Deck 12: Multivariable Functions

Full screen (f)
exit full mode
Question
Evaluate f(x,y)=x2yf ( x , y ) = x ^ { 2 } y at (2,1)( 2 , - 1 )
Use Space or
up arrow
down arrow
to flip the card.
Question
Evaluate f(x,y)=xcos(y)f ( x , y ) = x \cos ( y ) at (1,0)( 1,0 )
Question
Evaluate f(x,y)=x2+y3f ( x , y ) = x ^ { 2 } + y ^ { 3 } at (2,2)( 2 , - 2 )

A) 12
B) 8
C) -4
D) 4
Question
Evaluate f(x,y,z)=x2yzf ( x , y , z ) = x ^ { 2 } y z at (1,2,1)( 1,2 , - 1 )
Question
Evaluate f(x,y,z)=xexcos(z)f ( x , y , z ) = x e ^ { x } \cos ( z ) at (2,1,0)( 2,1,0 )
Question
Evaluate f(x,y,z)=exsin(y)cos(z)f ( x , y , z ) = e ^ { x } \sin ( y ) \cos ( z ) at (0,π2,0)\left( 0 , \frac { \pi } { 2 } , 0 \right)

A) 1
B) 0
C) eπ2e ^ { \frac { \pi } { 2 } }
D) e
Question
Find the domain and range of f(x,y)=xy+2f ( x , y ) = \frac { x } { y + 2 }
Question
Find the domain and range of f(x,y)=ln(y)x1f ( x , y ) = \frac { \ln ( y ) } { \sqrt { x - 1 } }
Question
Find the domain of f(x,y)=xx2y2f ( x , y ) = \frac { x } { x ^ { 2 } - y ^ { 2 } }

A) Dom(f)={(x,y)R2:xy}\operatorname { Dom } ( f ) = \left\{ ( x , y ) \in R ^ { 2 } : x \neq y \right\}
B) Dom(f)={(x,y)R2:xy}\operatorname { Dom } ( f ) = \left\{ ( x , y ) \in R ^ { 2 } : x \neq - y \right\}
C) Dom(f)={(x,y)R2:xy}\operatorname { Dom } ( f ) = \left\{ ( x , y ) \in R ^ { 2 } : | x | \neq | y | \right\}
D) Dom(f)=R2\operatorname { Dom } ( f ) = R ^ { 2 }
Question
Find the range of f(x,y)=xx2y2f ( x , y ) = \frac { x } { x ^ { 2 } - y ^ { 2 } }

A) RR
B) [0,)[ 0 , \infty )
C) (,0)( - \infty , 0 )
D) (1,1)( - 1,1 )
Question
Find the domain and range of f(x,y,z)=xy2z23f ( x , y , z ) = \frac { x } { y ^ { 2 } - z ^ { 2 } - 3 }
Question
Find the domain and range of f(x,y,z)=1x2+y2+z2+1f ( x , y , z ) = \frac { 1 } { x ^ { 2 } + y ^ { 2 } + z ^ { 2 } + 1 }
Question
Find the range of f(x,y,z)=2x4+y2+z6+4f ( x , y , z ) = \frac { 2 } { x ^ { 4 } + y ^ { 2 } + z ^ { 6 } + 4 }

A) RR
B) [0,12]\left[ 0 , \frac { 1 } { 2 } \right]
C) (0,12)\left( 0 , \frac { 1 } { 2 } \right)
D) (0,12]\left( 0 , \frac { 1 } { 2 } \right]
Question
Find a function of two variables for the surface of revolution formed when the given function on the specified interval is revolved around the y-axis. f(x)=x2f ( x ) = x ^ { 2 } on [0,2][ 0,2 ]
Question
Determine if the given subset of R2R ^ { 2 } is open, closed, both open and closed, or neither open nor closed. All points (x,y)( x , y ) so that x>0x > 0 and y<0y < 0
Question
Determine if the given subset of R2R ^ { 2 } is open, closed, both open and closed, or neither open nor closed. All points (x,y)( x , y ) so that 1x<21 \leq x < 2 and 1<y21 < y \leq 2
Question
Find the compliment of the given subset of R2R ^ { 2 } : all points (x,y)( x , y ) so that x>0x > 0 and y<0y < 0
Question
Find the compliment of the given subset of R2R ^ { 2 } : all points (x,y)( x , y ) so that 1x<21 \leq x < 2 and 1<y21 < y \leq 2
Question
Find the boundary of the given subset of R2R ^ { 2 } : all points (x,y)( x , y ) so that x>0x > 0 and y<0y < 0
Question
Find the boundary of the given subset of R2R ^ { 2 } : all points (x,y)( x , y ) so that 1x<21 \leq x < 2 and 1<y21 < y \leq 2
Question
Determine if the given subset of R2R ^ { 2 } is open, closed, both open and closed, or neither open nor closed. All points (x,y)( x , y ) so that 2x122 \leq x \leq 12 and πy7\pi \leq y \leq 7

A) Open
B) Closed
C) Both open and closed
D) Neither open nor closed
Question
Determine if the given subset of R3R ^ { 3 } is open, closed, both open and closed, or neither open nor closed. All points (x,y,z)( x , y , z ) so that x>0x > 0 , y<0y < 0 , and z<0z < 0
Question
Find the compliment of the set in R3R ^ { 3 } : all points (x,y,z)( x , y , z ) so that x>0x > 0 , y<0y < 0 , and z<0z < 0
Question
Determine if the given subset of R3R ^ { 3 } is open, closed, both open and closed, or neither open nor closed. All points (x,y,z)( x , y , z ) so that x0x \geq 0
Question
Find the compliment of the set in R3R ^ { 3 } : all points (x,y,z)( x , y , z ) so that x0x \geq 0
Question
Find the boundary of the set in R3R ^ { 3 } : all points (x,y,z)( x , y , z ) so that x0x \geq 0
Question
Determine if the given subset of R3R ^ { 3 } is open, closed, both open and closed, or neither open nor closed. All points (x,y,z)( x , y , z ) so that x1x \geq 1 , y<0y < 0 and z>0z > 0

A) Open
B) Closed
C) Both open and closed
D) Neither open nor closed
Question
Evaluate the limit if it exists: lim(x,y)(1,2)x2xy\lim _ { ( x , y ) \rightarrow ( 1,2 ) } x ^ { 2 } - x y
Question
Evaluate the limit if it exists: lim(x,y)(0,0)xyx2+y2\lim _ { ( x , y ) \rightarrow ( 0,0 ) } \frac { x y } { x ^ { 2 } + y ^ { 2 } }
Question
Evaluate the limit if it exists: lim(x,y)(0.0)(y+1)2cos(x)\lim _ { ( x , y ) \rightarrow ( 0.0 ) } ( y + 1 ) ^ { 2 } \cos ( x )

A) 2
B) 0
C) 1
D) π\pi
Question
Where is the function continuous? f(x,y)=xyx2+y2f ( x , y ) = \frac { x y } { x ^ { 2 } + y ^ { 2 } }

A) R2R ^ { 2 }
B) x0x \neq 0
C) y0y \neq 0
D) (x,y)(0,0)( x , y ) \neq ( 0,0 )
Question
Find fx\frac { \partial f } { \partial x } for f(x,y)=cos(xy)f ( x , y ) = \cos ( x y )
Question
Find fy\frac { \partial f } { \partial y } for f(x,y)=cos(xy)f ( x , y ) = \cos ( x y )
Question
Find fx\frac { \partial f } { \partial x } for f(x,y)=exy2f ( x , y ) = e ^ { x - y ^ { 2 } }
Question
Find fy\frac { \partial f } { \partial y } for f(x,y)=exy2f ( x , y ) = e ^ { x - y ^ { 2 } }
Question
Find fx\frac { \partial f } { \partial x } for f(x,y)=sin(x2y2)f ( x , y ) = \sin \left( x ^ { 2 } - y ^ { 2 } \right)

A) 2ycos(x2y2)- 2 y \cos \left( x ^ { 2 } - y ^ { 2 } \right)
B) 2xcos(x2y2)2 x \cos \left( x ^ { 2 } - y ^ { 2 } \right)
C) 2ysin(x2y2)2 y \sin \left( x ^ { 2 } - y ^ { 2 } \right)
D) 2xsin(x2y2)2 x \sin \left( x ^ { 2 } - y ^ { 2 } \right)
Question
Find fz\frac { \partial f } { \partial z } for f(x,y,z)=x2+xyz+y3f ( x , y , z ) = x ^ { 2 } + x y z + y ^ { 3 }
Question
Find fz\frac { \partial f } { \partial z } for f(x,y,z)=cos(xyz)f ( x , y , z ) = \cos ( x y z )
Question
Find fz\frac { \partial f } { \partial z } for f(x,y,z)=exy2z3f ( x , y , z ) = e ^ { x y ^ { 2 } z ^ { 3 } }

A) y2z3exy2z3y ^ { 2 } z ^ { 3 } e ^ { x y ^ { 2 } z ^ { 3 } }
B) 2xyz3exy2z32 x y z ^ { 3 } e ^ { x y ^ { 2 } z ^ { 3 } }
C) 3xy2z2exy2z33 x y ^ { 2 } z ^ { 2 } e ^ { x y ^ { 2 } z ^ { 3 } }
D) xy2z3exy2z3x y ^ { 2 } z ^ { 3 } e ^ { x y ^ { 2 } z ^ { 3 } }
Question
For f(x,y)=x2y2f ( x , y ) = x ^ { 2 } - y ^ { 2 } find a line in the x direction tangent to the surface defined by f at (1,2).
Question
For f(x,y)=x2y2f ( x , y ) = x ^ { 2 } - y ^ { 2 } find a line in the y direction tangent to the surface defined by f at (1,2).
Question
For f(x,y)=x2y2f ( x , y ) = x ^ { 2 } - y ^ { 2 } find a line in the y direction tangent to the surface defined by f at (1,2).
Question
For f(x,y)=x2y2f ( x , y ) = x ^ { 2 } - y ^ { 2 } find the tangent plane to the surface defined by f at (1,2).
Question
For f(x,y)=x2yf ( x , y ) = x ^ { 2 } y find a line in the x direction tangent to the surface defined by f at (1,2).

A) r(t)=1,2,2+t0,0,4\vec { r } ( t ) = \langle 1,2,2 \rangle + t \langle 0,0,4 \rangle
B) r(t)=1,2,2+t0,0,2\vec { r } ( t ) = \langle 1,2,2 \rangle + t \langle 0,0,2 \rangle
C) r(t)=1,2,2+t0,0,1\vec { r } ( t ) = \langle 1,2,2 \rangle + t \langle 0,0,1 \rangle
D) r(t)=1,2,2+t4,1,0\vec { r } ( t ) = \langle 1,2,2 \rangle + t \langle 4,1,0 \rangle
Question
Find a function with the given partial derivatives fx=xy\frac { \partial f } { \partial x } = x y and fy=xy\frac { \partial f } { \partial y } = x y
Question
Find a function with the given partial derivatives fx=2xy3\frac { \partial f } { \partial x } = 2 x y ^ { 3 } and fy=3x2y2\frac { \partial f } { \partial y } = 3 x ^ { 2 } y ^ { 2 }
Question
Find a function with the given partial derivatives fx=ycos(xy)\frac { \partial f } { \partial x } = y \cos ( x y ) and fy=xcos(xy)\frac { \partial f } { \partial y } = x \cos ( x y )

A) f(x,y)=cos(xy)f ( x , y ) = \cos ( x y )
B) f(x,y)=sin(xy)f ( x , y ) = \sin ( x y )
C) f(x,y)=sin(xy)f ( x , y ) = - \sin ( x y )
D) f(x,y)=cos(xy)f ( x , y ) = - \cos ( x y )
Question
Solve the exact equation ycos(xy)+xcos(xy)dydx=0y \cos ( x y ) + x \cos ( x y ) \frac { d y } { d x } = 0
Question
Find the directional derivative to the given function at the specified point PP in the direction of the vector u\vec { u } f(x,y)=x2+xy,P=(1,2),u=12,32f ( x , y ) = x ^ { 2 } + x y , P = ( 1,2 ) , \vec { u } = \left\langle \frac { 1 } { 2 } , \frac { \sqrt { 3 } } { 2 } \right\rangle
Question
Find the directional derivative to the given function at the specified point PP in the direction of the vector u\vec { u } f(x,y)=cos(x)+sin(y2),P=(π,π),u=22,22f ( x , y ) = \cos ( x ) + \sin \left( y ^ { 2 } \right) , P = ( \pi , \sqrt { \pi } ) , \vec { u } = \left\langle \frac { \sqrt { 2 } } { 2 } , \frac { \sqrt { 2 } } { 2 } \right\rangle
Question
Find the directional derivative to the given function at the specified point PP in the direction of the vector u\vec { u } f(x,y)=x3x2y,P=(1,2),u=32,12f ( x , y ) = x ^ { 3 } - x ^ { 2 } y , P = ( 1,2 ) , \vec { u } = \left\langle \frac { \sqrt { 3 } } { 2 } , \frac { 1 } { 2 } \right\rangle

A) 3+12\frac { \sqrt { 3 } + 1 } { 2 }
B) 2342 \sqrt { 3 } - 4
C) 312\frac { \sqrt { 3 } - 1 } { 2 }
D) 1- 1
Question
Find the directional derivative to the given function at the specified point PP in the direction of the vector u\vec { u } f(x,y,z)=xyz2,P=(1,2,1),u=12,0,32f ( x , y , z ) = x y z ^ { 2 } , P = ( 1,2,1 ) , \vec { u } = \left\langle \frac { 1 } { 2 } , 0 , \frac { \sqrt { 3 } } { 2 } \right\rangle
Question
Find the directional derivative to the given function at the specified point PP in the direction of the vector u\vec { u } f(x,y,z)=x2+y2+z2,P=(1,2,3),u=22,22,0f ( x , y , z ) = x ^ { 2 } + y ^ { 2 } + z ^ { 2 } , P = ( 1,2,3 ) , \vec { u } = \left\langle \frac { \sqrt { 2 } } { 2 } , \frac { \sqrt { 2 } } { 2 } , 0 \right\rangle
Question
Find the directional derivative to the given function at the specified point PP in the direction of the vector u\vec { u } f(x,y,z)=2zxy,P=(2,2,3),u=13,13,13f ( x , y , z ) = 2 z \sqrt { x y } , P = ( 2,2,3 ) , \vec { u } = \left\langle \frac { 1 } { \sqrt { 3 } } , \frac { 1 } { \sqrt { 3 } } , \frac { 1 } { \sqrt { 3 } } \right\rangle

A) 1010
B) 10310 \sqrt { 3 }
C) 103\frac { 10 } { 3 }
D) 103\frac { 10 } { \sqrt { 3 } }
Question
Find the line tangent to the surface given by the function at the specified point PP in the direction of the vector u\vec { u } f(x,y)=x2+xy,P=(1,2),u=12,32f ( x , y ) = x ^ { 2 } + x y , P = ( 1,2 ) , \vec { u } = \left\langle \frac { 1 } { 2 } , \frac { \sqrt { 3 } } { 2 } \right\rangle
Question
Find the line tangent to the surface given by the function at the specified point PP in the direction of the vector u\vec { u } f(x,y)=cos(x)+sin(y2),P=(π,π),u=22,22f ( x , y ) = \cos ( x ) + \sin \left( y ^ { 2 } \right) , P = ( \pi , \sqrt { \pi } ) , \vec { u } = \left\langle \frac { \sqrt { 2 } } { 2 } , \frac { \sqrt { 2 } } { 2 } \right\rangle
Question
Find the line tangent to the surface given by the function at the specified point PP in the direction of the vector u\vec { u } f(x,y)=x3x2y,P=(1,2),u=32,12f ( x , y ) = x ^ { 3 } - x ^ { 2 } y , P = ( 1,2 ) , \vec { u } = \left\langle \frac { \sqrt { 3 } } { 2 } , \frac { 1 } { 2 } \right\rangle

A) r(t)=2+12t,2+32t,3+(2+32)t\vec { r } ( t ) = \left\langle 2 + \frac { 1 } { 2 } t , 2 + \frac { \sqrt { 3 } } { 2 } t , 3 + \left( 2 + \frac { \sqrt { 3 } } { 2 } \right) t \right\rangle
B) r(t)=1+32t,2+12t,1+(234)t\vec { r } ( t ) = \left\langle 1 + \frac { \sqrt { 3 } } { 2 } t , 2 + \frac { 1 } { 2 } t , - 1 + ( 2 \sqrt { 3 } - 4 ) _ { t } \right\rangle
C) r(t)=1+32t,2+12t,1(3+12)t\vec { r } ( t ) = \left\langle 1 + \frac { \sqrt { 3 } } { 2 } t , 2 + \frac { 1 } { 2 } t , - 1 - \left( \frac { \sqrt { 3 } + 1 } { 2 } \right) t \right\rangle
D) r(t)=1+32t,2+12t,1t\vec { r } ( t ) = \left\langle 1 + \frac { \sqrt { 3 } } { 2 } t , 2 + \frac { 1 } { 2 } t , - 1 - t \right\rangle
Question
Find the directional derivative to the given function at the specified point PP in the direction of the vector u\vec { u } f(x,y)=x2+xy,P=(1,2),u=1,3f ( x , y ) = x ^ { 2 } + x y , P = ( 1,2 ) , \vec { u } = \langle 1 , \sqrt { 3 } \rangle
Question
Find the directional derivative to the given function at the specified point PP in the direction of the vector u\vec { u } f(x,y)=cos(x)+sin(y2),P=(π,π),u=2,2f ( x , y ) = \cos ( x ) + \sin \left( y ^ { 2 } \right) , P = ( \pi , \sqrt { \pi } ) , \vec { u } = \langle \sqrt { 2 } , \sqrt { 2 } \rangle
Question
Find the directional derivative to the given function at the specified point PP in the direction of the vector u\vec { u } f(x,y)=x3x2y,P=(1,2),u=3,1f ( x , y ) = x ^ { 3 } - x ^ { 2 } y , P = ( 1,2 ) , \vec { u } = \langle \sqrt { 3 } , 1 \rangle

A) 3+12\frac { \sqrt { 3 } + 1 } { 2 }
B) 2342 \sqrt { 3 } - 4
C) 312\frac { - \sqrt { 3 } - 1 } { 2 }
D) 1- 1
Question
Find the directional derivative to the given function at the specified point PP in the direction of the vector u\vec { u } f(x,y,z)=xyz2,P=(1,2,1),u=1,3,0f ( x , y , z ) = x y z ^ { 2 } , P = ( 1,2,1 ) , \vec { u } = \langle 1 , \sqrt { 3 } , 0 \rangle
Question
Find the directional derivative to the given function at the specified point PP in the direction of the vector u\vec { u } f(x,y,z)=x2+y2+z2,P=(1,2,3),u=2,2,0f ( x , y , z ) = x ^ { 2 } + y ^ { 2 } + z ^ { 2 } , P = ( 1,2,3 ) , \vec { u } = \langle \sqrt { 2 } , \sqrt { 2 } , 0 \rangle
Question
Find the directional derivative to the given function at the specified point PP in the direction of the vector u\vec { u } f(x,y,z)=2zxy,P=(2,2,3),u=1,1,1f ( x , y , z ) = 2 z \sqrt { x y } , P = ( 2,2,3 ) , \vec { u } = \langle 1,1,1 \rangle

A) 1010
B) 10310 \sqrt { 3 }
C) 103\frac { 10 } { 3 }
D) 103\frac { 10 } { \sqrt { 3 } }
Question
Find the equation of the plane tangent to the surface given by the function at the specified point PP f(x,y)=x2+xy,P=(1,2),u=12,32f ( x , y ) = x ^ { 2 } + x y , P = ( 1,2 ) , \vec { u } = \left\langle \frac { 1 } { 2 } , \frac { \sqrt { 3 } } { 2 } \right\rangle
Question
Find the equation of the plane tangent to the surface given by the function at the specified point PP f(x,y)=cos(x)+sin(y2),P=(π,π),f ( x , y ) = \cos ( x ) + \sin \left( y ^ { 2 } \right) , P = ( \pi , \sqrt { \pi } ) ,
Question
Find the equation of the plane tangent to the surface given by the given function at the specified point PP f(x,y)=x3x2y,P=(1,2)f ( x , y ) = x ^ { 3 } - x ^ { 2 } y , P = ( 1,2 )

A) z=1y2z = - 1 - y - 2
B) z=xy+7z = - x - y + 7
C) z=xy+2z = - x - y + 2
D) z=xyz = - x - y
Question
Find dzdt\frac { d z } { d t } for z=sin(x2y),x=t,y=etz = \sin \left( x ^ { 2 } y \right) , x = t , y = e ^ { t }
Question
Find dzdt\frac { d z } { d t } for z=xey,x=cos(t),y=etz = x e ^ { y } , x = \cos ( t ) , y = e ^ { t }
Question
Find dzdt\frac { d z } { d t } for z=xy,x=t2,y=etz = \frac { x } { y } , x = t ^ { 2 } , y = e ^ { t }

A) 2tet- 2 t e ^ { - t }
B) 2tett2et2 t e ^ { - t } - t ^ { 2 } e ^ { - t }
C) tett2e2tt e ^ { - t } - t ^ { 2 } e ^ { - 2 t }
D) 2tet2 t e ^ { - t }
Question
Find dzdt\frac { d z } { d t } for z=xy2,x=ts,y=t2sz = x y ^ { 2 } , x = t s , y = t ^ { 2 } s
Question
Find dzdt\frac { d z } { d t } for z=sin(x2y),x=st,y=t2estz = \sin \left( x ^ { 2 } y \right) , x = \frac { s } { t } , y = t ^ { 2 } e ^ { s t }
Question
Find dzdt\frac { d z } { d t } for z=xy,x=t2s2,y=setz = \frac { x } { y } , x = t ^ { 2 } s ^ { 2 } , y = s e ^ { t }

A) 2set- 2 s e ^ { - t }
B) 2stetst2et2 s t e ^ { - t } - s t ^ { 2 } e ^ { - t }
C) 2stetst2e2t2 s t e ^ { - t } - s t ^ { 2 } e ^ { - 2 t }
D) 2tett2et2 t e ^ { - t } - t ^ { 2 } e ^ { - t }
Question
Find f\nabla f for f(x,y)=x2yf ( x , y ) = x ^ { 2 } y
Question
Find f\nabla f for f(x,y)=exsin(y)f ( x , y ) = e ^ { x \sin ( y ) }
Question
Find f\nabla f for f(x,y)=tan(x)yf ( x , y ) = \frac { \tan ( x ) } { y } .

A) <tan(x)y2,sec2(x)y2>< - \frac { \tan ( x ) } { y ^ { 2 } } , \frac { \sec ^ { 2 } ( x ) } { y ^ { 2 } } >
B) <tan(x)y,tan(x)y2>< \frac { \tan ( x ) } { y } , - \frac { \tan ( x ) } { y ^ { 2 } } >
C) <sec2(x)y,tan(x)y2>< \frac { \sec ^ { 2 } ( x ) } { y } , - \frac { \tan ( x ) } { y ^ { 2 } } >
D) <sec2(x)y2,tan(x)y>< \frac { \sec ^ { 2 } ( x ) } { y ^ { 2 } } , \frac { \tan ( x ) } { y } >
Question
Find a function of two variables with the given gradient, f=2xy3,3x2y2\nabla f = \left\langle 2 x y ^ { 3 } , 3 x ^ { 2 } y ^ { 2 } \right\rangle
Question
Find the direction in which the given function increases most rapidly at the given point. f(x,y,z)=xezyex,P=(0,2,0)f ( x , y , z ) = x e ^ { z } - y e ^ { x } , P = ( 0,2,0 )
Question
Find the direction in which the given function decreases most rapidly at the given point. f(x,y,z)=xezyex,P=(0,2,0)f ( x , y , z ) = x e ^ { z } - y e ^ { x } , P = ( 0,2,0 )
Question
Find the rate of change in the direction in which the given function increases most rapidly at the given point. f(x,y,z)=xezyex,P=(0,2,0)f ( x , y , z ) = x e ^ { z } - y e ^ { x } , P = ( 0,2,0 )
Question
Find the directional derivative of the given function at the specified point PP in the direction u\vec { u } f(x,y)=xey,P=(2,0),u=12,32f ( x , y ) = x e ^ { y } , P = ( 2,0 ) , \vec { u } = \left\langle \frac { 1 } { 2 } , \frac { \sqrt { 3 } } { 2 } \right\rangle
Unlock Deck
Sign up to unlock the cards in this deck!
Unlock Deck
Unlock Deck
1/93
auto play flashcards
Play
simple tutorial
Full screen (f)
exit full mode
Deck 12: Multivariable Functions
1
Evaluate f(x,y)=x2yf ( x , y ) = x ^ { 2 } y at (2,1)( 2 , - 1 )
-4
2
Evaluate f(x,y)=xcos(y)f ( x , y ) = x \cos ( y ) at (1,0)( 1,0 )
1
3
Evaluate f(x,y)=x2+y3f ( x , y ) = x ^ { 2 } + y ^ { 3 } at (2,2)( 2 , - 2 )

A) 12
B) 8
C) -4
D) 4
C
4
Evaluate f(x,y,z)=x2yzf ( x , y , z ) = x ^ { 2 } y z at (1,2,1)( 1,2 , - 1 )
Unlock Deck
Unlock for access to all 93 flashcards in this deck.
Unlock Deck
k this deck
5
Evaluate f(x,y,z)=xexcos(z)f ( x , y , z ) = x e ^ { x } \cos ( z ) at (2,1,0)( 2,1,0 )
Unlock Deck
Unlock for access to all 93 flashcards in this deck.
Unlock Deck
k this deck
6
Evaluate f(x,y,z)=exsin(y)cos(z)f ( x , y , z ) = e ^ { x } \sin ( y ) \cos ( z ) at (0,π2,0)\left( 0 , \frac { \pi } { 2 } , 0 \right)

A) 1
B) 0
C) eπ2e ^ { \frac { \pi } { 2 } }
D) e
Unlock Deck
Unlock for access to all 93 flashcards in this deck.
Unlock Deck
k this deck
7
Find the domain and range of f(x,y)=xy+2f ( x , y ) = \frac { x } { y + 2 }
Unlock Deck
Unlock for access to all 93 flashcards in this deck.
Unlock Deck
k this deck
8
Find the domain and range of f(x,y)=ln(y)x1f ( x , y ) = \frac { \ln ( y ) } { \sqrt { x - 1 } }
Unlock Deck
Unlock for access to all 93 flashcards in this deck.
Unlock Deck
k this deck
9
Find the domain of f(x,y)=xx2y2f ( x , y ) = \frac { x } { x ^ { 2 } - y ^ { 2 } }

A) Dom(f)={(x,y)R2:xy}\operatorname { Dom } ( f ) = \left\{ ( x , y ) \in R ^ { 2 } : x \neq y \right\}
B) Dom(f)={(x,y)R2:xy}\operatorname { Dom } ( f ) = \left\{ ( x , y ) \in R ^ { 2 } : x \neq - y \right\}
C) Dom(f)={(x,y)R2:xy}\operatorname { Dom } ( f ) = \left\{ ( x , y ) \in R ^ { 2 } : | x | \neq | y | \right\}
D) Dom(f)=R2\operatorname { Dom } ( f ) = R ^ { 2 }
Unlock Deck
Unlock for access to all 93 flashcards in this deck.
Unlock Deck
k this deck
10
Find the range of f(x,y)=xx2y2f ( x , y ) = \frac { x } { x ^ { 2 } - y ^ { 2 } }

A) RR
B) [0,)[ 0 , \infty )
C) (,0)( - \infty , 0 )
D) (1,1)( - 1,1 )
Unlock Deck
Unlock for access to all 93 flashcards in this deck.
Unlock Deck
k this deck
11
Find the domain and range of f(x,y,z)=xy2z23f ( x , y , z ) = \frac { x } { y ^ { 2 } - z ^ { 2 } - 3 }
Unlock Deck
Unlock for access to all 93 flashcards in this deck.
Unlock Deck
k this deck
12
Find the domain and range of f(x,y,z)=1x2+y2+z2+1f ( x , y , z ) = \frac { 1 } { x ^ { 2 } + y ^ { 2 } + z ^ { 2 } + 1 }
Unlock Deck
Unlock for access to all 93 flashcards in this deck.
Unlock Deck
k this deck
13
Find the range of f(x,y,z)=2x4+y2+z6+4f ( x , y , z ) = \frac { 2 } { x ^ { 4 } + y ^ { 2 } + z ^ { 6 } + 4 }

A) RR
B) [0,12]\left[ 0 , \frac { 1 } { 2 } \right]
C) (0,12)\left( 0 , \frac { 1 } { 2 } \right)
D) (0,12]\left( 0 , \frac { 1 } { 2 } \right]
Unlock Deck
Unlock for access to all 93 flashcards in this deck.
Unlock Deck
k this deck
14
Find a function of two variables for the surface of revolution formed when the given function on the specified interval is revolved around the y-axis. f(x)=x2f ( x ) = x ^ { 2 } on [0,2][ 0,2 ]
Unlock Deck
Unlock for access to all 93 flashcards in this deck.
Unlock Deck
k this deck
15
Determine if the given subset of R2R ^ { 2 } is open, closed, both open and closed, or neither open nor closed. All points (x,y)( x , y ) so that x>0x > 0 and y<0y < 0
Unlock Deck
Unlock for access to all 93 flashcards in this deck.
Unlock Deck
k this deck
16
Determine if the given subset of R2R ^ { 2 } is open, closed, both open and closed, or neither open nor closed. All points (x,y)( x , y ) so that 1x<21 \leq x < 2 and 1<y21 < y \leq 2
Unlock Deck
Unlock for access to all 93 flashcards in this deck.
Unlock Deck
k this deck
17
Find the compliment of the given subset of R2R ^ { 2 } : all points (x,y)( x , y ) so that x>0x > 0 and y<0y < 0
Unlock Deck
Unlock for access to all 93 flashcards in this deck.
Unlock Deck
k this deck
18
Find the compliment of the given subset of R2R ^ { 2 } : all points (x,y)( x , y ) so that 1x<21 \leq x < 2 and 1<y21 < y \leq 2
Unlock Deck
Unlock for access to all 93 flashcards in this deck.
Unlock Deck
k this deck
19
Find the boundary of the given subset of R2R ^ { 2 } : all points (x,y)( x , y ) so that x>0x > 0 and y<0y < 0
Unlock Deck
Unlock for access to all 93 flashcards in this deck.
Unlock Deck
k this deck
20
Find the boundary of the given subset of R2R ^ { 2 } : all points (x,y)( x , y ) so that 1x<21 \leq x < 2 and 1<y21 < y \leq 2
Unlock Deck
Unlock for access to all 93 flashcards in this deck.
Unlock Deck
k this deck
21
Determine if the given subset of R2R ^ { 2 } is open, closed, both open and closed, or neither open nor closed. All points (x,y)( x , y ) so that 2x122 \leq x \leq 12 and πy7\pi \leq y \leq 7

A) Open
B) Closed
C) Both open and closed
D) Neither open nor closed
Unlock Deck
Unlock for access to all 93 flashcards in this deck.
Unlock Deck
k this deck
22
Determine if the given subset of R3R ^ { 3 } is open, closed, both open and closed, or neither open nor closed. All points (x,y,z)( x , y , z ) so that x>0x > 0 , y<0y < 0 , and z<0z < 0
Unlock Deck
Unlock for access to all 93 flashcards in this deck.
Unlock Deck
k this deck
23
Find the compliment of the set in R3R ^ { 3 } : all points (x,y,z)( x , y , z ) so that x>0x > 0 , y<0y < 0 , and z<0z < 0
Unlock Deck
Unlock for access to all 93 flashcards in this deck.
Unlock Deck
k this deck
24
Determine if the given subset of R3R ^ { 3 } is open, closed, both open and closed, or neither open nor closed. All points (x,y,z)( x , y , z ) so that x0x \geq 0
Unlock Deck
Unlock for access to all 93 flashcards in this deck.
Unlock Deck
k this deck
25
Find the compliment of the set in R3R ^ { 3 } : all points (x,y,z)( x , y , z ) so that x0x \geq 0
Unlock Deck
Unlock for access to all 93 flashcards in this deck.
Unlock Deck
k this deck
26
Find the boundary of the set in R3R ^ { 3 } : all points (x,y,z)( x , y , z ) so that x0x \geq 0
Unlock Deck
Unlock for access to all 93 flashcards in this deck.
Unlock Deck
k this deck
27
Determine if the given subset of R3R ^ { 3 } is open, closed, both open and closed, or neither open nor closed. All points (x,y,z)( x , y , z ) so that x1x \geq 1 , y<0y < 0 and z>0z > 0

A) Open
B) Closed
C) Both open and closed
D) Neither open nor closed
Unlock Deck
Unlock for access to all 93 flashcards in this deck.
Unlock Deck
k this deck
28
Evaluate the limit if it exists: lim(x,y)(1,2)x2xy\lim _ { ( x , y ) \rightarrow ( 1,2 ) } x ^ { 2 } - x y
Unlock Deck
Unlock for access to all 93 flashcards in this deck.
Unlock Deck
k this deck
29
Evaluate the limit if it exists: lim(x,y)(0,0)xyx2+y2\lim _ { ( x , y ) \rightarrow ( 0,0 ) } \frac { x y } { x ^ { 2 } + y ^ { 2 } }
Unlock Deck
Unlock for access to all 93 flashcards in this deck.
Unlock Deck
k this deck
30
Evaluate the limit if it exists: lim(x,y)(0.0)(y+1)2cos(x)\lim _ { ( x , y ) \rightarrow ( 0.0 ) } ( y + 1 ) ^ { 2 } \cos ( x )

A) 2
B) 0
C) 1
D) π\pi
Unlock Deck
Unlock for access to all 93 flashcards in this deck.
Unlock Deck
k this deck
31
Where is the function continuous? f(x,y)=xyx2+y2f ( x , y ) = \frac { x y } { x ^ { 2 } + y ^ { 2 } }

A) R2R ^ { 2 }
B) x0x \neq 0
C) y0y \neq 0
D) (x,y)(0,0)( x , y ) \neq ( 0,0 )
Unlock Deck
Unlock for access to all 93 flashcards in this deck.
Unlock Deck
k this deck
32
Find fx\frac { \partial f } { \partial x } for f(x,y)=cos(xy)f ( x , y ) = \cos ( x y )
Unlock Deck
Unlock for access to all 93 flashcards in this deck.
Unlock Deck
k this deck
33
Find fy\frac { \partial f } { \partial y } for f(x,y)=cos(xy)f ( x , y ) = \cos ( x y )
Unlock Deck
Unlock for access to all 93 flashcards in this deck.
Unlock Deck
k this deck
34
Find fx\frac { \partial f } { \partial x } for f(x,y)=exy2f ( x , y ) = e ^ { x - y ^ { 2 } }
Unlock Deck
Unlock for access to all 93 flashcards in this deck.
Unlock Deck
k this deck
35
Find fy\frac { \partial f } { \partial y } for f(x,y)=exy2f ( x , y ) = e ^ { x - y ^ { 2 } }
Unlock Deck
Unlock for access to all 93 flashcards in this deck.
Unlock Deck
k this deck
36
Find fx\frac { \partial f } { \partial x } for f(x,y)=sin(x2y2)f ( x , y ) = \sin \left( x ^ { 2 } - y ^ { 2 } \right)

A) 2ycos(x2y2)- 2 y \cos \left( x ^ { 2 } - y ^ { 2 } \right)
B) 2xcos(x2y2)2 x \cos \left( x ^ { 2 } - y ^ { 2 } \right)
C) 2ysin(x2y2)2 y \sin \left( x ^ { 2 } - y ^ { 2 } \right)
D) 2xsin(x2y2)2 x \sin \left( x ^ { 2 } - y ^ { 2 } \right)
Unlock Deck
Unlock for access to all 93 flashcards in this deck.
Unlock Deck
k this deck
37
Find fz\frac { \partial f } { \partial z } for f(x,y,z)=x2+xyz+y3f ( x , y , z ) = x ^ { 2 } + x y z + y ^ { 3 }
Unlock Deck
Unlock for access to all 93 flashcards in this deck.
Unlock Deck
k this deck
38
Find fz\frac { \partial f } { \partial z } for f(x,y,z)=cos(xyz)f ( x , y , z ) = \cos ( x y z )
Unlock Deck
Unlock for access to all 93 flashcards in this deck.
Unlock Deck
k this deck
39
Find fz\frac { \partial f } { \partial z } for f(x,y,z)=exy2z3f ( x , y , z ) = e ^ { x y ^ { 2 } z ^ { 3 } }

A) y2z3exy2z3y ^ { 2 } z ^ { 3 } e ^ { x y ^ { 2 } z ^ { 3 } }
B) 2xyz3exy2z32 x y z ^ { 3 } e ^ { x y ^ { 2 } z ^ { 3 } }
C) 3xy2z2exy2z33 x y ^ { 2 } z ^ { 2 } e ^ { x y ^ { 2 } z ^ { 3 } }
D) xy2z3exy2z3x y ^ { 2 } z ^ { 3 } e ^ { x y ^ { 2 } z ^ { 3 } }
Unlock Deck
Unlock for access to all 93 flashcards in this deck.
Unlock Deck
k this deck
40
For f(x,y)=x2y2f ( x , y ) = x ^ { 2 } - y ^ { 2 } find a line in the x direction tangent to the surface defined by f at (1,2).
Unlock Deck
Unlock for access to all 93 flashcards in this deck.
Unlock Deck
k this deck
41
For f(x,y)=x2y2f ( x , y ) = x ^ { 2 } - y ^ { 2 } find a line in the y direction tangent to the surface defined by f at (1,2).
Unlock Deck
Unlock for access to all 93 flashcards in this deck.
Unlock Deck
k this deck
42
For f(x,y)=x2y2f ( x , y ) = x ^ { 2 } - y ^ { 2 } find a line in the y direction tangent to the surface defined by f at (1,2).
Unlock Deck
Unlock for access to all 93 flashcards in this deck.
Unlock Deck
k this deck
43
For f(x,y)=x2y2f ( x , y ) = x ^ { 2 } - y ^ { 2 } find the tangent plane to the surface defined by f at (1,2).
Unlock Deck
Unlock for access to all 93 flashcards in this deck.
Unlock Deck
k this deck
44
For f(x,y)=x2yf ( x , y ) = x ^ { 2 } y find a line in the x direction tangent to the surface defined by f at (1,2).

A) r(t)=1,2,2+t0,0,4\vec { r } ( t ) = \langle 1,2,2 \rangle + t \langle 0,0,4 \rangle
B) r(t)=1,2,2+t0,0,2\vec { r } ( t ) = \langle 1,2,2 \rangle + t \langle 0,0,2 \rangle
C) r(t)=1,2,2+t0,0,1\vec { r } ( t ) = \langle 1,2,2 \rangle + t \langle 0,0,1 \rangle
D) r(t)=1,2,2+t4,1,0\vec { r } ( t ) = \langle 1,2,2 \rangle + t \langle 4,1,0 \rangle
Unlock Deck
Unlock for access to all 93 flashcards in this deck.
Unlock Deck
k this deck
45
Find a function with the given partial derivatives fx=xy\frac { \partial f } { \partial x } = x y and fy=xy\frac { \partial f } { \partial y } = x y
Unlock Deck
Unlock for access to all 93 flashcards in this deck.
Unlock Deck
k this deck
46
Find a function with the given partial derivatives fx=2xy3\frac { \partial f } { \partial x } = 2 x y ^ { 3 } and fy=3x2y2\frac { \partial f } { \partial y } = 3 x ^ { 2 } y ^ { 2 }
Unlock Deck
Unlock for access to all 93 flashcards in this deck.
Unlock Deck
k this deck
47
Find a function with the given partial derivatives fx=ycos(xy)\frac { \partial f } { \partial x } = y \cos ( x y ) and fy=xcos(xy)\frac { \partial f } { \partial y } = x \cos ( x y )

A) f(x,y)=cos(xy)f ( x , y ) = \cos ( x y )
B) f(x,y)=sin(xy)f ( x , y ) = \sin ( x y )
C) f(x,y)=sin(xy)f ( x , y ) = - \sin ( x y )
D) f(x,y)=cos(xy)f ( x , y ) = - \cos ( x y )
Unlock Deck
Unlock for access to all 93 flashcards in this deck.
Unlock Deck
k this deck
48
Solve the exact equation ycos(xy)+xcos(xy)dydx=0y \cos ( x y ) + x \cos ( x y ) \frac { d y } { d x } = 0
Unlock Deck
Unlock for access to all 93 flashcards in this deck.
Unlock Deck
k this deck
49
Find the directional derivative to the given function at the specified point PP in the direction of the vector u\vec { u } f(x,y)=x2+xy,P=(1,2),u=12,32f ( x , y ) = x ^ { 2 } + x y , P = ( 1,2 ) , \vec { u } = \left\langle \frac { 1 } { 2 } , \frac { \sqrt { 3 } } { 2 } \right\rangle
Unlock Deck
Unlock for access to all 93 flashcards in this deck.
Unlock Deck
k this deck
50
Find the directional derivative to the given function at the specified point PP in the direction of the vector u\vec { u } f(x,y)=cos(x)+sin(y2),P=(π,π),u=22,22f ( x , y ) = \cos ( x ) + \sin \left( y ^ { 2 } \right) , P = ( \pi , \sqrt { \pi } ) , \vec { u } = \left\langle \frac { \sqrt { 2 } } { 2 } , \frac { \sqrt { 2 } } { 2 } \right\rangle
Unlock Deck
Unlock for access to all 93 flashcards in this deck.
Unlock Deck
k this deck
51
Find the directional derivative to the given function at the specified point PP in the direction of the vector u\vec { u } f(x,y)=x3x2y,P=(1,2),u=32,12f ( x , y ) = x ^ { 3 } - x ^ { 2 } y , P = ( 1,2 ) , \vec { u } = \left\langle \frac { \sqrt { 3 } } { 2 } , \frac { 1 } { 2 } \right\rangle

A) 3+12\frac { \sqrt { 3 } + 1 } { 2 }
B) 2342 \sqrt { 3 } - 4
C) 312\frac { \sqrt { 3 } - 1 } { 2 }
D) 1- 1
Unlock Deck
Unlock for access to all 93 flashcards in this deck.
Unlock Deck
k this deck
52
Find the directional derivative to the given function at the specified point PP in the direction of the vector u\vec { u } f(x,y,z)=xyz2,P=(1,2,1),u=12,0,32f ( x , y , z ) = x y z ^ { 2 } , P = ( 1,2,1 ) , \vec { u } = \left\langle \frac { 1 } { 2 } , 0 , \frac { \sqrt { 3 } } { 2 } \right\rangle
Unlock Deck
Unlock for access to all 93 flashcards in this deck.
Unlock Deck
k this deck
53
Find the directional derivative to the given function at the specified point PP in the direction of the vector u\vec { u } f(x,y,z)=x2+y2+z2,P=(1,2,3),u=22,22,0f ( x , y , z ) = x ^ { 2 } + y ^ { 2 } + z ^ { 2 } , P = ( 1,2,3 ) , \vec { u } = \left\langle \frac { \sqrt { 2 } } { 2 } , \frac { \sqrt { 2 } } { 2 } , 0 \right\rangle
Unlock Deck
Unlock for access to all 93 flashcards in this deck.
Unlock Deck
k this deck
54
Find the directional derivative to the given function at the specified point PP in the direction of the vector u\vec { u } f(x,y,z)=2zxy,P=(2,2,3),u=13,13,13f ( x , y , z ) = 2 z \sqrt { x y } , P = ( 2,2,3 ) , \vec { u } = \left\langle \frac { 1 } { \sqrt { 3 } } , \frac { 1 } { \sqrt { 3 } } , \frac { 1 } { \sqrt { 3 } } \right\rangle

A) 1010
B) 10310 \sqrt { 3 }
C) 103\frac { 10 } { 3 }
D) 103\frac { 10 } { \sqrt { 3 } }
Unlock Deck
Unlock for access to all 93 flashcards in this deck.
Unlock Deck
k this deck
55
Find the line tangent to the surface given by the function at the specified point PP in the direction of the vector u\vec { u } f(x,y)=x2+xy,P=(1,2),u=12,32f ( x , y ) = x ^ { 2 } + x y , P = ( 1,2 ) , \vec { u } = \left\langle \frac { 1 } { 2 } , \frac { \sqrt { 3 } } { 2 } \right\rangle
Unlock Deck
Unlock for access to all 93 flashcards in this deck.
Unlock Deck
k this deck
56
Find the line tangent to the surface given by the function at the specified point PP in the direction of the vector u\vec { u } f(x,y)=cos(x)+sin(y2),P=(π,π),u=22,22f ( x , y ) = \cos ( x ) + \sin \left( y ^ { 2 } \right) , P = ( \pi , \sqrt { \pi } ) , \vec { u } = \left\langle \frac { \sqrt { 2 } } { 2 } , \frac { \sqrt { 2 } } { 2 } \right\rangle
Unlock Deck
Unlock for access to all 93 flashcards in this deck.
Unlock Deck
k this deck
57
Find the line tangent to the surface given by the function at the specified point PP in the direction of the vector u\vec { u } f(x,y)=x3x2y,P=(1,2),u=32,12f ( x , y ) = x ^ { 3 } - x ^ { 2 } y , P = ( 1,2 ) , \vec { u } = \left\langle \frac { \sqrt { 3 } } { 2 } , \frac { 1 } { 2 } \right\rangle

A) r(t)=2+12t,2+32t,3+(2+32)t\vec { r } ( t ) = \left\langle 2 + \frac { 1 } { 2 } t , 2 + \frac { \sqrt { 3 } } { 2 } t , 3 + \left( 2 + \frac { \sqrt { 3 } } { 2 } \right) t \right\rangle
B) r(t)=1+32t,2+12t,1+(234)t\vec { r } ( t ) = \left\langle 1 + \frac { \sqrt { 3 } } { 2 } t , 2 + \frac { 1 } { 2 } t , - 1 + ( 2 \sqrt { 3 } - 4 ) _ { t } \right\rangle
C) r(t)=1+32t,2+12t,1(3+12)t\vec { r } ( t ) = \left\langle 1 + \frac { \sqrt { 3 } } { 2 } t , 2 + \frac { 1 } { 2 } t , - 1 - \left( \frac { \sqrt { 3 } + 1 } { 2 } \right) t \right\rangle
D) r(t)=1+32t,2+12t,1t\vec { r } ( t ) = \left\langle 1 + \frac { \sqrt { 3 } } { 2 } t , 2 + \frac { 1 } { 2 } t , - 1 - t \right\rangle
Unlock Deck
Unlock for access to all 93 flashcards in this deck.
Unlock Deck
k this deck
58
Find the directional derivative to the given function at the specified point PP in the direction of the vector u\vec { u } f(x,y)=x2+xy,P=(1,2),u=1,3f ( x , y ) = x ^ { 2 } + x y , P = ( 1,2 ) , \vec { u } = \langle 1 , \sqrt { 3 } \rangle
Unlock Deck
Unlock for access to all 93 flashcards in this deck.
Unlock Deck
k this deck
59
Find the directional derivative to the given function at the specified point PP in the direction of the vector u\vec { u } f(x,y)=cos(x)+sin(y2),P=(π,π),u=2,2f ( x , y ) = \cos ( x ) + \sin \left( y ^ { 2 } \right) , P = ( \pi , \sqrt { \pi } ) , \vec { u } = \langle \sqrt { 2 } , \sqrt { 2 } \rangle
Unlock Deck
Unlock for access to all 93 flashcards in this deck.
Unlock Deck
k this deck
60
Find the directional derivative to the given function at the specified point PP in the direction of the vector u\vec { u } f(x,y)=x3x2y,P=(1,2),u=3,1f ( x , y ) = x ^ { 3 } - x ^ { 2 } y , P = ( 1,2 ) , \vec { u } = \langle \sqrt { 3 } , 1 \rangle

A) 3+12\frac { \sqrt { 3 } + 1 } { 2 }
B) 2342 \sqrt { 3 } - 4
C) 312\frac { - \sqrt { 3 } - 1 } { 2 }
D) 1- 1
Unlock Deck
Unlock for access to all 93 flashcards in this deck.
Unlock Deck
k this deck
61
Find the directional derivative to the given function at the specified point PP in the direction of the vector u\vec { u } f(x,y,z)=xyz2,P=(1,2,1),u=1,3,0f ( x , y , z ) = x y z ^ { 2 } , P = ( 1,2,1 ) , \vec { u } = \langle 1 , \sqrt { 3 } , 0 \rangle
Unlock Deck
Unlock for access to all 93 flashcards in this deck.
Unlock Deck
k this deck
62
Find the directional derivative to the given function at the specified point PP in the direction of the vector u\vec { u } f(x,y,z)=x2+y2+z2,P=(1,2,3),u=2,2,0f ( x , y , z ) = x ^ { 2 } + y ^ { 2 } + z ^ { 2 } , P = ( 1,2,3 ) , \vec { u } = \langle \sqrt { 2 } , \sqrt { 2 } , 0 \rangle
Unlock Deck
Unlock for access to all 93 flashcards in this deck.
Unlock Deck
k this deck
63
Find the directional derivative to the given function at the specified point PP in the direction of the vector u\vec { u } f(x,y,z)=2zxy,P=(2,2,3),u=1,1,1f ( x , y , z ) = 2 z \sqrt { x y } , P = ( 2,2,3 ) , \vec { u } = \langle 1,1,1 \rangle

A) 1010
B) 10310 \sqrt { 3 }
C) 103\frac { 10 } { 3 }
D) 103\frac { 10 } { \sqrt { 3 } }
Unlock Deck
Unlock for access to all 93 flashcards in this deck.
Unlock Deck
k this deck
64
Find the equation of the plane tangent to the surface given by the function at the specified point PP f(x,y)=x2+xy,P=(1,2),u=12,32f ( x , y ) = x ^ { 2 } + x y , P = ( 1,2 ) , \vec { u } = \left\langle \frac { 1 } { 2 } , \frac { \sqrt { 3 } } { 2 } \right\rangle
Unlock Deck
Unlock for access to all 93 flashcards in this deck.
Unlock Deck
k this deck
65
Find the equation of the plane tangent to the surface given by the function at the specified point PP f(x,y)=cos(x)+sin(y2),P=(π,π),f ( x , y ) = \cos ( x ) + \sin \left( y ^ { 2 } \right) , P = ( \pi , \sqrt { \pi } ) ,
Unlock Deck
Unlock for access to all 93 flashcards in this deck.
Unlock Deck
k this deck
66
Find the equation of the plane tangent to the surface given by the given function at the specified point PP f(x,y)=x3x2y,P=(1,2)f ( x , y ) = x ^ { 3 } - x ^ { 2 } y , P = ( 1,2 )

A) z=1y2z = - 1 - y - 2
B) z=xy+7z = - x - y + 7
C) z=xy+2z = - x - y + 2
D) z=xyz = - x - y
Unlock Deck
Unlock for access to all 93 flashcards in this deck.
Unlock Deck
k this deck
67
Find dzdt\frac { d z } { d t } for z=sin(x2y),x=t,y=etz = \sin \left( x ^ { 2 } y \right) , x = t , y = e ^ { t }
Unlock Deck
Unlock for access to all 93 flashcards in this deck.
Unlock Deck
k this deck
68
Find dzdt\frac { d z } { d t } for z=xey,x=cos(t),y=etz = x e ^ { y } , x = \cos ( t ) , y = e ^ { t }
Unlock Deck
Unlock for access to all 93 flashcards in this deck.
Unlock Deck
k this deck
69
Find dzdt\frac { d z } { d t } for z=xy,x=t2,y=etz = \frac { x } { y } , x = t ^ { 2 } , y = e ^ { t }

A) 2tet- 2 t e ^ { - t }
B) 2tett2et2 t e ^ { - t } - t ^ { 2 } e ^ { - t }
C) tett2e2tt e ^ { - t } - t ^ { 2 } e ^ { - 2 t }
D) 2tet2 t e ^ { - t }
Unlock Deck
Unlock for access to all 93 flashcards in this deck.
Unlock Deck
k this deck
70
Find dzdt\frac { d z } { d t } for z=xy2,x=ts,y=t2sz = x y ^ { 2 } , x = t s , y = t ^ { 2 } s
Unlock Deck
Unlock for access to all 93 flashcards in this deck.
Unlock Deck
k this deck
71
Find dzdt\frac { d z } { d t } for z=sin(x2y),x=st,y=t2estz = \sin \left( x ^ { 2 } y \right) , x = \frac { s } { t } , y = t ^ { 2 } e ^ { s t }
Unlock Deck
Unlock for access to all 93 flashcards in this deck.
Unlock Deck
k this deck
72
Find dzdt\frac { d z } { d t } for z=xy,x=t2s2,y=setz = \frac { x } { y } , x = t ^ { 2 } s ^ { 2 } , y = s e ^ { t }

A) 2set- 2 s e ^ { - t }
B) 2stetst2et2 s t e ^ { - t } - s t ^ { 2 } e ^ { - t }
C) 2stetst2e2t2 s t e ^ { - t } - s t ^ { 2 } e ^ { - 2 t }
D) 2tett2et2 t e ^ { - t } - t ^ { 2 } e ^ { - t }
Unlock Deck
Unlock for access to all 93 flashcards in this deck.
Unlock Deck
k this deck
73
Find f\nabla f for f(x,y)=x2yf ( x , y ) = x ^ { 2 } y
Unlock Deck
Unlock for access to all 93 flashcards in this deck.
Unlock Deck
k this deck
74
Find f\nabla f for f(x,y)=exsin(y)f ( x , y ) = e ^ { x \sin ( y ) }
Unlock Deck
Unlock for access to all 93 flashcards in this deck.
Unlock Deck
k this deck
75
Find f\nabla f for f(x,y)=tan(x)yf ( x , y ) = \frac { \tan ( x ) } { y } .

A) <tan(x)y2,sec2(x)y2>< - \frac { \tan ( x ) } { y ^ { 2 } } , \frac { \sec ^ { 2 } ( x ) } { y ^ { 2 } } >
B) <tan(x)y,tan(x)y2>< \frac { \tan ( x ) } { y } , - \frac { \tan ( x ) } { y ^ { 2 } } >
C) <sec2(x)y,tan(x)y2>< \frac { \sec ^ { 2 } ( x ) } { y } , - \frac { \tan ( x ) } { y ^ { 2 } } >
D) <sec2(x)y2,tan(x)y>< \frac { \sec ^ { 2 } ( x ) } { y ^ { 2 } } , \frac { \tan ( x ) } { y } >
Unlock Deck
Unlock for access to all 93 flashcards in this deck.
Unlock Deck
k this deck
76
Find a function of two variables with the given gradient, f=2xy3,3x2y2\nabla f = \left\langle 2 x y ^ { 3 } , 3 x ^ { 2 } y ^ { 2 } \right\rangle
Unlock Deck
Unlock for access to all 93 flashcards in this deck.
Unlock Deck
k this deck
77
Find the direction in which the given function increases most rapidly at the given point. f(x,y,z)=xezyex,P=(0,2,0)f ( x , y , z ) = x e ^ { z } - y e ^ { x } , P = ( 0,2,0 )
Unlock Deck
Unlock for access to all 93 flashcards in this deck.
Unlock Deck
k this deck
78
Find the direction in which the given function decreases most rapidly at the given point. f(x,y,z)=xezyex,P=(0,2,0)f ( x , y , z ) = x e ^ { z } - y e ^ { x } , P = ( 0,2,0 )
Unlock Deck
Unlock for access to all 93 flashcards in this deck.
Unlock Deck
k this deck
79
Find the rate of change in the direction in which the given function increases most rapidly at the given point. f(x,y,z)=xezyex,P=(0,2,0)f ( x , y , z ) = x e ^ { z } - y e ^ { x } , P = ( 0,2,0 )
Unlock Deck
Unlock for access to all 93 flashcards in this deck.
Unlock Deck
k this deck
80
Find the directional derivative of the given function at the specified point PP in the direction u\vec { u } f(x,y)=xey,P=(2,0),u=12,32f ( x , y ) = x e ^ { y } , P = ( 2,0 ) , \vec { u } = \left\langle \frac { 1 } { 2 } , \frac { \sqrt { 3 } } { 2 } \right\rangle
Unlock Deck
Unlock for access to all 93 flashcards in this deck.
Unlock Deck
k this deck
locked card icon
Unlock Deck
Unlock for access to all 93 flashcards in this deck.