), (0, 2), and (3, 2).
Unlock Deck
Unlock for access to all 113 flashcards in this deck.
Unlock Deck
k this deck
80
Use double integration to find the average value of f (x, y) = y over the region bounded by x=9y2x = 9 - y ^ { 2 } and the y axis.
Unlock Deck
Unlock for access to all 113 flashcards in this deck.
Unlock Deck
k this deck
locked card icon
Unlock Deck
Unlock for access to all 113 flashcards in this deck.