Deck 15: Multiple Integration

Full screen (f)
exit full mode
Question
Use the Riemann sum corresponding to a subdivision of the rectangular region R defined by 0 \le x \le 6, 0 \le y \le 4, into six squares of edge length 2 and sample points at the upper-right corner of each square to estimate  <strong>Use the Riemann sum corresponding to a subdivision of the rectangular region R defined by 0  \le  x  \le  6, 0  \le  y  \le  4, into six squares of edge length 2 and sample points at the upper-right corner of each square to estimate   .</strong> A) 72 B) 288 C) 144 D) 36 E) 168 <div style=padding-top: 35px>  .

A) 72
B) 288
C) 144
D) 36
E) 168
Use Space or
up arrow
down arrow
to flip the card.
Question
Use the Riemann sum corresponding to a subdivision of the rectangular region R defined by 0 \le x \le 6, 0 \le y \le 4, into six squares of edge length 2 and sample points at the centre of each square to estimate  <strong>Use the Riemann sum corresponding to a subdivision of the rectangular region R defined by 0  \le  x  \le  6, 0 \le  y  \le  4, into six squares of edge length 2 and sample points at the centre of each square to estimate   .</strong> A) 72 B) 288 C) 144 D) 36 E) 120 <div style=padding-top: 35px>  .

A) 72
B) 288
C) 144
D) 36
E) 120
Question
Evaluate  <strong>Evaluate     dA, where R is the rectangle 6  \le x  \le  9, -3  \le  y  \le  2, by interpreting it as a known volume.</strong> A) 4 B) 15 C) 72 D) 60 E) 12 <div style=padding-top: 35px>   <strong>Evaluate     dA, where R is the rectangle 6  \le x  \le  9, -3  \le  y  \le  2, by interpreting it as a known volume.</strong> A) 4 B) 15 C) 72 D) 60 E) 12 <div style=padding-top: 35px>  dA, where R is the rectangle 6 \le x \le 9, -3 \le y \le 2, by interpreting it as a known volume.

A) 4
B) 15
C) 72
D) 60
E) 12
Question
Evaluate  <strong>Evaluate     dA, where R is the square -2  \le  x  \le  2, -2  \le  y  \le  2.</strong> A) 0 B) 2 C)   \pi  D) 17.68 E) 2  \pi  <div style=padding-top: 35px>   <strong>Evaluate     dA, where R is the square -2  \le  x  \le  2, -2  \le  y  \le  2.</strong> A) 0 B) 2 C)   \pi  D) 17.68 E) 2  \pi  <div style=padding-top: 35px>  dA, where R is the square -2 \le x \le 2, -2 \le y \le 2.

A) 0
B) 2
C) π\pi
D) 17.68
E) 2 π\pi
Question
Evaluate  <strong>Evaluate     dA, where R is the rectangle -2 \le  x  \le  2, -3  \le y  \le  3, by interpreting it as a known volume.</strong> A) 144 B) 48 C) 96 D) 24 E) 0 <div style=padding-top: 35px>   <strong>Evaluate     dA, where R is the rectangle -2 \le  x  \le  2, -3  \le y  \le  3, by interpreting it as a known volume.</strong> A) 144 B) 48 C) 96 D) 24 E) 0 <div style=padding-top: 35px>  dA, where R is the rectangle -2 \le x \le 2, -3 \le y \le 3, by interpreting it as a known volume.

A) 144
B) 48
C) 96
D) 24
E) 0
Question
Evaluate  <strong>Evaluate     dA, where D is the disk   +    \le  9, by interpreting it as a known volume.X</strong> A) 12 \pi  B) 18 \pi  C) 24 \pi  D) 36 \pi  E) 9 \pi  <div style=padding-top: 35px>   <strong>Evaluate     dA, where D is the disk   +    \le  9, by interpreting it as a known volume.X</strong> A) 12 \pi  B) 18 \pi  C) 24 \pi  D) 36 \pi  E) 9 \pi  <div style=padding-top: 35px>  dA, where D is the disk  <strong>Evaluate     dA, where D is the disk   +    \le  9, by interpreting it as a known volume.X</strong> A) 12 \pi  B) 18 \pi  C) 24 \pi  D) 36 \pi  E) 9 \pi  <div style=padding-top: 35px>  +  <strong>Evaluate     dA, where D is the disk   +    \le  9, by interpreting it as a known volume.X</strong> A) 12 \pi  B) 18 \pi  C) 24 \pi  D) 36 \pi  E) 9 \pi  <div style=padding-top: 35px>  \le 9, by interpreting it as a known volume.X

A) 12 π\pi
B) 18 π\pi
C) 24 π\pi
D) 36 π\pi
E) 9 π\pi
Question
Evaluate <strong>Evaluate   , where T is the triangle in the xy-plane bounded by the coordinate axes and the line x + y = 1, by interpreting the double integral as a known volume.</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px> , where T is the triangle in the xy-plane bounded by the coordinate axes and the line x + y = 1, by interpreting the double integral as a known volume.

A) <strong>Evaluate   , where T is the triangle in the xy-plane bounded by the coordinate axes and the line x + y = 1, by interpreting the double integral as a known volume.</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
B) <strong>Evaluate   , where T is the triangle in the xy-plane bounded by the coordinate axes and the line x + y = 1, by interpreting the double integral as a known volume.</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
C) <strong>Evaluate   , where T is the triangle in the xy-plane bounded by the coordinate axes and the line x + y = 1, by interpreting the double integral as a known volume.</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
D) <strong>Evaluate   , where T is the triangle in the xy-plane bounded by the coordinate axes and the line x + y = 1, by interpreting the double integral as a known volume.</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
E) <strong>Evaluate   , where T is the triangle in the xy-plane bounded by the coordinate axes and the line x + y = 1, by interpreting the double integral as a known volume.</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
Question
Evaluate  <strong>Evaluate   , where R is the rectangle 0  \le  x  \le  5, 2  \le  y  \le  10, by interpreting the double integral as a known volume.</strong> A) 25 B) 50 C) 75 D) 100 E) 20 <div style=padding-top: 35px>  , where R is the rectangle 0 \le x \le 5, 2 \le y \le 10, by interpreting the double integral as a known volume.

A) 25
B) 50
C) 75
D) 100
E) 20
Question
Evaluate <strong>Evaluate   dA over the triangle T with vertices (0, 0), (0, 1), and (1,1).</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px> dA over the triangle T with vertices (0, 0), (0, 1), and (1,1).

A) <strong>Evaluate   dA over the triangle T with vertices (0, 0), (0, 1), and (1,1).</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
B) <strong>Evaluate   dA over the triangle T with vertices (0, 0), (0, 1), and (1,1).</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
C) <strong>Evaluate   dA over the triangle T with vertices (0, 0), (0, 1), and (1,1).</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
D) <strong>Evaluate   dA over the triangle T with vertices (0, 0), (0, 1), and (1,1).</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
E) <strong>Evaluate   dA over the triangle T with vertices (0, 0), (0, 1), and (1,1).</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
Question
Evaluate  <strong>Evaluate   over the rectangle -1  \le   x  \le  2, 0  \le y  \le  3.</strong> A)   B)   C)   D)   E) 59 <div style=padding-top: 35px>  over the rectangle -1 \le x \le 2, 0 \le y \le 3.

A)  <strong>Evaluate   over the rectangle -1  \le   x  \le  2, 0  \le y  \le  3.</strong> A)   B)   C)   D)   E) 59 <div style=padding-top: 35px>
B)  <strong>Evaluate   over the rectangle -1  \le   x  \le  2, 0  \le y  \le  3.</strong> A)   B)   C)   D)   E) 59 <div style=padding-top: 35px>
C)  <strong>Evaluate   over the rectangle -1  \le   x  \le  2, 0  \le y  \le  3.</strong> A)   B)   C)   D)   E) 59 <div style=padding-top: 35px>
D)  <strong>Evaluate   over the rectangle -1  \le   x  \le  2, 0  \le y  \le  3.</strong> A)   B)   C)   D)   E) 59 <div style=padding-top: 35px>
E) 59
Question
Evaluate the double integral <strong>Evaluate the double integral   over the rectangle R bounded by the lines x = 0, x = 2, y = 1, and y = 2.</strong> A)   B)   ln 2 C)   ln 2 D)   E) 2 <div style=padding-top: 35px> over the rectangle R bounded by the lines x = 0, x = 2, y = 1, and y = 2.

A) <strong>Evaluate the double integral   over the rectangle R bounded by the lines x = 0, x = 2, y = 1, and y = 2.</strong> A)   B)   ln 2 C)   ln 2 D)   E) 2 <div style=padding-top: 35px>
B) <strong>Evaluate the double integral   over the rectangle R bounded by the lines x = 0, x = 2, y = 1, and y = 2.</strong> A)   B)   ln 2 C)   ln 2 D)   E) 2 <div style=padding-top: 35px> ln 2
C) <strong>Evaluate the double integral   over the rectangle R bounded by the lines x = 0, x = 2, y = 1, and y = 2.</strong> A)   B)   ln 2 C)   ln 2 D)   E) 2 <div style=padding-top: 35px> ln 2
D) <strong>Evaluate the double integral   over the rectangle R bounded by the lines x = 0, x = 2, y = 1, and y = 2.</strong> A)   B)   ln 2 C)   ln 2 D)   E) 2 <div style=padding-top: 35px>
E) 2
Question
Evaluate <strong>Evaluate   , where R is the region bounded by y = 2x, y = 5x, and x = 2.</strong> A) 144 B) 156 C) 160 D) 172 E) 184 <div style=padding-top: 35px> , where R is the region bounded by y = 2x, y = 5x, and x = 2.

A) 144
B) 156
C) 160
D) 172
E) 184
Question
Evaluate <strong>Evaluate   , where R is the bounded region bounded by y = x and y = x<sup>2</sup>.</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px> , where R is the bounded region bounded by y = x and y = x2.

A) <strong>Evaluate   , where R is the bounded region bounded by y = x and y = x<sup>2</sup>.</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
B) <strong>Evaluate   , where R is the bounded region bounded by y = x and y = x<sup>2</sup>.</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
C) <strong>Evaluate   , where R is the bounded region bounded by y = x and y = x<sup>2</sup>.</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
D) <strong>Evaluate   , where R is the bounded region bounded by y = x and y = x<sup>2</sup>.</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
E) <strong>Evaluate   , where R is the bounded region bounded by y = x and y = x<sup>2</sup>.</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
Question
Evaluate <strong> Evaluate     where R is the planar region described by 0 ≤ x ≤   0 ≤ y ≤ cos(x). </strong> A) 4 B) 12 C) 0 D) - 3 E) 8 <div style=padding-top: 35px> where R is the planar region described by 0 ≤ x ≤ <strong> Evaluate     where R is the planar region described by 0 ≤ x ≤   0 ≤ y ≤ cos(x). </strong> A) 4 B) 12 C) 0 D) - 3 E) 8 <div style=padding-top: 35px> 0 ≤ y ≤ cos(x).

A) 4
B) 12
C) 0
D) - 3
E) 8
Question
Evaluate the double integral <strong>Evaluate the double integral    where  T  is the quadrilateral bounded by the lines  x = 1,  x = 2,  y = x,  and  y =   </strong> A)   ln 2 B)   ln 2 C)   ln 2 D)   ln 2 E)   ln 2 <div style=padding-top: 35px> where T is the quadrilateral bounded by the lines x = 1, x = 2, y = x, and y = <strong>Evaluate the double integral    where  T  is the quadrilateral bounded by the lines  x = 1,  x = 2,  y = x,  and  y =   </strong> A)   ln 2 B)   ln 2 C)   ln 2 D)   ln 2 E)   ln 2 <div style=padding-top: 35px>

A) <strong>Evaluate the double integral    where  T  is the quadrilateral bounded by the lines  x = 1,  x = 2,  y = x,  and  y =   </strong> A)   ln 2 B)   ln 2 C)   ln 2 D)   ln 2 E)   ln 2 <div style=padding-top: 35px> ln 2
B) <strong>Evaluate the double integral    where  T  is the quadrilateral bounded by the lines  x = 1,  x = 2,  y = x,  and  y =   </strong> A)   ln 2 B)   ln 2 C)   ln 2 D)   ln 2 E)   ln 2 <div style=padding-top: 35px> ln 2
C) <strong>Evaluate the double integral    where  T  is the quadrilateral bounded by the lines  x = 1,  x = 2,  y = x,  and  y =   </strong> A)   ln 2 B)   ln 2 C)   ln 2 D)   ln 2 E)   ln 2 <div style=padding-top: 35px> ln 2
D) <strong>Evaluate the double integral    where  T  is the quadrilateral bounded by the lines  x = 1,  x = 2,  y = x,  and  y =   </strong> A)   ln 2 B)   ln 2 C)   ln 2 D)   ln 2 E)   ln 2 <div style=padding-top: 35px> ln 2
E) <strong>Evaluate the double integral    where  T  is the quadrilateral bounded by the lines  x = 1,  x = 2,  y = x,  and  y =   </strong> A)   ln 2 B)   ln 2 C)   ln 2 D)   ln 2 E)   ln 2 <div style=padding-top: 35px> ln 2
Question
Evaluate the iterated integral  <strong>Evaluate the iterated integral   dx dy by first reiterating it in the opposite direction.</strong> A)   B)   C)   \pi  D)   E)   <div style=padding-top: 35px>  dx dy by first reiterating it in the opposite direction.

A)  <strong>Evaluate the iterated integral   dx dy by first reiterating it in the opposite direction.</strong> A)   B)   C)   \pi  D)   E)   <div style=padding-top: 35px>
B)  <strong>Evaluate the iterated integral   dx dy by first reiterating it in the opposite direction.</strong> A)   B)   C)   \pi  D)   E)   <div style=padding-top: 35px>
C) π\pi
D)  <strong>Evaluate the iterated integral   dx dy by first reiterating it in the opposite direction.</strong> A)   B)   C)   \pi  D)   E)   <div style=padding-top: 35px>
E)  <strong>Evaluate the iterated integral   dx dy by first reiterating it in the opposite direction.</strong> A)   B)   C)   \pi  D)   E)   <div style=padding-top: 35px>
Question
Evaluate <strong>Evaluate   dA, where T is the triangle with vertices (0, 0), (0, 2), and (2, 2).</strong> A)   -   B)   -   C)   -   D)   -   E)   +   <div style=padding-top: 35px> dA, where T is the triangle with vertices (0, 0), (0, 2), and (2, 2).

A) <strong>Evaluate   dA, where T is the triangle with vertices (0, 0), (0, 2), and (2, 2).</strong> A)   -   B)   -   C)   -   D)   -   E)   +   <div style=padding-top: 35px> - <strong>Evaluate   dA, where T is the triangle with vertices (0, 0), (0, 2), and (2, 2).</strong> A)   -   B)   -   C)   -   D)   -   E)   +   <div style=padding-top: 35px>
B) <strong>Evaluate   dA, where T is the triangle with vertices (0, 0), (0, 2), and (2, 2).</strong> A)   -   B)   -   C)   -   D)   -   E)   +   <div style=padding-top: 35px> - <strong>Evaluate   dA, where T is the triangle with vertices (0, 0), (0, 2), and (2, 2).</strong> A)   -   B)   -   C)   -   D)   -   E)   +   <div style=padding-top: 35px>
C) <strong>Evaluate   dA, where T is the triangle with vertices (0, 0), (0, 2), and (2, 2).</strong> A)   -   B)   -   C)   -   D)   -   E)   +   <div style=padding-top: 35px> - <strong>Evaluate   dA, where T is the triangle with vertices (0, 0), (0, 2), and (2, 2).</strong> A)   -   B)   -   C)   -   D)   -   E)   +   <div style=padding-top: 35px>
D) <strong>Evaluate   dA, where T is the triangle with vertices (0, 0), (0, 2), and (2, 2).</strong> A)   -   B)   -   C)   -   D)   -   E)   +   <div style=padding-top: 35px> - <strong>Evaluate   dA, where T is the triangle with vertices (0, 0), (0, 2), and (2, 2).</strong> A)   -   B)   -   C)   -   D)   -   E)   +   <div style=padding-top: 35px>
E) <strong>Evaluate   dA, where T is the triangle with vertices (0, 0), (0, 2), and (2, 2).</strong> A)   -   B)   -   C)   -   D)   -   E)   +   <div style=padding-top: 35px> + <strong>Evaluate   dA, where T is the triangle with vertices (0, 0), (0, 2), and (2, 2).</strong> A)   -   B)   -   C)   -   D)   -   E)   +   <div style=padding-top: 35px>
Question
Evaluate  <strong>Evaluate   dA, where R is the region defined by the inequalities x<sup>2</sup>  \le  y  \le  x.</strong> A)   - 1 B) 1 -   C)   D)   E) e -   <div style=padding-top: 35px>  dA, where R is the region defined by the inequalities x2 \le y \le x.

A)  <strong>Evaluate   dA, where R is the region defined by the inequalities x<sup>2</sup>  \le  y  \le  x.</strong> A)   - 1 B) 1 -   C)   D)   E) e -   <div style=padding-top: 35px>  - 1
B) 1 -  <strong>Evaluate   dA, where R is the region defined by the inequalities x<sup>2</sup>  \le  y  \le  x.</strong> A)   - 1 B) 1 -   C)   D)   E) e -   <div style=padding-top: 35px>
C)  <strong>Evaluate   dA, where R is the region defined by the inequalities x<sup>2</sup>  \le  y  \le  x.</strong> A)   - 1 B) 1 -   C)   D)   E) e -   <div style=padding-top: 35px>
D)  <strong>Evaluate   dA, where R is the region defined by the inequalities x<sup>2</sup>  \le  y  \le  x.</strong> A)   - 1 B) 1 -   C)   D)   E) e -   <div style=padding-top: 35px>
E) e -  <strong>Evaluate   dA, where R is the region defined by the inequalities x<sup>2</sup>  \le  y  \le  x.</strong> A)   - 1 B) 1 -   C)   D)   E) e -   <div style=padding-top: 35px>
Question
Find the volume of the solid bounded above by the paraboloid z = 9x2 + y2, below by the plane <strong>Find the volume of the solid bounded above by the paraboloid z = 9x<sup>2</sup> + y<sup>2</sup>, below by the plane   , and laterally by the planes x = 0, y = 0, x = 3, and y = 2.</strong> A) 170 cubic units B) 180 cubic units C) 190 cubic units D) 200 cubic units E) 90 cubic units <div style=padding-top: 35px> , and laterally by the planes x = 0, y = 0, x = 3, and y = 2.

A) 170 cubic units
B) 180 cubic units
C) 190 cubic units
D) 200 cubic units
E) 90 cubic units
Question
Evaluate  <strong>Evaluate   dA, where D is the rectangular region described by the inequalities 0  \le  x  \le  10 ln(13), 25  \le  y  \le  50.</strong> A) 144 B) 1 C)   D) 143 E)   <div style=padding-top: 35px>  dA, where D is the rectangular region described by the inequalities 0 \le x \le 10 ln(13), 25 \le y \le 50.

A) 144
B) 1
C)  <strong>Evaluate   dA, where D is the rectangular region described by the inequalities 0  \le  x  \le  10 ln(13), 25  \le  y  \le  50.</strong> A) 144 B) 1 C)   D) 143 E)   <div style=padding-top: 35px>
D) 143
E)  <strong>Evaluate   dA, where D is the rectangular region described by the inequalities 0  \le  x  \le  10 ln(13), 25  \le  y  \le  50.</strong> A) 144 B) 1 C)   D) 143 E)   <div style=padding-top: 35px>
Question
Find the volume of the solid in the first octant inside the cylinder x2 + y2 = 2y and under the plane z = 2 - x.

A) <strong>Find the volume of the solid in the first octant inside the cylinder x<sup>2</sup> + y<sup>2</sup> = 2y and under the plane z = 2 - x.</strong> A)   cubic units B)   cubic units C)   cubic units D)   cubic units E)   cubic units <div style=padding-top: 35px> cubic units
B) <strong>Find the volume of the solid in the first octant inside the cylinder x<sup>2</sup> + y<sup>2</sup> = 2y and under the plane z = 2 - x.</strong> A)   cubic units B)   cubic units C)   cubic units D)   cubic units E)   cubic units <div style=padding-top: 35px> cubic units
C) <strong>Find the volume of the solid in the first octant inside the cylinder x<sup>2</sup> + y<sup>2</sup> = 2y and under the plane z = 2 - x.</strong> A)   cubic units B)   cubic units C)   cubic units D)   cubic units E)   cubic units <div style=padding-top: 35px> cubic units
D) <strong>Find the volume of the solid in the first octant inside the cylinder x<sup>2</sup> + y<sup>2</sup> = 2y and under the plane z = 2 - x.</strong> A)   cubic units B)   cubic units C)   cubic units D)   cubic units E)   cubic units <div style=padding-top: 35px> cubic units
E) <strong>Find the volume of the solid in the first octant inside the cylinder x<sup>2</sup> + y<sup>2</sup> = 2y and under the plane z = 2 - x.</strong> A)   cubic units B)   cubic units C)   cubic units D)   cubic units E)   cubic units <div style=padding-top: 35px> cubic units
Question
Evaluate the iterated integral <strong>Evaluate the iterated integral   dy by first reversing the order of the integration.</strong> A)   B) 4 C)   D) 2 E)     <div style=padding-top: 35px> dy by first reversing the order of the integration.

A) <strong>Evaluate the iterated integral   dy by first reversing the order of the integration.</strong> A)   B) 4 C)   D) 2 E)     <div style=padding-top: 35px>
B) 4
C) <strong>Evaluate the iterated integral   dy by first reversing the order of the integration.</strong> A)   B) 4 C)   D) 2 E)     <div style=padding-top: 35px>
D) 2
E) <strong>Evaluate the iterated integral   dy by first reversing the order of the integration.</strong> A)   B) 4 C)   D) 2 E)     <div style=padding-top: 35px>
Question
Find the volume of the solid lying inside the cylinder x2 + y2 = 4, above the plane z = x - y - 8, and below the surface z = 8 - x3.

A) 72 π\pi cubic units
B) 64 π\pi cubic units
C) 48 π\pi cubic units
D) 32 π\pi cubic units
E) 56 π\pi cubic units
Question
Evaluate <strong>Evaluate   where D is the region in the xy-plane enclosed by the parallelogram with vertices at the points (2, 4), (4, 9), (10, 9), and (8, 4).</strong> A) 12 B) 15 C) 0 D) 6 E) 30 <div style=padding-top: 35px> where D is the region in the xy-plane enclosed by the parallelogram with vertices at the points (2, 4), (4, 9), (10, 9), and (8, 4).

A) 12
B) 15
C) 0
D) 6
E) 30
Question
Find the volume of the solid below the surface z = 3y2 and above the triangular region in the xy-plane bounded by the straight lines x = 0, y = 0, and x + 2y = 2.

A) 6
B) 2
C) <strong>Find the volume of the solid below the surface z = 3y<sup>2</sup> and above the triangular region in the xy-plane bounded by the straight lines x = 0, y = 0, and x + 2y = 2.</strong> A) 6 B) 2 C)   D) 12 E)   <div style=padding-top: 35px>
D) 12
E) <strong>Find the volume of the solid below the surface z = 3y<sup>2</sup> and above the triangular region in the xy-plane bounded by the straight lines x = 0, y = 0, and x + 2y = 2.</strong> A) 6 B) 2 C)   D) 12 E)   <div style=padding-top: 35px>
Question
The iterated integral The iterated integral    is the double integral of g(x,y) over a planar region R. (i)	Sketch the planar region R. (ii)	Express the double integral J as a sum of two iterated integrals with the order of the integrals reversed. <div style=padding-top: 35px> is the double integral of g(x,y) over a planar region R.
(i) Sketch the planar region R.
(ii) Express the double integral J as a sum of two iterated integrals with the order of the integrals reversed.
Question
Find the volume of the solid bounded by the paraboloid z = 16 - x2 - 4y2 and the planez = 0.

A) 48 π\pi cubic units
B) 64 π\pi cubic units
C) 96 π\pi cubic units
D) 128 π\pi cubic units
E) 81 π\pi cubic units
Question
The planar region enclosed by the straight lines y = x, y = 1 + x, y = -x, and y = 1 -x is both x-simple and y-simple.
Question
Evaluate the double integral  <strong>Evaluate the double integral   dx dy, where Q is the first quadrant of the xy-plane.</strong> A)   B) 15 C) 1 D)  \infty  (integral diverges) E) -   <div style=padding-top: 35px>  dx dy, where Q is the first quadrant of the xy-plane.

A)  <strong>Evaluate the double integral   dx dy, where Q is the first quadrant of the xy-plane.</strong> A)   B) 15 C) 1 D)  \infty  (integral diverges) E) -   <div style=padding-top: 35px>
B) 15
C) 1
D) \infty (integral diverges)
E) -  <strong>Evaluate the double integral   dx dy, where Q is the first quadrant of the xy-plane.</strong> A)   B) 15 C) 1 D)  \infty  (integral diverges) E) -   <div style=padding-top: 35px>
Question
Evaluate the double integral  <strong>Evaluate the double integral   dx dy, where R is the region under the curve xy = 1, above the x-axis, and to the right of the line x = 1.</strong> A)   B)   C)   D)  \infty  (integral diverges) E)   <div style=padding-top: 35px>  dx dy, where R is the region under the curve xy = 1, above the x-axis, and to the right of the line x = 1.

A)  <strong>Evaluate the double integral   dx dy, where R is the region under the curve xy = 1, above the x-axis, and to the right of the line x = 1.</strong> A)   B)   C)   D)  \infty  (integral diverges) E)   <div style=padding-top: 35px>
B)  <strong>Evaluate the double integral   dx dy, where R is the region under the curve xy = 1, above the x-axis, and to the right of the line x = 1.</strong> A)   B)   C)   D)  \infty  (integral diverges) E)   <div style=padding-top: 35px>
C)  <strong>Evaluate the double integral   dx dy, where R is the region under the curve xy = 1, above the x-axis, and to the right of the line x = 1.</strong> A)   B)   C)   D)  \infty  (integral diverges) E)   <div style=padding-top: 35px>
D) \infty (integral diverges)
E)  <strong>Evaluate the double integral   dx dy, where R is the region under the curve xy = 1, above the x-axis, and to the right of the line x = 1.</strong> A)   B)   C)   D)  \infty  (integral diverges) E)   <div style=padding-top: 35px>
Question
Evaluate the double integral  <strong>Evaluate the double integral   dx dy, where S is the part of the first quadrant of the xy-plane lying above the line x = 2y.</strong> A)   B)   C)   D)  \infty  (integral diverges) E) 1 <div style=padding-top: 35px>  dx dy, where S is the part of the first quadrant of the xy-plane lying above the line x = 2y.

A)  <strong>Evaluate the double integral   dx dy, where S is the part of the first quadrant of the xy-plane lying above the line x = 2y.</strong> A)   B)   C)   D)  \infty  (integral diverges) E) 1 <div style=padding-top: 35px>
B)  <strong>Evaluate the double integral   dx dy, where S is the part of the first quadrant of the xy-plane lying above the line x = 2y.</strong> A)   B)   C)   D)  \infty  (integral diverges) E) 1 <div style=padding-top: 35px>
C)  <strong>Evaluate the double integral   dx dy, where S is the part of the first quadrant of the xy-plane lying above the line x = 2y.</strong> A)   B)   C)   D)  \infty  (integral diverges) E) 1 <div style=padding-top: 35px>
D) \infty (integral diverges)
E) 1
Question
Evaluate  <strong>Evaluate   dx dy, where S is the semi-infinite strip 0  \le  x  \le  1, 0  \le  y <  \infty .</strong> A) 1 B)   C)   D)  \infty  (integral diverges) E) 2 <div style=padding-top: 35px>  dx dy, where S is the semi-infinite strip 0 \le x \le 1, 0 \le y < \infty .

A) 1
B)  <strong>Evaluate   dx dy, where S is the semi-infinite strip 0  \le  x  \le  1, 0  \le  y <  \infty .</strong> A) 1 B)   C)   D)  \infty  (integral diverges) E) 2 <div style=padding-top: 35px>
C)  <strong>Evaluate   dx dy, where S is the semi-infinite strip 0  \le  x  \le  1, 0  \le  y <  \infty .</strong> A) 1 B)   C)   D)  \infty  (integral diverges) E) 2 <div style=padding-top: 35px>
D) \infty (integral diverges)
E) 2
Question
Evaluate  <strong>Evaluate   where T is the triangle with vertices (0, 0), (1, 1), and (1, 2).</strong> A) ln(2) B) 2 ln(2) C) 2 D)  \infty  (integral diverges) E)   <div style=padding-top: 35px>  where T is the triangle with vertices (0, 0), (1, 1), and (1, 2).

A) ln(2)
B) 2 ln(2)
C) 2
D) \infty (integral diverges)
E)  <strong>Evaluate   where T is the triangle with vertices (0, 0), (1, 1), and (1, 2).</strong> A) ln(2) B) 2 ln(2) C) 2 D)  \infty  (integral diverges) E)   <div style=padding-top: 35px>
Question
Evaluate  <strong>Evaluate   where T is the triangle with vertices (0, 0), (1, 1), and (1, 2).</strong> A) ln(2) B) 2 ln(2) C) 2 D)  \infty  (integral diverges) E)   <div style=padding-top: 35px>  where T is the triangle with vertices (0, 0), (1, 1), and (1, 2).

A) ln(2)
B) 2 ln(2)
C) 2
D) \infty (integral diverges)
E)  <strong>Evaluate   where T is the triangle with vertices (0, 0), (1, 1), and (1, 2).</strong> A) ln(2) B) 2 ln(2) C) 2 D)  \infty  (integral diverges) E)   <div style=padding-top: 35px>
Question
    dA, where T is the triangular region enclosed by the straight lines y = -x, y = 7x, and y = x + 6 is an improper integral.<div style=padding-top: 35px>     dA, where T is the triangular region enclosed by the straight lines y = -x, y = 7x, and y = x + 6 is an improper integral.<div style=padding-top: 35px> dA, where T is the triangular region enclosed by the straight lines y = -x, y = 7x, and y = x + 6 is an improper integral.
Question
The improper double integral  <strong>The improper double integral     dA, where D is the planar region described by1  \le  x <  \infty , 0  \le  y  \le  x<sup>8</sup>, converges for all real numbers k such that</strong> A) k  \ge - 7 B) k > 5 C) k < 9 D) k <- 7 E) k  \le  5 <div style=padding-top: 35px>   <strong>The improper double integral     dA, where D is the planar region described by1  \le  x <  \infty , 0  \le  y  \le  x<sup>8</sup>, converges for all real numbers k such that</strong> A) k  \ge - 7 B) k > 5 C) k < 9 D) k <- 7 E) k  \le  5 <div style=padding-top: 35px>  dA, where D is the planar region described by1 \le x < \infty , 0 \le y \le x8, converges for all real numbers k such that

A) k \ge - 7
B) k > 5
C) k < 9
D) k <- 7
E) k \le 5
Question
Find  <strong>Find   if R is the unit circular disk x<sup>2</sup> + y<sup>2</sup>  \le  9.</strong> A) 9 B) 18 C)   D) 18 \pi  E) 9 \pi  <div style=padding-top: 35px>  if R is the unit circular disk x2 + y2 \le 9.

A) 9
B) 18
C)  <strong>Find   if R is the unit circular disk x<sup>2</sup> + y<sup>2</sup>  \le  9.</strong> A) 9 B) 18 C)   D) 18 \pi  E) 9 \pi  <div style=padding-top: 35px>
D) 18 π\pi
E) 9 π\pi
Question
Find the average value of x2 + y2 over the disk x2 + y2 \le 4.

A) 2
B)  <strong>Find the average value of x<sup>2</sup> + y<sup>2</sup> over the disk x<sup>2</sup> + y<sup>2</sup>  \le  4.</strong> A) 2 B)   C)   D) 4 E)   <div style=padding-top: 35px>
C)  <strong>Find the average value of x<sup>2</sup> + y<sup>2</sup> over the disk x<sup>2</sup> + y<sup>2</sup>  \le  4.</strong> A) 2 B)   C)   D) 4 E)   <div style=padding-top: 35px>
D) 4
E)  <strong>Find the average value of x<sup>2</sup> + y<sup>2</sup> over the disk x<sup>2</sup> + y<sup>2</sup>  \le  4.</strong> A) 2 B)   C)   D) 4 E)   <div style=padding-top: 35px>
Question
Find <strong>Find   if R is the unit circular disk.</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px> if R is the unit circular disk.

A) <strong>Find   if R is the unit circular disk.</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
B) <strong>Find   if R is the unit circular disk.</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
C) <strong>Find   if R is the unit circular disk.</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
D) <strong>Find   if R is the unit circular disk.</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
E) <strong>Find   if R is the unit circular disk.</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
Question
Find <strong>Find   where R is the region in the first quadrant lying between the circles x<sup>2</sup> + y<sup>2</sup> = 1 and x<sup>2</sup> + y<sup>2</sup> = 4 and between the lines y = 0 and y = x.</strong> A)   ln 2 B)   ln 2 C)   ln 2 D)   ln 2 E)   ln 2 <div style=padding-top: 35px> where R is the region in the first quadrant lying between the circles x2 + y2 = 1 and x2 + y2 = 4 and between the lines y = 0 and y = x.

A) <strong>Find   where R is the region in the first quadrant lying between the circles x<sup>2</sup> + y<sup>2</sup> = 1 and x<sup>2</sup> + y<sup>2</sup> = 4 and between the lines y = 0 and y = x.</strong> A)   ln 2 B)   ln 2 C)   ln 2 D)   ln 2 E)   ln 2 <div style=padding-top: 35px> ln 2
B) <strong>Find   where R is the region in the first quadrant lying between the circles x<sup>2</sup> + y<sup>2</sup> = 1 and x<sup>2</sup> + y<sup>2</sup> = 4 and between the lines y = 0 and y = x.</strong> A)   ln 2 B)   ln 2 C)   ln 2 D)   ln 2 E)   ln 2 <div style=padding-top: 35px> ln 2
C) <strong>Find   where R is the region in the first quadrant lying between the circles x<sup>2</sup> + y<sup>2</sup> = 1 and x<sup>2</sup> + y<sup>2</sup> = 4 and between the lines y = 0 and y = x.</strong> A)   ln 2 B)   ln 2 C)   ln 2 D)   ln 2 E)   ln 2 <div style=padding-top: 35px> ln 2
D) <strong>Find   where R is the region in the first quadrant lying between the circles x<sup>2</sup> + y<sup>2</sup> = 1 and x<sup>2</sup> + y<sup>2</sup> = 4 and between the lines y = 0 and y = x.</strong> A)   ln 2 B)   ln 2 C)   ln 2 D)   ln 2 E)   ln 2 <div style=padding-top: 35px> ln 2
E) <strong>Find   where R is the region in the first quadrant lying between the circles x<sup>2</sup> + y<sup>2</sup> = 1 and x<sup>2</sup> + y<sup>2</sup> = 4 and between the lines y = 0 and y = x.</strong> A)   ln 2 B)   ln 2 C)   ln 2 D)   ln 2 E)   ln 2 <div style=padding-top: 35px> ln 2
Question
Find the volume of the given solid by transforming to a double integral in polar coordinates.The solid is bounded by x2 + y2 = 36, z = 0, and z = x2 + y2.

A) 618 π\pi cubic units
B) 628 π\pi cubic units
C) 638 π\pi cubic units
D) 648 π\pi cubic units
E) 658 π\pi cubic units
Question
Use polar coordinates to find the volume of the solid lying under the cone z = <strong>Use polar coordinates to find the volume of the solid lying under the cone z =   , above the plane z = 0, and inside the cylinder x<sup>2</sup> + y<sup>2</sup> = 2x.</strong> A)  cubic units B)  cubic units C)  cubic units D)  cubic units E)   cubic units <div style=padding-top: 35px> , above the plane z = 0, and inside the cylinder x2 + y2 = 2x.

A)<strong>Use polar coordinates to find the volume of the solid lying under the cone z =   , above the plane z = 0, and inside the cylinder x<sup>2</sup> + y<sup>2</sup> = 2x.</strong> A)  cubic units B)  cubic units C)  cubic units D)  cubic units E)   cubic units <div style=padding-top: 35px> cubic units
B) <strong>Use polar coordinates to find the volume of the solid lying under the cone z =   , above the plane z = 0, and inside the cylinder x<sup>2</sup> + y<sup>2</sup> = 2x.</strong> A)  cubic units B)  cubic units C)  cubic units D)  cubic units E)   cubic units <div style=padding-top: 35px> cubic units
C) <strong>Use polar coordinates to find the volume of the solid lying under the cone z =   , above the plane z = 0, and inside the cylinder x<sup>2</sup> + y<sup>2</sup> = 2x.</strong> A)  cubic units B)  cubic units C)  cubic units D)  cubic units E)   cubic units <div style=padding-top: 35px> cubic units
D) <strong>Use polar coordinates to find the volume of the solid lying under the cone z =   , above the plane z = 0, and inside the cylinder x<sup>2</sup> + y<sup>2</sup> = 2x.</strong> A)  cubic units B)  cubic units C)  cubic units D)  cubic units E)   cubic units <div style=padding-top: 35px> cubic units
E) <strong>Use polar coordinates to find the volume of the solid lying under the cone z =   , above the plane z = 0, and inside the cylinder x<sup>2</sup> + y<sup>2</sup> = 2x.</strong> A)  cubic units B)  cubic units C)  cubic units D)  cubic units E)   cubic units <div style=padding-top: 35px> cubic units
Question
Find the volume remaining after a cylindrical hole of radius b is drilled through the centre of a ball of radius a > b.

A)  <strong>Find the volume remaining after a cylindrical hole of radius b is drilled through the centre of a ball of radius a > b.</strong> A)    \pi a   cubic units B)    \pi    cubic units C)    \pi    cubic units D)    \pi    cubic units E)    \pi    cubic units <div style=padding-top: 35px>  π\pi a  <strong>Find the volume remaining after a cylindrical hole of radius b is drilled through the centre of a ball of radius a > b.</strong> A)    \pi a   cubic units B)    \pi    cubic units C)    \pi    cubic units D)    \pi    cubic units E)    \pi    cubic units <div style=padding-top: 35px>  cubic units
B)  <strong>Find the volume remaining after a cylindrical hole of radius b is drilled through the centre of a ball of radius a > b.</strong> A)    \pi a   cubic units B)    \pi    cubic units C)    \pi    cubic units D)    \pi    cubic units E)    \pi    cubic units <div style=padding-top: 35px>  π\pi  <strong>Find the volume remaining after a cylindrical hole of radius b is drilled through the centre of a ball of radius a > b.</strong> A)    \pi a   cubic units B)    \pi    cubic units C)    \pi    cubic units D)    \pi    cubic units E)    \pi    cubic units <div style=padding-top: 35px>  cubic units
C)  <strong>Find the volume remaining after a cylindrical hole of radius b is drilled through the centre of a ball of radius a > b.</strong> A)    \pi a   cubic units B)    \pi    cubic units C)    \pi    cubic units D)    \pi    cubic units E)    \pi    cubic units <div style=padding-top: 35px>  π\pi  <strong>Find the volume remaining after a cylindrical hole of radius b is drilled through the centre of a ball of radius a > b.</strong> A)    \pi a   cubic units B)    \pi    cubic units C)    \pi    cubic units D)    \pi    cubic units E)    \pi    cubic units <div style=padding-top: 35px>  cubic units
D)  <strong>Find the volume remaining after a cylindrical hole of radius b is drilled through the centre of a ball of radius a > b.</strong> A)    \pi a   cubic units B)    \pi    cubic units C)    \pi    cubic units D)    \pi    cubic units E)    \pi    cubic units <div style=padding-top: 35px>  π\pi  <strong>Find the volume remaining after a cylindrical hole of radius b is drilled through the centre of a ball of radius a > b.</strong> A)    \pi a   cubic units B)    \pi    cubic units C)    \pi    cubic units D)    \pi    cubic units E)    \pi    cubic units <div style=padding-top: 35px>  cubic units
E)  <strong>Find the volume remaining after a cylindrical hole of radius b is drilled through the centre of a ball of radius a > b.</strong> A)    \pi a   cubic units B)    \pi    cubic units C)    \pi    cubic units D)    \pi    cubic units E)    \pi    cubic units <div style=padding-top: 35px>  π\pi  <strong>Find the volume remaining after a cylindrical hole of radius b is drilled through the centre of a ball of radius a > b.</strong> A)    \pi a   cubic units B)    \pi    cubic units C)    \pi    cubic units D)    \pi    cubic units E)    \pi    cubic units <div style=padding-top: 35px>  cubic units
Question
Use polar coordinates to evaluate <strong>Use polar coordinates to evaluate   .</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px> .

A) <strong>Use polar coordinates to evaluate   .</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
B) <strong>Use polar coordinates to evaluate   .</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
C) <strong>Use polar coordinates to evaluate   .</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
D) <strong>Use polar coordinates to evaluate   .</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
E) <strong>Use polar coordinates to evaluate   .</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
Question
Expressed in polar coordinates, the area enclosed by a planar region D is equal to  Expressed in polar coordinates, the area enclosed by a planar region D is equal to   dr d \theta .<div style=padding-top: 35px>  dr d θ\theta .
Question
Find  <strong>Find   dA, where C is the cardioid disk 0  \le  r  \le  1 + cos  \theta .</strong> A)   B)   C)   D)  \pi  E)   <div style=padding-top: 35px>  dA, where C is the cardioid disk 0 \le r \le 1 + cos θ\theta .

A)  <strong>Find   dA, where C is the cardioid disk 0  \le  r  \le  1 + cos  \theta .</strong> A)   B)   C)   D)  \pi  E)   <div style=padding-top: 35px>
B)  <strong>Find   dA, where C is the cardioid disk 0  \le  r  \le  1 + cos  \theta .</strong> A)   B)   C)   D)  \pi  E)   <div style=padding-top: 35px>
C)  <strong>Find   dA, where C is the cardioid disk 0  \le  r  \le  1 + cos  \theta .</strong> A)   B)   C)   D)  \pi  E)   <div style=padding-top: 35px>
D) π\pi
E)  <strong>Find   dA, where C is the cardioid disk 0  \le  r  \le  1 + cos  \theta .</strong> A)   B)   C)   D)  \pi  E)   <div style=padding-top: 35px>
Question
Find the volume of the solid of revolution obtained by rotating the plane region bounded by the cardioid r = 1 + sin θ\theta about the y-axis.

A)  <strong>Find the volume of the solid of revolution obtained by rotating the plane region bounded by the cardioid r = 1 + sin  \theta  about the y-axis.</strong> A)   cubic units B)   cubic units C)   cubic units D)   cubic units E)   <div style=padding-top: 35px>  cubic units
B)  <strong>Find the volume of the solid of revolution obtained by rotating the plane region bounded by the cardioid r = 1 + sin  \theta  about the y-axis.</strong> A)   cubic units B)   cubic units C)   cubic units D)   cubic units E)   <div style=padding-top: 35px>  cubic units
C)  <strong>Find the volume of the solid of revolution obtained by rotating the plane region bounded by the cardioid r = 1 + sin  \theta  about the y-axis.</strong> A)   cubic units B)   cubic units C)   cubic units D)   cubic units E)   <div style=padding-top: 35px>  cubic units
D)  <strong>Find the volume of the solid of revolution obtained by rotating the plane region bounded by the cardioid r = 1 + sin  \theta  about the y-axis.</strong> A)   cubic units B)   cubic units C)   cubic units D)   cubic units E)   <div style=padding-top: 35px>  cubic units
E)  <strong>Find the volume of the solid of revolution obtained by rotating the plane region bounded by the cardioid r = 1 + sin  \theta  about the y-axis.</strong> A)   cubic units B)   cubic units C)   cubic units D)   cubic units E)   <div style=padding-top: 35px>
Question
Evaluate the iterated integral  <strong>Evaluate the iterated integral   by first transforming it to an iterated integral in polar coordinates.</strong> A)   B)   C)   D)   E) 243 \pi  <div style=padding-top: 35px>  by first transforming it to an iterated integral in polar coordinates.

A)  <strong>Evaluate the iterated integral   by first transforming it to an iterated integral in polar coordinates.</strong> A)   B)   C)   D)   E) 243 \pi  <div style=padding-top: 35px>
B)  <strong>Evaluate the iterated integral   by first transforming it to an iterated integral in polar coordinates.</strong> A)   B)   C)   D)   E) 243 \pi  <div style=padding-top: 35px>
C)  <strong>Evaluate the iterated integral   by first transforming it to an iterated integral in polar coordinates.</strong> A)   B)   C)   D)   E) 243 \pi  <div style=padding-top: 35px>
D)  <strong>Evaluate the iterated integral   by first transforming it to an iterated integral in polar coordinates.</strong> A)   B)   C)   D)   E) 243 \pi  <div style=padding-top: 35px>
E) 243 π\pi
Question
Evaluate the integral <strong>Evaluate the integral   using polar coordinates.</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px> using polar coordinates.

A) <strong>Evaluate the integral   using polar coordinates.</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
B) <strong>Evaluate the integral   using polar coordinates.</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
C) <strong>Evaluate the integral   using polar coordinates.</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
D) <strong>Evaluate the integral   using polar coordinates.</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
E) <strong>Evaluate the integral   using polar coordinates.</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
Question
Find  <strong>Find   dA, where R is the region outside the circle r = 1 and inside the cardioid r = 1 + cos  \theta .</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>  dA, where R is the region outside the circle r = 1 and inside the cardioid r = 1 + cos θ\theta .

A)  <strong>Find   dA, where R is the region outside the circle r = 1 and inside the cardioid r = 1 + cos  \theta .</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
B)  <strong>Find   dA, where R is the region outside the circle r = 1 and inside the cardioid r = 1 + cos  \theta .</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
C)  <strong>Find   dA, where R is the region outside the circle r = 1 and inside the cardioid r = 1 + cos  \theta .</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
D)  <strong>Find   dA, where R is the region outside the circle r = 1 and inside the cardioid r = 1 + cos  \theta .</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
E)  <strong>Find   dA, where R is the region outside the circle r = 1 and inside the cardioid r = 1 + cos  \theta .</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
Question
If I =  <strong>If I =   , then I =   , and so   =   , where R<sup>2</sup><sup> </sup> is the entire xy-plane. Evaluate this double integral by iterating it in polar coordinates and hence find the value of I.</strong> A) I =   B) I =  \pi  C) I =   D) I =   E) I = 2 \pi  <div style=padding-top: 35px>  , then I =  <strong>If I =   , then I =   , and so   =   , where R<sup>2</sup><sup> </sup> is the entire xy-plane. Evaluate this double integral by iterating it in polar coordinates and hence find the value of I.</strong> A) I =   B) I =  \pi  C) I =   D) I =   E) I = 2 \pi  <div style=padding-top: 35px>  , and so  <strong>If I =   , then I =   , and so   =   , where R<sup>2</sup><sup> </sup> is the entire xy-plane. Evaluate this double integral by iterating it in polar coordinates and hence find the value of I.</strong> A) I =   B) I =  \pi  C) I =   D) I =   E) I = 2 \pi  <div style=padding-top: 35px>  =  <strong>If I =   , then I =   , and so   =   , where R<sup>2</sup><sup> </sup> is the entire xy-plane. Evaluate this double integral by iterating it in polar coordinates and hence find the value of I.</strong> A) I =   B) I =  \pi  C) I =   D) I =   E) I = 2 \pi  <div style=padding-top: 35px>  , where R2 is the entire xy-plane. Evaluate this double integral by iterating it in polar coordinates and hence find the value of I.

A) I =  <strong>If I =   , then I =   , and so   =   , where R<sup>2</sup><sup> </sup> is the entire xy-plane. Evaluate this double integral by iterating it in polar coordinates and hence find the value of I.</strong> A) I =   B) I =  \pi  C) I =   D) I =   E) I = 2 \pi  <div style=padding-top: 35px>
B) I = π\pi
C) I =  <strong>If I =   , then I =   , and so   =   , where R<sup>2</sup><sup> </sup> is the entire xy-plane. Evaluate this double integral by iterating it in polar coordinates and hence find the value of I.</strong> A) I =   B) I =  \pi  C) I =   D) I =   E) I = 2 \pi  <div style=padding-top: 35px>
D) I =  <strong>If I =   , then I =   , and so   =   , where R<sup>2</sup><sup> </sup> is the entire xy-plane. Evaluate this double integral by iterating it in polar coordinates and hence find the value of I.</strong> A) I =   B) I =  \pi  C) I =   D) I =   E) I = 2 \pi  <div style=padding-top: 35px>
E) I = 2 π\pi
Question
Use polar coordinates to find the volume of the solid enclosed by the surfaces z = 3  <strong>Use polar coordinates to find the volume of the solid enclosed by the surfaces z = 3   and   .</strong> A) 16  \pi  B)  \pi    C) 4  \pi  D) 8 \pi  E) 7  \pi  <div style=padding-top: 35px>  and  <strong>Use polar coordinates to find the volume of the solid enclosed by the surfaces z = 3   and   .</strong> A) 16  \pi  B)  \pi    C) 4  \pi  D) 8 \pi  E) 7  \pi  <div style=padding-top: 35px>  .

A) 16 π\pi
B) π\pi  <strong>Use polar coordinates to find the volume of the solid enclosed by the surfaces z = 3   and   .</strong> A) 16  \pi  B)  \pi    C) 4  \pi  D) 8 \pi  E) 7  \pi  <div style=padding-top: 35px>
C) 4 π\pi
D) 8 π\pi
E) 7 π\pi
Question
Let R be the region in the first quadrant of the xy-plane bounded by the curves xy = 1 and xy = 4 and the lines y = x and y = 2x. Use a suitable coordinate transformation to evaluate <strong>Let R be the region in the first quadrant of the xy-plane bounded by the curves xy = 1 and xy = 4 and the lines y = x and y = 2x. Use a suitable coordinate transformation to evaluate   and hence find the area of R.</strong> A) 8 square units B) 4 ln(3) square units C) 5 ln(3) square units D) 3 ln(2) square units E) 16 square units <div style=padding-top: 35px> and hence find the area of R.

A) 8 square units
B) 4 ln(3) square units
C) 5 ln(3) square units
D) 3 ln(2) square units
E) 16 square units
Question
Use a suitable change of variables to evaluate <strong>Use a suitable change of variables to evaluate  </strong> A)   (1 + ln(2)) B)   (1 - ln(2)) C)   (1 + ln(2)) D)   (1 - ln(2)) E)   ln(2) <div style=padding-top: 35px>

A) <strong>Use a suitable change of variables to evaluate  </strong> A)   (1 + ln(2)) B)   (1 - ln(2)) C)   (1 + ln(2)) D)   (1 - ln(2)) E)   ln(2) <div style=padding-top: 35px> (1 + ln(2))
B) <strong>Use a suitable change of variables to evaluate  </strong> A)   (1 + ln(2)) B)   (1 - ln(2)) C)   (1 + ln(2)) D)   (1 - ln(2)) E)   ln(2) <div style=padding-top: 35px> (1 - ln(2))
C) <strong>Use a suitable change of variables to evaluate  </strong> A)   (1 + ln(2)) B)   (1 - ln(2)) C)   (1 + ln(2)) D)   (1 - ln(2)) E)   ln(2) <div style=padding-top: 35px> (1 + ln(2))
D) <strong>Use a suitable change of variables to evaluate  </strong> A)   (1 + ln(2)) B)   (1 - ln(2)) C)   (1 + ln(2)) D)   (1 - ln(2)) E)   ln(2) <div style=padding-top: 35px> (1 - ln(2))
E) <strong>Use a suitable change of variables to evaluate  </strong> A)   (1 + ln(2)) B)   (1 - ln(2)) C)   (1 + ln(2)) D)   (1 - ln(2)) E)   ln(2) <div style=padding-top: 35px> ln(2)
Question
Use the transformation u = x + y, v = <strong>Use the transformation u = x + y, v =   to evaluate the double integral of f(x, y) =   over the triangular region bounded by the lines x + y = 1, x = 0, and y = 0.</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px> to evaluate the double integral of f(x, y) = <strong>Use the transformation u = x + y, v =   to evaluate the double integral of f(x, y) =   over the triangular region bounded by the lines x + y = 1, x = 0, and y = 0.</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px> over the triangular region bounded by the lines x + y = 1, x = 0, and y = 0.

A) <strong>Use the transformation u = x + y, v =   to evaluate the double integral of f(x, y) =   over the triangular region bounded by the lines x + y = 1, x = 0, and y = 0.</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
B) <strong>Use the transformation u = x + y, v =   to evaluate the double integral of f(x, y) =   over the triangular region bounded by the lines x + y = 1, x = 0, and y = 0.</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
C) <strong>Use the transformation u = x + y, v =   to evaluate the double integral of f(x, y) =   over the triangular region bounded by the lines x + y = 1, x = 0, and y = 0.</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
D) <strong>Use the transformation u = x + y, v =   to evaluate the double integral of f(x, y) =   over the triangular region bounded by the lines x + y = 1, x = 0, and y = 0.</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
E) <strong>Use the transformation u = x + y, v =   to evaluate the double integral of f(x, y) =   over the triangular region bounded by the lines x + y = 1, x = 0, and y = 0.</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
Question
Evaluate  <strong>Evaluate   dV, where R is the rectangular box 0  \le  x  \le  1, 1  \le  y  \le  2, 1  \le  z  \le  2.</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>  dV, where R is the rectangular box 0 \le x \le 1, 1 \le y \le 2, 1 \le z \le 2.

A)  <strong>Evaluate   dV, where R is the rectangular box 0  \le  x  \le  1, 1  \le  y  \le  2, 1  \le  z  \le  2.</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
B)  <strong>Evaluate   dV, where R is the rectangular box 0  \le  x  \le  1, 1  \le  y  \le  2, 1  \le  z  \le  2.</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
C)  <strong>Evaluate   dV, where R is the rectangular box 0  \le  x  \le  1, 1  \le  y  \le  2, 1  \le  z  \le  2.</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
D)  <strong>Evaluate   dV, where R is the rectangular box 0  \le  x  \le  1, 1  \le  y  \le  2, 1  \le  z  \le  2.</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
E)  <strong>Evaluate   dV, where R is the rectangular box 0  \le  x  \le  1, 1  \le  y  \le  2, 1  \le  z  \le  2.</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
Question
Compute the integral <strong>Compute the integral   where R is the tetrahedral region bounded by the planes x = 0, y = 0, z = 0, and x + y + z = 4.</strong> A) 16 B) 8 C) 32 D) 24 E)   <div style=padding-top: 35px> where R is the tetrahedral region bounded by the planes x = 0, y = 0, z = 0, and x + y + z = 4.

A) 16
B) 8
C) 32
D) 24
E) <strong>Compute the integral   where R is the tetrahedral region bounded by the planes x = 0, y = 0, z = 0, and x + y + z = 4.</strong> A) 16 B) 8 C) 32 D) 24 E)   <div style=padding-top: 35px>
Question
Evaluate the integral  <strong>Evaluate the integral   dV, where R is the region defined by the inequalities0  \le  y  \le  1, 0  \le  z  \le  y, 0  \le  x  \le  z.</strong> A)   B) 2 C)   D)   E) 1 <div style=padding-top: 35px>  dV, where R is the region defined by the inequalities0 \le y \le 1, 0 \le z \le y, 0 \le x \le z.

A)  <strong>Evaluate the integral   dV, where R is the region defined by the inequalities0  \le  y  \le  1, 0  \le  z  \le  y, 0  \le  x  \le  z.</strong> A)   B) 2 C)   D)   E) 1 <div style=padding-top: 35px>
B) 2
C)  <strong>Evaluate the integral   dV, where R is the region defined by the inequalities0  \le  y  \le  1, 0  \le  z  \le  y, 0  \le  x  \le  z.</strong> A)   B) 2 C)   D)   E) 1 <div style=padding-top: 35px>
D)  <strong>Evaluate the integral   dV, where R is the region defined by the inequalities0  \le  y  \le  1, 0  \le  z  \le  y, 0  \le  x  \le  z.</strong> A)   B) 2 C)   D)   E) 1 <div style=padding-top: 35px>
E) 1
Question
Evaluate the integral <strong>Evaluate the integral   dV, where R is the region in the first octant bounded by the four planes x = 1, y = x, z = 0, and z = y.</strong> A) 3 B) 2 C) 1 D) 4 E) 5 <div style=padding-top: 35px> dV, where R is the region in the first octant bounded by the four planes x = 1, y = x, z = 0, and z = y.

A) 3
B) 2
C) 1
D) 4
E) 5
Question
Evaluate the triple integral over the region <strong>Evaluate the triple integral over the region   where R is the finite region bounded by z = 0, y + z = 4, y = x<sup>2</sup>.</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px> where R is the finite region bounded by z = 0, y + z = 4, y = x2.

A) <strong>Evaluate the triple integral over the region   where R is the finite region bounded by z = 0, y + z = 4, y = x<sup>2</sup>.</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
B) <strong>Evaluate the triple integral over the region   where R is the finite region bounded by z = 0, y + z = 4, y = x<sup>2</sup>.</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
C) <strong>Evaluate the triple integral over the region   where R is the finite region bounded by z = 0, y + z = 4, y = x<sup>2</sup>.</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
D) <strong>Evaluate the triple integral over the region   where R is the finite region bounded by z = 0, y + z = 4, y = x<sup>2</sup>.</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
E) <strong>Evaluate the triple integral over the region   where R is the finite region bounded by z = 0, y + z = 4, y = x<sup>2</sup>.</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
Question
Express the iterated integral <strong>Express the iterated integral   as an equivalent integral in which the outermost integral is with respect to x and the innermost is with respect to y.</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px> as an equivalent integral in which the outermost integral is with respect to x and the innermost is with respect to y.

A) <strong>Express the iterated integral   as an equivalent integral in which the outermost integral is with respect to x and the innermost is with respect to y.</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
B) <strong>Express the iterated integral   as an equivalent integral in which the outermost integral is with respect to x and the innermost is with respect to y.</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
C) <strong>Express the iterated integral   as an equivalent integral in which the outermost integral is with respect to x and the innermost is with respect to y.</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
D) <strong>Express the iterated integral   as an equivalent integral in which the outermost integral is with respect to x and the innermost is with respect to y.</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
E) <strong>Express the iterated integral   as an equivalent integral in which the outermost integral is with respect to x and the innermost is with respect to y.</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
Question
Evaluate Evaluate   where E is the region in 3-space described by the inequalities0 ≤ x ≤ 2 - y - z, 0 ≤ z ≤ 2 - y, and 0 ≤ y ≤ 2.<div style=padding-top: 35px> where E is the region in 3-space described by the inequalities0 ≤ x ≤ 2 - y - z, 0 ≤ z ≤ 2 - y, and 0 ≤ y ≤ 2.
Question
Evaluate <strong>Evaluate   by completely reversing the order in which the integrals are performed.</strong> A)   +   B)   -   C)   +   D)   -   E)   -   <div style=padding-top: 35px> by completely reversing the order in which the integrals are performed.

A) <strong>Evaluate   by completely reversing the order in which the integrals are performed.</strong> A)   +   B)   -   C)   +   D)   -   E)   -   <div style=padding-top: 35px> + <strong>Evaluate   by completely reversing the order in which the integrals are performed.</strong> A)   +   B)   -   C)   +   D)   -   E)   -   <div style=padding-top: 35px>
B) <strong>Evaluate   by completely reversing the order in which the integrals are performed.</strong> A)   +   B)   -   C)   +   D)   -   E)   -   <div style=padding-top: 35px> - <strong>Evaluate   by completely reversing the order in which the integrals are performed.</strong> A)   +   B)   -   C)   +   D)   -   E)   -   <div style=padding-top: 35px>
C) <strong>Evaluate   by completely reversing the order in which the integrals are performed.</strong> A)   +   B)   -   C)   +   D)   -   E)   -   <div style=padding-top: 35px> + <strong>Evaluate   by completely reversing the order in which the integrals are performed.</strong> A)   +   B)   -   C)   +   D)   -   E)   -   <div style=padding-top: 35px>
D) <strong>Evaluate   by completely reversing the order in which the integrals are performed.</strong> A)   +   B)   -   C)   +   D)   -   E)   -   <div style=padding-top: 35px> - <strong>Evaluate   by completely reversing the order in which the integrals are performed.</strong> A)   +   B)   -   C)   +   D)   -   E)   -   <div style=padding-top: 35px>
E) <strong>Evaluate   by completely reversing the order in which the integrals are performed.</strong> A)   +   B)   -   C)   +   D)   -   E)   -   <div style=padding-top: 35px> - <strong>Evaluate   by completely reversing the order in which the integrals are performed.</strong> A)   +   B)   -   C)   +   D)   -   E)   -   <div style=padding-top: 35px>
Question
Find the volume of the solid that lies below the surface z = 1 + <strong>Find the volume of the solid that lies below the surface z = 1 +   and above the region in the xy-plane bounded by the straight lines y = -x, y = x, and y = 1.</strong> A) V =   B) V =   C) V =   D) V =   E) V =     <div style=padding-top: 35px> and above the region in the xy-plane bounded by the straight lines y = -x, y = x, and y = 1.

A) V = <strong>Find the volume of the solid that lies below the surface z = 1 +   and above the region in the xy-plane bounded by the straight lines y = -x, y = x, and y = 1.</strong> A) V =   B) V =   C) V =   D) V =   E) V =     <div style=padding-top: 35px>
B) V = <strong>Find the volume of the solid that lies below the surface z = 1 +   and above the region in the xy-plane bounded by the straight lines y = -x, y = x, and y = 1.</strong> A) V =   B) V =   C) V =   D) V =   E) V =     <div style=padding-top: 35px>
C) V = <strong>Find the volume of the solid that lies below the surface z = 1 +   and above the region in the xy-plane bounded by the straight lines y = -x, y = x, and y = 1.</strong> A) V =   B) V =   C) V =   D) V =   E) V =     <div style=padding-top: 35px>
D) V = <strong>Find the volume of the solid that lies below the surface z = 1 +   and above the region in the xy-plane bounded by the straight lines y = -x, y = x, and y = 1.</strong> A) V =   B) V =   C) V =   D) V =   E) V =     <div style=padding-top: 35px>
E) V = <strong>Find the volume of the solid that lies below the surface z = 1 +   and above the region in the xy-plane bounded by the straight lines y = -x, y = x, and y = 1.</strong> A) V =   B) V =   C) V =   D) V =   E) V =     <div style=padding-top: 35px> <strong>Find the volume of the solid that lies below the surface z = 1 +   and above the region in the xy-plane bounded by the straight lines y = -x, y = x, and y = 1.</strong> A) V =   B) V =   C) V =   D) V =   E) V =     <div style=padding-top: 35px>
Question
Use a triple integral to find the volume V of the solid inside the cylinder x2 + y2 = 16 and between the planes z = x - y - 2 and z = 6 + x - y.

A) 64 π\pi cubic units
B) 32 π\pi cubic units
C) 128 π\pi cubic units
D) 256 π\pi cubic units
E) 144 π\pi cubic units
Question
Evaluate the iterated integral  <strong>Evaluate the iterated integral   by transforming it to cylindrical coordinates.</strong> A) 5 \pi  B) 4 \pi  C) 3 \pi  D) 2 \pi  E)  \pi  <div style=padding-top: 35px>  by transforming it to cylindrical coordinates.

A) 5 π\pi
B) 4 π\pi
C) 3 π\pi
D) 2 π\pi
E) π\pi
Question
Evaluate  <strong>Evaluate   where E is the region in space enclosed by the sphere(x - 1)<sup>2</sup> + y<sup>2</sup> + z<sup>2</sup> = 3.</strong> A) 9  \pi  B) 12  \pi    C) 27 D) 36  \pi  E) 4  \pi    <div style=padding-top: 35px>  where E is the region in space enclosed by the sphere(x - 1)2 + y2 + z2 = 3.

A) 9 π\pi
B) 12 π\pi  <strong>Evaluate   where E is the region in space enclosed by the sphere(x - 1)<sup>2</sup> + y<sup>2</sup> + z<sup>2</sup> = 3.</strong> A) 9  \pi  B) 12  \pi    C) 27 D) 36  \pi  E) 4  \pi    <div style=padding-top: 35px>
C) 27
D) 36 π\pi
E) 4 π\pi  <strong>Evaluate   where E is the region in space enclosed by the sphere(x - 1)<sup>2</sup> + y<sup>2</sup> + z<sup>2</sup> = 3.</strong> A) 9  \pi  B) 12  \pi    C) 27 D) 36  \pi  E) 4  \pi    <div style=padding-top: 35px>
Question
Evaluate the triple integral <strong>Evaluate the triple integral   where R is the first octant region abovez = x<sup>2</sup> + y<sup>2</sup> and below  </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px> where R is the first octant region abovez = x2 + y2 and below <strong>Evaluate the triple integral   where R is the first octant region abovez = x<sup>2</sup> + y<sup>2</sup> and below  </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>

A) <strong>Evaluate the triple integral   where R is the first octant region abovez = x<sup>2</sup> + y<sup>2</sup> and below  </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
B) <strong>Evaluate the triple integral   where R is the first octant region abovez = x<sup>2</sup> + y<sup>2</sup> and below  </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
C) <strong>Evaluate the triple integral   where R is the first octant region abovez = x<sup>2</sup> + y<sup>2</sup> and below  </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
D) <strong>Evaluate the triple integral   where R is the first octant region abovez = x<sup>2</sup> + y<sup>2</sup> and below  </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
E) <strong>Evaluate the triple integral   where R is the first octant region abovez = x<sup>2</sup> + y<sup>2</sup> and below  </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
Question
Use a triple integral iterated in spherical coordinates to find the volume of the region lying above the cone  <strong>Use a triple integral iterated in spherical coordinates to find the volume of the region lying above the cone   and inside the sphere x<sup>2</sup> + y<sup>2</sup> + z<sup>2</sup> = a<sup>2</sup>.</strong> A)    \pi   cubic units B)    \pi    cubic units C)    \pi    cubic units D)    \pi   cubic units E)    \pi    cubic units <div style=padding-top: 35px>  and inside the sphere x2 + y2 + z2 = a2.

A)  <strong>Use a triple integral iterated in spherical coordinates to find the volume of the region lying above the cone   and inside the sphere x<sup>2</sup> + y<sup>2</sup> + z<sup>2</sup> = a<sup>2</sup>.</strong> A)    \pi   cubic units B)    \pi    cubic units C)    \pi    cubic units D)    \pi   cubic units E)    \pi    cubic units <div style=padding-top: 35px>  π\pi  <strong>Use a triple integral iterated in spherical coordinates to find the volume of the region lying above the cone   and inside the sphere x<sup>2</sup> + y<sup>2</sup> + z<sup>2</sup> = a<sup>2</sup>.</strong> A)    \pi   cubic units B)    \pi    cubic units C)    \pi    cubic units D)    \pi   cubic units E)    \pi    cubic units <div style=padding-top: 35px>  cubic units
B)  <strong>Use a triple integral iterated in spherical coordinates to find the volume of the region lying above the cone   and inside the sphere x<sup>2</sup> + y<sup>2</sup> + z<sup>2</sup> = a<sup>2</sup>.</strong> A)    \pi   cubic units B)    \pi    cubic units C)    \pi    cubic units D)    \pi   cubic units E)    \pi    cubic units <div style=padding-top: 35px>  π\pi  <strong>Use a triple integral iterated in spherical coordinates to find the volume of the region lying above the cone   and inside the sphere x<sup>2</sup> + y<sup>2</sup> + z<sup>2</sup> = a<sup>2</sup>.</strong> A)    \pi   cubic units B)    \pi    cubic units C)    \pi    cubic units D)    \pi   cubic units E)    \pi    cubic units <div style=padding-top: 35px>  cubic units
C)  <strong>Use a triple integral iterated in spherical coordinates to find the volume of the region lying above the cone   and inside the sphere x<sup>2</sup> + y<sup>2</sup> + z<sup>2</sup> = a<sup>2</sup>.</strong> A)    \pi   cubic units B)    \pi    cubic units C)    \pi    cubic units D)    \pi   cubic units E)    \pi    cubic units <div style=padding-top: 35px>  π\pi  <strong>Use a triple integral iterated in spherical coordinates to find the volume of the region lying above the cone   and inside the sphere x<sup>2</sup> + y<sup>2</sup> + z<sup>2</sup> = a<sup>2</sup>.</strong> A)    \pi   cubic units B)    \pi    cubic units C)    \pi    cubic units D)    \pi   cubic units E)    \pi    cubic units <div style=padding-top: 35px>  cubic units
D)  <strong>Use a triple integral iterated in spherical coordinates to find the volume of the region lying above the cone   and inside the sphere x<sup>2</sup> + y<sup>2</sup> + z<sup>2</sup> = a<sup>2</sup>.</strong> A)    \pi   cubic units B)    \pi    cubic units C)    \pi    cubic units D)    \pi   cubic units E)    \pi    cubic units <div style=padding-top: 35px>  π\pi  <strong>Use a triple integral iterated in spherical coordinates to find the volume of the region lying above the cone   and inside the sphere x<sup>2</sup> + y<sup>2</sup> + z<sup>2</sup> = a<sup>2</sup>.</strong> A)    \pi   cubic units B)    \pi    cubic units C)    \pi    cubic units D)    \pi   cubic units E)    \pi    cubic units <div style=padding-top: 35px>  cubic units
E)  <strong>Use a triple integral iterated in spherical coordinates to find the volume of the region lying above the cone   and inside the sphere x<sup>2</sup> + y<sup>2</sup> + z<sup>2</sup> = a<sup>2</sup>.</strong> A)    \pi   cubic units B)    \pi    cubic units C)    \pi    cubic units D)    \pi   cubic units E)    \pi    cubic units <div style=padding-top: 35px>  π\pi  <strong>Use a triple integral iterated in spherical coordinates to find the volume of the region lying above the cone   and inside the sphere x<sup>2</sup> + y<sup>2</sup> + z<sup>2</sup> = a<sup>2</sup>.</strong> A)    \pi   cubic units B)    \pi    cubic units C)    \pi    cubic units D)    \pi   cubic units E)    \pi    cubic units <div style=padding-top: 35px>  cubic units
Question
Evaluate  <strong>Evaluate   dV, where C is the right circular cylinder consisting of all points (x, y, z) satisfying x<sup>2</sup> + y<sup>2</sup>  \le  3 and -1  \le  z  \le 2.</strong> A) 3<sup>3/2</sup> B) 3<sup>-(3/2) </sup> \pi  C) 3<sup>5/2</sup> D) 3<sup>3/2 </sup> \pi  E) 27 \pi  <div style=padding-top: 35px>  dV, where C is the right circular cylinder consisting of all points (x, y, z) satisfying x2 + y2 \le 3 and -1 \le z \le 2.

A) 33/2
B) 3-(3/2) π\pi
C) 35/2
D) 33/2 π\pi
E) 27 π\pi
Question
The plane x + y + z = 1 slices the ball x2 + y2 + z2 \le 1 into two pieces. Find the volume of the smaller piece. (Hint: Replace the plane by a horizontal plane at the same distance from the origin.)

A) π\pi  <strong>The plane x + y + z = 1 slices the ball x<sup>2</sup> + y<sup>2</sup> + z<sup>2</sup>  \le  1 into two pieces. Find the volume of the smaller piece. (Hint: Replace the plane by a horizontal plane at the same distance from the origin.)</strong> A)  \pi    cubic units B)  \pi    cubic units C)  \pi    cubic units D)  \pi    cubic units E)  \pi    cubic units <div style=padding-top: 35px>  cubic units
B) π\pi  <strong>The plane x + y + z = 1 slices the ball x<sup>2</sup> + y<sup>2</sup> + z<sup>2</sup>  \le  1 into two pieces. Find the volume of the smaller piece. (Hint: Replace the plane by a horizontal plane at the same distance from the origin.)</strong> A)  \pi    cubic units B)  \pi    cubic units C)  \pi    cubic units D)  \pi    cubic units E)  \pi    cubic units <div style=padding-top: 35px>  cubic units
C) π\pi  <strong>The plane x + y + z = 1 slices the ball x<sup>2</sup> + y<sup>2</sup> + z<sup>2</sup>  \le  1 into two pieces. Find the volume of the smaller piece. (Hint: Replace the plane by a horizontal plane at the same distance from the origin.)</strong> A)  \pi    cubic units B)  \pi    cubic units C)  \pi    cubic units D)  \pi    cubic units E)  \pi    cubic units <div style=padding-top: 35px>  cubic units
D) π\pi  <strong>The plane x + y + z = 1 slices the ball x<sup>2</sup> + y<sup>2</sup> + z<sup>2</sup>  \le  1 into two pieces. Find the volume of the smaller piece. (Hint: Replace the plane by a horizontal plane at the same distance from the origin.)</strong> A)  \pi    cubic units B)  \pi    cubic units C)  \pi    cubic units D)  \pi    cubic units E)  \pi    cubic units <div style=padding-top: 35px>  cubic units
E) π\pi  <strong>The plane x + y + z = 1 slices the ball x<sup>2</sup> + y<sup>2</sup> + z<sup>2</sup>  \le  1 into two pieces. Find the volume of the smaller piece. (Hint: Replace the plane by a horizontal plane at the same distance from the origin.)</strong> A)  \pi    cubic units B)  \pi    cubic units C)  \pi    cubic units D)  \pi    cubic units E)  \pi    cubic units <div style=padding-top: 35px>  cubic units
Question
Use the transformation x = au, y = bv, z = cw (where a, b, c are positive constants) to evaluate the triple integral of z over the first-octant region bounded by the coordinate planes and the ellipsoid  <strong>Use the transformation x = au, y = bv, z = cw (where a, b, c are positive constants) to evaluate the triple integral of z over the first-octant region bounded by the coordinate planes and the ellipsoid  </strong> A)       B)       C)      a c D)       bc E)     \pi  ab   <div style=padding-top: 35px>

A)  <strong>Use the transformation x = au, y = bv, z = cw (where a, b, c are positive constants) to evaluate the triple integral of z over the first-octant region bounded by the coordinate planes and the ellipsoid  </strong> A)       B)       C)      a c D)       bc E)     \pi  ab   <div style=padding-top: 35px>   <strong>Use the transformation x = au, y = bv, z = cw (where a, b, c are positive constants) to evaluate the triple integral of z over the first-octant region bounded by the coordinate planes and the ellipsoid  </strong> A)       B)       C)      a c D)       bc E)     \pi  ab   <div style=padding-top: 35px>   <strong>Use the transformation x = au, y = bv, z = cw (where a, b, c are positive constants) to evaluate the triple integral of z over the first-octant region bounded by the coordinate planes and the ellipsoid  </strong> A)       B)       C)      a c D)       bc E)     \pi  ab   <div style=padding-top: 35px>
B)  <strong>Use the transformation x = au, y = bv, z = cw (where a, b, c are positive constants) to evaluate the triple integral of z over the first-octant region bounded by the coordinate planes and the ellipsoid  </strong> A)       B)       C)      a c D)       bc E)     \pi  ab   <div style=padding-top: 35px>   <strong>Use the transformation x = au, y = bv, z = cw (where a, b, c are positive constants) to evaluate the triple integral of z over the first-octant region bounded by the coordinate planes and the ellipsoid  </strong> A)       B)       C)      a c D)       bc E)     \pi  ab   <div style=padding-top: 35px>   <strong>Use the transformation x = au, y = bv, z = cw (where a, b, c are positive constants) to evaluate the triple integral of z over the first-octant region bounded by the coordinate planes and the ellipsoid  </strong> A)       B)       C)      a c D)       bc E)     \pi  ab   <div style=padding-top: 35px>
C)  <strong>Use the transformation x = au, y = bv, z = cw (where a, b, c are positive constants) to evaluate the triple integral of z over the first-octant region bounded by the coordinate planes and the ellipsoid  </strong> A)       B)       C)      a c D)       bc E)     \pi  ab   <div style=padding-top: 35px>   <strong>Use the transformation x = au, y = bv, z = cw (where a, b, c are positive constants) to evaluate the triple integral of z over the first-octant region bounded by the coordinate planes and the ellipsoid  </strong> A)       B)       C)      a c D)       bc E)     \pi  ab   <div style=padding-top: 35px>  a <strong>Use the transformation x = au, y = bv, z = cw (where a, b, c are positive constants) to evaluate the triple integral of z over the first-octant region bounded by the coordinate planes and the ellipsoid  </strong> A)       B)       C)      a c D)       bc E)     \pi  ab   <div style=padding-top: 35px>  c
D)  <strong>Use the transformation x = au, y = bv, z = cw (where a, b, c are positive constants) to evaluate the triple integral of z over the first-octant region bounded by the coordinate planes and the ellipsoid  </strong> A)       B)       C)      a c D)       bc E)     \pi  ab   <div style=padding-top: 35px>   <strong>Use the transformation x = au, y = bv, z = cw (where a, b, c are positive constants) to evaluate the triple integral of z over the first-octant region bounded by the coordinate planes and the ellipsoid  </strong> A)       B)       C)      a c D)       bc E)     \pi  ab   <div style=padding-top: 35px>   <strong>Use the transformation x = au, y = bv, z = cw (where a, b, c are positive constants) to evaluate the triple integral of z over the first-octant region bounded by the coordinate planes and the ellipsoid  </strong> A)       B)       C)      a c D)       bc E)     \pi  ab   <div style=padding-top: 35px>  bc
E)  <strong>Use the transformation x = au, y = bv, z = cw (where a, b, c are positive constants) to evaluate the triple integral of z over the first-octant region bounded by the coordinate planes and the ellipsoid  </strong> A)       B)       C)      a c D)       bc E)     \pi  ab   <div style=padding-top: 35px>  π\pi ab  <strong>Use the transformation x = au, y = bv, z = cw (where a, b, c are positive constants) to evaluate the triple integral of z over the first-octant region bounded by the coordinate planes and the ellipsoid  </strong> A)       B)       C)      a c D)       bc E)     \pi  ab   <div style=padding-top: 35px>
Question
Evaluate the iterated integral  <strong>Evaluate the iterated integral   by transforming it to cylindrical coordinates.</strong> A) 2 B) 2  \pi  C)   D)   E) 0 <div style=padding-top: 35px>  by transforming it to cylindrical coordinates.

A) 2
B) 2 π\pi
C)  <strong>Evaluate the iterated integral   by transforming it to cylindrical coordinates.</strong> A) 2 B) 2  \pi  C)   D)   E) 0 <div style=padding-top: 35px>
D)  <strong>Evaluate the iterated integral   by transforming it to cylindrical coordinates.</strong> A) 2 B) 2  \pi  C)   D)   E) 0 <div style=padding-top: 35px>
E) 0
Question
Evaluate  <strong>Evaluate   dV, a > 0, where R is the right circular cylinder consisting of all points (x, y, z) satisfying x<sup>2</sup> + y<sup>2</sup>  \le b, b > 0 and -3  \le  z  \le  5 by using cylindrical coordinates.</strong> A) 4   ln   B) 8   ln   C) 4  \pi  ln   D) 8  \pi  ln   E) 2  \pi  ln   <div style=padding-top: 35px>  dV, a > 0, where R is the right circular cylinder consisting of all points (x, y, z) satisfying x2 + y2 \le b, b > 0 and -3 \le z \le 5 by using cylindrical coordinates.

A) 4  <strong>Evaluate   dV, a > 0, where R is the right circular cylinder consisting of all points (x, y, z) satisfying x<sup>2</sup> + y<sup>2</sup>  \le b, b > 0 and -3  \le  z  \le  5 by using cylindrical coordinates.</strong> A) 4   ln   B) 8   ln   C) 4  \pi  ln   D) 8  \pi  ln   E) 2  \pi  ln   <div style=padding-top: 35px>  ln  <strong>Evaluate   dV, a > 0, where R is the right circular cylinder consisting of all points (x, y, z) satisfying x<sup>2</sup> + y<sup>2</sup>  \le b, b > 0 and -3  \le  z  \le  5 by using cylindrical coordinates.</strong> A) 4   ln   B) 8   ln   C) 4  \pi  ln   D) 8  \pi  ln   E) 2  \pi  ln   <div style=padding-top: 35px>
B) 8  <strong>Evaluate   dV, a > 0, where R is the right circular cylinder consisting of all points (x, y, z) satisfying x<sup>2</sup> + y<sup>2</sup>  \le b, b > 0 and -3  \le  z  \le  5 by using cylindrical coordinates.</strong> A) 4   ln   B) 8   ln   C) 4  \pi  ln   D) 8  \pi  ln   E) 2  \pi  ln   <div style=padding-top: 35px>  ln  <strong>Evaluate   dV, a > 0, where R is the right circular cylinder consisting of all points (x, y, z) satisfying x<sup>2</sup> + y<sup>2</sup>  \le b, b > 0 and -3  \le  z  \le  5 by using cylindrical coordinates.</strong> A) 4   ln   B) 8   ln   C) 4  \pi  ln   D) 8  \pi  ln   E) 2  \pi  ln   <div style=padding-top: 35px>
C) 4 π\pi ln  <strong>Evaluate   dV, a > 0, where R is the right circular cylinder consisting of all points (x, y, z) satisfying x<sup>2</sup> + y<sup>2</sup>  \le b, b > 0 and -3  \le  z  \le  5 by using cylindrical coordinates.</strong> A) 4   ln   B) 8   ln   C) 4  \pi  ln   D) 8  \pi  ln   E) 2  \pi  ln   <div style=padding-top: 35px>
D) 8 π\pi ln  <strong>Evaluate   dV, a > 0, where R is the right circular cylinder consisting of all points (x, y, z) satisfying x<sup>2</sup> + y<sup>2</sup>  \le b, b > 0 and -3  \le  z  \le  5 by using cylindrical coordinates.</strong> A) 4   ln   B) 8   ln   C) 4  \pi  ln   D) 8  \pi  ln   E) 2  \pi  ln   <div style=padding-top: 35px>
E) 2 π\pi ln  <strong>Evaluate   dV, a > 0, where R is the right circular cylinder consisting of all points (x, y, z) satisfying x<sup>2</sup> + y<sup>2</sup>  \le b, b > 0 and -3  \le  z  \le  5 by using cylindrical coordinates.</strong> A) 4   ln   B) 8   ln   C) 4  \pi  ln   D) 8  \pi  ln   E) 2  \pi  ln   <div style=padding-top: 35px>
Question
A solid S has the shape of the region E enclosed by the sphere R = 3cos( <strong>A solid S has the shape of the region E enclosed by the sphere R = 3cos(  ). Evaluate   dV . Note: R ,  ,  \theta  are the spherical coordinates.</strong> A) 12 B) 3 \pi  C) 6 D) 9 E)   <div style=padding-top: 35px>  ). Evaluate  <strong>A solid S has the shape of the region E enclosed by the sphere R = 3cos(  ). Evaluate   dV . Note: R ,  ,  \theta  are the spherical coordinates.</strong> A) 12 B) 3 \pi  C) 6 D) 9 E)   <div style=padding-top: 35px>  dV .
Note: R ,11ee7b54_ddf4_a0dd_ae82_79cd253742f9_TB9661_11 , θ\theta are the spherical coordinates.

A) 12
B) 3 π\pi
C) 6
D) 9
E)  <strong>A solid S has the shape of the region E enclosed by the sphere R = 3cos(  ). Evaluate   dV . Note: R ,  ,  \theta  are the spherical coordinates.</strong> A) 12 B) 3 \pi  C) 6 D) 9 E)   <div style=padding-top: 35px>
Question
Use cylindrical coordinates to compute Use cylindrical coordinates to compute   dV where E is the region bounded by the paraboloid z = 6x<sup>2</sup> + 4y<sup>2</sup> and the cylinder z = 6 - 2y<sup>2</sup>.<div style=padding-top: 35px> dV where E is the region bounded by the paraboloid z = 6x2 + 4y2 and the cylinder z = 6 - 2y2.
Question
Evaluate <strong>Evaluate   where E is the region enclosed by the ellipsoid   +  +   = 1, a, b, c > 0. Use the transformation x = au, y = bv, z = cw.</strong> A)   ab   B)   ab   C)   ab   D)   ab   E)   ab   <div style=padding-top: 35px> where E is the region enclosed by the ellipsoid <strong>Evaluate   where E is the region enclosed by the ellipsoid   +  +   = 1, a, b, c > 0. Use the transformation x = au, y = bv, z = cw.</strong> A)   ab   B)   ab   C)   ab   D)   ab   E)   ab   <div style=padding-top: 35px> +<strong>Evaluate   where E is the region enclosed by the ellipsoid   +  +   = 1, a, b, c > 0. Use the transformation x = au, y = bv, z = cw.</strong> A)   ab   B)   ab   C)   ab   D)   ab   E)   ab   <div style=padding-top: 35px> + <strong>Evaluate   where E is the region enclosed by the ellipsoid   +  +   = 1, a, b, c > 0. Use the transformation x = au, y = bv, z = cw.</strong> A)   ab   B)   ab   C)   ab   D)   ab   E)   ab   <div style=padding-top: 35px> = 1, a, b, c > 0. Use the transformation x = au, y = bv, z = cw.

A) <strong>Evaluate   where E is the region enclosed by the ellipsoid   +  +   = 1, a, b, c > 0. Use the transformation x = au, y = bv, z = cw.</strong> A)   ab   B)   ab   C)   ab   D)   ab   E)   ab   <div style=padding-top: 35px> ab <strong>Evaluate   where E is the region enclosed by the ellipsoid   +  +   = 1, a, b, c > 0. Use the transformation x = au, y = bv, z = cw.</strong> A)   ab   B)   ab   C)   ab   D)   ab   E)   ab   <div style=padding-top: 35px>
B) <strong>Evaluate   where E is the region enclosed by the ellipsoid   +  +   = 1, a, b, c > 0. Use the transformation x = au, y = bv, z = cw.</strong> A)   ab   B)   ab   C)   ab   D)   ab   E)   ab   <div style=padding-top: 35px> ab <strong>Evaluate   where E is the region enclosed by the ellipsoid   +  +   = 1, a, b, c > 0. Use the transformation x = au, y = bv, z = cw.</strong> A)   ab   B)   ab   C)   ab   D)   ab   E)   ab   <div style=padding-top: 35px>
C) <strong>Evaluate   where E is the region enclosed by the ellipsoid   +  +   = 1, a, b, c > 0. Use the transformation x = au, y = bv, z = cw.</strong> A)   ab   B)   ab   C)   ab   D)   ab   E)   ab   <div style=padding-top: 35px> ab <strong>Evaluate   where E is the region enclosed by the ellipsoid   +  +   = 1, a, b, c > 0. Use the transformation x = au, y = bv, z = cw.</strong> A)   ab   B)   ab   C)   ab   D)   ab   E)   ab   <div style=padding-top: 35px>
D) <strong>Evaluate   where E is the region enclosed by the ellipsoid   +  +   = 1, a, b, c > 0. Use the transformation x = au, y = bv, z = cw.</strong> A)   ab   B)   ab   C)   ab   D)   ab   E)   ab   <div style=padding-top: 35px> ab <strong>Evaluate   where E is the region enclosed by the ellipsoid   +  +   = 1, a, b, c > 0. Use the transformation x = au, y = bv, z = cw.</strong> A)   ab   B)   ab   C)   ab   D)   ab   E)   ab   <div style=padding-top: 35px>
E) <strong>Evaluate   where E is the region enclosed by the ellipsoid   +  +   = 1, a, b, c > 0. Use the transformation x = au, y = bv, z = cw.</strong> A)   ab   B)   ab   C)   ab   D)   ab   E)   ab   <div style=padding-top: 35px> ab <strong>Evaluate   where E is the region enclosed by the ellipsoid   +  +   = 1, a, b, c > 0. Use the transformation x = au, y = bv, z = cw.</strong> A)   ab   B)   ab   C)   ab   D)   ab   E)   ab   <div style=padding-top: 35px>
Question
Let J =  <strong>Let J =   where E is the region enclosed by the paraboloids z = 2(   +   ) and   . Express J in cylindrical coordinates [r,  \theta , z]. Do not evaluate.</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>  where E is the region enclosed by the paraboloids z = 2(  <strong>Let J =   where E is the region enclosed by the paraboloids z = 2(   +   ) and   . Express J in cylindrical coordinates [r,  \theta , z]. Do not evaluate.</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>  +  <strong>Let J =   where E is the region enclosed by the paraboloids z = 2(   +   ) and   . Express J in cylindrical coordinates [r,  \theta , z]. Do not evaluate.</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>  ) and  <strong>Let J =   where E is the region enclosed by the paraboloids z = 2(   +   ) and   . Express J in cylindrical coordinates [r,  \theta , z]. Do not evaluate.</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>  . Express J in cylindrical coordinates [r, θ\theta , z]. Do not evaluate.

A)  <strong>Let J =   where E is the region enclosed by the paraboloids z = 2(   +   ) and   . Express J in cylindrical coordinates [r,  \theta , z]. Do not evaluate.</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
B)  <strong>Let J =   where E is the region enclosed by the paraboloids z = 2(   +   ) and   . Express J in cylindrical coordinates [r,  \theta , z]. Do not evaluate.</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
C)  <strong>Let J =   where E is the region enclosed by the paraboloids z = 2(   +   ) and   . Express J in cylindrical coordinates [r,  \theta , z]. Do not evaluate.</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
D)  <strong>Let J =   where E is the region enclosed by the paraboloids z = 2(   +   ) and   . Express J in cylindrical coordinates [r,  \theta , z]. Do not evaluate.</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
E)  <strong>Let J =   where E is the region enclosed by the paraboloids z = 2(   +   ) and   . Express J in cylindrical coordinates [r,  \theta , z]. Do not evaluate.</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
Question
Evaluate  <strong>Evaluate   , where R is the region x<sup>2</sup> + y<sup>2</sup> + z<sup>2</sup>  \le  4,    \le  z<sup>2</sup>  \le  3(x<sup>2</sup> + y<sup>2</sup>), z  \le 0.(Hint: Use spherical coordinates.)</strong> A) 8 \pi  B) 2 \pi  C) 16 \pi  D) 4 \pi  E) 32 \pi  <div style=padding-top: 35px>  , where R is the region x2 + y2 + z2 \le 4,  <strong>Evaluate   , where R is the region x<sup>2</sup> + y<sup>2</sup> + z<sup>2</sup>  \le  4,    \le  z<sup>2</sup>  \le  3(x<sup>2</sup> + y<sup>2</sup>), z  \le 0.(Hint: Use spherical coordinates.)</strong> A) 8 \pi  B) 2 \pi  C) 16 \pi  D) 4 \pi  E) 32 \pi  <div style=padding-top: 35px>  \le z2 \le 3(x2 + y2), z \le 0.(Hint: Use spherical coordinates.)

A) 8 π\pi
B) 2 π\pi
C) 16 π\pi
D) 4 π\pi
E) 32 π\pi
Question
Evaluate  <strong>Evaluate   dV, where B is the ball x<sup>2</sup> + y<sup>2</sup> + z<sup>2</sup>  \le  a<sup>2</sup>, a > 0.</strong> A) 4 \pi    B) 2 \pi    C) 8 \pi    D) 4 \pi    E) 8 \pi    <div style=padding-top: 35px>  dV, where B is the ball x2 + y2 + z2 \le a2, a > 0.

A) 4 π\pi  <strong>Evaluate   dV, where B is the ball x<sup>2</sup> + y<sup>2</sup> + z<sup>2</sup>  \le  a<sup>2</sup>, a > 0.</strong> A) 4 \pi    B) 2 \pi    C) 8 \pi    D) 4 \pi    E) 8 \pi    <div style=padding-top: 35px>
B) 2 π\pi  <strong>Evaluate   dV, where B is the ball x<sup>2</sup> + y<sup>2</sup> + z<sup>2</sup>  \le  a<sup>2</sup>, a > 0.</strong> A) 4 \pi    B) 2 \pi    C) 8 \pi    D) 4 \pi    E) 8 \pi    <div style=padding-top: 35px>
C) 8 π\pi  <strong>Evaluate   dV, where B is the ball x<sup>2</sup> + y<sup>2</sup> + z<sup>2</sup>  \le  a<sup>2</sup>, a > 0.</strong> A) 4 \pi    B) 2 \pi    C) 8 \pi    D) 4 \pi    E) 8 \pi    <div style=padding-top: 35px>
D) 4 π\pi  <strong>Evaluate   dV, where B is the ball x<sup>2</sup> + y<sup>2</sup> + z<sup>2</sup>  \le  a<sup>2</sup>, a > 0.</strong> A) 4 \pi    B) 2 \pi    C) 8 \pi    D) 4 \pi    E) 8 \pi    <div style=padding-top: 35px>
E) 8 π\pi  <strong>Evaluate   dV, where B is the ball x<sup>2</sup> + y<sup>2</sup> + z<sup>2</sup>  \le  a<sup>2</sup>, a > 0.</strong> A) 4 \pi    B) 2 \pi    C) 8 \pi    D) 4 \pi    E) 8 \pi    <div style=padding-top: 35px>
Unlock Deck
Sign up to unlock the cards in this deck!
Unlock Deck
Unlock Deck
1/105
auto play flashcards
Play
simple tutorial
Full screen (f)
exit full mode
Deck 15: Multiple Integration
1
Use the Riemann sum corresponding to a subdivision of the rectangular region R defined by 0 \le x \le 6, 0 \le y \le 4, into six squares of edge length 2 and sample points at the upper-right corner of each square to estimate  <strong>Use the Riemann sum corresponding to a subdivision of the rectangular region R defined by 0  \le  x  \le  6, 0  \le  y  \le  4, into six squares of edge length 2 and sample points at the upper-right corner of each square to estimate   .</strong> A) 72 B) 288 C) 144 D) 36 E) 168  .

A) 72
B) 288
C) 144
D) 36
E) 168
288
2
Use the Riemann sum corresponding to a subdivision of the rectangular region R defined by 0 \le x \le 6, 0 \le y \le 4, into six squares of edge length 2 and sample points at the centre of each square to estimate  <strong>Use the Riemann sum corresponding to a subdivision of the rectangular region R defined by 0  \le  x  \le  6, 0 \le  y  \le  4, into six squares of edge length 2 and sample points at the centre of each square to estimate   .</strong> A) 72 B) 288 C) 144 D) 36 E) 120  .

A) 72
B) 288
C) 144
D) 36
E) 120
144
3
Evaluate  <strong>Evaluate     dA, where R is the rectangle 6  \le x  \le  9, -3  \le  y  \le  2, by interpreting it as a known volume.</strong> A) 4 B) 15 C) 72 D) 60 E) 12   <strong>Evaluate     dA, where R is the rectangle 6  \le x  \le  9, -3  \le  y  \le  2, by interpreting it as a known volume.</strong> A) 4 B) 15 C) 72 D) 60 E) 12  dA, where R is the rectangle 6 \le x \le 9, -3 \le y \le 2, by interpreting it as a known volume.

A) 4
B) 15
C) 72
D) 60
E) 12
60
4
Evaluate  <strong>Evaluate     dA, where R is the square -2  \le  x  \le  2, -2  \le  y  \le  2.</strong> A) 0 B) 2 C)   \pi  D) 17.68 E) 2  \pi    <strong>Evaluate     dA, where R is the square -2  \le  x  \le  2, -2  \le  y  \le  2.</strong> A) 0 B) 2 C)   \pi  D) 17.68 E) 2  \pi   dA, where R is the square -2 \le x \le 2, -2 \le y \le 2.

A) 0
B) 2
C) π\pi
D) 17.68
E) 2 π\pi
Unlock Deck
Unlock for access to all 105 flashcards in this deck.
Unlock Deck
k this deck
5
Evaluate  <strong>Evaluate     dA, where R is the rectangle -2 \le  x  \le  2, -3  \le y  \le  3, by interpreting it as a known volume.</strong> A) 144 B) 48 C) 96 D) 24 E) 0   <strong>Evaluate     dA, where R is the rectangle -2 \le  x  \le  2, -3  \le y  \le  3, by interpreting it as a known volume.</strong> A) 144 B) 48 C) 96 D) 24 E) 0  dA, where R is the rectangle -2 \le x \le 2, -3 \le y \le 3, by interpreting it as a known volume.

A) 144
B) 48
C) 96
D) 24
E) 0
Unlock Deck
Unlock for access to all 105 flashcards in this deck.
Unlock Deck
k this deck
6
Evaluate  <strong>Evaluate     dA, where D is the disk   +    \le  9, by interpreting it as a known volume.X</strong> A) 12 \pi  B) 18 \pi  C) 24 \pi  D) 36 \pi  E) 9 \pi    <strong>Evaluate     dA, where D is the disk   +    \le  9, by interpreting it as a known volume.X</strong> A) 12 \pi  B) 18 \pi  C) 24 \pi  D) 36 \pi  E) 9 \pi   dA, where D is the disk  <strong>Evaluate     dA, where D is the disk   +    \le  9, by interpreting it as a known volume.X</strong> A) 12 \pi  B) 18 \pi  C) 24 \pi  D) 36 \pi  E) 9 \pi   +  <strong>Evaluate     dA, where D is the disk   +    \le  9, by interpreting it as a known volume.X</strong> A) 12 \pi  B) 18 \pi  C) 24 \pi  D) 36 \pi  E) 9 \pi   \le 9, by interpreting it as a known volume.X

A) 12 π\pi
B) 18 π\pi
C) 24 π\pi
D) 36 π\pi
E) 9 π\pi
Unlock Deck
Unlock for access to all 105 flashcards in this deck.
Unlock Deck
k this deck
7
Evaluate <strong>Evaluate   , where T is the triangle in the xy-plane bounded by the coordinate axes and the line x + y = 1, by interpreting the double integral as a known volume.</strong> A)   B)   C)   D)   E)   , where T is the triangle in the xy-plane bounded by the coordinate axes and the line x + y = 1, by interpreting the double integral as a known volume.

A) <strong>Evaluate   , where T is the triangle in the xy-plane bounded by the coordinate axes and the line x + y = 1, by interpreting the double integral as a known volume.</strong> A)   B)   C)   D)   E)
B) <strong>Evaluate   , where T is the triangle in the xy-plane bounded by the coordinate axes and the line x + y = 1, by interpreting the double integral as a known volume.</strong> A)   B)   C)   D)   E)
C) <strong>Evaluate   , where T is the triangle in the xy-plane bounded by the coordinate axes and the line x + y = 1, by interpreting the double integral as a known volume.</strong> A)   B)   C)   D)   E)
D) <strong>Evaluate   , where T is the triangle in the xy-plane bounded by the coordinate axes and the line x + y = 1, by interpreting the double integral as a known volume.</strong> A)   B)   C)   D)   E)
E) <strong>Evaluate   , where T is the triangle in the xy-plane bounded by the coordinate axes and the line x + y = 1, by interpreting the double integral as a known volume.</strong> A)   B)   C)   D)   E)
Unlock Deck
Unlock for access to all 105 flashcards in this deck.
Unlock Deck
k this deck
8
Evaluate  <strong>Evaluate   , where R is the rectangle 0  \le  x  \le  5, 2  \le  y  \le  10, by interpreting the double integral as a known volume.</strong> A) 25 B) 50 C) 75 D) 100 E) 20  , where R is the rectangle 0 \le x \le 5, 2 \le y \le 10, by interpreting the double integral as a known volume.

A) 25
B) 50
C) 75
D) 100
E) 20
Unlock Deck
Unlock for access to all 105 flashcards in this deck.
Unlock Deck
k this deck
9
Evaluate <strong>Evaluate   dA over the triangle T with vertices (0, 0), (0, 1), and (1,1).</strong> A)   B)   C)   D)   E)   dA over the triangle T with vertices (0, 0), (0, 1), and (1,1).

A) <strong>Evaluate   dA over the triangle T with vertices (0, 0), (0, 1), and (1,1).</strong> A)   B)   C)   D)   E)
B) <strong>Evaluate   dA over the triangle T with vertices (0, 0), (0, 1), and (1,1).</strong> A)   B)   C)   D)   E)
C) <strong>Evaluate   dA over the triangle T with vertices (0, 0), (0, 1), and (1,1).</strong> A)   B)   C)   D)   E)
D) <strong>Evaluate   dA over the triangle T with vertices (0, 0), (0, 1), and (1,1).</strong> A)   B)   C)   D)   E)
E) <strong>Evaluate   dA over the triangle T with vertices (0, 0), (0, 1), and (1,1).</strong> A)   B)   C)   D)   E)
Unlock Deck
Unlock for access to all 105 flashcards in this deck.
Unlock Deck
k this deck
10
Evaluate  <strong>Evaluate   over the rectangle -1  \le   x  \le  2, 0  \le y  \le  3.</strong> A)   B)   C)   D)   E) 59  over the rectangle -1 \le x \le 2, 0 \le y \le 3.

A)  <strong>Evaluate   over the rectangle -1  \le   x  \le  2, 0  \le y  \le  3.</strong> A)   B)   C)   D)   E) 59
B)  <strong>Evaluate   over the rectangle -1  \le   x  \le  2, 0  \le y  \le  3.</strong> A)   B)   C)   D)   E) 59
C)  <strong>Evaluate   over the rectangle -1  \le   x  \le  2, 0  \le y  \le  3.</strong> A)   B)   C)   D)   E) 59
D)  <strong>Evaluate   over the rectangle -1  \le   x  \le  2, 0  \le y  \le  3.</strong> A)   B)   C)   D)   E) 59
E) 59
Unlock Deck
Unlock for access to all 105 flashcards in this deck.
Unlock Deck
k this deck
11
Evaluate the double integral <strong>Evaluate the double integral   over the rectangle R bounded by the lines x = 0, x = 2, y = 1, and y = 2.</strong> A)   B)   ln 2 C)   ln 2 D)   E) 2 over the rectangle R bounded by the lines x = 0, x = 2, y = 1, and y = 2.

A) <strong>Evaluate the double integral   over the rectangle R bounded by the lines x = 0, x = 2, y = 1, and y = 2.</strong> A)   B)   ln 2 C)   ln 2 D)   E) 2
B) <strong>Evaluate the double integral   over the rectangle R bounded by the lines x = 0, x = 2, y = 1, and y = 2.</strong> A)   B)   ln 2 C)   ln 2 D)   E) 2 ln 2
C) <strong>Evaluate the double integral   over the rectangle R bounded by the lines x = 0, x = 2, y = 1, and y = 2.</strong> A)   B)   ln 2 C)   ln 2 D)   E) 2 ln 2
D) <strong>Evaluate the double integral   over the rectangle R bounded by the lines x = 0, x = 2, y = 1, and y = 2.</strong> A)   B)   ln 2 C)   ln 2 D)   E) 2
E) 2
Unlock Deck
Unlock for access to all 105 flashcards in this deck.
Unlock Deck
k this deck
12
Evaluate <strong>Evaluate   , where R is the region bounded by y = 2x, y = 5x, and x = 2.</strong> A) 144 B) 156 C) 160 D) 172 E) 184 , where R is the region bounded by y = 2x, y = 5x, and x = 2.

A) 144
B) 156
C) 160
D) 172
E) 184
Unlock Deck
Unlock for access to all 105 flashcards in this deck.
Unlock Deck
k this deck
13
Evaluate <strong>Evaluate   , where R is the bounded region bounded by y = x and y = x<sup>2</sup>.</strong> A)   B)   C)   D)   E)   , where R is the bounded region bounded by y = x and y = x2.

A) <strong>Evaluate   , where R is the bounded region bounded by y = x and y = x<sup>2</sup>.</strong> A)   B)   C)   D)   E)
B) <strong>Evaluate   , where R is the bounded region bounded by y = x and y = x<sup>2</sup>.</strong> A)   B)   C)   D)   E)
C) <strong>Evaluate   , where R is the bounded region bounded by y = x and y = x<sup>2</sup>.</strong> A)   B)   C)   D)   E)
D) <strong>Evaluate   , where R is the bounded region bounded by y = x and y = x<sup>2</sup>.</strong> A)   B)   C)   D)   E)
E) <strong>Evaluate   , where R is the bounded region bounded by y = x and y = x<sup>2</sup>.</strong> A)   B)   C)   D)   E)
Unlock Deck
Unlock for access to all 105 flashcards in this deck.
Unlock Deck
k this deck
14
Evaluate <strong> Evaluate     where R is the planar region described by 0 ≤ x ≤   0 ≤ y ≤ cos(x). </strong> A) 4 B) 12 C) 0 D) - 3 E) 8 where R is the planar region described by 0 ≤ x ≤ <strong> Evaluate     where R is the planar region described by 0 ≤ x ≤   0 ≤ y ≤ cos(x). </strong> A) 4 B) 12 C) 0 D) - 3 E) 8 0 ≤ y ≤ cos(x).

A) 4
B) 12
C) 0
D) - 3
E) 8
Unlock Deck
Unlock for access to all 105 flashcards in this deck.
Unlock Deck
k this deck
15
Evaluate the double integral <strong>Evaluate the double integral    where  T  is the quadrilateral bounded by the lines  x = 1,  x = 2,  y = x,  and  y =   </strong> A)   ln 2 B)   ln 2 C)   ln 2 D)   ln 2 E)   ln 2 where T is the quadrilateral bounded by the lines x = 1, x = 2, y = x, and y = <strong>Evaluate the double integral    where  T  is the quadrilateral bounded by the lines  x = 1,  x = 2,  y = x,  and  y =   </strong> A)   ln 2 B)   ln 2 C)   ln 2 D)   ln 2 E)   ln 2

A) <strong>Evaluate the double integral    where  T  is the quadrilateral bounded by the lines  x = 1,  x = 2,  y = x,  and  y =   </strong> A)   ln 2 B)   ln 2 C)   ln 2 D)   ln 2 E)   ln 2 ln 2
B) <strong>Evaluate the double integral    where  T  is the quadrilateral bounded by the lines  x = 1,  x = 2,  y = x,  and  y =   </strong> A)   ln 2 B)   ln 2 C)   ln 2 D)   ln 2 E)   ln 2 ln 2
C) <strong>Evaluate the double integral    where  T  is the quadrilateral bounded by the lines  x = 1,  x = 2,  y = x,  and  y =   </strong> A)   ln 2 B)   ln 2 C)   ln 2 D)   ln 2 E)   ln 2 ln 2
D) <strong>Evaluate the double integral    where  T  is the quadrilateral bounded by the lines  x = 1,  x = 2,  y = x,  and  y =   </strong> A)   ln 2 B)   ln 2 C)   ln 2 D)   ln 2 E)   ln 2 ln 2
E) <strong>Evaluate the double integral    where  T  is the quadrilateral bounded by the lines  x = 1,  x = 2,  y = x,  and  y =   </strong> A)   ln 2 B)   ln 2 C)   ln 2 D)   ln 2 E)   ln 2 ln 2
Unlock Deck
Unlock for access to all 105 flashcards in this deck.
Unlock Deck
k this deck
16
Evaluate the iterated integral  <strong>Evaluate the iterated integral   dx dy by first reiterating it in the opposite direction.</strong> A)   B)   C)   \pi  D)   E)    dx dy by first reiterating it in the opposite direction.

A)  <strong>Evaluate the iterated integral   dx dy by first reiterating it in the opposite direction.</strong> A)   B)   C)   \pi  D)   E)
B)  <strong>Evaluate the iterated integral   dx dy by first reiterating it in the opposite direction.</strong> A)   B)   C)   \pi  D)   E)
C) π\pi
D)  <strong>Evaluate the iterated integral   dx dy by first reiterating it in the opposite direction.</strong> A)   B)   C)   \pi  D)   E)
E)  <strong>Evaluate the iterated integral   dx dy by first reiterating it in the opposite direction.</strong> A)   B)   C)   \pi  D)   E)
Unlock Deck
Unlock for access to all 105 flashcards in this deck.
Unlock Deck
k this deck
17
Evaluate <strong>Evaluate   dA, where T is the triangle with vertices (0, 0), (0, 2), and (2, 2).</strong> A)   -   B)   -   C)   -   D)   -   E)   +   dA, where T is the triangle with vertices (0, 0), (0, 2), and (2, 2).

A) <strong>Evaluate   dA, where T is the triangle with vertices (0, 0), (0, 2), and (2, 2).</strong> A)   -   B)   -   C)   -   D)   -   E)   +   - <strong>Evaluate   dA, where T is the triangle with vertices (0, 0), (0, 2), and (2, 2).</strong> A)   -   B)   -   C)   -   D)   -   E)   +
B) <strong>Evaluate   dA, where T is the triangle with vertices (0, 0), (0, 2), and (2, 2).</strong> A)   -   B)   -   C)   -   D)   -   E)   +   - <strong>Evaluate   dA, where T is the triangle with vertices (0, 0), (0, 2), and (2, 2).</strong> A)   -   B)   -   C)   -   D)   -   E)   +
C) <strong>Evaluate   dA, where T is the triangle with vertices (0, 0), (0, 2), and (2, 2).</strong> A)   -   B)   -   C)   -   D)   -   E)   +   - <strong>Evaluate   dA, where T is the triangle with vertices (0, 0), (0, 2), and (2, 2).</strong> A)   -   B)   -   C)   -   D)   -   E)   +
D) <strong>Evaluate   dA, where T is the triangle with vertices (0, 0), (0, 2), and (2, 2).</strong> A)   -   B)   -   C)   -   D)   -   E)   +   - <strong>Evaluate   dA, where T is the triangle with vertices (0, 0), (0, 2), and (2, 2).</strong> A)   -   B)   -   C)   -   D)   -   E)   +
E) <strong>Evaluate   dA, where T is the triangle with vertices (0, 0), (0, 2), and (2, 2).</strong> A)   -   B)   -   C)   -   D)   -   E)   +   + <strong>Evaluate   dA, where T is the triangle with vertices (0, 0), (0, 2), and (2, 2).</strong> A)   -   B)   -   C)   -   D)   -   E)   +
Unlock Deck
Unlock for access to all 105 flashcards in this deck.
Unlock Deck
k this deck
18
Evaluate  <strong>Evaluate   dA, where R is the region defined by the inequalities x<sup>2</sup>  \le  y  \le  x.</strong> A)   - 1 B) 1 -   C)   D)   E) e -    dA, where R is the region defined by the inequalities x2 \le y \le x.

A)  <strong>Evaluate   dA, where R is the region defined by the inequalities x<sup>2</sup>  \le  y  \le  x.</strong> A)   - 1 B) 1 -   C)   D)   E) e -    - 1
B) 1 -  <strong>Evaluate   dA, where R is the region defined by the inequalities x<sup>2</sup>  \le  y  \le  x.</strong> A)   - 1 B) 1 -   C)   D)   E) e -
C)  <strong>Evaluate   dA, where R is the region defined by the inequalities x<sup>2</sup>  \le  y  \le  x.</strong> A)   - 1 B) 1 -   C)   D)   E) e -
D)  <strong>Evaluate   dA, where R is the region defined by the inequalities x<sup>2</sup>  \le  y  \le  x.</strong> A)   - 1 B) 1 -   C)   D)   E) e -
E) e -  <strong>Evaluate   dA, where R is the region defined by the inequalities x<sup>2</sup>  \le  y  \le  x.</strong> A)   - 1 B) 1 -   C)   D)   E) e -
Unlock Deck
Unlock for access to all 105 flashcards in this deck.
Unlock Deck
k this deck
19
Find the volume of the solid bounded above by the paraboloid z = 9x2 + y2, below by the plane <strong>Find the volume of the solid bounded above by the paraboloid z = 9x<sup>2</sup> + y<sup>2</sup>, below by the plane   , and laterally by the planes x = 0, y = 0, x = 3, and y = 2.</strong> A) 170 cubic units B) 180 cubic units C) 190 cubic units D) 200 cubic units E) 90 cubic units , and laterally by the planes x = 0, y = 0, x = 3, and y = 2.

A) 170 cubic units
B) 180 cubic units
C) 190 cubic units
D) 200 cubic units
E) 90 cubic units
Unlock Deck
Unlock for access to all 105 flashcards in this deck.
Unlock Deck
k this deck
20
Evaluate  <strong>Evaluate   dA, where D is the rectangular region described by the inequalities 0  \le  x  \le  10 ln(13), 25  \le  y  \le  50.</strong> A) 144 B) 1 C)   D) 143 E)    dA, where D is the rectangular region described by the inequalities 0 \le x \le 10 ln(13), 25 \le y \le 50.

A) 144
B) 1
C)  <strong>Evaluate   dA, where D is the rectangular region described by the inequalities 0  \le  x  \le  10 ln(13), 25  \le  y  \le  50.</strong> A) 144 B) 1 C)   D) 143 E)
D) 143
E)  <strong>Evaluate   dA, where D is the rectangular region described by the inequalities 0  \le  x  \le  10 ln(13), 25  \le  y  \le  50.</strong> A) 144 B) 1 C)   D) 143 E)
Unlock Deck
Unlock for access to all 105 flashcards in this deck.
Unlock Deck
k this deck
21
Find the volume of the solid in the first octant inside the cylinder x2 + y2 = 2y and under the plane z = 2 - x.

A) <strong>Find the volume of the solid in the first octant inside the cylinder x<sup>2</sup> + y<sup>2</sup> = 2y and under the plane z = 2 - x.</strong> A)   cubic units B)   cubic units C)   cubic units D)   cubic units E)   cubic units cubic units
B) <strong>Find the volume of the solid in the first octant inside the cylinder x<sup>2</sup> + y<sup>2</sup> = 2y and under the plane z = 2 - x.</strong> A)   cubic units B)   cubic units C)   cubic units D)   cubic units E)   cubic units cubic units
C) <strong>Find the volume of the solid in the first octant inside the cylinder x<sup>2</sup> + y<sup>2</sup> = 2y and under the plane z = 2 - x.</strong> A)   cubic units B)   cubic units C)   cubic units D)   cubic units E)   cubic units cubic units
D) <strong>Find the volume of the solid in the first octant inside the cylinder x<sup>2</sup> + y<sup>2</sup> = 2y and under the plane z = 2 - x.</strong> A)   cubic units B)   cubic units C)   cubic units D)   cubic units E)   cubic units cubic units
E) <strong>Find the volume of the solid in the first octant inside the cylinder x<sup>2</sup> + y<sup>2</sup> = 2y and under the plane z = 2 - x.</strong> A)   cubic units B)   cubic units C)   cubic units D)   cubic units E)   cubic units cubic units
Unlock Deck
Unlock for access to all 105 flashcards in this deck.
Unlock Deck
k this deck
22
Evaluate the iterated integral <strong>Evaluate the iterated integral   dy by first reversing the order of the integration.</strong> A)   B) 4 C)   D) 2 E)     dy by first reversing the order of the integration.

A) <strong>Evaluate the iterated integral   dy by first reversing the order of the integration.</strong> A)   B) 4 C)   D) 2 E)
B) 4
C) <strong>Evaluate the iterated integral   dy by first reversing the order of the integration.</strong> A)   B) 4 C)   D) 2 E)
D) 2
E) <strong>Evaluate the iterated integral   dy by first reversing the order of the integration.</strong> A)   B) 4 C)   D) 2 E)
Unlock Deck
Unlock for access to all 105 flashcards in this deck.
Unlock Deck
k this deck
23
Find the volume of the solid lying inside the cylinder x2 + y2 = 4, above the plane z = x - y - 8, and below the surface z = 8 - x3.

A) 72 π\pi cubic units
B) 64 π\pi cubic units
C) 48 π\pi cubic units
D) 32 π\pi cubic units
E) 56 π\pi cubic units
Unlock Deck
Unlock for access to all 105 flashcards in this deck.
Unlock Deck
k this deck
24
Evaluate <strong>Evaluate   where D is the region in the xy-plane enclosed by the parallelogram with vertices at the points (2, 4), (4, 9), (10, 9), and (8, 4).</strong> A) 12 B) 15 C) 0 D) 6 E) 30 where D is the region in the xy-plane enclosed by the parallelogram with vertices at the points (2, 4), (4, 9), (10, 9), and (8, 4).

A) 12
B) 15
C) 0
D) 6
E) 30
Unlock Deck
Unlock for access to all 105 flashcards in this deck.
Unlock Deck
k this deck
25
Find the volume of the solid below the surface z = 3y2 and above the triangular region in the xy-plane bounded by the straight lines x = 0, y = 0, and x + 2y = 2.

A) 6
B) 2
C) <strong>Find the volume of the solid below the surface z = 3y<sup>2</sup> and above the triangular region in the xy-plane bounded by the straight lines x = 0, y = 0, and x + 2y = 2.</strong> A) 6 B) 2 C)   D) 12 E)
D) 12
E) <strong>Find the volume of the solid below the surface z = 3y<sup>2</sup> and above the triangular region in the xy-plane bounded by the straight lines x = 0, y = 0, and x + 2y = 2.</strong> A) 6 B) 2 C)   D) 12 E)
Unlock Deck
Unlock for access to all 105 flashcards in this deck.
Unlock Deck
k this deck
26
The iterated integral The iterated integral    is the double integral of g(x,y) over a planar region R. (i)	Sketch the planar region R. (ii)	Express the double integral J as a sum of two iterated integrals with the order of the integrals reversed. is the double integral of g(x,y) over a planar region R.
(i) Sketch the planar region R.
(ii) Express the double integral J as a sum of two iterated integrals with the order of the integrals reversed.
Unlock Deck
Unlock for access to all 105 flashcards in this deck.
Unlock Deck
k this deck
27
Find the volume of the solid bounded by the paraboloid z = 16 - x2 - 4y2 and the planez = 0.

A) 48 π\pi cubic units
B) 64 π\pi cubic units
C) 96 π\pi cubic units
D) 128 π\pi cubic units
E) 81 π\pi cubic units
Unlock Deck
Unlock for access to all 105 flashcards in this deck.
Unlock Deck
k this deck
28
The planar region enclosed by the straight lines y = x, y = 1 + x, y = -x, and y = 1 -x is both x-simple and y-simple.
Unlock Deck
Unlock for access to all 105 flashcards in this deck.
Unlock Deck
k this deck
29
Evaluate the double integral  <strong>Evaluate the double integral   dx dy, where Q is the first quadrant of the xy-plane.</strong> A)   B) 15 C) 1 D)  \infty  (integral diverges) E) -    dx dy, where Q is the first quadrant of the xy-plane.

A)  <strong>Evaluate the double integral   dx dy, where Q is the first quadrant of the xy-plane.</strong> A)   B) 15 C) 1 D)  \infty  (integral diverges) E) -
B) 15
C) 1
D) \infty (integral diverges)
E) -  <strong>Evaluate the double integral   dx dy, where Q is the first quadrant of the xy-plane.</strong> A)   B) 15 C) 1 D)  \infty  (integral diverges) E) -
Unlock Deck
Unlock for access to all 105 flashcards in this deck.
Unlock Deck
k this deck
30
Evaluate the double integral  <strong>Evaluate the double integral   dx dy, where R is the region under the curve xy = 1, above the x-axis, and to the right of the line x = 1.</strong> A)   B)   C)   D)  \infty  (integral diverges) E)    dx dy, where R is the region under the curve xy = 1, above the x-axis, and to the right of the line x = 1.

A)  <strong>Evaluate the double integral   dx dy, where R is the region under the curve xy = 1, above the x-axis, and to the right of the line x = 1.</strong> A)   B)   C)   D)  \infty  (integral diverges) E)
B)  <strong>Evaluate the double integral   dx dy, where R is the region under the curve xy = 1, above the x-axis, and to the right of the line x = 1.</strong> A)   B)   C)   D)  \infty  (integral diverges) E)
C)  <strong>Evaluate the double integral   dx dy, where R is the region under the curve xy = 1, above the x-axis, and to the right of the line x = 1.</strong> A)   B)   C)   D)  \infty  (integral diverges) E)
D) \infty (integral diverges)
E)  <strong>Evaluate the double integral   dx dy, where R is the region under the curve xy = 1, above the x-axis, and to the right of the line x = 1.</strong> A)   B)   C)   D)  \infty  (integral diverges) E)
Unlock Deck
Unlock for access to all 105 flashcards in this deck.
Unlock Deck
k this deck
31
Evaluate the double integral  <strong>Evaluate the double integral   dx dy, where S is the part of the first quadrant of the xy-plane lying above the line x = 2y.</strong> A)   B)   C)   D)  \infty  (integral diverges) E) 1  dx dy, where S is the part of the first quadrant of the xy-plane lying above the line x = 2y.

A)  <strong>Evaluate the double integral   dx dy, where S is the part of the first quadrant of the xy-plane lying above the line x = 2y.</strong> A)   B)   C)   D)  \infty  (integral diverges) E) 1
B)  <strong>Evaluate the double integral   dx dy, where S is the part of the first quadrant of the xy-plane lying above the line x = 2y.</strong> A)   B)   C)   D)  \infty  (integral diverges) E) 1
C)  <strong>Evaluate the double integral   dx dy, where S is the part of the first quadrant of the xy-plane lying above the line x = 2y.</strong> A)   B)   C)   D)  \infty  (integral diverges) E) 1
D) \infty (integral diverges)
E) 1
Unlock Deck
Unlock for access to all 105 flashcards in this deck.
Unlock Deck
k this deck
32
Evaluate  <strong>Evaluate   dx dy, where S is the semi-infinite strip 0  \le  x  \le  1, 0  \le  y <  \infty .</strong> A) 1 B)   C)   D)  \infty  (integral diverges) E) 2  dx dy, where S is the semi-infinite strip 0 \le x \le 1, 0 \le y < \infty .

A) 1
B)  <strong>Evaluate   dx dy, where S is the semi-infinite strip 0  \le  x  \le  1, 0  \le  y <  \infty .</strong> A) 1 B)   C)   D)  \infty  (integral diverges) E) 2
C)  <strong>Evaluate   dx dy, where S is the semi-infinite strip 0  \le  x  \le  1, 0  \le  y <  \infty .</strong> A) 1 B)   C)   D)  \infty  (integral diverges) E) 2
D) \infty (integral diverges)
E) 2
Unlock Deck
Unlock for access to all 105 flashcards in this deck.
Unlock Deck
k this deck
33
Evaluate  <strong>Evaluate   where T is the triangle with vertices (0, 0), (1, 1), and (1, 2).</strong> A) ln(2) B) 2 ln(2) C) 2 D)  \infty  (integral diverges) E)    where T is the triangle with vertices (0, 0), (1, 1), and (1, 2).

A) ln(2)
B) 2 ln(2)
C) 2
D) \infty (integral diverges)
E)  <strong>Evaluate   where T is the triangle with vertices (0, 0), (1, 1), and (1, 2).</strong> A) ln(2) B) 2 ln(2) C) 2 D)  \infty  (integral diverges) E)
Unlock Deck
Unlock for access to all 105 flashcards in this deck.
Unlock Deck
k this deck
34
Evaluate  <strong>Evaluate   where T is the triangle with vertices (0, 0), (1, 1), and (1, 2).</strong> A) ln(2) B) 2 ln(2) C) 2 D)  \infty  (integral diverges) E)    where T is the triangle with vertices (0, 0), (1, 1), and (1, 2).

A) ln(2)
B) 2 ln(2)
C) 2
D) \infty (integral diverges)
E)  <strong>Evaluate   where T is the triangle with vertices (0, 0), (1, 1), and (1, 2).</strong> A) ln(2) B) 2 ln(2) C) 2 D)  \infty  (integral diverges) E)
Unlock Deck
Unlock for access to all 105 flashcards in this deck.
Unlock Deck
k this deck
35
    dA, where T is the triangular region enclosed by the straight lines y = -x, y = 7x, and y = x + 6 is an improper integral.     dA, where T is the triangular region enclosed by the straight lines y = -x, y = 7x, and y = x + 6 is an improper integral. dA, where T is the triangular region enclosed by the straight lines y = -x, y = 7x, and y = x + 6 is an improper integral.
Unlock Deck
Unlock for access to all 105 flashcards in this deck.
Unlock Deck
k this deck
36
The improper double integral  <strong>The improper double integral     dA, where D is the planar region described by1  \le  x <  \infty , 0  \le  y  \le  x<sup>8</sup>, converges for all real numbers k such that</strong> A) k  \ge - 7 B) k > 5 C) k < 9 D) k <- 7 E) k  \le  5   <strong>The improper double integral     dA, where D is the planar region described by1  \le  x <  \infty , 0  \le  y  \le  x<sup>8</sup>, converges for all real numbers k such that</strong> A) k  \ge - 7 B) k > 5 C) k < 9 D) k <- 7 E) k  \le  5  dA, where D is the planar region described by1 \le x < \infty , 0 \le y \le x8, converges for all real numbers k such that

A) k \ge - 7
B) k > 5
C) k < 9
D) k <- 7
E) k \le 5
Unlock Deck
Unlock for access to all 105 flashcards in this deck.
Unlock Deck
k this deck
37
Find  <strong>Find   if R is the unit circular disk x<sup>2</sup> + y<sup>2</sup>  \le  9.</strong> A) 9 B) 18 C)   D) 18 \pi  E) 9 \pi   if R is the unit circular disk x2 + y2 \le 9.

A) 9
B) 18
C)  <strong>Find   if R is the unit circular disk x<sup>2</sup> + y<sup>2</sup>  \le  9.</strong> A) 9 B) 18 C)   D) 18 \pi  E) 9 \pi
D) 18 π\pi
E) 9 π\pi
Unlock Deck
Unlock for access to all 105 flashcards in this deck.
Unlock Deck
k this deck
38
Find the average value of x2 + y2 over the disk x2 + y2 \le 4.

A) 2
B)  <strong>Find the average value of x<sup>2</sup> + y<sup>2</sup> over the disk x<sup>2</sup> + y<sup>2</sup>  \le  4.</strong> A) 2 B)   C)   D) 4 E)
C)  <strong>Find the average value of x<sup>2</sup> + y<sup>2</sup> over the disk x<sup>2</sup> + y<sup>2</sup>  \le  4.</strong> A) 2 B)   C)   D) 4 E)
D) 4
E)  <strong>Find the average value of x<sup>2</sup> + y<sup>2</sup> over the disk x<sup>2</sup> + y<sup>2</sup>  \le  4.</strong> A) 2 B)   C)   D) 4 E)
Unlock Deck
Unlock for access to all 105 flashcards in this deck.
Unlock Deck
k this deck
39
Find <strong>Find   if R is the unit circular disk.</strong> A)   B)   C)   D)   E)   if R is the unit circular disk.

A) <strong>Find   if R is the unit circular disk.</strong> A)   B)   C)   D)   E)
B) <strong>Find   if R is the unit circular disk.</strong> A)   B)   C)   D)   E)
C) <strong>Find   if R is the unit circular disk.</strong> A)   B)   C)   D)   E)
D) <strong>Find   if R is the unit circular disk.</strong> A)   B)   C)   D)   E)
E) <strong>Find   if R is the unit circular disk.</strong> A)   B)   C)   D)   E)
Unlock Deck
Unlock for access to all 105 flashcards in this deck.
Unlock Deck
k this deck
40
Find <strong>Find   where R is the region in the first quadrant lying between the circles x<sup>2</sup> + y<sup>2</sup> = 1 and x<sup>2</sup> + y<sup>2</sup> = 4 and between the lines y = 0 and y = x.</strong> A)   ln 2 B)   ln 2 C)   ln 2 D)   ln 2 E)   ln 2 where R is the region in the first quadrant lying between the circles x2 + y2 = 1 and x2 + y2 = 4 and between the lines y = 0 and y = x.

A) <strong>Find   where R is the region in the first quadrant lying between the circles x<sup>2</sup> + y<sup>2</sup> = 1 and x<sup>2</sup> + y<sup>2</sup> = 4 and between the lines y = 0 and y = x.</strong> A)   ln 2 B)   ln 2 C)   ln 2 D)   ln 2 E)   ln 2 ln 2
B) <strong>Find   where R is the region in the first quadrant lying between the circles x<sup>2</sup> + y<sup>2</sup> = 1 and x<sup>2</sup> + y<sup>2</sup> = 4 and between the lines y = 0 and y = x.</strong> A)   ln 2 B)   ln 2 C)   ln 2 D)   ln 2 E)   ln 2 ln 2
C) <strong>Find   where R is the region in the first quadrant lying between the circles x<sup>2</sup> + y<sup>2</sup> = 1 and x<sup>2</sup> + y<sup>2</sup> = 4 and between the lines y = 0 and y = x.</strong> A)   ln 2 B)   ln 2 C)   ln 2 D)   ln 2 E)   ln 2 ln 2
D) <strong>Find   where R is the region in the first quadrant lying between the circles x<sup>2</sup> + y<sup>2</sup> = 1 and x<sup>2</sup> + y<sup>2</sup> = 4 and between the lines y = 0 and y = x.</strong> A)   ln 2 B)   ln 2 C)   ln 2 D)   ln 2 E)   ln 2 ln 2
E) <strong>Find   where R is the region in the first quadrant lying between the circles x<sup>2</sup> + y<sup>2</sup> = 1 and x<sup>2</sup> + y<sup>2</sup> = 4 and between the lines y = 0 and y = x.</strong> A)   ln 2 B)   ln 2 C)   ln 2 D)   ln 2 E)   ln 2 ln 2
Unlock Deck
Unlock for access to all 105 flashcards in this deck.
Unlock Deck
k this deck
41
Find the volume of the given solid by transforming to a double integral in polar coordinates.The solid is bounded by x2 + y2 = 36, z = 0, and z = x2 + y2.

A) 618 π\pi cubic units
B) 628 π\pi cubic units
C) 638 π\pi cubic units
D) 648 π\pi cubic units
E) 658 π\pi cubic units
Unlock Deck
Unlock for access to all 105 flashcards in this deck.
Unlock Deck
k this deck
42
Use polar coordinates to find the volume of the solid lying under the cone z = <strong>Use polar coordinates to find the volume of the solid lying under the cone z =   , above the plane z = 0, and inside the cylinder x<sup>2</sup> + y<sup>2</sup> = 2x.</strong> A)  cubic units B)  cubic units C)  cubic units D)  cubic units E)   cubic units , above the plane z = 0, and inside the cylinder x2 + y2 = 2x.

A)<strong>Use polar coordinates to find the volume of the solid lying under the cone z =   , above the plane z = 0, and inside the cylinder x<sup>2</sup> + y<sup>2</sup> = 2x.</strong> A)  cubic units B)  cubic units C)  cubic units D)  cubic units E)   cubic units cubic units
B) <strong>Use polar coordinates to find the volume of the solid lying under the cone z =   , above the plane z = 0, and inside the cylinder x<sup>2</sup> + y<sup>2</sup> = 2x.</strong> A)  cubic units B)  cubic units C)  cubic units D)  cubic units E)   cubic units cubic units
C) <strong>Use polar coordinates to find the volume of the solid lying under the cone z =   , above the plane z = 0, and inside the cylinder x<sup>2</sup> + y<sup>2</sup> = 2x.</strong> A)  cubic units B)  cubic units C)  cubic units D)  cubic units E)   cubic units cubic units
D) <strong>Use polar coordinates to find the volume of the solid lying under the cone z =   , above the plane z = 0, and inside the cylinder x<sup>2</sup> + y<sup>2</sup> = 2x.</strong> A)  cubic units B)  cubic units C)  cubic units D)  cubic units E)   cubic units cubic units
E) <strong>Use polar coordinates to find the volume of the solid lying under the cone z =   , above the plane z = 0, and inside the cylinder x<sup>2</sup> + y<sup>2</sup> = 2x.</strong> A)  cubic units B)  cubic units C)  cubic units D)  cubic units E)   cubic units cubic units
Unlock Deck
Unlock for access to all 105 flashcards in this deck.
Unlock Deck
k this deck
43
Find the volume remaining after a cylindrical hole of radius b is drilled through the centre of a ball of radius a > b.

A)  <strong>Find the volume remaining after a cylindrical hole of radius b is drilled through the centre of a ball of radius a > b.</strong> A)    \pi a   cubic units B)    \pi    cubic units C)    \pi    cubic units D)    \pi    cubic units E)    \pi    cubic units  π\pi a  <strong>Find the volume remaining after a cylindrical hole of radius b is drilled through the centre of a ball of radius a > b.</strong> A)    \pi a   cubic units B)    \pi    cubic units C)    \pi    cubic units D)    \pi    cubic units E)    \pi    cubic units  cubic units
B)  <strong>Find the volume remaining after a cylindrical hole of radius b is drilled through the centre of a ball of radius a > b.</strong> A)    \pi a   cubic units B)    \pi    cubic units C)    \pi    cubic units D)    \pi    cubic units E)    \pi    cubic units  π\pi  <strong>Find the volume remaining after a cylindrical hole of radius b is drilled through the centre of a ball of radius a > b.</strong> A)    \pi a   cubic units B)    \pi    cubic units C)    \pi    cubic units D)    \pi    cubic units E)    \pi    cubic units  cubic units
C)  <strong>Find the volume remaining after a cylindrical hole of radius b is drilled through the centre of a ball of radius a > b.</strong> A)    \pi a   cubic units B)    \pi    cubic units C)    \pi    cubic units D)    \pi    cubic units E)    \pi    cubic units  π\pi  <strong>Find the volume remaining after a cylindrical hole of radius b is drilled through the centre of a ball of radius a > b.</strong> A)    \pi a   cubic units B)    \pi    cubic units C)    \pi    cubic units D)    \pi    cubic units E)    \pi    cubic units  cubic units
D)  <strong>Find the volume remaining after a cylindrical hole of radius b is drilled through the centre of a ball of radius a > b.</strong> A)    \pi a   cubic units B)    \pi    cubic units C)    \pi    cubic units D)    \pi    cubic units E)    \pi    cubic units  π\pi  <strong>Find the volume remaining after a cylindrical hole of radius b is drilled through the centre of a ball of radius a > b.</strong> A)    \pi a   cubic units B)    \pi    cubic units C)    \pi    cubic units D)    \pi    cubic units E)    \pi    cubic units  cubic units
E)  <strong>Find the volume remaining after a cylindrical hole of radius b is drilled through the centre of a ball of radius a > b.</strong> A)    \pi a   cubic units B)    \pi    cubic units C)    \pi    cubic units D)    \pi    cubic units E)    \pi    cubic units  π\pi  <strong>Find the volume remaining after a cylindrical hole of radius b is drilled through the centre of a ball of radius a > b.</strong> A)    \pi a   cubic units B)    \pi    cubic units C)    \pi    cubic units D)    \pi    cubic units E)    \pi    cubic units  cubic units
Unlock Deck
Unlock for access to all 105 flashcards in this deck.
Unlock Deck
k this deck
44
Use polar coordinates to evaluate <strong>Use polar coordinates to evaluate   .</strong> A)   B)   C)   D)   E)   .

A) <strong>Use polar coordinates to evaluate   .</strong> A)   B)   C)   D)   E)
B) <strong>Use polar coordinates to evaluate   .</strong> A)   B)   C)   D)   E)
C) <strong>Use polar coordinates to evaluate   .</strong> A)   B)   C)   D)   E)
D) <strong>Use polar coordinates to evaluate   .</strong> A)   B)   C)   D)   E)
E) <strong>Use polar coordinates to evaluate   .</strong> A)   B)   C)   D)   E)
Unlock Deck
Unlock for access to all 105 flashcards in this deck.
Unlock Deck
k this deck
45
Expressed in polar coordinates, the area enclosed by a planar region D is equal to  Expressed in polar coordinates, the area enclosed by a planar region D is equal to   dr d \theta . dr d θ\theta .
Unlock Deck
Unlock for access to all 105 flashcards in this deck.
Unlock Deck
k this deck
46
Find  <strong>Find   dA, where C is the cardioid disk 0  \le  r  \le  1 + cos  \theta .</strong> A)   B)   C)   D)  \pi  E)    dA, where C is the cardioid disk 0 \le r \le 1 + cos θ\theta .

A)  <strong>Find   dA, where C is the cardioid disk 0  \le  r  \le  1 + cos  \theta .</strong> A)   B)   C)   D)  \pi  E)
B)  <strong>Find   dA, where C is the cardioid disk 0  \le  r  \le  1 + cos  \theta .</strong> A)   B)   C)   D)  \pi  E)
C)  <strong>Find   dA, where C is the cardioid disk 0  \le  r  \le  1 + cos  \theta .</strong> A)   B)   C)   D)  \pi  E)
D) π\pi
E)  <strong>Find   dA, where C is the cardioid disk 0  \le  r  \le  1 + cos  \theta .</strong> A)   B)   C)   D)  \pi  E)
Unlock Deck
Unlock for access to all 105 flashcards in this deck.
Unlock Deck
k this deck
47
Find the volume of the solid of revolution obtained by rotating the plane region bounded by the cardioid r = 1 + sin θ\theta about the y-axis.

A)  <strong>Find the volume of the solid of revolution obtained by rotating the plane region bounded by the cardioid r = 1 + sin  \theta  about the y-axis.</strong> A)   cubic units B)   cubic units C)   cubic units D)   cubic units E)    cubic units
B)  <strong>Find the volume of the solid of revolution obtained by rotating the plane region bounded by the cardioid r = 1 + sin  \theta  about the y-axis.</strong> A)   cubic units B)   cubic units C)   cubic units D)   cubic units E)    cubic units
C)  <strong>Find the volume of the solid of revolution obtained by rotating the plane region bounded by the cardioid r = 1 + sin  \theta  about the y-axis.</strong> A)   cubic units B)   cubic units C)   cubic units D)   cubic units E)    cubic units
D)  <strong>Find the volume of the solid of revolution obtained by rotating the plane region bounded by the cardioid r = 1 + sin  \theta  about the y-axis.</strong> A)   cubic units B)   cubic units C)   cubic units D)   cubic units E)    cubic units
E)  <strong>Find the volume of the solid of revolution obtained by rotating the plane region bounded by the cardioid r = 1 + sin  \theta  about the y-axis.</strong> A)   cubic units B)   cubic units C)   cubic units D)   cubic units E)
Unlock Deck
Unlock for access to all 105 flashcards in this deck.
Unlock Deck
k this deck
48
Evaluate the iterated integral  <strong>Evaluate the iterated integral   by first transforming it to an iterated integral in polar coordinates.</strong> A)   B)   C)   D)   E) 243 \pi   by first transforming it to an iterated integral in polar coordinates.

A)  <strong>Evaluate the iterated integral   by first transforming it to an iterated integral in polar coordinates.</strong> A)   B)   C)   D)   E) 243 \pi
B)  <strong>Evaluate the iterated integral   by first transforming it to an iterated integral in polar coordinates.</strong> A)   B)   C)   D)   E) 243 \pi
C)  <strong>Evaluate the iterated integral   by first transforming it to an iterated integral in polar coordinates.</strong> A)   B)   C)   D)   E) 243 \pi
D)  <strong>Evaluate the iterated integral   by first transforming it to an iterated integral in polar coordinates.</strong> A)   B)   C)   D)   E) 243 \pi
E) 243 π\pi
Unlock Deck
Unlock for access to all 105 flashcards in this deck.
Unlock Deck
k this deck
49
Evaluate the integral <strong>Evaluate the integral   using polar coordinates.</strong> A)   B)   C)   D)   E)   using polar coordinates.

A) <strong>Evaluate the integral   using polar coordinates.</strong> A)   B)   C)   D)   E)
B) <strong>Evaluate the integral   using polar coordinates.</strong> A)   B)   C)   D)   E)
C) <strong>Evaluate the integral   using polar coordinates.</strong> A)   B)   C)   D)   E)
D) <strong>Evaluate the integral   using polar coordinates.</strong> A)   B)   C)   D)   E)
E) <strong>Evaluate the integral   using polar coordinates.</strong> A)   B)   C)   D)   E)
Unlock Deck
Unlock for access to all 105 flashcards in this deck.
Unlock Deck
k this deck
50
Find  <strong>Find   dA, where R is the region outside the circle r = 1 and inside the cardioid r = 1 + cos  \theta .</strong> A)   B)   C)   D)   E)    dA, where R is the region outside the circle r = 1 and inside the cardioid r = 1 + cos θ\theta .

A)  <strong>Find   dA, where R is the region outside the circle r = 1 and inside the cardioid r = 1 + cos  \theta .</strong> A)   B)   C)   D)   E)
B)  <strong>Find   dA, where R is the region outside the circle r = 1 and inside the cardioid r = 1 + cos  \theta .</strong> A)   B)   C)   D)   E)
C)  <strong>Find   dA, where R is the region outside the circle r = 1 and inside the cardioid r = 1 + cos  \theta .</strong> A)   B)   C)   D)   E)
D)  <strong>Find   dA, where R is the region outside the circle r = 1 and inside the cardioid r = 1 + cos  \theta .</strong> A)   B)   C)   D)   E)
E)  <strong>Find   dA, where R is the region outside the circle r = 1 and inside the cardioid r = 1 + cos  \theta .</strong> A)   B)   C)   D)   E)
Unlock Deck
Unlock for access to all 105 flashcards in this deck.
Unlock Deck
k this deck
51
If I =  <strong>If I =   , then I =   , and so   =   , where R<sup>2</sup><sup> </sup> is the entire xy-plane. Evaluate this double integral by iterating it in polar coordinates and hence find the value of I.</strong> A) I =   B) I =  \pi  C) I =   D) I =   E) I = 2 \pi   , then I =  <strong>If I =   , then I =   , and so   =   , where R<sup>2</sup><sup> </sup> is the entire xy-plane. Evaluate this double integral by iterating it in polar coordinates and hence find the value of I.</strong> A) I =   B) I =  \pi  C) I =   D) I =   E) I = 2 \pi   , and so  <strong>If I =   , then I =   , and so   =   , where R<sup>2</sup><sup> </sup> is the entire xy-plane. Evaluate this double integral by iterating it in polar coordinates and hence find the value of I.</strong> A) I =   B) I =  \pi  C) I =   D) I =   E) I = 2 \pi   =  <strong>If I =   , then I =   , and so   =   , where R<sup>2</sup><sup> </sup> is the entire xy-plane. Evaluate this double integral by iterating it in polar coordinates and hence find the value of I.</strong> A) I =   B) I =  \pi  C) I =   D) I =   E) I = 2 \pi   , where R2 is the entire xy-plane. Evaluate this double integral by iterating it in polar coordinates and hence find the value of I.

A) I =  <strong>If I =   , then I =   , and so   =   , where R<sup>2</sup><sup> </sup> is the entire xy-plane. Evaluate this double integral by iterating it in polar coordinates and hence find the value of I.</strong> A) I =   B) I =  \pi  C) I =   D) I =   E) I = 2 \pi
B) I = π\pi
C) I =  <strong>If I =   , then I =   , and so   =   , where R<sup>2</sup><sup> </sup> is the entire xy-plane. Evaluate this double integral by iterating it in polar coordinates and hence find the value of I.</strong> A) I =   B) I =  \pi  C) I =   D) I =   E) I = 2 \pi
D) I =  <strong>If I =   , then I =   , and so   =   , where R<sup>2</sup><sup> </sup> is the entire xy-plane. Evaluate this double integral by iterating it in polar coordinates and hence find the value of I.</strong> A) I =   B) I =  \pi  C) I =   D) I =   E) I = 2 \pi
E) I = 2 π\pi
Unlock Deck
Unlock for access to all 105 flashcards in this deck.
Unlock Deck
k this deck
52
Use polar coordinates to find the volume of the solid enclosed by the surfaces z = 3  <strong>Use polar coordinates to find the volume of the solid enclosed by the surfaces z = 3   and   .</strong> A) 16  \pi  B)  \pi    C) 4  \pi  D) 8 \pi  E) 7  \pi   and  <strong>Use polar coordinates to find the volume of the solid enclosed by the surfaces z = 3   and   .</strong> A) 16  \pi  B)  \pi    C) 4  \pi  D) 8 \pi  E) 7  \pi   .

A) 16 π\pi
B) π\pi  <strong>Use polar coordinates to find the volume of the solid enclosed by the surfaces z = 3   and   .</strong> A) 16  \pi  B)  \pi    C) 4  \pi  D) 8 \pi  E) 7  \pi
C) 4 π\pi
D) 8 π\pi
E) 7 π\pi
Unlock Deck
Unlock for access to all 105 flashcards in this deck.
Unlock Deck
k this deck
53
Let R be the region in the first quadrant of the xy-plane bounded by the curves xy = 1 and xy = 4 and the lines y = x and y = 2x. Use a suitable coordinate transformation to evaluate <strong>Let R be the region in the first quadrant of the xy-plane bounded by the curves xy = 1 and xy = 4 and the lines y = x and y = 2x. Use a suitable coordinate transformation to evaluate   and hence find the area of R.</strong> A) 8 square units B) 4 ln(3) square units C) 5 ln(3) square units D) 3 ln(2) square units E) 16 square units and hence find the area of R.

A) 8 square units
B) 4 ln(3) square units
C) 5 ln(3) square units
D) 3 ln(2) square units
E) 16 square units
Unlock Deck
Unlock for access to all 105 flashcards in this deck.
Unlock Deck
k this deck
54
Use a suitable change of variables to evaluate <strong>Use a suitable change of variables to evaluate  </strong> A)   (1 + ln(2)) B)   (1 - ln(2)) C)   (1 + ln(2)) D)   (1 - ln(2)) E)   ln(2)

A) <strong>Use a suitable change of variables to evaluate  </strong> A)   (1 + ln(2)) B)   (1 - ln(2)) C)   (1 + ln(2)) D)   (1 - ln(2)) E)   ln(2) (1 + ln(2))
B) <strong>Use a suitable change of variables to evaluate  </strong> A)   (1 + ln(2)) B)   (1 - ln(2)) C)   (1 + ln(2)) D)   (1 - ln(2)) E)   ln(2) (1 - ln(2))
C) <strong>Use a suitable change of variables to evaluate  </strong> A)   (1 + ln(2)) B)   (1 - ln(2)) C)   (1 + ln(2)) D)   (1 - ln(2)) E)   ln(2) (1 + ln(2))
D) <strong>Use a suitable change of variables to evaluate  </strong> A)   (1 + ln(2)) B)   (1 - ln(2)) C)   (1 + ln(2)) D)   (1 - ln(2)) E)   ln(2) (1 - ln(2))
E) <strong>Use a suitable change of variables to evaluate  </strong> A)   (1 + ln(2)) B)   (1 - ln(2)) C)   (1 + ln(2)) D)   (1 - ln(2)) E)   ln(2) ln(2)
Unlock Deck
Unlock for access to all 105 flashcards in this deck.
Unlock Deck
k this deck
55
Use the transformation u = x + y, v = <strong>Use the transformation u = x + y, v =   to evaluate the double integral of f(x, y) =   over the triangular region bounded by the lines x + y = 1, x = 0, and y = 0.</strong> A)   B)   C)   D)   E)   to evaluate the double integral of f(x, y) = <strong>Use the transformation u = x + y, v =   to evaluate the double integral of f(x, y) =   over the triangular region bounded by the lines x + y = 1, x = 0, and y = 0.</strong> A)   B)   C)   D)   E)   over the triangular region bounded by the lines x + y = 1, x = 0, and y = 0.

A) <strong>Use the transformation u = x + y, v =   to evaluate the double integral of f(x, y) =   over the triangular region bounded by the lines x + y = 1, x = 0, and y = 0.</strong> A)   B)   C)   D)   E)
B) <strong>Use the transformation u = x + y, v =   to evaluate the double integral of f(x, y) =   over the triangular region bounded by the lines x + y = 1, x = 0, and y = 0.</strong> A)   B)   C)   D)   E)
C) <strong>Use the transformation u = x + y, v =   to evaluate the double integral of f(x, y) =   over the triangular region bounded by the lines x + y = 1, x = 0, and y = 0.</strong> A)   B)   C)   D)   E)
D) <strong>Use the transformation u = x + y, v =   to evaluate the double integral of f(x, y) =   over the triangular region bounded by the lines x + y = 1, x = 0, and y = 0.</strong> A)   B)   C)   D)   E)
E) <strong>Use the transformation u = x + y, v =   to evaluate the double integral of f(x, y) =   over the triangular region bounded by the lines x + y = 1, x = 0, and y = 0.</strong> A)   B)   C)   D)   E)
Unlock Deck
Unlock for access to all 105 flashcards in this deck.
Unlock Deck
k this deck
56
Evaluate  <strong>Evaluate   dV, where R is the rectangular box 0  \le  x  \le  1, 1  \le  y  \le  2, 1  \le  z  \le  2.</strong> A)   B)   C)   D)   E)    dV, where R is the rectangular box 0 \le x \le 1, 1 \le y \le 2, 1 \le z \le 2.

A)  <strong>Evaluate   dV, where R is the rectangular box 0  \le  x  \le  1, 1  \le  y  \le  2, 1  \le  z  \le  2.</strong> A)   B)   C)   D)   E)
B)  <strong>Evaluate   dV, where R is the rectangular box 0  \le  x  \le  1, 1  \le  y  \le  2, 1  \le  z  \le  2.</strong> A)   B)   C)   D)   E)
C)  <strong>Evaluate   dV, where R is the rectangular box 0  \le  x  \le  1, 1  \le  y  \le  2, 1  \le  z  \le  2.</strong> A)   B)   C)   D)   E)
D)  <strong>Evaluate   dV, where R is the rectangular box 0  \le  x  \le  1, 1  \le  y  \le  2, 1  \le  z  \le  2.</strong> A)   B)   C)   D)   E)
E)  <strong>Evaluate   dV, where R is the rectangular box 0  \le  x  \le  1, 1  \le  y  \le  2, 1  \le  z  \le  2.</strong> A)   B)   C)   D)   E)
Unlock Deck
Unlock for access to all 105 flashcards in this deck.
Unlock Deck
k this deck
57
Compute the integral <strong>Compute the integral   where R is the tetrahedral region bounded by the planes x = 0, y = 0, z = 0, and x + y + z = 4.</strong> A) 16 B) 8 C) 32 D) 24 E)   where R is the tetrahedral region bounded by the planes x = 0, y = 0, z = 0, and x + y + z = 4.

A) 16
B) 8
C) 32
D) 24
E) <strong>Compute the integral   where R is the tetrahedral region bounded by the planes x = 0, y = 0, z = 0, and x + y + z = 4.</strong> A) 16 B) 8 C) 32 D) 24 E)
Unlock Deck
Unlock for access to all 105 flashcards in this deck.
Unlock Deck
k this deck
58
Evaluate the integral  <strong>Evaluate the integral   dV, where R is the region defined by the inequalities0  \le  y  \le  1, 0  \le  z  \le  y, 0  \le  x  \le  z.</strong> A)   B) 2 C)   D)   E) 1  dV, where R is the region defined by the inequalities0 \le y \le 1, 0 \le z \le y, 0 \le x \le z.

A)  <strong>Evaluate the integral   dV, where R is the region defined by the inequalities0  \le  y  \le  1, 0  \le  z  \le  y, 0  \le  x  \le  z.</strong> A)   B) 2 C)   D)   E) 1
B) 2
C)  <strong>Evaluate the integral   dV, where R is the region defined by the inequalities0  \le  y  \le  1, 0  \le  z  \le  y, 0  \le  x  \le  z.</strong> A)   B) 2 C)   D)   E) 1
D)  <strong>Evaluate the integral   dV, where R is the region defined by the inequalities0  \le  y  \le  1, 0  \le  z  \le  y, 0  \le  x  \le  z.</strong> A)   B) 2 C)   D)   E) 1
E) 1
Unlock Deck
Unlock for access to all 105 flashcards in this deck.
Unlock Deck
k this deck
59
Evaluate the integral <strong>Evaluate the integral   dV, where R is the region in the first octant bounded by the four planes x = 1, y = x, z = 0, and z = y.</strong> A) 3 B) 2 C) 1 D) 4 E) 5 dV, where R is the region in the first octant bounded by the four planes x = 1, y = x, z = 0, and z = y.

A) 3
B) 2
C) 1
D) 4
E) 5
Unlock Deck
Unlock for access to all 105 flashcards in this deck.
Unlock Deck
k this deck
60
Evaluate the triple integral over the region <strong>Evaluate the triple integral over the region   where R is the finite region bounded by z = 0, y + z = 4, y = x<sup>2</sup>.</strong> A)   B)   C)   D)   E)   where R is the finite region bounded by z = 0, y + z = 4, y = x2.

A) <strong>Evaluate the triple integral over the region   where R is the finite region bounded by z = 0, y + z = 4, y = x<sup>2</sup>.</strong> A)   B)   C)   D)   E)
B) <strong>Evaluate the triple integral over the region   where R is the finite region bounded by z = 0, y + z = 4, y = x<sup>2</sup>.</strong> A)   B)   C)   D)   E)
C) <strong>Evaluate the triple integral over the region   where R is the finite region bounded by z = 0, y + z = 4, y = x<sup>2</sup>.</strong> A)   B)   C)   D)   E)
D) <strong>Evaluate the triple integral over the region   where R is the finite region bounded by z = 0, y + z = 4, y = x<sup>2</sup>.</strong> A)   B)   C)   D)   E)
E) <strong>Evaluate the triple integral over the region   where R is the finite region bounded by z = 0, y + z = 4, y = x<sup>2</sup>.</strong> A)   B)   C)   D)   E)
Unlock Deck
Unlock for access to all 105 flashcards in this deck.
Unlock Deck
k this deck
61
Express the iterated integral <strong>Express the iterated integral   as an equivalent integral in which the outermost integral is with respect to x and the innermost is with respect to y.</strong> A)   B)   C)   D)   E)   as an equivalent integral in which the outermost integral is with respect to x and the innermost is with respect to y.

A) <strong>Express the iterated integral   as an equivalent integral in which the outermost integral is with respect to x and the innermost is with respect to y.</strong> A)   B)   C)   D)   E)
B) <strong>Express the iterated integral   as an equivalent integral in which the outermost integral is with respect to x and the innermost is with respect to y.</strong> A)   B)   C)   D)   E)
C) <strong>Express the iterated integral   as an equivalent integral in which the outermost integral is with respect to x and the innermost is with respect to y.</strong> A)   B)   C)   D)   E)
D) <strong>Express the iterated integral   as an equivalent integral in which the outermost integral is with respect to x and the innermost is with respect to y.</strong> A)   B)   C)   D)   E)
E) <strong>Express the iterated integral   as an equivalent integral in which the outermost integral is with respect to x and the innermost is with respect to y.</strong> A)   B)   C)   D)   E)
Unlock Deck
Unlock for access to all 105 flashcards in this deck.
Unlock Deck
k this deck
62
Evaluate Evaluate   where E is the region in 3-space described by the inequalities0 ≤ x ≤ 2 - y - z, 0 ≤ z ≤ 2 - y, and 0 ≤ y ≤ 2. where E is the region in 3-space described by the inequalities0 ≤ x ≤ 2 - y - z, 0 ≤ z ≤ 2 - y, and 0 ≤ y ≤ 2.
Unlock Deck
Unlock for access to all 105 flashcards in this deck.
Unlock Deck
k this deck
63
Evaluate <strong>Evaluate   by completely reversing the order in which the integrals are performed.</strong> A)   +   B)   -   C)   +   D)   -   E)   -   by completely reversing the order in which the integrals are performed.

A) <strong>Evaluate   by completely reversing the order in which the integrals are performed.</strong> A)   +   B)   -   C)   +   D)   -   E)   -   + <strong>Evaluate   by completely reversing the order in which the integrals are performed.</strong> A)   +   B)   -   C)   +   D)   -   E)   -
B) <strong>Evaluate   by completely reversing the order in which the integrals are performed.</strong> A)   +   B)   -   C)   +   D)   -   E)   -   - <strong>Evaluate   by completely reversing the order in which the integrals are performed.</strong> A)   +   B)   -   C)   +   D)   -   E)   -
C) <strong>Evaluate   by completely reversing the order in which the integrals are performed.</strong> A)   +   B)   -   C)   +   D)   -   E)   -   + <strong>Evaluate   by completely reversing the order in which the integrals are performed.</strong> A)   +   B)   -   C)   +   D)   -   E)   -
D) <strong>Evaluate   by completely reversing the order in which the integrals are performed.</strong> A)   +   B)   -   C)   +   D)   -   E)   -   - <strong>Evaluate   by completely reversing the order in which the integrals are performed.</strong> A)   +   B)   -   C)   +   D)   -   E)   -
E) <strong>Evaluate   by completely reversing the order in which the integrals are performed.</strong> A)   +   B)   -   C)   +   D)   -   E)   -   - <strong>Evaluate   by completely reversing the order in which the integrals are performed.</strong> A)   +   B)   -   C)   +   D)   -   E)   -
Unlock Deck
Unlock for access to all 105 flashcards in this deck.
Unlock Deck
k this deck
64
Find the volume of the solid that lies below the surface z = 1 + <strong>Find the volume of the solid that lies below the surface z = 1 +   and above the region in the xy-plane bounded by the straight lines y = -x, y = x, and y = 1.</strong> A) V =   B) V =   C) V =   D) V =   E) V =     and above the region in the xy-plane bounded by the straight lines y = -x, y = x, and y = 1.

A) V = <strong>Find the volume of the solid that lies below the surface z = 1 +   and above the region in the xy-plane bounded by the straight lines y = -x, y = x, and y = 1.</strong> A) V =   B) V =   C) V =   D) V =   E) V =
B) V = <strong>Find the volume of the solid that lies below the surface z = 1 +   and above the region in the xy-plane bounded by the straight lines y = -x, y = x, and y = 1.</strong> A) V =   B) V =   C) V =   D) V =   E) V =
C) V = <strong>Find the volume of the solid that lies below the surface z = 1 +   and above the region in the xy-plane bounded by the straight lines y = -x, y = x, and y = 1.</strong> A) V =   B) V =   C) V =   D) V =   E) V =
D) V = <strong>Find the volume of the solid that lies below the surface z = 1 +   and above the region in the xy-plane bounded by the straight lines y = -x, y = x, and y = 1.</strong> A) V =   B) V =   C) V =   D) V =   E) V =
E) V = <strong>Find the volume of the solid that lies below the surface z = 1 +   and above the region in the xy-plane bounded by the straight lines y = -x, y = x, and y = 1.</strong> A) V =   B) V =   C) V =   D) V =   E) V =     <strong>Find the volume of the solid that lies below the surface z = 1 +   and above the region in the xy-plane bounded by the straight lines y = -x, y = x, and y = 1.</strong> A) V =   B) V =   C) V =   D) V =   E) V =
Unlock Deck
Unlock for access to all 105 flashcards in this deck.
Unlock Deck
k this deck
65
Use a triple integral to find the volume V of the solid inside the cylinder x2 + y2 = 16 and between the planes z = x - y - 2 and z = 6 + x - y.

A) 64 π\pi cubic units
B) 32 π\pi cubic units
C) 128 π\pi cubic units
D) 256 π\pi cubic units
E) 144 π\pi cubic units
Unlock Deck
Unlock for access to all 105 flashcards in this deck.
Unlock Deck
k this deck
66
Evaluate the iterated integral  <strong>Evaluate the iterated integral   by transforming it to cylindrical coordinates.</strong> A) 5 \pi  B) 4 \pi  C) 3 \pi  D) 2 \pi  E)  \pi   by transforming it to cylindrical coordinates.

A) 5 π\pi
B) 4 π\pi
C) 3 π\pi
D) 2 π\pi
E) π\pi
Unlock Deck
Unlock for access to all 105 flashcards in this deck.
Unlock Deck
k this deck
67
Evaluate  <strong>Evaluate   where E is the region in space enclosed by the sphere(x - 1)<sup>2</sup> + y<sup>2</sup> + z<sup>2</sup> = 3.</strong> A) 9  \pi  B) 12  \pi    C) 27 D) 36  \pi  E) 4  \pi     where E is the region in space enclosed by the sphere(x - 1)2 + y2 + z2 = 3.

A) 9 π\pi
B) 12 π\pi  <strong>Evaluate   where E is the region in space enclosed by the sphere(x - 1)<sup>2</sup> + y<sup>2</sup> + z<sup>2</sup> = 3.</strong> A) 9  \pi  B) 12  \pi    C) 27 D) 36  \pi  E) 4  \pi
C) 27
D) 36 π\pi
E) 4 π\pi  <strong>Evaluate   where E is the region in space enclosed by the sphere(x - 1)<sup>2</sup> + y<sup>2</sup> + z<sup>2</sup> = 3.</strong> A) 9  \pi  B) 12  \pi    C) 27 D) 36  \pi  E) 4  \pi
Unlock Deck
Unlock for access to all 105 flashcards in this deck.
Unlock Deck
k this deck
68
Evaluate the triple integral <strong>Evaluate the triple integral   where R is the first octant region abovez = x<sup>2</sup> + y<sup>2</sup> and below  </strong> A)   B)   C)   D)   E)   where R is the first octant region abovez = x2 + y2 and below <strong>Evaluate the triple integral   where R is the first octant region abovez = x<sup>2</sup> + y<sup>2</sup> and below  </strong> A)   B)   C)   D)   E)

A) <strong>Evaluate the triple integral   where R is the first octant region abovez = x<sup>2</sup> + y<sup>2</sup> and below  </strong> A)   B)   C)   D)   E)
B) <strong>Evaluate the triple integral   where R is the first octant region abovez = x<sup>2</sup> + y<sup>2</sup> and below  </strong> A)   B)   C)   D)   E)
C) <strong>Evaluate the triple integral   where R is the first octant region abovez = x<sup>2</sup> + y<sup>2</sup> and below  </strong> A)   B)   C)   D)   E)
D) <strong>Evaluate the triple integral   where R is the first octant region abovez = x<sup>2</sup> + y<sup>2</sup> and below  </strong> A)   B)   C)   D)   E)
E) <strong>Evaluate the triple integral   where R is the first octant region abovez = x<sup>2</sup> + y<sup>2</sup> and below  </strong> A)   B)   C)   D)   E)
Unlock Deck
Unlock for access to all 105 flashcards in this deck.
Unlock Deck
k this deck
69
Use a triple integral iterated in spherical coordinates to find the volume of the region lying above the cone  <strong>Use a triple integral iterated in spherical coordinates to find the volume of the region lying above the cone   and inside the sphere x<sup>2</sup> + y<sup>2</sup> + z<sup>2</sup> = a<sup>2</sup>.</strong> A)    \pi   cubic units B)    \pi    cubic units C)    \pi    cubic units D)    \pi   cubic units E)    \pi    cubic units  and inside the sphere x2 + y2 + z2 = a2.

A)  <strong>Use a triple integral iterated in spherical coordinates to find the volume of the region lying above the cone   and inside the sphere x<sup>2</sup> + y<sup>2</sup> + z<sup>2</sup> = a<sup>2</sup>.</strong> A)    \pi   cubic units B)    \pi    cubic units C)    \pi    cubic units D)    \pi   cubic units E)    \pi    cubic units  π\pi  <strong>Use a triple integral iterated in spherical coordinates to find the volume of the region lying above the cone   and inside the sphere x<sup>2</sup> + y<sup>2</sup> + z<sup>2</sup> = a<sup>2</sup>.</strong> A)    \pi   cubic units B)    \pi    cubic units C)    \pi    cubic units D)    \pi   cubic units E)    \pi    cubic units  cubic units
B)  <strong>Use a triple integral iterated in spherical coordinates to find the volume of the region lying above the cone   and inside the sphere x<sup>2</sup> + y<sup>2</sup> + z<sup>2</sup> = a<sup>2</sup>.</strong> A)    \pi   cubic units B)    \pi    cubic units C)    \pi    cubic units D)    \pi   cubic units E)    \pi    cubic units  π\pi  <strong>Use a triple integral iterated in spherical coordinates to find the volume of the region lying above the cone   and inside the sphere x<sup>2</sup> + y<sup>2</sup> + z<sup>2</sup> = a<sup>2</sup>.</strong> A)    \pi   cubic units B)    \pi    cubic units C)    \pi    cubic units D)    \pi   cubic units E)    \pi    cubic units  cubic units
C)  <strong>Use a triple integral iterated in spherical coordinates to find the volume of the region lying above the cone   and inside the sphere x<sup>2</sup> + y<sup>2</sup> + z<sup>2</sup> = a<sup>2</sup>.</strong> A)    \pi   cubic units B)    \pi    cubic units C)    \pi    cubic units D)    \pi   cubic units E)    \pi    cubic units  π\pi  <strong>Use a triple integral iterated in spherical coordinates to find the volume of the region lying above the cone   and inside the sphere x<sup>2</sup> + y<sup>2</sup> + z<sup>2</sup> = a<sup>2</sup>.</strong> A)    \pi   cubic units B)    \pi    cubic units C)    \pi    cubic units D)    \pi   cubic units E)    \pi    cubic units  cubic units
D)  <strong>Use a triple integral iterated in spherical coordinates to find the volume of the region lying above the cone   and inside the sphere x<sup>2</sup> + y<sup>2</sup> + z<sup>2</sup> = a<sup>2</sup>.</strong> A)    \pi   cubic units B)    \pi    cubic units C)    \pi    cubic units D)    \pi   cubic units E)    \pi    cubic units  π\pi  <strong>Use a triple integral iterated in spherical coordinates to find the volume of the region lying above the cone   and inside the sphere x<sup>2</sup> + y<sup>2</sup> + z<sup>2</sup> = a<sup>2</sup>.</strong> A)    \pi   cubic units B)    \pi    cubic units C)    \pi    cubic units D)    \pi   cubic units E)    \pi    cubic units  cubic units
E)  <strong>Use a triple integral iterated in spherical coordinates to find the volume of the region lying above the cone   and inside the sphere x<sup>2</sup> + y<sup>2</sup> + z<sup>2</sup> = a<sup>2</sup>.</strong> A)    \pi   cubic units B)    \pi    cubic units C)    \pi    cubic units D)    \pi   cubic units E)    \pi    cubic units  π\pi  <strong>Use a triple integral iterated in spherical coordinates to find the volume of the region lying above the cone   and inside the sphere x<sup>2</sup> + y<sup>2</sup> + z<sup>2</sup> = a<sup>2</sup>.</strong> A)    \pi   cubic units B)    \pi    cubic units C)    \pi    cubic units D)    \pi   cubic units E)    \pi    cubic units  cubic units
Unlock Deck
Unlock for access to all 105 flashcards in this deck.
Unlock Deck
k this deck
70
Evaluate  <strong>Evaluate   dV, where C is the right circular cylinder consisting of all points (x, y, z) satisfying x<sup>2</sup> + y<sup>2</sup>  \le  3 and -1  \le  z  \le 2.</strong> A) 3<sup>3/2</sup> B) 3<sup>-(3/2) </sup> \pi  C) 3<sup>5/2</sup> D) 3<sup>3/2 </sup> \pi  E) 27 \pi   dV, where C is the right circular cylinder consisting of all points (x, y, z) satisfying x2 + y2 \le 3 and -1 \le z \le 2.

A) 33/2
B) 3-(3/2) π\pi
C) 35/2
D) 33/2 π\pi
E) 27 π\pi
Unlock Deck
Unlock for access to all 105 flashcards in this deck.
Unlock Deck
k this deck
71
The plane x + y + z = 1 slices the ball x2 + y2 + z2 \le 1 into two pieces. Find the volume of the smaller piece. (Hint: Replace the plane by a horizontal plane at the same distance from the origin.)

A) π\pi  <strong>The plane x + y + z = 1 slices the ball x<sup>2</sup> + y<sup>2</sup> + z<sup>2</sup>  \le  1 into two pieces. Find the volume of the smaller piece. (Hint: Replace the plane by a horizontal plane at the same distance from the origin.)</strong> A)  \pi    cubic units B)  \pi    cubic units C)  \pi    cubic units D)  \pi    cubic units E)  \pi    cubic units  cubic units
B) π\pi  <strong>The plane x + y + z = 1 slices the ball x<sup>2</sup> + y<sup>2</sup> + z<sup>2</sup>  \le  1 into two pieces. Find the volume of the smaller piece. (Hint: Replace the plane by a horizontal plane at the same distance from the origin.)</strong> A)  \pi    cubic units B)  \pi    cubic units C)  \pi    cubic units D)  \pi    cubic units E)  \pi    cubic units  cubic units
C) π\pi  <strong>The plane x + y + z = 1 slices the ball x<sup>2</sup> + y<sup>2</sup> + z<sup>2</sup>  \le  1 into two pieces. Find the volume of the smaller piece. (Hint: Replace the plane by a horizontal plane at the same distance from the origin.)</strong> A)  \pi    cubic units B)  \pi    cubic units C)  \pi    cubic units D)  \pi    cubic units E)  \pi    cubic units  cubic units
D) π\pi  <strong>The plane x + y + z = 1 slices the ball x<sup>2</sup> + y<sup>2</sup> + z<sup>2</sup>  \le  1 into two pieces. Find the volume of the smaller piece. (Hint: Replace the plane by a horizontal plane at the same distance from the origin.)</strong> A)  \pi    cubic units B)  \pi    cubic units C)  \pi    cubic units D)  \pi    cubic units E)  \pi    cubic units  cubic units
E) π\pi  <strong>The plane x + y + z = 1 slices the ball x<sup>2</sup> + y<sup>2</sup> + z<sup>2</sup>  \le  1 into two pieces. Find the volume of the smaller piece. (Hint: Replace the plane by a horizontal plane at the same distance from the origin.)</strong> A)  \pi    cubic units B)  \pi    cubic units C)  \pi    cubic units D)  \pi    cubic units E)  \pi    cubic units  cubic units
Unlock Deck
Unlock for access to all 105 flashcards in this deck.
Unlock Deck
k this deck
72
Use the transformation x = au, y = bv, z = cw (where a, b, c are positive constants) to evaluate the triple integral of z over the first-octant region bounded by the coordinate planes and the ellipsoid  <strong>Use the transformation x = au, y = bv, z = cw (where a, b, c are positive constants) to evaluate the triple integral of z over the first-octant region bounded by the coordinate planes and the ellipsoid  </strong> A)       B)       C)      a c D)       bc E)     \pi  ab

A)  <strong>Use the transformation x = au, y = bv, z = cw (where a, b, c are positive constants) to evaluate the triple integral of z over the first-octant region bounded by the coordinate planes and the ellipsoid  </strong> A)       B)       C)      a c D)       bc E)     \pi  ab     <strong>Use the transformation x = au, y = bv, z = cw (where a, b, c are positive constants) to evaluate the triple integral of z over the first-octant region bounded by the coordinate planes and the ellipsoid  </strong> A)       B)       C)      a c D)       bc E)     \pi  ab     <strong>Use the transformation x = au, y = bv, z = cw (where a, b, c are positive constants) to evaluate the triple integral of z over the first-octant region bounded by the coordinate planes and the ellipsoid  </strong> A)       B)       C)      a c D)       bc E)     \pi  ab
B)  <strong>Use the transformation x = au, y = bv, z = cw (where a, b, c are positive constants) to evaluate the triple integral of z over the first-octant region bounded by the coordinate planes and the ellipsoid  </strong> A)       B)       C)      a c D)       bc E)     \pi  ab     <strong>Use the transformation x = au, y = bv, z = cw (where a, b, c are positive constants) to evaluate the triple integral of z over the first-octant region bounded by the coordinate planes and the ellipsoid  </strong> A)       B)       C)      a c D)       bc E)     \pi  ab     <strong>Use the transformation x = au, y = bv, z = cw (where a, b, c are positive constants) to evaluate the triple integral of z over the first-octant region bounded by the coordinate planes and the ellipsoid  </strong> A)       B)       C)      a c D)       bc E)     \pi  ab
C)  <strong>Use the transformation x = au, y = bv, z = cw (where a, b, c are positive constants) to evaluate the triple integral of z over the first-octant region bounded by the coordinate planes and the ellipsoid  </strong> A)       B)       C)      a c D)       bc E)     \pi  ab     <strong>Use the transformation x = au, y = bv, z = cw (where a, b, c are positive constants) to evaluate the triple integral of z over the first-octant region bounded by the coordinate planes and the ellipsoid  </strong> A)       B)       C)      a c D)       bc E)     \pi  ab    a <strong>Use the transformation x = au, y = bv, z = cw (where a, b, c are positive constants) to evaluate the triple integral of z over the first-octant region bounded by the coordinate planes and the ellipsoid  </strong> A)       B)       C)      a c D)       bc E)     \pi  ab    c
D)  <strong>Use the transformation x = au, y = bv, z = cw (where a, b, c are positive constants) to evaluate the triple integral of z over the first-octant region bounded by the coordinate planes and the ellipsoid  </strong> A)       B)       C)      a c D)       bc E)     \pi  ab     <strong>Use the transformation x = au, y = bv, z = cw (where a, b, c are positive constants) to evaluate the triple integral of z over the first-octant region bounded by the coordinate planes and the ellipsoid  </strong> A)       B)       C)      a c D)       bc E)     \pi  ab     <strong>Use the transformation x = au, y = bv, z = cw (where a, b, c are positive constants) to evaluate the triple integral of z over the first-octant region bounded by the coordinate planes and the ellipsoid  </strong> A)       B)       C)      a c D)       bc E)     \pi  ab    bc
E)  <strong>Use the transformation x = au, y = bv, z = cw (where a, b, c are positive constants) to evaluate the triple integral of z over the first-octant region bounded by the coordinate planes and the ellipsoid  </strong> A)       B)       C)      a c D)       bc E)     \pi  ab    π\pi ab  <strong>Use the transformation x = au, y = bv, z = cw (where a, b, c are positive constants) to evaluate the triple integral of z over the first-octant region bounded by the coordinate planes and the ellipsoid  </strong> A)       B)       C)      a c D)       bc E)     \pi  ab
Unlock Deck
Unlock for access to all 105 flashcards in this deck.
Unlock Deck
k this deck
73
Evaluate the iterated integral  <strong>Evaluate the iterated integral   by transforming it to cylindrical coordinates.</strong> A) 2 B) 2  \pi  C)   D)   E) 0  by transforming it to cylindrical coordinates.

A) 2
B) 2 π\pi
C)  <strong>Evaluate the iterated integral   by transforming it to cylindrical coordinates.</strong> A) 2 B) 2  \pi  C)   D)   E) 0
D)  <strong>Evaluate the iterated integral   by transforming it to cylindrical coordinates.</strong> A) 2 B) 2  \pi  C)   D)   E) 0
E) 0
Unlock Deck
Unlock for access to all 105 flashcards in this deck.
Unlock Deck
k this deck
74
Evaluate  <strong>Evaluate   dV, a > 0, where R is the right circular cylinder consisting of all points (x, y, z) satisfying x<sup>2</sup> + y<sup>2</sup>  \le b, b > 0 and -3  \le  z  \le  5 by using cylindrical coordinates.</strong> A) 4   ln   B) 8   ln   C) 4  \pi  ln   D) 8  \pi  ln   E) 2  \pi  ln    dV, a > 0, where R is the right circular cylinder consisting of all points (x, y, z) satisfying x2 + y2 \le b, b > 0 and -3 \le z \le 5 by using cylindrical coordinates.

A) 4  <strong>Evaluate   dV, a > 0, where R is the right circular cylinder consisting of all points (x, y, z) satisfying x<sup>2</sup> + y<sup>2</sup>  \le b, b > 0 and -3  \le  z  \le  5 by using cylindrical coordinates.</strong> A) 4   ln   B) 8   ln   C) 4  \pi  ln   D) 8  \pi  ln   E) 2  \pi  ln    ln  <strong>Evaluate   dV, a > 0, where R is the right circular cylinder consisting of all points (x, y, z) satisfying x<sup>2</sup> + y<sup>2</sup>  \le b, b > 0 and -3  \le  z  \le  5 by using cylindrical coordinates.</strong> A) 4   ln   B) 8   ln   C) 4  \pi  ln   D) 8  \pi  ln   E) 2  \pi  ln
B) 8  <strong>Evaluate   dV, a > 0, where R is the right circular cylinder consisting of all points (x, y, z) satisfying x<sup>2</sup> + y<sup>2</sup>  \le b, b > 0 and -3  \le  z  \le  5 by using cylindrical coordinates.</strong> A) 4   ln   B) 8   ln   C) 4  \pi  ln   D) 8  \pi  ln   E) 2  \pi  ln    ln  <strong>Evaluate   dV, a > 0, where R is the right circular cylinder consisting of all points (x, y, z) satisfying x<sup>2</sup> + y<sup>2</sup>  \le b, b > 0 and -3  \le  z  \le  5 by using cylindrical coordinates.</strong> A) 4   ln   B) 8   ln   C) 4  \pi  ln   D) 8  \pi  ln   E) 2  \pi  ln
C) 4 π\pi ln  <strong>Evaluate   dV, a > 0, where R is the right circular cylinder consisting of all points (x, y, z) satisfying x<sup>2</sup> + y<sup>2</sup>  \le b, b > 0 and -3  \le  z  \le  5 by using cylindrical coordinates.</strong> A) 4   ln   B) 8   ln   C) 4  \pi  ln   D) 8  \pi  ln   E) 2  \pi  ln
D) 8 π\pi ln  <strong>Evaluate   dV, a > 0, where R is the right circular cylinder consisting of all points (x, y, z) satisfying x<sup>2</sup> + y<sup>2</sup>  \le b, b > 0 and -3  \le  z  \le  5 by using cylindrical coordinates.</strong> A) 4   ln   B) 8   ln   C) 4  \pi  ln   D) 8  \pi  ln   E) 2  \pi  ln
E) 2 π\pi ln  <strong>Evaluate   dV, a > 0, where R is the right circular cylinder consisting of all points (x, y, z) satisfying x<sup>2</sup> + y<sup>2</sup>  \le b, b > 0 and -3  \le  z  \le  5 by using cylindrical coordinates.</strong> A) 4   ln   B) 8   ln   C) 4  \pi  ln   D) 8  \pi  ln   E) 2  \pi  ln
Unlock Deck
Unlock for access to all 105 flashcards in this deck.
Unlock Deck
k this deck
75
A solid S has the shape of the region E enclosed by the sphere R = 3cos( <strong>A solid S has the shape of the region E enclosed by the sphere R = 3cos(  ). Evaluate   dV . Note: R ,  ,  \theta  are the spherical coordinates.</strong> A) 12 B) 3 \pi  C) 6 D) 9 E)    ). Evaluate  <strong>A solid S has the shape of the region E enclosed by the sphere R = 3cos(  ). Evaluate   dV . Note: R ,  ,  \theta  are the spherical coordinates.</strong> A) 12 B) 3 \pi  C) 6 D) 9 E)    dV .
Note: R ,11ee7b54_ddf4_a0dd_ae82_79cd253742f9_TB9661_11 , θ\theta are the spherical coordinates.

A) 12
B) 3 π\pi
C) 6
D) 9
E)  <strong>A solid S has the shape of the region E enclosed by the sphere R = 3cos(  ). Evaluate   dV . Note: R ,  ,  \theta  are the spherical coordinates.</strong> A) 12 B) 3 \pi  C) 6 D) 9 E)
Unlock Deck
Unlock for access to all 105 flashcards in this deck.
Unlock Deck
k this deck
76
Use cylindrical coordinates to compute Use cylindrical coordinates to compute   dV where E is the region bounded by the paraboloid z = 6x<sup>2</sup> + 4y<sup>2</sup> and the cylinder z = 6 - 2y<sup>2</sup>. dV where E is the region bounded by the paraboloid z = 6x2 + 4y2 and the cylinder z = 6 - 2y2.
Unlock Deck
Unlock for access to all 105 flashcards in this deck.
Unlock Deck
k this deck
77
Evaluate <strong>Evaluate   where E is the region enclosed by the ellipsoid   +  +   = 1, a, b, c > 0. Use the transformation x = au, y = bv, z = cw.</strong> A)   ab   B)   ab   C)   ab   D)   ab   E)   ab   where E is the region enclosed by the ellipsoid <strong>Evaluate   where E is the region enclosed by the ellipsoid   +  +   = 1, a, b, c > 0. Use the transformation x = au, y = bv, z = cw.</strong> A)   ab   B)   ab   C)   ab   D)   ab   E)   ab   +<strong>Evaluate   where E is the region enclosed by the ellipsoid   +  +   = 1, a, b, c > 0. Use the transformation x = au, y = bv, z = cw.</strong> A)   ab   B)   ab   C)   ab   D)   ab   E)   ab   + <strong>Evaluate   where E is the region enclosed by the ellipsoid   +  +   = 1, a, b, c > 0. Use the transformation x = au, y = bv, z = cw.</strong> A)   ab   B)   ab   C)   ab   D)   ab   E)   ab   = 1, a, b, c > 0. Use the transformation x = au, y = bv, z = cw.

A) <strong>Evaluate   where E is the region enclosed by the ellipsoid   +  +   = 1, a, b, c > 0. Use the transformation x = au, y = bv, z = cw.</strong> A)   ab   B)   ab   C)   ab   D)   ab   E)   ab   ab <strong>Evaluate   where E is the region enclosed by the ellipsoid   +  +   = 1, a, b, c > 0. Use the transformation x = au, y = bv, z = cw.</strong> A)   ab   B)   ab   C)   ab   D)   ab   E)   ab
B) <strong>Evaluate   where E is the region enclosed by the ellipsoid   +  +   = 1, a, b, c > 0. Use the transformation x = au, y = bv, z = cw.</strong> A)   ab   B)   ab   C)   ab   D)   ab   E)   ab   ab <strong>Evaluate   where E is the region enclosed by the ellipsoid   +  +   = 1, a, b, c > 0. Use the transformation x = au, y = bv, z = cw.</strong> A)   ab   B)   ab   C)   ab   D)   ab   E)   ab
C) <strong>Evaluate   where E is the region enclosed by the ellipsoid   +  +   = 1, a, b, c > 0. Use the transformation x = au, y = bv, z = cw.</strong> A)   ab   B)   ab   C)   ab   D)   ab   E)   ab   ab <strong>Evaluate   where E is the region enclosed by the ellipsoid   +  +   = 1, a, b, c > 0. Use the transformation x = au, y = bv, z = cw.</strong> A)   ab   B)   ab   C)   ab   D)   ab   E)   ab
D) <strong>Evaluate   where E is the region enclosed by the ellipsoid   +  +   = 1, a, b, c > 0. Use the transformation x = au, y = bv, z = cw.</strong> A)   ab   B)   ab   C)   ab   D)   ab   E)   ab   ab <strong>Evaluate   where E is the region enclosed by the ellipsoid   +  +   = 1, a, b, c > 0. Use the transformation x = au, y = bv, z = cw.</strong> A)   ab   B)   ab   C)   ab   D)   ab   E)   ab
E) <strong>Evaluate   where E is the region enclosed by the ellipsoid   +  +   = 1, a, b, c > 0. Use the transformation x = au, y = bv, z = cw.</strong> A)   ab   B)   ab   C)   ab   D)   ab   E)   ab   ab <strong>Evaluate   where E is the region enclosed by the ellipsoid   +  +   = 1, a, b, c > 0. Use the transformation x = au, y = bv, z = cw.</strong> A)   ab   B)   ab   C)   ab   D)   ab   E)   ab
Unlock Deck
Unlock for access to all 105 flashcards in this deck.
Unlock Deck
k this deck
78
Let J =  <strong>Let J =   where E is the region enclosed by the paraboloids z = 2(   +   ) and   . Express J in cylindrical coordinates [r,  \theta , z]. Do not evaluate.</strong> A)   B)   C)   D)   E)    where E is the region enclosed by the paraboloids z = 2(  <strong>Let J =   where E is the region enclosed by the paraboloids z = 2(   +   ) and   . Express J in cylindrical coordinates [r,  \theta , z]. Do not evaluate.</strong> A)   B)   C)   D)   E)    +  <strong>Let J =   where E is the region enclosed by the paraboloids z = 2(   +   ) and   . Express J in cylindrical coordinates [r,  \theta , z]. Do not evaluate.</strong> A)   B)   C)   D)   E)    ) and  <strong>Let J =   where E is the region enclosed by the paraboloids z = 2(   +   ) and   . Express J in cylindrical coordinates [r,  \theta , z]. Do not evaluate.</strong> A)   B)   C)   D)   E)    . Express J in cylindrical coordinates [r, θ\theta , z]. Do not evaluate.

A)  <strong>Let J =   where E is the region enclosed by the paraboloids z = 2(   +   ) and   . Express J in cylindrical coordinates [r,  \theta , z]. Do not evaluate.</strong> A)   B)   C)   D)   E)
B)  <strong>Let J =   where E is the region enclosed by the paraboloids z = 2(   +   ) and   . Express J in cylindrical coordinates [r,  \theta , z]. Do not evaluate.</strong> A)   B)   C)   D)   E)
C)  <strong>Let J =   where E is the region enclosed by the paraboloids z = 2(   +   ) and   . Express J in cylindrical coordinates [r,  \theta , z]. Do not evaluate.</strong> A)   B)   C)   D)   E)
D)  <strong>Let J =   where E is the region enclosed by the paraboloids z = 2(   +   ) and   . Express J in cylindrical coordinates [r,  \theta , z]. Do not evaluate.</strong> A)   B)   C)   D)   E)
E)  <strong>Let J =   where E is the region enclosed by the paraboloids z = 2(   +   ) and   . Express J in cylindrical coordinates [r,  \theta , z]. Do not evaluate.</strong> A)   B)   C)   D)   E)
Unlock Deck
Unlock for access to all 105 flashcards in this deck.
Unlock Deck
k this deck
79
Evaluate  <strong>Evaluate   , where R is the region x<sup>2</sup> + y<sup>2</sup> + z<sup>2</sup>  \le  4,    \le  z<sup>2</sup>  \le  3(x<sup>2</sup> + y<sup>2</sup>), z  \le 0.(Hint: Use spherical coordinates.)</strong> A) 8 \pi  B) 2 \pi  C) 16 \pi  D) 4 \pi  E) 32 \pi   , where R is the region x2 + y2 + z2 \le 4,  <strong>Evaluate   , where R is the region x<sup>2</sup> + y<sup>2</sup> + z<sup>2</sup>  \le  4,    \le  z<sup>2</sup>  \le  3(x<sup>2</sup> + y<sup>2</sup>), z  \le 0.(Hint: Use spherical coordinates.)</strong> A) 8 \pi  B) 2 \pi  C) 16 \pi  D) 4 \pi  E) 32 \pi   \le z2 \le 3(x2 + y2), z \le 0.(Hint: Use spherical coordinates.)

A) 8 π\pi
B) 2 π\pi
C) 16 π\pi
D) 4 π\pi
E) 32 π\pi
Unlock Deck
Unlock for access to all 105 flashcards in this deck.
Unlock Deck
k this deck
80
Evaluate  <strong>Evaluate   dV, where B is the ball x<sup>2</sup> + y<sup>2</sup> + z<sup>2</sup>  \le  a<sup>2</sup>, a > 0.</strong> A) 4 \pi    B) 2 \pi    C) 8 \pi    D) 4 \pi    E) 8 \pi     dV, where B is the ball x2 + y2 + z2 \le a2, a > 0.

A) 4 π\pi  <strong>Evaluate   dV, where B is the ball x<sup>2</sup> + y<sup>2</sup> + z<sup>2</sup>  \le  a<sup>2</sup>, a > 0.</strong> A) 4 \pi    B) 2 \pi    C) 8 \pi    D) 4 \pi    E) 8 \pi
B) 2 π\pi  <strong>Evaluate   dV, where B is the ball x<sup>2</sup> + y<sup>2</sup> + z<sup>2</sup>  \le  a<sup>2</sup>, a > 0.</strong> A) 4 \pi    B) 2 \pi    C) 8 \pi    D) 4 \pi    E) 8 \pi
C) 8 π\pi  <strong>Evaluate   dV, where B is the ball x<sup>2</sup> + y<sup>2</sup> + z<sup>2</sup>  \le  a<sup>2</sup>, a > 0.</strong> A) 4 \pi    B) 2 \pi    C) 8 \pi    D) 4 \pi    E) 8 \pi
D) 4 π\pi  <strong>Evaluate   dV, where B is the ball x<sup>2</sup> + y<sup>2</sup> + z<sup>2</sup>  \le  a<sup>2</sup>, a > 0.</strong> A) 4 \pi    B) 2 \pi    C) 8 \pi    D) 4 \pi    E) 8 \pi
E) 8 π\pi  <strong>Evaluate   dV, where B is the ball x<sup>2</sup> + y<sup>2</sup> + z<sup>2</sup>  \le  a<sup>2</sup>, a > 0.</strong> A) 4 \pi    B) 2 \pi    C) 8 \pi    D) 4 \pi    E) 8 \pi
Unlock Deck
Unlock for access to all 105 flashcards in this deck.
Unlock Deck
k this deck
locked card icon
Unlock Deck
Unlock for access to all 105 flashcards in this deck.