Deck 4: Definite Integrals

Full screen (f)
exit full mode
Question
Write the following sum in sigma notation.2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2

A) k=162\sum _ { k = 1 } ^ { 6 } 2
B) k=182\sum _ { k = 1 } ^ { 8 } 2
C) k=192\sum _ { k = 1 } ^ { 9 } 2
D) k=172\sum _ { k = 1 } ^ { 7 } 2
Use Space or
up arrow
down arrow
to flip the card.
Question
Write the following sum in sigma notation. 18+127+164+1125+1216\frac { 1 } { 8 } + \frac { 1 } { 27 } + \frac { 1 } { 64 } + \frac { 1 } { 125 } + \frac { 1 } { 216 }

A) k=261k2\sum _ { k = 2 } ^ { 6 } \frac { 1 } { k ^ { 2 } }
B) k=271k3\sum _ { k = 2 } ^ { 7 } \frac { 1 } { k ^ { 3 } }
C) k=2612k2\sum _ { k = 2 } ^ { 6 } \frac { 1 } { 2 k ^ { 2 } }
D) k=261k3\sum _ { k = 2 } ^ { 6 } \frac { 1 } { k ^ { 3 } }
Question
Write the following sum in sigma notation.11 + 18 + 27 + 38 + 51 + 66

A) k=27k2+2\sum _ { k = 2 } ^ { 7 } k ^ { 2 } + 2
B) k=38k2+2\sum _ { k = 3 } ^ { 8 } k ^ { 2 } + 2
C) k=28k2+2\sum _ { k = 2 } ^ { 8 } k ^ { 2 } + 2
D) k=38k2+3\sum _ { k = 3 } ^ { 8 } k ^ { 2 } + 3
Question
Write the following sum in sigma notation. 2+34+49+516+625+736+8492 + \frac { 3 } { 4 } + \frac { 4 } { 9 } + \frac { 5 } { 16 } + \frac { 6 } { 25 } + \frac { 7 } { 36 } + \frac { 8 } { 49 }

A) k=39k+1k\sum _ { k = 3 } ^ { 9 } \frac { k + 1 } { k }
B) k=17k+1k\sum _ { k = 1 } ^ { 7 } \frac { k + 1 } { k }
C) k=17k+1k2\sum _ { k = 1 } ^ { 7 } \frac { k + 1 } { k ^ { 2 } }
D) k=310k+1k2\sum _ { k = 3 } ^ { 10 } \frac { k + 1 } { k ^ { 2 } }
Question
Write the following sum in sigma notation. 2+53+64+75+86+97+108+1192 + \frac { 5 } { 3 } + \frac { 6 } { 4 } + \frac { 7 } { 5 } + \frac { 8 } { 6 } + \frac { 9 } { 7 } + \frac { 10 } { 8 } + \frac { 11 } { 9 }

A) k=29k+1k\sum _ { k = 2 } ^ { 9 } \frac { k + 1 } { k }
B) k=28k+2k\sum _ { k = 2 } ^ { 8 } \frac { k + 2 } { k }
C) k=29k+3k\sum _ { k = 2 } ^ { 9 } \frac { k + 3 } { k }
D) k=29k+2k\sum _ { k = 2 } ^ { 9 } \frac { k + 2 } { k }
Question
Write out each sum in expanded form, and then calculate the value of the sum. k=27k2\sum _ { k = 2 } ^ { 7 } k ^ { 2 }
Question
Write out each sum in expanded form, and then calculate the value of the sum. k=15(3+k)2+1\sum _ { k = 1 } ^ { 5 } ( 3 + k ) ^ { 2 } + 1
Question
Write out each sum in expanded form, and then calculate the value of the sum. k=16lnk\sum _ { k = 1 } ^ { 6 } \ln k
Question
Find a formula for the sum and then use it to calculate the sum for n = 100, n = 500, and n = 1000. k=1n(2k)\sum _ { k = 1 } ^ { n } ( 2 - k )

A) 3n+n22\frac { 3 n + n ^ { 2 } } { 2 }
B) 4nn22\frac { 4 n - n ^ { 2 } } { 2 }
C) 3nn22\frac { 3 n - n ^ { 2 } } { 2 }
D) 2nn22\frac { 2 n - n ^ { 2 } } { 2 }
Question
Find a formula for the sum k=1n(k22k+3)\sum _ { k = 1 } ^ { n } \left( k ^ { 2 } - 2 k + 3 \right) and then use it to calculate the sum for n = 100, n = 500, and n = 1000.
Question
Find a formula for the sum k=2n(2+k)2\sum _ { k = 2 } ^ { n } ( 2 + k ) ^ { 2 } and then use it to calculate the sum for n = 100, n = 500, and n = 1000.
Question
Find a formula for the sum k=1n(k2+2k+2)n3\sum _ { k = 1 } ^ { n } \frac { \left( k ^ { 2 } + 2 k + 2 \right) } { n ^ { 3 } } and then use it to calculate the sum for n = 100, n = 500, and n = 1000.
Question
Find a formula for the sum k=1nk3+12\sum _ { k = 1 } ^ { n } \frac { k ^ { 3 } + 1 } { 2 } and then use it to calculate the sum for n = 100, n = 500, and n = 1000.
Question
Write the given expression in one sigma notation (with some extra terms added or subtracted from the sum, as necessary). 2k=320k2+3k=221k+k=12412 \sum _ { k = 3 } ^ { 20 } k ^ { 2 } + 3 \sum _ { k = 2 } ^ { 21 } k + \sum _ { k = 1 } ^ { 24 } 1
Question
Find k=1nk22k+3n3\sum _ { k = 1 } ^ { n } \frac { k ^ { 2 } - 2 k + 3 } { n ^ { 3 } }

A) 15\frac { 1 } { 5 }
B) 23\frac { 2 } { 3 }
C) 25\frac { 2 } { 5 }
D) 13\frac { 1 } { 3 }
Question
Find limnk=1nk2+2k+32n4\lim _ { n \rightarrow \infty } \sum _ { k = 1 } ^ { n } \frac { k ^ { 2 } + 2 k + 3 } { 2 n ^ { 4 } }

A) 13\frac { 1 } { 3 }
B) 12\frac { 1 } { 2 }
C) 16\frac { 1 } { 6 }
D) 14\frac { 1 } { 4 }
Question
Approximate the area between the graph of f(x)=x2+4xf ( x ) = x ^ { 2 } + 4 x and the x-axis on the interval [2, 4], using a right sum with (a) n = 4, (b) n = 6.
Question
Approximate the area between the graph of f(x)=x2+4xf ( x ) = x ^ { 2 } + 4 x and the x-axis on the interval [2, 4], using a left sum with (a) n = 4, (b) n = 6.
Question
Approximate the area between the graph of f(x)=(x2)2+1f ( x ) = ( x - 2 ) ^ { 2 } + 1 and the x-axis on the interval [1, 5], using a right sum with (a) n = 2, (b) n = 4.
Question
Approximate the area between the graph of f(x)=(x2)2+1f ( x ) = ( x - 2 ) ^ { 2 } + 1 and the x-axis on the interval [1, 5], using a left sum with (a) n = 2, (b) n = 4.
Question
Approximate the area between the graph of f(x)=9x2f ( x ) = 9 - x ^ { 2 } and the x-axis on the interval [0, 3], for n = 6, using (a) left sums (b) right sums.
Question
Approximate the area between the graph of f(x)=x+1f ( x ) = \sqrt { x + 1 } and the x-axis on the interval [1, 3], for n = 4, using (a) left sums (b) right sums.
Question
Use geometry to find the exact value of 0(3x)dx\int _ { 0 } ( 3 - x ) d x

A) 5
B) 3
C) 6
D) 4
Question
Use geometry to find the exact value of 12x+1dx\int _ { - 1 } | 2 x + 1 | d x

A) 20.25
B) 20
C) 20.5
D) 19.75
Question
Use geometry to find the exact value of 2610dx\int _ { - 2 } ^ { 6 } 10 d x

A) 60
B) 80
C) 100
D) 70
Question
Use geometry to find the exact value of 224x2dx\int _ { - 2 } ^ { 2 } \sqrt { 4 - x ^ { 2 } } d x

A) π\pi
B) π\pi /2
C) 4 π\pi
D) 2 π\pi
Question
Use geometry to find the exact value of 14(2x2)dx\int _ { - 1 } ^ { 4 } ( 2 - | x - 2 | ) d x

A) 9/2
B) 5/2
C) 7/2
D) 11/2
Question
Use geometry to find the exact value of 02+9x2dx\int _ { 0 } 2 + \sqrt { 9 - x ^ { 2 } } d x

A) 6+81π2\frac { 6 + 81 \pi } { 2 }
B) 6+9π4\frac { 6 + 9 \pi } { 4 }
C) 6+81π4\frac { 6 + 81 \pi } { 4 }
D) 24+9π4\frac { 24 + 9 \pi } { 4 }
Question
If 14f(x)dx=3\int _ { - 1 } ^ { 4 } f ( x ) d x = 3 , 34f(x)dx=6\int _ { - 3 } ^ { 4 } f ( x ) d x = 6 , 14g(x)dx=2\int _ { - 1 }^4 g ( x ) d x = - 2 and 46g(x)dx=5\int _ { 4 } ^ { 6 } g ( x ) d x = 5 , find the following, if possible.
(a) 31f(x)dx\int _ { - 3 } ^ { - 1 } f ( x ) d x
(b) 16(g(x)+3)dx\int _ { - 1 }^6 ( g ( x ) + 3 ) d x
(c) 14(2f(x)+x)dx\int _ { - 1 } ^ { 4 } ( 2 f ( x ) + x ) d x
Question
If 14f(x)dx=3\int _ { - 1 } ^ { 4 } f ( x ) d x = 3 , 34f(x)dx=6\int _ { - 3 } ^ { 4 } f ( x ) d x = 6 , 14g(x)dx=2\int _ { - 1 }^4 g ( x ) d x = - 2 and 46g(x)dx=5\int _ { 4 } ^ { 6 } g ( x ) d x = 5 , find the following, if possible.
(a) 413f(x)dx\int _ { 4 } ^ { - 1 } 3 f ( x ) d x (b) 34(f(x))2dx\int _ { - 3 } ^ { 4 } ( f ( x ) ) ^ { 2 } d x (c) 46(3g(x)x)dx\int _ { 4 } ^ { 6 } ( 3 g ( x ) - x ) d x
Question
If 14f(x)dx=3\int _ { - 1 } ^ { 4 } f ( x ) d x = 3 , 34f(x)dx=6\int _ { - 3 } ^ { 4 } f ( x ) d x = 6 , 1g(x)dx=2\int _ { - 1 } g ( x ) d x = - 2 and 46g(x)dx=5\int _ { 4 } ^ { 6 } g ( x ) d x = 5 , find the following, if possible.
(a) 16g(x)dx\int _ { - 1 } ^6g ( x ) d x (b) 432f(x)dx\int _ { 4 } ^ { - 3 } - 2 f ( x ) d x (c) 142f(x)g(x)dx\int _ { - 1 } ^ { 4 } 2 f ( x ) g ( x ) d x
Question
Find 14(4x)dx\int _ { 1 }^4 ( 4 - x ) d x using Riemann sums (a) using the right sum, (b) using the left sum.
Question
Find 02x2dx\int _ { 0 }^2 x ^ { 2 } d x using Riemann sums (a) using the right sum, (b) using the left sum.
Question
Find 11(2x+3)dx\int _ { - 1 } ^1( 2 x + 3 ) d x using Riemann sums (a) using the right sum, (b) using the left sum.
Question
Find 2x+1xdx\int \frac { 2 x + 1 } { \sqrt { x } } d x

A) 43x2/3+2x1/2+C\frac { 4 } { 3 } x ^ { 2 / 3 } + 2 x ^ { 1 / 2 } + C
B) 43x2/3+2x+C\frac { 4 } { 3 } x ^ { 2 / 3 } + 2 x + C
C) 23x3/2+2x1/2+C\frac { 2 } { 3 } x ^ { 3 / 2 } + 2 x ^ { 1 / 2 } + C
D) 43x3/2+2x1/2+C\frac { 4 } { 3 } x ^ { 3 / 2 } + 2 x ^ { 1 / 2 } + C
Question
Find (32x2)dx\int \left( 3 - \frac { 2 } { x ^ { 2 } } \right) d x

A) 3x+2x3+C3 x + \frac { 2 } { x ^ { 3 } } + C
B) 3x2x3+C3 x - \frac { 2 } { x ^ { 3 } } + C
C) 3x+2x+C3 x + \frac { 2 } { x } + C
D) 3x2x+C3 x - \frac { 2 } { x } + C
Question
Find 2tan2xdx\int 2 \tan ^ { 2 } x d x

A) 2secx2x+C2 \sec x - 2 x + C
B) 23tan3x+C\frac { 2 } { 3 } \tan ^ { 3 } x + C
C) 2tanx+2x+C2 \tan x + 2 x + C
D) 2tanx2x+C2 \tan x - 2 x + C
Question
Find (x4+2)2dx\int \left( x ^ { 4 } + 2 \right) ^ { 2 } d x

A) 19x9+25x5+4x+C\frac { 1 } { 9 } x ^ { 9 } + \frac { 2 } { 5 } x ^ { 5 } + 4 x + C
B) 19x9+45x5+4x+C\frac { 1 } { 9 } x ^ { 9 } + \frac { 4 } { 5 } x ^ { 5 } + 4 x + C
C) 16x6+25x5+4x+C\frac { 1 } { 6 } x ^ { 6 } + \frac { 2 } { 5 } x ^ { 5 } + 4 x + C
D) 19x9+45x5+2x+C\frac { 1 } { 9 } x ^ { 9 } + \frac { 4 } { 5 } x ^ { 5 } + 2 x + C
Question
Find (6x2+52ex)dx\int \left( 6 x ^ { 2 } + 5 - 2 e ^ { x } \right) d x

A) 2x3+52ex+C2 x ^ { 3 } + 5 - 2 e ^ { x } + C
B) x3+5x2ex+Cx ^ { 3 } + 5 x - 2 e ^ { x } + C
C) 2x3+5x2ex+C2 x ^ { 3 } + 5 x - 2 e ^ { x } + C
D) 2x3+5x+2ex+C2 x ^ { 3 } + 5 x + 2 e ^ { x } + C
Question
Find (x3+2x)2x3dx\int \frac { \left( x ^ { 3 } + 2 x \right) ^ { 2 } } { x ^ { 3 } } d x

A) 14x4+x2+4x+C\frac { 1 } { 4 } x ^ { 4 } + x ^ { 2 } + 4 x + C
B) 14x4+x2+4lnx+C\frac { 1 } { 4 } x ^ { 4 } + x ^ { 2 } + 4 \ln | x | + C
C) 14x4+2x2+4x2+C\frac { 1 } { 4 } x ^ { 4 } + 2 x ^ { 2 } + \frac { 4 } { x ^ { 2 } } + C
D) 14x4+2x2+4lnx+C\frac { 1 } { 4 } x ^ { 4 } + 2 x ^ { 2 } + 4 \ln | x | + C
Question
Find (x2+2)2x5dx\int \frac { \left( x ^ { 2 } + 2 \right) ^ { 2 } } { x ^ { 5 } } d x

A) lnx2x1x4+C\ln | x | - \frac { 2 } { x } - \frac { 1 } { x ^ { 4 } } + C
B) 2x21x420x6+C- \frac { 2 } { x ^ { 2 } } - \frac { 1 } { x ^ { 4 } } - \frac { 20 } { x ^ { 6 } } + C
C) lnx2x21x4+C\ln | x | - \frac { 2 } { x ^ { 2 } } - \frac { 1 } { x ^ { 4 } } + C
D) lnx+2x2+1x4+C\ln | x | + \frac { 2 } { x ^ { 2 } } + \frac { 1 } { x ^ { 4 } } + C
Question
Evaluate 2(4x3+2x+1)dx\int _ { - 2 } \left( 4 x ^ { 3 } + 2 x + 1 \right) d x

A) 15
B) -12
C) -15
D) 12
Question
Evaluate 15(3x)dx\int _ { 1 } 5 \left( 3 ^ { x } \right) d x

A) 100ln3\frac { 100 } { \ln 3 }
B) 120ln3120 \ln 3
C) 100ln3100 \ln 3
D) 120ln3\frac { 120 } { \ln 3 }
Question
Evaluate 02(x22)2dx\int _ { 0 } ^ { 2 } \left( x ^ { 2 } - 2 \right) ^ { 2 } d x

A) 56/13
B) 53/15
C) 56/15
D) 55/16
Question
Evaluate 01/211x2dx\int _ { 0 } ^ { 1 / 2 } \frac { 1 } { \sqrt { 1 - x ^ { 2 } } } d x

A) π\pi /3
B) π\pi /4
C) π\pi
D) π\pi /6
Question
Evaluate 0π/2(2sinx3cosx)dx\int _ { 0 } ^ { \pi / 2 } ( 2 \sin x - 3 \cos x ) d x

A) 1
B) 0
C) -1
D) 1/21 / 2
Question
Evaluate 01e3xxe2xe2xdx\int _ { 0 } ^ { 1 } \frac { e ^ { 3 x } - x e ^ { 2 x } } { e ^ { 2 x } } d x

A) e12e - \frac { 1 } { 2 }
B) e32e - \frac { 3 } { 2 }
C) e+12e + \frac { 1 } { 2 }
D) e+32e + \frac { 3 } { 2 }
Question
Evaluate 132xdx\int _ { 1 } ^ { 3 } \frac { 2 } { x } d x

A) ln6
B) ln3
C) ln9
D) 1
Question
Evaluate 12ex+3dx\int _ { 1 } 2 e ^ { x + 3 } d x

A) 2e4(e2+1)2 e ^ { 4 } \left( e ^ { 2 } + 1 \right)
B) 2e3(e2+1)2 e ^ { 3 } \left( e ^ { 2 } + 1 \right)
C) 2e3(e21)2 e ^ { 3 } \left( e ^ { 2 } - 1 \right)
D) 2e4(e21)2 e ^ { 4 } \left( e ^ { 2 } - 1 \right)
Question
Evaluate 143x2xdx\int _ { 1 } ^ { 4 } \frac { 3 \sqrt { x } - 2 } { \sqrt { x } } d x

A) 4
B) 5
C) 3
D) -3
Question
Evaluate 12(x2+2)2x3dx\int _ { 1 } ^ { 2 } \frac { \left( x ^ { 2 } + 2 \right) ^ { 2 } } { x ^ { 3 } } d x
Question
Evaluate 14x3dx\int _ { - 1 } ^ { 4 } | x - 3 | d x

A) 15/2
B) 9/2
C) 17/2
D) 19/2
Question
Evaluate 149x2dx\int _ { - 1 } ^ { 4 } \left| 9 - x ^ { 2 } \right| d x

A) 20
B) 15
C) 12
D) 30
Question
Evaluate π/33π/2sinxdx\int _ { \pi / 3 } ^ { 3 \pi / 2 } | \sin x | d x

A) 2
B) 5/2
C) 3/2
D) 1
Question
Evaluate 1e3x1dx\int _ { - 1 } \left| e ^ { 3 x } - 1 \right| d x
Question
Given f(x)=3x2f ( x ) = 3 x ^ { 2 } over the interval [-1, 2], find: (a) the signed area, (b) the absolute area, between the graph of f and the x-axis from x = -1 to x = 2.
Question
Given f(x)=4xf ( x ) = 4 - x over the interval [1, 6], find: (a) the signed area, (b) the absolute area, between the graph of f and the x-axis from x = 1 to x = 6.
Question
Given f(x)=4x2f ( x ) = 4 - x ^ { 2 } over the interval [0, 4], find: (a) the signed area, (b) the absolute area, between the graph of f and the x-axis from x = 0 to x = 4.
Question
Given f(x)=x2+x6f ( x ) = x ^ { 2 } + x - 6 over the interval [-3, 4], find: (a) the signed area, (b) the absolute area, between the graph of f and the x-axis from x = -3 to x = 4.
Question
Given f(x)=sinxf ( x ) = \sin x over the interval [0, 2 π\pi ], find:
(a) the signed area,
(b) the absolute area, between the graph of f and the x-axis from x = 0 to x = 2 π\pi
Question
Given f(x)=1exf ( x ) = 1 - e ^ { x } over the interval [-1, 2], find: (a) the signed area, (b) the absolute area, between the graph of f and the x-axis from x = -1 to x = 2.
Question
Use definite integrals and Fundamental Theorem of Calculus to find the exact area of the region between the graphs of f(x)=x2f ( x ) = x ^ { 2 } and g(x)=x+6g ( x ) = x + 6 from x = -3 to x = 0.

A) 10
B) 62/6
C) 10.5
D) 61/6
Question
Use definite integrals and Fundamental Theorem of Calculus to find the exact area of the region between the graphs of f(x)=x2f ( x ) = x ^ { 2 } and g(x)=x+6g ( x ) = x + 6

A) 21
B) 123/6
C) 125/6
D) 124/6
Question
Use definite integrals and Fundamental Theorem of Calculus to find the exact area of the region between the graphs of f(x)=x2f ( x ) = x - 2 and g(x)=x23x2g ( x ) = x ^ { 2 } - 3 x - 2 from x = -1 to x = 4.

A) 9
B) 13
C) 10
D) 11
Question
Use definite integrals and Fundamental Theorem of Calculus to find the exact area of the region between the graphs of f(x)=x+2f ( x ) = x + 2 , g(x)=5xg ( x ) = 5 - x , and the x-axis from x = 0 to x = 6.

A) 45/4
B) 11
C) 43/4
D) 45/2
Question
Use definite integrals and Fundamental Theorem of Calculus to find the exact area of the region between the graphs of f(x)=sinxf ( x ) = \sin x and g(x)=cosxg ( x ) = \cos x from x = 0 to x = π\pi /2.

A) 22\sqrt { 2 } - 2
B) 2222 \sqrt { 2 } - 2
C) 2+2\sqrt { 2 } + 2
D) 22+22 \sqrt { 2 } + 2
Question
Find the exact average value of f(x)=x2f ( x ) = x - 2 from x = -1 to x = 3.

A) -4
B) -2
C) -1
D) 2
Question
Find the exact average value of f(x)=9x2f ( x ) = 9 - x ^ { 2 } from x = -3 to x = 3.

A) 0
B) 36
C) 18
D) 6
Question
Find the exact average value of f(x)=sinx+cosxf ( x ) = \sin x + \cos x from x = - π\pi to x = π\pi

A) 1/21 / 2
B) 0
C) 3/2
D) 1
Question
Find the exact average value of f(x)=(x+1)22f ( x ) = ( x + 1 ) ^ { 2 } - 2 from x = -3 to x = 0.

A) 3
B) 0
C) 1
D) 2
Question
Find the exact average value of f(x)=3+xf ( x ) = 3 + \sqrt { x } from x = 1 to x = 4.
Question
Find the exact average value of f(x)=2exf ( x ) = 2 e ^ { x } from x = -1 to x = 3.
Question
Given f(x)=2x+1f ( x ) = 2 x + 1 , find a number c on the interval (1, 3) such that f(c) is the average value of f on [1, 3].
Question
Given f(x)=16x2f ( x ) = 16 - x ^ { 2 } , find a number c on the interval (0, 4) such that f(c) is the average value of f on [0, 4].
Question
Given f(x)=(x+1)22f ( x ) = ( x + 1 ) ^ { 2 } - 2 , find a number c on the interval (-3, 0) such that f(c) is the average value of f on [-3, 0].
Question
Given f(x)=3+xf ( x ) = 3 + \sqrt { x } , find a number c on the interval (1, 4) such that f(c) is the average value of f on [1, 4].
Question
Find ddx1xcos2ttdt\frac { d } { d x } \int _ { 1 } ^ { x } \frac { \cos ^ { 2 } t } { t } d t
Question
Find ddxx32et2+3dt\frac { d } { d x } \int _ { x } ^ { 3 } 2 e ^ { - t ^ { 2 } + 3 } d t
Question
Find ddx1x2lntdt\frac { d } { d x } \int _ { 1 } ^ { x ^ { 2 } } \ln t d t
Question
Find ddx2tanx3t3dt\frac { d } { d x } \int _ { 2 } ^ { \tan x } 3 t ^ { 3 } d t
Unlock Deck
Sign up to unlock the cards in this deck!
Unlock Deck
Unlock Deck
1/83
auto play flashcards
Play
simple tutorial
Full screen (f)
exit full mode
Deck 4: Definite Integrals
1
Write the following sum in sigma notation.2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2

A) k=162\sum _ { k = 1 } ^ { 6 } 2
B) k=182\sum _ { k = 1 } ^ { 8 } 2
C) k=192\sum _ { k = 1 } ^ { 9 } 2
D) k=172\sum _ { k = 1 } ^ { 7 } 2
C
2
Write the following sum in sigma notation. 18+127+164+1125+1216\frac { 1 } { 8 } + \frac { 1 } { 27 } + \frac { 1 } { 64 } + \frac { 1 } { 125 } + \frac { 1 } { 216 }

A) k=261k2\sum _ { k = 2 } ^ { 6 } \frac { 1 } { k ^ { 2 } }
B) k=271k3\sum _ { k = 2 } ^ { 7 } \frac { 1 } { k ^ { 3 } }
C) k=2612k2\sum _ { k = 2 } ^ { 6 } \frac { 1 } { 2 k ^ { 2 } }
D) k=261k3\sum _ { k = 2 } ^ { 6 } \frac { 1 } { k ^ { 3 } }
D
3
Write the following sum in sigma notation.11 + 18 + 27 + 38 + 51 + 66

A) k=27k2+2\sum _ { k = 2 } ^ { 7 } k ^ { 2 } + 2
B) k=38k2+2\sum _ { k = 3 } ^ { 8 } k ^ { 2 } + 2
C) k=28k2+2\sum _ { k = 2 } ^ { 8 } k ^ { 2 } + 2
D) k=38k2+3\sum _ { k = 3 } ^ { 8 } k ^ { 2 } + 3
B
4
Write the following sum in sigma notation. 2+34+49+516+625+736+8492 + \frac { 3 } { 4 } + \frac { 4 } { 9 } + \frac { 5 } { 16 } + \frac { 6 } { 25 } + \frac { 7 } { 36 } + \frac { 8 } { 49 }

A) k=39k+1k\sum _ { k = 3 } ^ { 9 } \frac { k + 1 } { k }
B) k=17k+1k\sum _ { k = 1 } ^ { 7 } \frac { k + 1 } { k }
C) k=17k+1k2\sum _ { k = 1 } ^ { 7 } \frac { k + 1 } { k ^ { 2 } }
D) k=310k+1k2\sum _ { k = 3 } ^ { 10 } \frac { k + 1 } { k ^ { 2 } }
Unlock Deck
Unlock for access to all 83 flashcards in this deck.
Unlock Deck
k this deck
5
Write the following sum in sigma notation. 2+53+64+75+86+97+108+1192 + \frac { 5 } { 3 } + \frac { 6 } { 4 } + \frac { 7 } { 5 } + \frac { 8 } { 6 } + \frac { 9 } { 7 } + \frac { 10 } { 8 } + \frac { 11 } { 9 }

A) k=29k+1k\sum _ { k = 2 } ^ { 9 } \frac { k + 1 } { k }
B) k=28k+2k\sum _ { k = 2 } ^ { 8 } \frac { k + 2 } { k }
C) k=29k+3k\sum _ { k = 2 } ^ { 9 } \frac { k + 3 } { k }
D) k=29k+2k\sum _ { k = 2 } ^ { 9 } \frac { k + 2 } { k }
Unlock Deck
Unlock for access to all 83 flashcards in this deck.
Unlock Deck
k this deck
6
Write out each sum in expanded form, and then calculate the value of the sum. k=27k2\sum _ { k = 2 } ^ { 7 } k ^ { 2 }
Unlock Deck
Unlock for access to all 83 flashcards in this deck.
Unlock Deck
k this deck
7
Write out each sum in expanded form, and then calculate the value of the sum. k=15(3+k)2+1\sum _ { k = 1 } ^ { 5 } ( 3 + k ) ^ { 2 } + 1
Unlock Deck
Unlock for access to all 83 flashcards in this deck.
Unlock Deck
k this deck
8
Write out each sum in expanded form, and then calculate the value of the sum. k=16lnk\sum _ { k = 1 } ^ { 6 } \ln k
Unlock Deck
Unlock for access to all 83 flashcards in this deck.
Unlock Deck
k this deck
9
Find a formula for the sum and then use it to calculate the sum for n = 100, n = 500, and n = 1000. k=1n(2k)\sum _ { k = 1 } ^ { n } ( 2 - k )

A) 3n+n22\frac { 3 n + n ^ { 2 } } { 2 }
B) 4nn22\frac { 4 n - n ^ { 2 } } { 2 }
C) 3nn22\frac { 3 n - n ^ { 2 } } { 2 }
D) 2nn22\frac { 2 n - n ^ { 2 } } { 2 }
Unlock Deck
Unlock for access to all 83 flashcards in this deck.
Unlock Deck
k this deck
10
Find a formula for the sum k=1n(k22k+3)\sum _ { k = 1 } ^ { n } \left( k ^ { 2 } - 2 k + 3 \right) and then use it to calculate the sum for n = 100, n = 500, and n = 1000.
Unlock Deck
Unlock for access to all 83 flashcards in this deck.
Unlock Deck
k this deck
11
Find a formula for the sum k=2n(2+k)2\sum _ { k = 2 } ^ { n } ( 2 + k ) ^ { 2 } and then use it to calculate the sum for n = 100, n = 500, and n = 1000.
Unlock Deck
Unlock for access to all 83 flashcards in this deck.
Unlock Deck
k this deck
12
Find a formula for the sum k=1n(k2+2k+2)n3\sum _ { k = 1 } ^ { n } \frac { \left( k ^ { 2 } + 2 k + 2 \right) } { n ^ { 3 } } and then use it to calculate the sum for n = 100, n = 500, and n = 1000.
Unlock Deck
Unlock for access to all 83 flashcards in this deck.
Unlock Deck
k this deck
13
Find a formula for the sum k=1nk3+12\sum _ { k = 1 } ^ { n } \frac { k ^ { 3 } + 1 } { 2 } and then use it to calculate the sum for n = 100, n = 500, and n = 1000.
Unlock Deck
Unlock for access to all 83 flashcards in this deck.
Unlock Deck
k this deck
14
Write the given expression in one sigma notation (with some extra terms added or subtracted from the sum, as necessary). 2k=320k2+3k=221k+k=12412 \sum _ { k = 3 } ^ { 20 } k ^ { 2 } + 3 \sum _ { k = 2 } ^ { 21 } k + \sum _ { k = 1 } ^ { 24 } 1
Unlock Deck
Unlock for access to all 83 flashcards in this deck.
Unlock Deck
k this deck
15
Find k=1nk22k+3n3\sum _ { k = 1 } ^ { n } \frac { k ^ { 2 } - 2 k + 3 } { n ^ { 3 } }

A) 15\frac { 1 } { 5 }
B) 23\frac { 2 } { 3 }
C) 25\frac { 2 } { 5 }
D) 13\frac { 1 } { 3 }
Unlock Deck
Unlock for access to all 83 flashcards in this deck.
Unlock Deck
k this deck
16
Find limnk=1nk2+2k+32n4\lim _ { n \rightarrow \infty } \sum _ { k = 1 } ^ { n } \frac { k ^ { 2 } + 2 k + 3 } { 2 n ^ { 4 } }

A) 13\frac { 1 } { 3 }
B) 12\frac { 1 } { 2 }
C) 16\frac { 1 } { 6 }
D) 14\frac { 1 } { 4 }
Unlock Deck
Unlock for access to all 83 flashcards in this deck.
Unlock Deck
k this deck
17
Approximate the area between the graph of f(x)=x2+4xf ( x ) = x ^ { 2 } + 4 x and the x-axis on the interval [2, 4], using a right sum with (a) n = 4, (b) n = 6.
Unlock Deck
Unlock for access to all 83 flashcards in this deck.
Unlock Deck
k this deck
18
Approximate the area between the graph of f(x)=x2+4xf ( x ) = x ^ { 2 } + 4 x and the x-axis on the interval [2, 4], using a left sum with (a) n = 4, (b) n = 6.
Unlock Deck
Unlock for access to all 83 flashcards in this deck.
Unlock Deck
k this deck
19
Approximate the area between the graph of f(x)=(x2)2+1f ( x ) = ( x - 2 ) ^ { 2 } + 1 and the x-axis on the interval [1, 5], using a right sum with (a) n = 2, (b) n = 4.
Unlock Deck
Unlock for access to all 83 flashcards in this deck.
Unlock Deck
k this deck
20
Approximate the area between the graph of f(x)=(x2)2+1f ( x ) = ( x - 2 ) ^ { 2 } + 1 and the x-axis on the interval [1, 5], using a left sum with (a) n = 2, (b) n = 4.
Unlock Deck
Unlock for access to all 83 flashcards in this deck.
Unlock Deck
k this deck
21
Approximate the area between the graph of f(x)=9x2f ( x ) = 9 - x ^ { 2 } and the x-axis on the interval [0, 3], for n = 6, using (a) left sums (b) right sums.
Unlock Deck
Unlock for access to all 83 flashcards in this deck.
Unlock Deck
k this deck
22
Approximate the area between the graph of f(x)=x+1f ( x ) = \sqrt { x + 1 } and the x-axis on the interval [1, 3], for n = 4, using (a) left sums (b) right sums.
Unlock Deck
Unlock for access to all 83 flashcards in this deck.
Unlock Deck
k this deck
23
Use geometry to find the exact value of 0(3x)dx\int _ { 0 } ( 3 - x ) d x

A) 5
B) 3
C) 6
D) 4
Unlock Deck
Unlock for access to all 83 flashcards in this deck.
Unlock Deck
k this deck
24
Use geometry to find the exact value of 12x+1dx\int _ { - 1 } | 2 x + 1 | d x

A) 20.25
B) 20
C) 20.5
D) 19.75
Unlock Deck
Unlock for access to all 83 flashcards in this deck.
Unlock Deck
k this deck
25
Use geometry to find the exact value of 2610dx\int _ { - 2 } ^ { 6 } 10 d x

A) 60
B) 80
C) 100
D) 70
Unlock Deck
Unlock for access to all 83 flashcards in this deck.
Unlock Deck
k this deck
26
Use geometry to find the exact value of 224x2dx\int _ { - 2 } ^ { 2 } \sqrt { 4 - x ^ { 2 } } d x

A) π\pi
B) π\pi /2
C) 4 π\pi
D) 2 π\pi
Unlock Deck
Unlock for access to all 83 flashcards in this deck.
Unlock Deck
k this deck
27
Use geometry to find the exact value of 14(2x2)dx\int _ { - 1 } ^ { 4 } ( 2 - | x - 2 | ) d x

A) 9/2
B) 5/2
C) 7/2
D) 11/2
Unlock Deck
Unlock for access to all 83 flashcards in this deck.
Unlock Deck
k this deck
28
Use geometry to find the exact value of 02+9x2dx\int _ { 0 } 2 + \sqrt { 9 - x ^ { 2 } } d x

A) 6+81π2\frac { 6 + 81 \pi } { 2 }
B) 6+9π4\frac { 6 + 9 \pi } { 4 }
C) 6+81π4\frac { 6 + 81 \pi } { 4 }
D) 24+9π4\frac { 24 + 9 \pi } { 4 }
Unlock Deck
Unlock for access to all 83 flashcards in this deck.
Unlock Deck
k this deck
29
If 14f(x)dx=3\int _ { - 1 } ^ { 4 } f ( x ) d x = 3 , 34f(x)dx=6\int _ { - 3 } ^ { 4 } f ( x ) d x = 6 , 14g(x)dx=2\int _ { - 1 }^4 g ( x ) d x = - 2 and 46g(x)dx=5\int _ { 4 } ^ { 6 } g ( x ) d x = 5 , find the following, if possible.
(a) 31f(x)dx\int _ { - 3 } ^ { - 1 } f ( x ) d x
(b) 16(g(x)+3)dx\int _ { - 1 }^6 ( g ( x ) + 3 ) d x
(c) 14(2f(x)+x)dx\int _ { - 1 } ^ { 4 } ( 2 f ( x ) + x ) d x
Unlock Deck
Unlock for access to all 83 flashcards in this deck.
Unlock Deck
k this deck
30
If 14f(x)dx=3\int _ { - 1 } ^ { 4 } f ( x ) d x = 3 , 34f(x)dx=6\int _ { - 3 } ^ { 4 } f ( x ) d x = 6 , 14g(x)dx=2\int _ { - 1 }^4 g ( x ) d x = - 2 and 46g(x)dx=5\int _ { 4 } ^ { 6 } g ( x ) d x = 5 , find the following, if possible.
(a) 413f(x)dx\int _ { 4 } ^ { - 1 } 3 f ( x ) d x (b) 34(f(x))2dx\int _ { - 3 } ^ { 4 } ( f ( x ) ) ^ { 2 } d x (c) 46(3g(x)x)dx\int _ { 4 } ^ { 6 } ( 3 g ( x ) - x ) d x
Unlock Deck
Unlock for access to all 83 flashcards in this deck.
Unlock Deck
k this deck
31
If 14f(x)dx=3\int _ { - 1 } ^ { 4 } f ( x ) d x = 3 , 34f(x)dx=6\int _ { - 3 } ^ { 4 } f ( x ) d x = 6 , 1g(x)dx=2\int _ { - 1 } g ( x ) d x = - 2 and 46g(x)dx=5\int _ { 4 } ^ { 6 } g ( x ) d x = 5 , find the following, if possible.
(a) 16g(x)dx\int _ { - 1 } ^6g ( x ) d x (b) 432f(x)dx\int _ { 4 } ^ { - 3 } - 2 f ( x ) d x (c) 142f(x)g(x)dx\int _ { - 1 } ^ { 4 } 2 f ( x ) g ( x ) d x
Unlock Deck
Unlock for access to all 83 flashcards in this deck.
Unlock Deck
k this deck
32
Find 14(4x)dx\int _ { 1 }^4 ( 4 - x ) d x using Riemann sums (a) using the right sum, (b) using the left sum.
Unlock Deck
Unlock for access to all 83 flashcards in this deck.
Unlock Deck
k this deck
33
Find 02x2dx\int _ { 0 }^2 x ^ { 2 } d x using Riemann sums (a) using the right sum, (b) using the left sum.
Unlock Deck
Unlock for access to all 83 flashcards in this deck.
Unlock Deck
k this deck
34
Find 11(2x+3)dx\int _ { - 1 } ^1( 2 x + 3 ) d x using Riemann sums (a) using the right sum, (b) using the left sum.
Unlock Deck
Unlock for access to all 83 flashcards in this deck.
Unlock Deck
k this deck
35
Find 2x+1xdx\int \frac { 2 x + 1 } { \sqrt { x } } d x

A) 43x2/3+2x1/2+C\frac { 4 } { 3 } x ^ { 2 / 3 } + 2 x ^ { 1 / 2 } + C
B) 43x2/3+2x+C\frac { 4 } { 3 } x ^ { 2 / 3 } + 2 x + C
C) 23x3/2+2x1/2+C\frac { 2 } { 3 } x ^ { 3 / 2 } + 2 x ^ { 1 / 2 } + C
D) 43x3/2+2x1/2+C\frac { 4 } { 3 } x ^ { 3 / 2 } + 2 x ^ { 1 / 2 } + C
Unlock Deck
Unlock for access to all 83 flashcards in this deck.
Unlock Deck
k this deck
36
Find (32x2)dx\int \left( 3 - \frac { 2 } { x ^ { 2 } } \right) d x

A) 3x+2x3+C3 x + \frac { 2 } { x ^ { 3 } } + C
B) 3x2x3+C3 x - \frac { 2 } { x ^ { 3 } } + C
C) 3x+2x+C3 x + \frac { 2 } { x } + C
D) 3x2x+C3 x - \frac { 2 } { x } + C
Unlock Deck
Unlock for access to all 83 flashcards in this deck.
Unlock Deck
k this deck
37
Find 2tan2xdx\int 2 \tan ^ { 2 } x d x

A) 2secx2x+C2 \sec x - 2 x + C
B) 23tan3x+C\frac { 2 } { 3 } \tan ^ { 3 } x + C
C) 2tanx+2x+C2 \tan x + 2 x + C
D) 2tanx2x+C2 \tan x - 2 x + C
Unlock Deck
Unlock for access to all 83 flashcards in this deck.
Unlock Deck
k this deck
38
Find (x4+2)2dx\int \left( x ^ { 4 } + 2 \right) ^ { 2 } d x

A) 19x9+25x5+4x+C\frac { 1 } { 9 } x ^ { 9 } + \frac { 2 } { 5 } x ^ { 5 } + 4 x + C
B) 19x9+45x5+4x+C\frac { 1 } { 9 } x ^ { 9 } + \frac { 4 } { 5 } x ^ { 5 } + 4 x + C
C) 16x6+25x5+4x+C\frac { 1 } { 6 } x ^ { 6 } + \frac { 2 } { 5 } x ^ { 5 } + 4 x + C
D) 19x9+45x5+2x+C\frac { 1 } { 9 } x ^ { 9 } + \frac { 4 } { 5 } x ^ { 5 } + 2 x + C
Unlock Deck
Unlock for access to all 83 flashcards in this deck.
Unlock Deck
k this deck
39
Find (6x2+52ex)dx\int \left( 6 x ^ { 2 } + 5 - 2 e ^ { x } \right) d x

A) 2x3+52ex+C2 x ^ { 3 } + 5 - 2 e ^ { x } + C
B) x3+5x2ex+Cx ^ { 3 } + 5 x - 2 e ^ { x } + C
C) 2x3+5x2ex+C2 x ^ { 3 } + 5 x - 2 e ^ { x } + C
D) 2x3+5x+2ex+C2 x ^ { 3 } + 5 x + 2 e ^ { x } + C
Unlock Deck
Unlock for access to all 83 flashcards in this deck.
Unlock Deck
k this deck
40
Find (x3+2x)2x3dx\int \frac { \left( x ^ { 3 } + 2 x \right) ^ { 2 } } { x ^ { 3 } } d x

A) 14x4+x2+4x+C\frac { 1 } { 4 } x ^ { 4 } + x ^ { 2 } + 4 x + C
B) 14x4+x2+4lnx+C\frac { 1 } { 4 } x ^ { 4 } + x ^ { 2 } + 4 \ln | x | + C
C) 14x4+2x2+4x2+C\frac { 1 } { 4 } x ^ { 4 } + 2 x ^ { 2 } + \frac { 4 } { x ^ { 2 } } + C
D) 14x4+2x2+4lnx+C\frac { 1 } { 4 } x ^ { 4 } + 2 x ^ { 2 } + 4 \ln | x | + C
Unlock Deck
Unlock for access to all 83 flashcards in this deck.
Unlock Deck
k this deck
41
Find (x2+2)2x5dx\int \frac { \left( x ^ { 2 } + 2 \right) ^ { 2 } } { x ^ { 5 } } d x

A) lnx2x1x4+C\ln | x | - \frac { 2 } { x } - \frac { 1 } { x ^ { 4 } } + C
B) 2x21x420x6+C- \frac { 2 } { x ^ { 2 } } - \frac { 1 } { x ^ { 4 } } - \frac { 20 } { x ^ { 6 } } + C
C) lnx2x21x4+C\ln | x | - \frac { 2 } { x ^ { 2 } } - \frac { 1 } { x ^ { 4 } } + C
D) lnx+2x2+1x4+C\ln | x | + \frac { 2 } { x ^ { 2 } } + \frac { 1 } { x ^ { 4 } } + C
Unlock Deck
Unlock for access to all 83 flashcards in this deck.
Unlock Deck
k this deck
42
Evaluate 2(4x3+2x+1)dx\int _ { - 2 } \left( 4 x ^ { 3 } + 2 x + 1 \right) d x

A) 15
B) -12
C) -15
D) 12
Unlock Deck
Unlock for access to all 83 flashcards in this deck.
Unlock Deck
k this deck
43
Evaluate 15(3x)dx\int _ { 1 } 5 \left( 3 ^ { x } \right) d x

A) 100ln3\frac { 100 } { \ln 3 }
B) 120ln3120 \ln 3
C) 100ln3100 \ln 3
D) 120ln3\frac { 120 } { \ln 3 }
Unlock Deck
Unlock for access to all 83 flashcards in this deck.
Unlock Deck
k this deck
44
Evaluate 02(x22)2dx\int _ { 0 } ^ { 2 } \left( x ^ { 2 } - 2 \right) ^ { 2 } d x

A) 56/13
B) 53/15
C) 56/15
D) 55/16
Unlock Deck
Unlock for access to all 83 flashcards in this deck.
Unlock Deck
k this deck
45
Evaluate 01/211x2dx\int _ { 0 } ^ { 1 / 2 } \frac { 1 } { \sqrt { 1 - x ^ { 2 } } } d x

A) π\pi /3
B) π\pi /4
C) π\pi
D) π\pi /6
Unlock Deck
Unlock for access to all 83 flashcards in this deck.
Unlock Deck
k this deck
46
Evaluate 0π/2(2sinx3cosx)dx\int _ { 0 } ^ { \pi / 2 } ( 2 \sin x - 3 \cos x ) d x

A) 1
B) 0
C) -1
D) 1/21 / 2
Unlock Deck
Unlock for access to all 83 flashcards in this deck.
Unlock Deck
k this deck
47
Evaluate 01e3xxe2xe2xdx\int _ { 0 } ^ { 1 } \frac { e ^ { 3 x } - x e ^ { 2 x } } { e ^ { 2 x } } d x

A) e12e - \frac { 1 } { 2 }
B) e32e - \frac { 3 } { 2 }
C) e+12e + \frac { 1 } { 2 }
D) e+32e + \frac { 3 } { 2 }
Unlock Deck
Unlock for access to all 83 flashcards in this deck.
Unlock Deck
k this deck
48
Evaluate 132xdx\int _ { 1 } ^ { 3 } \frac { 2 } { x } d x

A) ln6
B) ln3
C) ln9
D) 1
Unlock Deck
Unlock for access to all 83 flashcards in this deck.
Unlock Deck
k this deck
49
Evaluate 12ex+3dx\int _ { 1 } 2 e ^ { x + 3 } d x

A) 2e4(e2+1)2 e ^ { 4 } \left( e ^ { 2 } + 1 \right)
B) 2e3(e2+1)2 e ^ { 3 } \left( e ^ { 2 } + 1 \right)
C) 2e3(e21)2 e ^ { 3 } \left( e ^ { 2 } - 1 \right)
D) 2e4(e21)2 e ^ { 4 } \left( e ^ { 2 } - 1 \right)
Unlock Deck
Unlock for access to all 83 flashcards in this deck.
Unlock Deck
k this deck
50
Evaluate 143x2xdx\int _ { 1 } ^ { 4 } \frac { 3 \sqrt { x } - 2 } { \sqrt { x } } d x

A) 4
B) 5
C) 3
D) -3
Unlock Deck
Unlock for access to all 83 flashcards in this deck.
Unlock Deck
k this deck
51
Evaluate 12(x2+2)2x3dx\int _ { 1 } ^ { 2 } \frac { \left( x ^ { 2 } + 2 \right) ^ { 2 } } { x ^ { 3 } } d x
Unlock Deck
Unlock for access to all 83 flashcards in this deck.
Unlock Deck
k this deck
52
Evaluate 14x3dx\int _ { - 1 } ^ { 4 } | x - 3 | d x

A) 15/2
B) 9/2
C) 17/2
D) 19/2
Unlock Deck
Unlock for access to all 83 flashcards in this deck.
Unlock Deck
k this deck
53
Evaluate 149x2dx\int _ { - 1 } ^ { 4 } \left| 9 - x ^ { 2 } \right| d x

A) 20
B) 15
C) 12
D) 30
Unlock Deck
Unlock for access to all 83 flashcards in this deck.
Unlock Deck
k this deck
54
Evaluate π/33π/2sinxdx\int _ { \pi / 3 } ^ { 3 \pi / 2 } | \sin x | d x

A) 2
B) 5/2
C) 3/2
D) 1
Unlock Deck
Unlock for access to all 83 flashcards in this deck.
Unlock Deck
k this deck
55
Evaluate 1e3x1dx\int _ { - 1 } \left| e ^ { 3 x } - 1 \right| d x
Unlock Deck
Unlock for access to all 83 flashcards in this deck.
Unlock Deck
k this deck
56
Given f(x)=3x2f ( x ) = 3 x ^ { 2 } over the interval [-1, 2], find: (a) the signed area, (b) the absolute area, between the graph of f and the x-axis from x = -1 to x = 2.
Unlock Deck
Unlock for access to all 83 flashcards in this deck.
Unlock Deck
k this deck
57
Given f(x)=4xf ( x ) = 4 - x over the interval [1, 6], find: (a) the signed area, (b) the absolute area, between the graph of f and the x-axis from x = 1 to x = 6.
Unlock Deck
Unlock for access to all 83 flashcards in this deck.
Unlock Deck
k this deck
58
Given f(x)=4x2f ( x ) = 4 - x ^ { 2 } over the interval [0, 4], find: (a) the signed area, (b) the absolute area, between the graph of f and the x-axis from x = 0 to x = 4.
Unlock Deck
Unlock for access to all 83 flashcards in this deck.
Unlock Deck
k this deck
59
Given f(x)=x2+x6f ( x ) = x ^ { 2 } + x - 6 over the interval [-3, 4], find: (a) the signed area, (b) the absolute area, between the graph of f and the x-axis from x = -3 to x = 4.
Unlock Deck
Unlock for access to all 83 flashcards in this deck.
Unlock Deck
k this deck
60
Given f(x)=sinxf ( x ) = \sin x over the interval [0, 2 π\pi ], find:
(a) the signed area,
(b) the absolute area, between the graph of f and the x-axis from x = 0 to x = 2 π\pi
Unlock Deck
Unlock for access to all 83 flashcards in this deck.
Unlock Deck
k this deck
61
Given f(x)=1exf ( x ) = 1 - e ^ { x } over the interval [-1, 2], find: (a) the signed area, (b) the absolute area, between the graph of f and the x-axis from x = -1 to x = 2.
Unlock Deck
Unlock for access to all 83 flashcards in this deck.
Unlock Deck
k this deck
62
Use definite integrals and Fundamental Theorem of Calculus to find the exact area of the region between the graphs of f(x)=x2f ( x ) = x ^ { 2 } and g(x)=x+6g ( x ) = x + 6 from x = -3 to x = 0.

A) 10
B) 62/6
C) 10.5
D) 61/6
Unlock Deck
Unlock for access to all 83 flashcards in this deck.
Unlock Deck
k this deck
63
Use definite integrals and Fundamental Theorem of Calculus to find the exact area of the region between the graphs of f(x)=x2f ( x ) = x ^ { 2 } and g(x)=x+6g ( x ) = x + 6

A) 21
B) 123/6
C) 125/6
D) 124/6
Unlock Deck
Unlock for access to all 83 flashcards in this deck.
Unlock Deck
k this deck
64
Use definite integrals and Fundamental Theorem of Calculus to find the exact area of the region between the graphs of f(x)=x2f ( x ) = x - 2 and g(x)=x23x2g ( x ) = x ^ { 2 } - 3 x - 2 from x = -1 to x = 4.

A) 9
B) 13
C) 10
D) 11
Unlock Deck
Unlock for access to all 83 flashcards in this deck.
Unlock Deck
k this deck
65
Use definite integrals and Fundamental Theorem of Calculus to find the exact area of the region between the graphs of f(x)=x+2f ( x ) = x + 2 , g(x)=5xg ( x ) = 5 - x , and the x-axis from x = 0 to x = 6.

A) 45/4
B) 11
C) 43/4
D) 45/2
Unlock Deck
Unlock for access to all 83 flashcards in this deck.
Unlock Deck
k this deck
66
Use definite integrals and Fundamental Theorem of Calculus to find the exact area of the region between the graphs of f(x)=sinxf ( x ) = \sin x and g(x)=cosxg ( x ) = \cos x from x = 0 to x = π\pi /2.

A) 22\sqrt { 2 } - 2
B) 2222 \sqrt { 2 } - 2
C) 2+2\sqrt { 2 } + 2
D) 22+22 \sqrt { 2 } + 2
Unlock Deck
Unlock for access to all 83 flashcards in this deck.
Unlock Deck
k this deck
67
Find the exact average value of f(x)=x2f ( x ) = x - 2 from x = -1 to x = 3.

A) -4
B) -2
C) -1
D) 2
Unlock Deck
Unlock for access to all 83 flashcards in this deck.
Unlock Deck
k this deck
68
Find the exact average value of f(x)=9x2f ( x ) = 9 - x ^ { 2 } from x = -3 to x = 3.

A) 0
B) 36
C) 18
D) 6
Unlock Deck
Unlock for access to all 83 flashcards in this deck.
Unlock Deck
k this deck
69
Find the exact average value of f(x)=sinx+cosxf ( x ) = \sin x + \cos x from x = - π\pi to x = π\pi

A) 1/21 / 2
B) 0
C) 3/2
D) 1
Unlock Deck
Unlock for access to all 83 flashcards in this deck.
Unlock Deck
k this deck
70
Find the exact average value of f(x)=(x+1)22f ( x ) = ( x + 1 ) ^ { 2 } - 2 from x = -3 to x = 0.

A) 3
B) 0
C) 1
D) 2
Unlock Deck
Unlock for access to all 83 flashcards in this deck.
Unlock Deck
k this deck
71
Find the exact average value of f(x)=3+xf ( x ) = 3 + \sqrt { x } from x = 1 to x = 4.
Unlock Deck
Unlock for access to all 83 flashcards in this deck.
Unlock Deck
k this deck
72
Find the exact average value of f(x)=2exf ( x ) = 2 e ^ { x } from x = -1 to x = 3.
Unlock Deck
Unlock for access to all 83 flashcards in this deck.
Unlock Deck
k this deck
73
Given f(x)=2x+1f ( x ) = 2 x + 1 , find a number c on the interval (1, 3) such that f(c) is the average value of f on [1, 3].
Unlock Deck
Unlock for access to all 83 flashcards in this deck.
Unlock Deck
k this deck
74
Given f(x)=16x2f ( x ) = 16 - x ^ { 2 } , find a number c on the interval (0, 4) such that f(c) is the average value of f on [0, 4].
Unlock Deck
Unlock for access to all 83 flashcards in this deck.
Unlock Deck
k this deck
75
Given f(x)=(x+1)22f ( x ) = ( x + 1 ) ^ { 2 } - 2 , find a number c on the interval (-3, 0) such that f(c) is the average value of f on [-3, 0].
Unlock Deck
Unlock for access to all 83 flashcards in this deck.
Unlock Deck
k this deck
76
Given f(x)=3+xf ( x ) = 3 + \sqrt { x } , find a number c on the interval (1, 4) such that f(c) is the average value of f on [1, 4].
Unlock Deck
Unlock for access to all 83 flashcards in this deck.
Unlock Deck
k this deck
77
Find ddx1xcos2ttdt\frac { d } { d x } \int _ { 1 } ^ { x } \frac { \cos ^ { 2 } t } { t } d t
Unlock Deck
Unlock for access to all 83 flashcards in this deck.
Unlock Deck
k this deck
78
Find ddxx32et2+3dt\frac { d } { d x } \int _ { x } ^ { 3 } 2 e ^ { - t ^ { 2 } + 3 } d t
Unlock Deck
Unlock for access to all 83 flashcards in this deck.
Unlock Deck
k this deck
79
Find ddx1x2lntdt\frac { d } { d x } \int _ { 1 } ^ { x ^ { 2 } } \ln t d t
Unlock Deck
Unlock for access to all 83 flashcards in this deck.
Unlock Deck
k this deck
80
Find ddx2tanx3t3dt\frac { d } { d x } \int _ { 2 } ^ { \tan x } 3 t ^ { 3 } d t
Unlock Deck
Unlock for access to all 83 flashcards in this deck.
Unlock Deck
k this deck
locked card icon
Unlock Deck
Unlock for access to all 83 flashcards in this deck.