Deck 13: Temperature and the Ideal Gas

Full screen (f)
exit full mode
Question
If the temperature changes by 36F36^{\circ} \mathrm{F} , then what is the change in temperature in Celsius?

A) 26C26^{\circ} \mathrm{C}
B) 40C40^{\circ} \mathrm{C}
C) 15C15^{\circ} \mathrm{C}
D) 32C32^{\circ} \mathrm{C}
E) 20C20^{\circ} \mathrm{C}
Use Space or
up arrow
down arrow
to flip the card.
Question
If the temperature of a room is 62F62^{\circ} \mathrm{F} , then what is the temperature of the room in Kelvin?

A) 312.0 K312.0 \mathrm{~K}
B) 300.0 K300.0 \mathrm{~K}
C) 291.7 K291.7 \mathrm{~K}
D) 289.8 K289.8 \mathrm{~K}
E) 307.8 K307.8 \mathrm{~K}
Question
The temperature of a room is 300 K300 \mathrm{~K} . What is the temperature in Fahrenheit?

A) 85.2F85.2^{\circ} \mathrm{F}
B) 78.5F78.5^{\circ} \mathrm{F}
C) 74.2F74.2^{\circ} \mathrm{F}
D) 70.1F70.1^{\circ} \mathrm{F}
E) 80.3F80.3^{\circ} \mathrm{F}
Question
Abrass rod is 25.0 cm25.0 \mathrm{~cm} long at a temperature of 20.0C20.0^{\circ} \mathrm{C} . The coefficient of linear expansion of brass is 19.0×19.0 \times 106/C10^{-6} /{ }^{\circ} \mathrm{C} . If the temperature changes to 25C25^{\circ} \mathrm{C} , then the increase in length of the brass rod is

A) 2.38×105 m2.38 \times 10^{-5} \mathrm{~m} .
B) 3.03×105 m3.03 \times 10^{-5} \mathrm{~m} .
C) 4.01×105 m4.01 \times 10^{-5} \mathrm{~m} .
D) 1.65×105 m1.65 \times 10^{-5} \mathrm{~m} .
E) 3.72×105 m3.72 \times 10^{-5} \mathrm{~m} .
Question
An aluminum rod is 20.0 cm20.0 \mathrm{~cm} in length, has a diameter of 10.0 mm10.0 \mathrm{~mm} and is at a temperature of 20C20^{\circ} \mathrm{C} . The coefficient of linear expansion of aluminum is 23.0×106/C23.0 \times 10^{-6} /{ }^{\circ} \mathrm{C} . If the temperature changes to 50C50^{\circ} \mathrm{C} , then the increase in diameter of the aluminum rod is

A) 5.6×103 mm5.6 \times 10^{-3} \mathrm{~mm}
B) 6.0×103 mm6.0 \times 10^{-3} \mathrm{~mm} .
C) 4.9×103 mm4.9 \times 10^{-3} \mathrm{~mm}
D) 4.0×103 mm4.0 \times 10^{-3} \mathrm{~mm} .
E) 6.9×103 mm6.9 \times 10^{-3} \mathrm{~mm}
Question
A 3.00 cm×5.00 cm3.00 \mathrm{~cm} \times 5.00 \mathrm{~cm} rectangular piece of copper is at a temperature of 10.0C10.0^{\circ} \mathrm{C} . The coefficient of linearexpansion of copper is 17.0×106/C 17.0 \times 10^{-6} /{ }^{\circ} \mathrm{C} . If the temperature of the copper rectangle increases by 2.00C 2.00^{\circ} \mathrm{C} , thenwhat is its change in area?

A) 1.02×103 cm21.02 \times 10^{-3} \mathrm{~cm}^{2}
B) 0.550×103 cm20.550 \times 10^{-3} \mathrm{~cm}^{2}
C) 2.44×103 cm22.44 \times 10^{-3} \mathrm{~cm}^{2}
D) 1.95×103 cm21.95 \times 10^{-3} \mathrm{~cm}^{2}
E) 0.830×103 cm20.830 \times 10^{-3} \mathrm{~cm}^{2}
Question
A 40.0 liter gas tank is filled to the brim with gasoline when the temperature is 5.00C5.00^{\circ} \mathrm{C} . Gasoline has a coefficient of volume expansion of 950×106/C950 \times 10^{-6} /{ }^{\circ} \mathrm{C} . If the gas tank is moved into the sun of a hot summer day, the temperature of the gas tank is increased to 60.0C60.0^{\circ} \mathrm{C} . What is the volume of gasoline that overflows the tank (ignore the expansion of the gas tank)?

A) 1.55 liters
B) 3.11 liters
C) 2.67 liters
D) 2.09 liters
E) 3.95 liters
Question
A 10.0 liter water bottle is filled to the brim with water when the temperature is 5.00C5.00^{\circ} \mathrm{C} . The bottle is sealed after it is completely filled with water. Water has a coefficient of volume expansion of 207×106/C207 \times 10^{-6} /{ }^{\circ} \mathrm{C} and a bulk modulus of 2.20×109 N/m22.20 \times 10^{9} \mathrm{~N} / \mathrm{m}^{2} . If the temperature of the water tank is increased to 30.0C30.0^{\circ} \mathrm{C} , what is the increase in pressure of the water (ignore the expansion of the bottle)?

A) 2.73×107 N/m22.73 \times 10^{7} \mathrm{~N} / \mathrm{m}^{2}
B) 1.75×107 N/m21.75 \times 10^{7} \mathrm{~N} / \mathrm{m}^{2}
C) 1.14×107 N/m21.14 \times 10^{7} \mathrm{~N} / \mathrm{m}^{2}
D) 2.01×107 N/m22.01 \times 10^{7} \mathrm{~N} / \mathrm{m}^{2}
E) 1.01×107 N/m21.01 \times 10^{7} \mathrm{~N} / \mathrm{m}^{2}
Question
The temperature of a copper cube is increased by 35.0C35.0^{\circ} \mathrm{C} . The linear coefficient of thermal expansion is 17.0 ×106/C \times 10^{-6} /{ }^{\circ} \mathrm{C} . The fractional change in volume is

A) 2.67×1032.67 \times 10^{-3} .
B) 1.79×1031.79 \times 10^{-3} .
C) 2.33×1032.33 \times 10^{-3} .
D) 2.00×1032.00 \times 10^{-3} .
E) 3.00×1033.00 \times 10^{-3} .
Question
A copper plate has a hole with a diameter of 2.50 cm2.50 \mathrm{~cm} . A copper shaft with a diameter of 2.501 cm2.501 \mathrm{~cm} is to be inserted into the hole. If the linear coefficient of thermal expansion for copper is 17.0×106/C17.0 \times 10^{-6} /{ }^{\circ} \mathrm{C} , then what decrease in temperature of the copper shaft is required for the shaft to just fit inside the hole?

A) 33.3C33.3^{\circ} \mathrm{C}
B) 39.5C39.5^{\circ} \mathrm{C}
C) 30.1C30.1^{\circ} \mathrm{C}
D) 23.5C23.5^{\circ} \mathrm{C}
E) 26.4C26.4^{\circ} \mathrm{C}
Question
A brass plate measures 30.0 cm 30.0 \mathrm{~cm} by 40.0 cm 40.0 \mathrm{~cm} . The coefficient of linear thermal expansion is 19.0×106/C 19.0 \times 10^{-6 /{ }^{\circ} }\mathrm{C} \text {. } If the temperature of the plate is increased by 10.0 K10.0 \mathrm{~K} , then what is the increase in the area of the plate?

A) 0.555%0.555 \%
B) 0.404 cm20.404 \mathrm{~cm}^{2}
C) 0.456 cm20.456 \mathrm{~cm}^{2}
D) 0.502 cm20.502 \mathrm{~cm}^{2}
E) 0.350 cm20.350 \mathrm{~cm}^{2}
Question
One mole of carbon- 12 has a mass of 12.00 grams. What is the mass of a 12C{ }^{12} \mathrm{C} atom?

A) 3.000×1026 kg3.000 \times 10^{-26} \mathrm{~kg}
B) 1.244×1026 kg1.244 \times 10^{-26} \mathrm{~kg}
C) 2.440×1026 kg2.440 \times 10^{-26} \mathrm{~kg}
D) 1.993×1026 kg1.993 \times 10^{-26} \mathrm{~kg}
E) 2.032×1026 kg2.032 \times 10^{-26} \mathrm{~kg}
Question
A sample of water has a mass of 10.0 grams. What is the number of molecules of water in the sample? (H=(\mathrm{H}= 1u,O=16u1 \mathrm{u}, \mathrm{O}=16 \mathrm{u} , and 1u=1.66×1027 kg1 \mathrm{u}=1.66 \times 10^{-27} \mathrm{~kg} .)

A) 2.00×10232.00 \times 10^{23}
B) 3.35×10233.35 \times 1023
C) 4.25×10234.25 \times 1023
D) 1.99×10231.99 \times 10^{23}
E) 2.56×10232.56 \times 10^{23}
Question
A sample of CO2\mathrm{CO}_{2} has a mass of 50.0 grams. What is number of molecules of carbon dioxide in the sample? ( C=12.0u,O=16.0u\mathrm{C}=12.0 \mathrm{u}, \mathrm{O}=16.0 \mathrm{u} , and 1u=1.66×1027 kg1 \mathrm{u}=1.66 \times 10^{-27} \mathrm{~kg} .)

A) 6.85×10236.85 \times 10^{23}
B) 4.95×10234.95 \times 1023
C) 5.66×10235.66 \times 1023
D) 4.02×10234.02 \times 1023
E) 6.02×10236.02 \times 10^{23}
Question
An ideal gas is at a pressure of 2.0 atmospheres and a temperature of 35C35^{\circ} \mathrm{C} . What is the molar density?

A) 60 mol/m360 \mathrm{~mol} / \mathrm{m}^{3}
B) 70 mol/m370 \mathrm{~mol} / \mathrm{m}^{3}
C) 79 mol/m379 \mathrm{~mol} / \mathrm{m}^{3}
D) 84 mol/m384 \mathrm{~mol} / \mathrm{m}^{3}
E) 67 mol/m367 \mathrm{~mol} / \mathrm{m}^{3}
Question
An ideal gas composed of helium atoms is at a pressure of 2.00 atmospheres and a temperature of 35.0C35.0^{\circ} \mathrm{C} . What is the mass density? (He=4.00u)(\mathrm{He}=4.00 \mathrm{u})

A) 0.276 kg/m30.276 \mathrm{~kg} / \mathrm{m}^{3}
B) 0.534 kg/m30.534 \mathrm{~kg} / \mathrm{m}^{3}
C) 0.488 kg/m30.488 \mathrm{~kg} / \mathrm{m}^{3}
D) 0.316 kg/m30.316 \mathrm{~kg} / \mathrm{m}^{3}
E) 0.400 kg/m30.400 \mathrm{~kg} / \mathrm{m}^{3}
Question
An ideal gas composed of a mixture of oxygen and nitrogen is at a pressure of 1.50 atmospheres and a temperature of 25.0C25.0^{\circ} \mathrm{C} . What is the molar density?

A) 40.0 mol/m340.0 \mathrm{~mol} / \mathrm{m}^{3}
B) 55.5 mol/m355.5 \mathrm{~mol} / \mathrm{m}^{3}
C) 79.3 mol/m379.3 \mathrm{~mol} / \mathrm{m}^{3}
D) 47.6 mol/m347.6 \mathrm{~mol} / \mathrm{m}^{3}
E) 61.3 mol/m361.3 \mathrm{~mol} / \mathrm{m}^{3}
Question
One mole of an ideal gas has a volume of 0.0224 m30.0224 \mathrm{~m}^{3} and a pressure of 101.3×103 Pa101.3 \times 10^{3} \mathrm{~Pa} . What is the absolute temperature of the gas?

A) 352 K352 \mathrm{~K}
B) 346 K346 \mathrm{~K}
C) 273 K273 \mathrm{~K}
D) 376 K376 \mathrm{~K}
E) 325 K325 \mathrm{~K}
Question
A sample of an ideal gas has a volume of 0.0100 m30.0100 \mathrm{~m}^{3} , a pressure of 100×103 Pa100 \times 10^{3} \mathrm{~Pa} , and a temperature of 300 K\mathrm{K} . What is the number of moles in the sample of gas?

A) 0.330
B) 0.502
C) 0.375
D) 0.302
E) 0.401
Question
A sample of an ideal gas has a volume of 0.00100 m30.00100 \mathrm{~m}^{3} , a pressure of 4.50 atmospheres and 2.00×10232.00 \times 1023 particles. What is the temperature of the gas?

A) 165 K165 \mathrm{~K}
B) 173 K173 \mathrm{~K}
C) 154 K154 \mathrm{~K}
D) 194 K194 \mathrm{~K}
E) 186 K186 \mathrm{~K}
Question
ideal gas has a pressure of 2.5 atm2.5 \mathrm{~atm} , a volume of 1.0 L1.0 \mathrm{~L} at a temperature of 30C30^{\circ} \mathrm{C} . How many molecules are there in the gas?

A) 2.3×10232.3 \times 1023
B) 6.1×10236.1 \times 1023
C) 6.1×10226.1 \times 1022
D) 2.4×10232.4 \times 10^{23}
Question
An sample of helium occupies 44.8 L44.8 \mathrm{~L} at standard temperature and pressure (0C\left(0^{\circ} \mathrm{C}\right. and 1 atm)\left.1 \mathrm{~atm}\right) . What is the mass of the sample? The atomic mass of helium is 4.00u4.00 \mathrm{u} .

A) 4.00 g4.00 \mathrm{~g}
B) 16.0 g16.0 \mathrm{~g}
C) 8.00 g8.00 \mathrm{~g}
D) 2.00 g2.00 \mathrm{~g}
Question
One mole of an ideal gas with a volume of 4.00 liters and a temperature of 0C0^{\circ} \mathrm{C} is mixed with one mole of an ideal gas with a volume of 2.00 liters and a temperature of 100C100^{\circ} \mathrm{C} . The volume of the mixture is 6 liters. What is the number density of the mixture?

A) 3.56×1026 m33.56 \times 10^{26} \mathrm{~m}^{-3}
B) 2.66×1026 m32.66 \times 10^{26} \mathrm{~m}^{-3}
C) 3.21×1026 m33.21 \times 10^{26} \mathrm{~m}^{-3}
D) 1.75×1026 m31.75 \times 10^{26} \mathrm{~m}^{-3}
E) 2.01×1026 m32.01 \times 10^{26} \mathrm{~m}^{-3}
Question
Two moles of an ideal gas with a volume of 4.00 liters and a temperature of 0C0^{\circ} \mathrm{C} are mixed with one mole of an ideal gas with a volume of 3.00 liters and a temperature of 100C100^{\circ} \mathrm{C} . The volume of the mixture is 5.00 liters. What is the number density of the mixture?

A) 3.61×1026 m33.61 \times 10^{26} \mathrm{~m}^{-3}
B) 1.98×1026 m31.98 \times 10^{26} \mathrm{~m}^{-3}
C) 2.02×1026 m32.02 \times 10^{26} \mathrm{~m}^{-3}
D) 4.00×1026 m34.00 \times 10^{26} \mathrm{~m}^{-3}
E) 2.56×1026 m32.56 \times 10^{26} \mathrm{~m}^{-3}
Question
An ideal gas is at a temperature of 30C30^{\circ} \mathrm{C} and a pressure of 2.00 atmospheres. What is the number of particles per unit volume of the gas?

A) 6.23×1025 m36.23 \times 10^{25} \mathrm{~m}^{-3}
B) 5.98×1025 m35.98 \times 10^{25} \mathrm{~m}^{-3}
C) 4.85×1025 m34.85 \times 10^{25} \mathrm{~m}^{-3}
D) 5.15×1025 m35.15 \times 10^{25} \mathrm{~m}^{-3}
E) 6.02×1025 m36.02 \times 10^{25} \mathrm{~m}^{-3}
Question
An ideal gas is at a temperature of 60C60^{\circ} \mathrm{C} and a pressure of 1.50 atmospheres. What is the volume per particle of the gas?

A) 5.00×1026 m35.00 \times 10-26 \mathrm{~m}^{3}
B) 3.98×1026 m33.98 \times 10-26 \mathrm{~m}^{3}
C) 2.75×1026 m32.75 \times 10^{-26} \mathrm{~m}^{3}
D) 3.02×1026 m33.02 \times 10^{-26} \mathrm{~m}^{3}
E) 4.25×1026 m34.25 \times 10-26 \mathrm{~m}^{3}
Question
An ideal gas is at a temperature of 40C40^{\circ} \mathrm{C} and a pressure of 2.00 atmospheres. If the diameter of an N2\mathrm{N}_{2} molecule is 0.300 nm0.300 \mathrm{~nm} , then what is the mean free path of the N2\mathrm{N}_{2} molecule in the gas?

A) 6.02×108 m6.02 \times 10^{-8} \mathrm{~m}
B) 5.33×108 m5.33 \times 10^{-8} \mathrm{~m}
C) 4.75×108 m4.75 \times 10^{-8} \mathrm{~m}
D) 5.00×108 m5.00 \times 10^{-8} \mathrm{~m}
E) 4.01×108 m4.01 \times 10^{-8} \mathrm{~m}
Question
What is the average distance between air molecules at standard temperature and pressure (0C\left(0^{\circ} \mathrm{C}\right. and 1 atm)\left.1 \mathrm{~atm}\right) ?

A) 2.07 nm2.07 \mathrm{~nm}
B) 3.34 nm3.34 \mathrm{~nm}
C) 0.00 nm0.00 \mathrm{~nm}
D) 2.03 nm2.03 \mathrm{~nm}
Question
At what approximate temperature would the rms speed of H2\mathrm{H}_{2} molecules equal the Earth's escape speed (11,200 m/s)(11,200 \mathrm{~m} / \mathrm{s}) ?

A) 108 K10^{8} \mathrm{~K}
B) 102 K102 \mathrm{~K}
C) 106 K106 \mathrm{~K}
D) 104 K104 \mathrm{~K}
Question
What is the average kinetic energy per particle in 1.00 mole of an ideal gas at a pressure of 1.50 atmospheres and a volume of 2.00 liters?

A) 8.24×1022 J8.24 \times 10-22 \mathrm{~J}
B) 6.02×1022 J6.02 \times 10-22 \mathrm{~J}
C) 6.67×1022 J6.67 \times 10-22 \mathrm{~J}
D) 5.35×1022 J5.35 \times 10^{-22} \mathrm{~J}
E) 7.57×1022 J7.57 \times 10-22 \mathrm{~J}
Question
What is the average kinetic energy per particle in 1.00 mole of an ideal gas at a pressure of 1.50 atmospheres and a temperature of 20C20^{\circ} \mathrm{C} ?

A) 6.03×1021 J6.03 \times 10-21 \mathrm{~J}
B) 5.05×1021 J5.05 \times 10-21 \mathrm{~J}
C) 4.75×1021 J4.75 \times 10-21 \mathrm{~J}
D) 6.67×1021 J6.67 \times 10^{-21} \mathrm{~J}
E) 6.07×1021 J6.07 \times 10^{-21} \mathrm{~J}
Question
The total kinetic energy in one mole of an ideal gas is 4,000 J4,000 \mathrm{~J} . What is the average kinetic energy of an individual particle in the ideal gas?

A) 6.64×1021 J6.64 \times 10^{-21} \mathrm{~J}
B) 4.86×1021 J4.86 \times 10^{-21} \mathrm{~J}
C) 5.03×1021 J5.03 \times 10^{-21} \mathrm{~J}
D) 4.04×1021 J4.04 \times 10^{-21} \mathrm{~J}
E) 3.78×1021 J3.78 \times 10^{-21} \mathrm{~J}
Question
A container of volume 2.00 liters contains 2.00 moles of an ideal gas at a pressure of 1.50 atmospheres. What is the average kinetic energy per particle in the gas?

A) 3.78×1022 J3.78 \times 10-22 \mathrm{~J}
B) 3.96×1022 J3.96 \times 10-22 \mathrm{~J}
C) 1.98×1022 J1.98 \times 10^{-22} \mathrm{~J}
D) 2.83×1022 J2.83 \times 10-22 \mathrm{~J}
E) 2.52×1022 J2.52 \times 10-22 \mathrm{~J}
Question
If the root mean square velocity of the particles in a gas is 450 m/s450 \mathrm{~m} / \mathrm{s} , and a particle collides with another particle every 2.0×1092.0 \times 10^{-9} seconds on average, then the mean free path is

A) 9.0×107 m9.0 \times 10^{-7} \mathrm{~m} .
B) 6.0×107 m6.0 \times 10^{-7} \mathrm{~m} .
C) 6.9×107 m6.9 \times 10^{-7} \mathrm{~m} .
D) 85×107 m85 \times 10^{-7} \mathrm{~m} .
E) 7.5×107 m7.5 \times 10^{-7} \mathrm{~m} .
Question
The mean free path of a molecule is 2.25×107 m2.25 \times 10^{-7} \mathrm{~m} in an ideal gas at standard temperature and pressure (0C\left(0^{\circ} \mathrm{C}\right. and 1 atm)1 \mathrm{~atm}) . What is the mean free path if the diameter of the molecule is doubled?

A) 0.56×107 m0.56 \times 10^{-7} \mathrm{~m}
B) 0.45×107 m0.45 \times 10^{-7} \mathrm{~m}
C) 0.75×107 m0.75 \times 10^{-7} \mathrm{~m}
D) 1.13×107 m1.13 \times 10^{-7} \mathrm{~m}
E) 0.23×107 m0.23 \times 10^{-7} \mathrm{~m}
Question
The mean free path of a molecule is 2.25×107 m2.25 \times 10^{-7} \mathrm{~m} in an ideal gas at standard temperature and pressure (0C\left(0^{\circ} \mathrm{C}\right. and 1 atm1 \mathrm{~atm} ). What is the mean free path if the diameter of the molecule and the temperature of the gas are both doubled?

A) 1.13×107 m1.13 \times 10^{-7} \mathrm{~m}
B) 2.25×107 m2.25 \times 10^{-7} \mathrm{~m}
C) 3.00×107 m3.00 \times 10^{-7} \mathrm{~m}
D) 3.75×107 m3.75 \times 10^{-7} \mathrm{~m}
E) 0.75×107 m0.75 \times 10^{-7} \mathrm{~m}
Question
The mean free path of a molecule is 2.25×107 m2.25 \times 10^{-7} \mathrm{~m} in an ideal gas at standard temperature and pressure (0C\left(0^{\circ} \mathrm{C}\right. and 1 atm)1 \mathrm{~atm}) . What is the mean free path if the pressure of the gas is doubled but the temperature is constant?

A) 2.25×107 m2.25 \times 10^{-7} \mathrm{~m}
B) 3.38×107 m3.38 \times 10^{-7} \mathrm{~m}
C) 1.13×107 m1.13 \times 10^{-7} \mathrm{~m}
D) 0.75×107 m0.75 \times 10^{-7} \mathrm{~m}
E) 3.75×107 m3.75 \times 10^{-7} \mathrm{~m}
Question
The mean free path of a molecule is 2.25×107 m2.25 \times 10^{-7} \mathrm{~m} in an ideal gas at standard temperature and pressure (0C\left(0^{\circ} \mathrm{C}\right. and 1 atm)1 \mathrm{~atm}) . What is the mean free path if the pressure of the gas is doubled and the temperature is tripled?

A) 0.75×107 m0.75 \times 10^{-7} \mathrm{~m}
B) 3.38×107 m3.38 \times 10^{-7} \mathrm{~m}
C) 3.75×107 m3.75 \times 10^{-7} \mathrm{~m}
D) 2.25×107 m2.25 \times 10^{-7} \mathrm{~m}
E) 1.13×107 m1.13 \times 10^{-7} \mathrm{~m}
Question
The reaction rate of a chemical reaction doubles when the temperature increases from 10C10^{\circ} \mathrm{C} to 50C50^{\circ} \mathrm{C} . What is the activation energy?

A) 3.85×1020 J3.85 \times 10^{-20} \mathrm{~J}
B) 2.19×1020 J2.19 \times 10^{-20} \mathrm{~J}
C) 1.76×1020 J1.76 \times 10^{-20} \mathrm{~J}
D) 2.98×1020 J2.98 \times 10^{-20} \mathrm{~J}
E) 3.33×1020 J3.33 \times 10^{-20} \mathrm{~J}
Question
What is the activation energy of a chemical reaction if the reaction rate triples when the temperature goes from 10C10^{\circ} \mathrm{C} to 30C30^{\circ} \mathrm{C} ?

A) 6.0×1020 J6.0 \times 10^{-20} \mathrm{~J}
B) 7.0×1020 J7.0 \times 10^{-20} \mathrm{~J}
C) 6.5×1020 J6.5 \times 10^{-20} \mathrm{~J}
D) 5.5×1020 J5.5 \times 10^{-20} \mathrm{~J}
E) 7.5×1020 J7.5 \times 10^{-20} \mathrm{~J}
Question
The diffusion constant for oxygen through water is 1.0×109 m2/s1.0 \times 10^{-9} \mathrm{~m}^{2} / \mathrm{s} . What is the time for an oxygen molecule to diffuse 1 cm1 \mathrm{~cm} ?

A) 5.0×104sec5.0 \times 10^{4} \mathrm{sec}
B) 6.0×104sec6.0 \times 10^{4} \mathrm{sec}
C) 2.0×104sec2.0 \times 10^{4} \mathrm{sec}
D) 4.0×104sec4.0 \times 10^{4} \mathrm{sec}
E) 3.0×104sec3.0 \times 10^{4} \mathrm{sec}
Question
The diffusion constant for oxygen diffusing through tissue is 1.0×1011 m2/s1.0 \times 10^{-11} \mathrm{~m} 2 / \mathrm{s} . In a certain sample oxygen diffuses through the tissue at a rate of 2.0×106 kg/s2.0 \times 10^{-6} \mathrm{~kg} / \mathrm{s} . If the thickness of the tissue is doubled, then what is the rate of oxygen flow through the tissue?

A) 0.6×106 kg/s0.6 \times 10^{-6} \mathrm{~kg} / \mathrm{s}
B) 0.4×106 kg/s0.4 \times 10^{-6} \mathrm{~kg} / \mathrm{s}
C) 1.2×106 kg/s1.2 \times 10^{-6} \mathrm{~kg} / \mathrm{s}
D) 1.0×106 kg/s1.0 \times 10^{-6} \mathrm{~kg} / \mathrm{s}
E) 1.5×106 kg/s1.5 \times 10^{-6} \mathrm{~kg} / \mathrm{s}
Question
What are the dimensions of the diffusion constant?

A) m2/s\mathrm{m}^{2} / \mathrm{s}
B) m/s2\mathrm{m} / \mathrm{s}^{2}
C) m3/s2\mathrm{m}^{3 / \mathrm{s}^{2}}
D) m/s3\mathrm{m} / \mathrm{s} 3
E) m3/s\mathrm{m}^{3 / \mathrm{s}}
Question
The density of copper at 293 K293 \mathrm{~K} is 8,940 kg/m38,940 \mathrm{~kg} / \mathrm{m}^{3} and its linear expansion coefficient is 17.0×106 K117.0 \times 10^{-6} \mathrm{~K}^{-1} . Consider a hot cube of copper that is 1.0 cm1.0 \mathrm{~cm} on a side when its temperature is 1.356 K1.356 \mathrm{~K} . What is the cube's mass?

A) 8.78 g8.78 \mathrm{~g}
B) 8.80 g8.80 \mathrm{~g}
C) 8.48 g8.48 \mathrm{~g}
D) 8.94 g8.94 \mathrm{~g}
E) 8.38 g8.38 \mathrm{~g}
Question

147.5ml147.5 \mathrm{ml} of ethyl alcohol (coefficient of volume expansion β=1,120×106 K1\beta=1,120 \times 10^{-6} \mathrm{~K}^{-1} ), at a temperature of 273.1 K\mathrm{K} , is poured into a 150.0ml150.0 \mathrm{ml} glass beaker (whose coefficient of volume expansion is negligible by comparison). To what temperature does the beaker have to be warmed for it to be completely full (i.e., for the volume of the alcohol to reach 150.0ml)150.0 \mathrm{ml}) ?

A) 288.0 K288.0 \mathrm{~K}
B) 283.1 K283.1 \mathrm{~K}
C) 278.1 K278.1 \mathrm{~K}
D) 288.2 K288.2 \mathrm{~K}

Question
A 50.00ml50.00 \mathrm{ml} sample of mercury at room temperature (293.0 K)(293.0 \mathrm{~K}) is cooled. What is the volume of the sample when the mercury reaches 273.0 K273.0 \mathrm{~K} ? The coefficient of volume expansion of mercury is 182.0×106 K1182.0 \times 10^{-6} \mathrm{~K}^{-1} .

A) 49.82ml49.82 \mathrm{ml}
B) 49.96ml49.96 \mathrm{ml}
C) 49.94ml49.94 \mathrm{ml}
D) 48.18ml48.18 \mathrm{ml}
E) 49.39ml49.39 \mathrm{ml}
Question
A glass thermometer using a thin column of ethyl alcohol at room temperature (293.0 K)(293.0 \mathrm{~K}) is cooled. When the temperature reaches 273.0 K273.0 \mathrm{~K} the column of alcohol is 15.50 cm15.50 \mathrm{~cm} high. How tall was it when the temperature was 293.0 K293.0 \mathrm{~K} ? The coefficient of volume expansion of ethyl alcohol is 1,120×106 K11,120 \times 10^{-6} \mathrm{~K}^{-1} .

A) 15.85 cm15.85 \mathrm{~cm}
B) Cannot answer without knowing the diameter of the column
C) 15.68 cm15.68 \mathrm{~cm}
D) 15.62 cm15.62 \mathrm{~cm}
Question
What is the mass of exactly 1 million helium atoms? The atomic mass of helium is 4.00u4.00 \mathrm{u} .

A) 6.6×1021 kg6.6 \times 10^{-21} \mathrm{~kg}
B) 6.0×1017 kg6.0 \times 10^{-17} \mathrm{~kg}
C) 6.6×1018 kg6.6 \times 10^{-18} \mathrm{~kg}
D) 6.0×1020 kg6.0 \times 10^{-20} \mathrm{~kg}
Question
The mass of 6 million molecules of a diatomic gas is 5.1×1019 kg5.1 \times 10-19 \mathrm{~kg} . What is the atomic mass of the element in this gas?

A) 5.10u5.10 \mathrm{u}
B) 2.55u2.55 \mathrm{u}
C) 25.6u25.6 \mathrm{u}
D) 51.2u51.2 \mathrm{u}
Question
The mass density of pure water is 1,000 kg/m31,000 \mathrm{~kg} / \mathrm{m}^{3} . If the molecular mass of water is 18.0u18.0 \mathrm{u} , how many water molecules are in spherical water balloon of radius 1.0 cm1.0 \mathrm{~cm} ?

A) 1.4×10231.4 \times 10^{23}
B) 1.0×10231.0 \times10^{23}
C) 2.5×10242.5 \times 10^{24}
D) 4.2×10234.2 \times 10^{23}
Question
The mass density of normal air at a certain temperature is 1.29 kg/m31.29 \mathrm{~kg} / \mathrm{m}^{3} . If the average molecular mass of air is 29.0u29.0 \mathrm{u} , how many air molecules are in spherical balloon of radius 15.0 cm15.0 \mathrm{~cm} ?

A) 3.8×10233.8 \times 10^{23}
B) 2.5×10252.5 \times 10^{25}
C) 3.3×10253.3 \times 10^{25}
D) 8.5×10238.5 \times 10^{23}
E) 1.1×10241.1 \times 10^{24}
F) 9.8×10249.8 \times 10^{24}
Question
The mass density of normal air at room temperature (293 K) is 1.29 kg/m31.29 \mathrm{~kg} / \mathrm{m}^{3} , and the average molecular mass of air is 29.0u29.0 \mathrm{u} . If the mean free path of an air molecule at room temperature is measured to be 111 nm111 \mathrm{~nm} , what is the average diameter of an air molecule?

A) 0.31 nm0.31 \mathrm{~nm}
B) 0.23 nm0.23 \mathrm{~nm}
C) 0.49 nm0.49 \mathrm{~nm}
D) 0.26 nm0.26 \mathrm{~nm}
E) 0.28 nm0.28 \mathrm{~nm}
F) 0.56 nm0.56 \mathrm{~nm}
Question
A nitrogen molecule has a diameter of about 0.29 nm0.29 \mathrm{~nm} . The mean free path of a nitrogen molecule in a tank of dry nitrogen at room temperature (293 K)(293 \mathrm{~K}) and standard pressure (1 atm)(1 \mathrm{~atm}) is about 0.10μm0.10 \mu \mathrm{m} . A tank containing nitrogen at standard temperature (273 K)(273 \mathrm{~K}) and pressure has volume V\mathrm{V} . If the tank is compressed by means of a piston to 20%20 \% of its original volume, what is the mean free path for a nitrogen molecule under the new conditions?

A) 0.125μm0.125 \mu \mathrm{m}
B) 0.112μm0.112 \mu \mathrm{m}
C) 0.020μm0.020 \mu \mathrm{m}
D) 0.080μm0.080 \mu \mathrm{m}
Question
The mean free path for a nitrogen molecule in a tank of dry nitrogen at 273 K273 \mathrm{~K} is 0.15μm0.15 \mu \mathrm{m} . If the diameter of a nitrogen molecule is 0.29 nm0.29 \mathrm{~nm} , what is the pressure in the tank?

A) 67.2kPa67.2 \mathrm{kPa}
B) 211kPa211 \mathrm{kPa}
C) 95.1kPa95.1 \mathrm{kPa}
D) 48.0kPa48.0 \mathrm{kPa}
E) 299kPa299 \mathrm{kPa}
Question
A particular chemical reaction occurs at room temperature (293 K) at half the rate that it does at 300 K300 \mathrm{~K} . What is the activation energy for this reaction?

A) 1.73×1019 J1.73 \times 10^{-19} \mathrm{~J}
B) 1.17×1019 J1.17 \times 10^{-19} \mathrm{~J}
C) 1.20×1019 J1.20 \times 10^{-19} \mathrm{~J}
D) 1.69×1019 J1.69 \times 10^{-19} \mathrm{~J}
Question
A particular chemical reaction that produces hydrogen gas as a byproduct has an activation energy of 19.2×19.2 \times 1020 J10^{-20} \mathrm{~J} . If the reaction produces 0.15×103 molH2/hr0.15 \times 10^{-3} \mathrm{~mol} \mathrm{H}_{2} / \mathrm{hr} at room temperature (20C)\left(20^{\circ} \mathrm{C}\right) , what is the rate of production of H2\mathrm{H}_{2} at 52C52^{\circ} \mathrm{C} ?

A) 0.24×103 mol/hr0.24 \times 10^{-3} \mathrm{~mol} / \mathrm{hr}
B) 0.14×105 mol/hr0.14 \times 10^{-5} \mathrm{~mol} / \mathrm{hr}
C) 0.16×102 mol/hr0.16 \times 10^{-2} \mathrm{~mol} / \mathrm{hr}
D) 0.14×103 mol/hr0.14 \times 10^{-3} \mathrm{~mol} / \mathrm{hr}
Unlock Deck
Sign up to unlock the cards in this deck!
Unlock Deck
Unlock Deck
1/56
auto play flashcards
Play
simple tutorial
Full screen (f)
exit full mode
Deck 13: Temperature and the Ideal Gas
1
If the temperature changes by 36F36^{\circ} \mathrm{F} , then what is the change in temperature in Celsius?

A) 26C26^{\circ} \mathrm{C}
B) 40C40^{\circ} \mathrm{C}
C) 15C15^{\circ} \mathrm{C}
D) 32C32^{\circ} \mathrm{C}
E) 20C20^{\circ} \mathrm{C}
20C20^{\circ} \mathrm{C}
2
If the temperature of a room is 62F62^{\circ} \mathrm{F} , then what is the temperature of the room in Kelvin?

A) 312.0 K312.0 \mathrm{~K}
B) 300.0 K300.0 \mathrm{~K}
C) 291.7 K291.7 \mathrm{~K}
D) 289.8 K289.8 \mathrm{~K}
E) 307.8 K307.8 \mathrm{~K}
289.8 K289.8 \mathrm{~K}
3
The temperature of a room is 300 K300 \mathrm{~K} . What is the temperature in Fahrenheit?

A) 85.2F85.2^{\circ} \mathrm{F}
B) 78.5F78.5^{\circ} \mathrm{F}
C) 74.2F74.2^{\circ} \mathrm{F}
D) 70.1F70.1^{\circ} \mathrm{F}
E) 80.3F80.3^{\circ} \mathrm{F}
80.3F80.3^{\circ} \mathrm{F}
4
Abrass rod is 25.0 cm25.0 \mathrm{~cm} long at a temperature of 20.0C20.0^{\circ} \mathrm{C} . The coefficient of linear expansion of brass is 19.0×19.0 \times 106/C10^{-6} /{ }^{\circ} \mathrm{C} . If the temperature changes to 25C25^{\circ} \mathrm{C} , then the increase in length of the brass rod is

A) 2.38×105 m2.38 \times 10^{-5} \mathrm{~m} .
B) 3.03×105 m3.03 \times 10^{-5} \mathrm{~m} .
C) 4.01×105 m4.01 \times 10^{-5} \mathrm{~m} .
D) 1.65×105 m1.65 \times 10^{-5} \mathrm{~m} .
E) 3.72×105 m3.72 \times 10^{-5} \mathrm{~m} .
Unlock Deck
Unlock for access to all 56 flashcards in this deck.
Unlock Deck
k this deck
5
An aluminum rod is 20.0 cm20.0 \mathrm{~cm} in length, has a diameter of 10.0 mm10.0 \mathrm{~mm} and is at a temperature of 20C20^{\circ} \mathrm{C} . The coefficient of linear expansion of aluminum is 23.0×106/C23.0 \times 10^{-6} /{ }^{\circ} \mathrm{C} . If the temperature changes to 50C50^{\circ} \mathrm{C} , then the increase in diameter of the aluminum rod is

A) 5.6×103 mm5.6 \times 10^{-3} \mathrm{~mm}
B) 6.0×103 mm6.0 \times 10^{-3} \mathrm{~mm} .
C) 4.9×103 mm4.9 \times 10^{-3} \mathrm{~mm}
D) 4.0×103 mm4.0 \times 10^{-3} \mathrm{~mm} .
E) 6.9×103 mm6.9 \times 10^{-3} \mathrm{~mm}
Unlock Deck
Unlock for access to all 56 flashcards in this deck.
Unlock Deck
k this deck
6
A 3.00 cm×5.00 cm3.00 \mathrm{~cm} \times 5.00 \mathrm{~cm} rectangular piece of copper is at a temperature of 10.0C10.0^{\circ} \mathrm{C} . The coefficient of linearexpansion of copper is 17.0×106/C 17.0 \times 10^{-6} /{ }^{\circ} \mathrm{C} . If the temperature of the copper rectangle increases by 2.00C 2.00^{\circ} \mathrm{C} , thenwhat is its change in area?

A) 1.02×103 cm21.02 \times 10^{-3} \mathrm{~cm}^{2}
B) 0.550×103 cm20.550 \times 10^{-3} \mathrm{~cm}^{2}
C) 2.44×103 cm22.44 \times 10^{-3} \mathrm{~cm}^{2}
D) 1.95×103 cm21.95 \times 10^{-3} \mathrm{~cm}^{2}
E) 0.830×103 cm20.830 \times 10^{-3} \mathrm{~cm}^{2}
Unlock Deck
Unlock for access to all 56 flashcards in this deck.
Unlock Deck
k this deck
7
A 40.0 liter gas tank is filled to the brim with gasoline when the temperature is 5.00C5.00^{\circ} \mathrm{C} . Gasoline has a coefficient of volume expansion of 950×106/C950 \times 10^{-6} /{ }^{\circ} \mathrm{C} . If the gas tank is moved into the sun of a hot summer day, the temperature of the gas tank is increased to 60.0C60.0^{\circ} \mathrm{C} . What is the volume of gasoline that overflows the tank (ignore the expansion of the gas tank)?

A) 1.55 liters
B) 3.11 liters
C) 2.67 liters
D) 2.09 liters
E) 3.95 liters
Unlock Deck
Unlock for access to all 56 flashcards in this deck.
Unlock Deck
k this deck
8
A 10.0 liter water bottle is filled to the brim with water when the temperature is 5.00C5.00^{\circ} \mathrm{C} . The bottle is sealed after it is completely filled with water. Water has a coefficient of volume expansion of 207×106/C207 \times 10^{-6} /{ }^{\circ} \mathrm{C} and a bulk modulus of 2.20×109 N/m22.20 \times 10^{9} \mathrm{~N} / \mathrm{m}^{2} . If the temperature of the water tank is increased to 30.0C30.0^{\circ} \mathrm{C} , what is the increase in pressure of the water (ignore the expansion of the bottle)?

A) 2.73×107 N/m22.73 \times 10^{7} \mathrm{~N} / \mathrm{m}^{2}
B) 1.75×107 N/m21.75 \times 10^{7} \mathrm{~N} / \mathrm{m}^{2}
C) 1.14×107 N/m21.14 \times 10^{7} \mathrm{~N} / \mathrm{m}^{2}
D) 2.01×107 N/m22.01 \times 10^{7} \mathrm{~N} / \mathrm{m}^{2}
E) 1.01×107 N/m21.01 \times 10^{7} \mathrm{~N} / \mathrm{m}^{2}
Unlock Deck
Unlock for access to all 56 flashcards in this deck.
Unlock Deck
k this deck
9
The temperature of a copper cube is increased by 35.0C35.0^{\circ} \mathrm{C} . The linear coefficient of thermal expansion is 17.0 ×106/C \times 10^{-6} /{ }^{\circ} \mathrm{C} . The fractional change in volume is

A) 2.67×1032.67 \times 10^{-3} .
B) 1.79×1031.79 \times 10^{-3} .
C) 2.33×1032.33 \times 10^{-3} .
D) 2.00×1032.00 \times 10^{-3} .
E) 3.00×1033.00 \times 10^{-3} .
Unlock Deck
Unlock for access to all 56 flashcards in this deck.
Unlock Deck
k this deck
10
A copper plate has a hole with a diameter of 2.50 cm2.50 \mathrm{~cm} . A copper shaft with a diameter of 2.501 cm2.501 \mathrm{~cm} is to be inserted into the hole. If the linear coefficient of thermal expansion for copper is 17.0×106/C17.0 \times 10^{-6} /{ }^{\circ} \mathrm{C} , then what decrease in temperature of the copper shaft is required for the shaft to just fit inside the hole?

A) 33.3C33.3^{\circ} \mathrm{C}
B) 39.5C39.5^{\circ} \mathrm{C}
C) 30.1C30.1^{\circ} \mathrm{C}
D) 23.5C23.5^{\circ} \mathrm{C}
E) 26.4C26.4^{\circ} \mathrm{C}
Unlock Deck
Unlock for access to all 56 flashcards in this deck.
Unlock Deck
k this deck
11
A brass plate measures 30.0 cm 30.0 \mathrm{~cm} by 40.0 cm 40.0 \mathrm{~cm} . The coefficient of linear thermal expansion is 19.0×106/C 19.0 \times 10^{-6 /{ }^{\circ} }\mathrm{C} \text {. } If the temperature of the plate is increased by 10.0 K10.0 \mathrm{~K} , then what is the increase in the area of the plate?

A) 0.555%0.555 \%
B) 0.404 cm20.404 \mathrm{~cm}^{2}
C) 0.456 cm20.456 \mathrm{~cm}^{2}
D) 0.502 cm20.502 \mathrm{~cm}^{2}
E) 0.350 cm20.350 \mathrm{~cm}^{2}
Unlock Deck
Unlock for access to all 56 flashcards in this deck.
Unlock Deck
k this deck
12
One mole of carbon- 12 has a mass of 12.00 grams. What is the mass of a 12C{ }^{12} \mathrm{C} atom?

A) 3.000×1026 kg3.000 \times 10^{-26} \mathrm{~kg}
B) 1.244×1026 kg1.244 \times 10^{-26} \mathrm{~kg}
C) 2.440×1026 kg2.440 \times 10^{-26} \mathrm{~kg}
D) 1.993×1026 kg1.993 \times 10^{-26} \mathrm{~kg}
E) 2.032×1026 kg2.032 \times 10^{-26} \mathrm{~kg}
Unlock Deck
Unlock for access to all 56 flashcards in this deck.
Unlock Deck
k this deck
13
A sample of water has a mass of 10.0 grams. What is the number of molecules of water in the sample? (H=(\mathrm{H}= 1u,O=16u1 \mathrm{u}, \mathrm{O}=16 \mathrm{u} , and 1u=1.66×1027 kg1 \mathrm{u}=1.66 \times 10^{-27} \mathrm{~kg} .)

A) 2.00×10232.00 \times 10^{23}
B) 3.35×10233.35 \times 1023
C) 4.25×10234.25 \times 1023
D) 1.99×10231.99 \times 10^{23}
E) 2.56×10232.56 \times 10^{23}
Unlock Deck
Unlock for access to all 56 flashcards in this deck.
Unlock Deck
k this deck
14
A sample of CO2\mathrm{CO}_{2} has a mass of 50.0 grams. What is number of molecules of carbon dioxide in the sample? ( C=12.0u,O=16.0u\mathrm{C}=12.0 \mathrm{u}, \mathrm{O}=16.0 \mathrm{u} , and 1u=1.66×1027 kg1 \mathrm{u}=1.66 \times 10^{-27} \mathrm{~kg} .)

A) 6.85×10236.85 \times 10^{23}
B) 4.95×10234.95 \times 1023
C) 5.66×10235.66 \times 1023
D) 4.02×10234.02 \times 1023
E) 6.02×10236.02 \times 10^{23}
Unlock Deck
Unlock for access to all 56 flashcards in this deck.
Unlock Deck
k this deck
15
An ideal gas is at a pressure of 2.0 atmospheres and a temperature of 35C35^{\circ} \mathrm{C} . What is the molar density?

A) 60 mol/m360 \mathrm{~mol} / \mathrm{m}^{3}
B) 70 mol/m370 \mathrm{~mol} / \mathrm{m}^{3}
C) 79 mol/m379 \mathrm{~mol} / \mathrm{m}^{3}
D) 84 mol/m384 \mathrm{~mol} / \mathrm{m}^{3}
E) 67 mol/m367 \mathrm{~mol} / \mathrm{m}^{3}
Unlock Deck
Unlock for access to all 56 flashcards in this deck.
Unlock Deck
k this deck
16
An ideal gas composed of helium atoms is at a pressure of 2.00 atmospheres and a temperature of 35.0C35.0^{\circ} \mathrm{C} . What is the mass density? (He=4.00u)(\mathrm{He}=4.00 \mathrm{u})

A) 0.276 kg/m30.276 \mathrm{~kg} / \mathrm{m}^{3}
B) 0.534 kg/m30.534 \mathrm{~kg} / \mathrm{m}^{3}
C) 0.488 kg/m30.488 \mathrm{~kg} / \mathrm{m}^{3}
D) 0.316 kg/m30.316 \mathrm{~kg} / \mathrm{m}^{3}
E) 0.400 kg/m30.400 \mathrm{~kg} / \mathrm{m}^{3}
Unlock Deck
Unlock for access to all 56 flashcards in this deck.
Unlock Deck
k this deck
17
An ideal gas composed of a mixture of oxygen and nitrogen is at a pressure of 1.50 atmospheres and a temperature of 25.0C25.0^{\circ} \mathrm{C} . What is the molar density?

A) 40.0 mol/m340.0 \mathrm{~mol} / \mathrm{m}^{3}
B) 55.5 mol/m355.5 \mathrm{~mol} / \mathrm{m}^{3}
C) 79.3 mol/m379.3 \mathrm{~mol} / \mathrm{m}^{3}
D) 47.6 mol/m347.6 \mathrm{~mol} / \mathrm{m}^{3}
E) 61.3 mol/m361.3 \mathrm{~mol} / \mathrm{m}^{3}
Unlock Deck
Unlock for access to all 56 flashcards in this deck.
Unlock Deck
k this deck
18
One mole of an ideal gas has a volume of 0.0224 m30.0224 \mathrm{~m}^{3} and a pressure of 101.3×103 Pa101.3 \times 10^{3} \mathrm{~Pa} . What is the absolute temperature of the gas?

A) 352 K352 \mathrm{~K}
B) 346 K346 \mathrm{~K}
C) 273 K273 \mathrm{~K}
D) 376 K376 \mathrm{~K}
E) 325 K325 \mathrm{~K}
Unlock Deck
Unlock for access to all 56 flashcards in this deck.
Unlock Deck
k this deck
19
A sample of an ideal gas has a volume of 0.0100 m30.0100 \mathrm{~m}^{3} , a pressure of 100×103 Pa100 \times 10^{3} \mathrm{~Pa} , and a temperature of 300 K\mathrm{K} . What is the number of moles in the sample of gas?

A) 0.330
B) 0.502
C) 0.375
D) 0.302
E) 0.401
Unlock Deck
Unlock for access to all 56 flashcards in this deck.
Unlock Deck
k this deck
20
A sample of an ideal gas has a volume of 0.00100 m30.00100 \mathrm{~m}^{3} , a pressure of 4.50 atmospheres and 2.00×10232.00 \times 1023 particles. What is the temperature of the gas?

A) 165 K165 \mathrm{~K}
B) 173 K173 \mathrm{~K}
C) 154 K154 \mathrm{~K}
D) 194 K194 \mathrm{~K}
E) 186 K186 \mathrm{~K}
Unlock Deck
Unlock for access to all 56 flashcards in this deck.
Unlock Deck
k this deck
21
ideal gas has a pressure of 2.5 atm2.5 \mathrm{~atm} , a volume of 1.0 L1.0 \mathrm{~L} at a temperature of 30C30^{\circ} \mathrm{C} . How many molecules are there in the gas?

A) 2.3×10232.3 \times 1023
B) 6.1×10236.1 \times 1023
C) 6.1×10226.1 \times 1022
D) 2.4×10232.4 \times 10^{23}
Unlock Deck
Unlock for access to all 56 flashcards in this deck.
Unlock Deck
k this deck
22
An sample of helium occupies 44.8 L44.8 \mathrm{~L} at standard temperature and pressure (0C\left(0^{\circ} \mathrm{C}\right. and 1 atm)\left.1 \mathrm{~atm}\right) . What is the mass of the sample? The atomic mass of helium is 4.00u4.00 \mathrm{u} .

A) 4.00 g4.00 \mathrm{~g}
B) 16.0 g16.0 \mathrm{~g}
C) 8.00 g8.00 \mathrm{~g}
D) 2.00 g2.00 \mathrm{~g}
Unlock Deck
Unlock for access to all 56 flashcards in this deck.
Unlock Deck
k this deck
23
One mole of an ideal gas with a volume of 4.00 liters and a temperature of 0C0^{\circ} \mathrm{C} is mixed with one mole of an ideal gas with a volume of 2.00 liters and a temperature of 100C100^{\circ} \mathrm{C} . The volume of the mixture is 6 liters. What is the number density of the mixture?

A) 3.56×1026 m33.56 \times 10^{26} \mathrm{~m}^{-3}
B) 2.66×1026 m32.66 \times 10^{26} \mathrm{~m}^{-3}
C) 3.21×1026 m33.21 \times 10^{26} \mathrm{~m}^{-3}
D) 1.75×1026 m31.75 \times 10^{26} \mathrm{~m}^{-3}
E) 2.01×1026 m32.01 \times 10^{26} \mathrm{~m}^{-3}
Unlock Deck
Unlock for access to all 56 flashcards in this deck.
Unlock Deck
k this deck
24
Two moles of an ideal gas with a volume of 4.00 liters and a temperature of 0C0^{\circ} \mathrm{C} are mixed with one mole of an ideal gas with a volume of 3.00 liters and a temperature of 100C100^{\circ} \mathrm{C} . The volume of the mixture is 5.00 liters. What is the number density of the mixture?

A) 3.61×1026 m33.61 \times 10^{26} \mathrm{~m}^{-3}
B) 1.98×1026 m31.98 \times 10^{26} \mathrm{~m}^{-3}
C) 2.02×1026 m32.02 \times 10^{26} \mathrm{~m}^{-3}
D) 4.00×1026 m34.00 \times 10^{26} \mathrm{~m}^{-3}
E) 2.56×1026 m32.56 \times 10^{26} \mathrm{~m}^{-3}
Unlock Deck
Unlock for access to all 56 flashcards in this deck.
Unlock Deck
k this deck
25
An ideal gas is at a temperature of 30C30^{\circ} \mathrm{C} and a pressure of 2.00 atmospheres. What is the number of particles per unit volume of the gas?

A) 6.23×1025 m36.23 \times 10^{25} \mathrm{~m}^{-3}
B) 5.98×1025 m35.98 \times 10^{25} \mathrm{~m}^{-3}
C) 4.85×1025 m34.85 \times 10^{25} \mathrm{~m}^{-3}
D) 5.15×1025 m35.15 \times 10^{25} \mathrm{~m}^{-3}
E) 6.02×1025 m36.02 \times 10^{25} \mathrm{~m}^{-3}
Unlock Deck
Unlock for access to all 56 flashcards in this deck.
Unlock Deck
k this deck
26
An ideal gas is at a temperature of 60C60^{\circ} \mathrm{C} and a pressure of 1.50 atmospheres. What is the volume per particle of the gas?

A) 5.00×1026 m35.00 \times 10-26 \mathrm{~m}^{3}
B) 3.98×1026 m33.98 \times 10-26 \mathrm{~m}^{3}
C) 2.75×1026 m32.75 \times 10^{-26} \mathrm{~m}^{3}
D) 3.02×1026 m33.02 \times 10^{-26} \mathrm{~m}^{3}
E) 4.25×1026 m34.25 \times 10-26 \mathrm{~m}^{3}
Unlock Deck
Unlock for access to all 56 flashcards in this deck.
Unlock Deck
k this deck
27
An ideal gas is at a temperature of 40C40^{\circ} \mathrm{C} and a pressure of 2.00 atmospheres. If the diameter of an N2\mathrm{N}_{2} molecule is 0.300 nm0.300 \mathrm{~nm} , then what is the mean free path of the N2\mathrm{N}_{2} molecule in the gas?

A) 6.02×108 m6.02 \times 10^{-8} \mathrm{~m}
B) 5.33×108 m5.33 \times 10^{-8} \mathrm{~m}
C) 4.75×108 m4.75 \times 10^{-8} \mathrm{~m}
D) 5.00×108 m5.00 \times 10^{-8} \mathrm{~m}
E) 4.01×108 m4.01 \times 10^{-8} \mathrm{~m}
Unlock Deck
Unlock for access to all 56 flashcards in this deck.
Unlock Deck
k this deck
28
What is the average distance between air molecules at standard temperature and pressure (0C\left(0^{\circ} \mathrm{C}\right. and 1 atm)\left.1 \mathrm{~atm}\right) ?

A) 2.07 nm2.07 \mathrm{~nm}
B) 3.34 nm3.34 \mathrm{~nm}
C) 0.00 nm0.00 \mathrm{~nm}
D) 2.03 nm2.03 \mathrm{~nm}
Unlock Deck
Unlock for access to all 56 flashcards in this deck.
Unlock Deck
k this deck
29
At what approximate temperature would the rms speed of H2\mathrm{H}_{2} molecules equal the Earth's escape speed (11,200 m/s)(11,200 \mathrm{~m} / \mathrm{s}) ?

A) 108 K10^{8} \mathrm{~K}
B) 102 K102 \mathrm{~K}
C) 106 K106 \mathrm{~K}
D) 104 K104 \mathrm{~K}
Unlock Deck
Unlock for access to all 56 flashcards in this deck.
Unlock Deck
k this deck
30
What is the average kinetic energy per particle in 1.00 mole of an ideal gas at a pressure of 1.50 atmospheres and a volume of 2.00 liters?

A) 8.24×1022 J8.24 \times 10-22 \mathrm{~J}
B) 6.02×1022 J6.02 \times 10-22 \mathrm{~J}
C) 6.67×1022 J6.67 \times 10-22 \mathrm{~J}
D) 5.35×1022 J5.35 \times 10^{-22} \mathrm{~J}
E) 7.57×1022 J7.57 \times 10-22 \mathrm{~J}
Unlock Deck
Unlock for access to all 56 flashcards in this deck.
Unlock Deck
k this deck
31
What is the average kinetic energy per particle in 1.00 mole of an ideal gas at a pressure of 1.50 atmospheres and a temperature of 20C20^{\circ} \mathrm{C} ?

A) 6.03×1021 J6.03 \times 10-21 \mathrm{~J}
B) 5.05×1021 J5.05 \times 10-21 \mathrm{~J}
C) 4.75×1021 J4.75 \times 10-21 \mathrm{~J}
D) 6.67×1021 J6.67 \times 10^{-21} \mathrm{~J}
E) 6.07×1021 J6.07 \times 10^{-21} \mathrm{~J}
Unlock Deck
Unlock for access to all 56 flashcards in this deck.
Unlock Deck
k this deck
32
The total kinetic energy in one mole of an ideal gas is 4,000 J4,000 \mathrm{~J} . What is the average kinetic energy of an individual particle in the ideal gas?

A) 6.64×1021 J6.64 \times 10^{-21} \mathrm{~J}
B) 4.86×1021 J4.86 \times 10^{-21} \mathrm{~J}
C) 5.03×1021 J5.03 \times 10^{-21} \mathrm{~J}
D) 4.04×1021 J4.04 \times 10^{-21} \mathrm{~J}
E) 3.78×1021 J3.78 \times 10^{-21} \mathrm{~J}
Unlock Deck
Unlock for access to all 56 flashcards in this deck.
Unlock Deck
k this deck
33
A container of volume 2.00 liters contains 2.00 moles of an ideal gas at a pressure of 1.50 atmospheres. What is the average kinetic energy per particle in the gas?

A) 3.78×1022 J3.78 \times 10-22 \mathrm{~J}
B) 3.96×1022 J3.96 \times 10-22 \mathrm{~J}
C) 1.98×1022 J1.98 \times 10^{-22} \mathrm{~J}
D) 2.83×1022 J2.83 \times 10-22 \mathrm{~J}
E) 2.52×1022 J2.52 \times 10-22 \mathrm{~J}
Unlock Deck
Unlock for access to all 56 flashcards in this deck.
Unlock Deck
k this deck
34
If the root mean square velocity of the particles in a gas is 450 m/s450 \mathrm{~m} / \mathrm{s} , and a particle collides with another particle every 2.0×1092.0 \times 10^{-9} seconds on average, then the mean free path is

A) 9.0×107 m9.0 \times 10^{-7} \mathrm{~m} .
B) 6.0×107 m6.0 \times 10^{-7} \mathrm{~m} .
C) 6.9×107 m6.9 \times 10^{-7} \mathrm{~m} .
D) 85×107 m85 \times 10^{-7} \mathrm{~m} .
E) 7.5×107 m7.5 \times 10^{-7} \mathrm{~m} .
Unlock Deck
Unlock for access to all 56 flashcards in this deck.
Unlock Deck
k this deck
35
The mean free path of a molecule is 2.25×107 m2.25 \times 10^{-7} \mathrm{~m} in an ideal gas at standard temperature and pressure (0C\left(0^{\circ} \mathrm{C}\right. and 1 atm)1 \mathrm{~atm}) . What is the mean free path if the diameter of the molecule is doubled?

A) 0.56×107 m0.56 \times 10^{-7} \mathrm{~m}
B) 0.45×107 m0.45 \times 10^{-7} \mathrm{~m}
C) 0.75×107 m0.75 \times 10^{-7} \mathrm{~m}
D) 1.13×107 m1.13 \times 10^{-7} \mathrm{~m}
E) 0.23×107 m0.23 \times 10^{-7} \mathrm{~m}
Unlock Deck
Unlock for access to all 56 flashcards in this deck.
Unlock Deck
k this deck
36
The mean free path of a molecule is 2.25×107 m2.25 \times 10^{-7} \mathrm{~m} in an ideal gas at standard temperature and pressure (0C\left(0^{\circ} \mathrm{C}\right. and 1 atm1 \mathrm{~atm} ). What is the mean free path if the diameter of the molecule and the temperature of the gas are both doubled?

A) 1.13×107 m1.13 \times 10^{-7} \mathrm{~m}
B) 2.25×107 m2.25 \times 10^{-7} \mathrm{~m}
C) 3.00×107 m3.00 \times 10^{-7} \mathrm{~m}
D) 3.75×107 m3.75 \times 10^{-7} \mathrm{~m}
E) 0.75×107 m0.75 \times 10^{-7} \mathrm{~m}
Unlock Deck
Unlock for access to all 56 flashcards in this deck.
Unlock Deck
k this deck
37
The mean free path of a molecule is 2.25×107 m2.25 \times 10^{-7} \mathrm{~m} in an ideal gas at standard temperature and pressure (0C\left(0^{\circ} \mathrm{C}\right. and 1 atm)1 \mathrm{~atm}) . What is the mean free path if the pressure of the gas is doubled but the temperature is constant?

A) 2.25×107 m2.25 \times 10^{-7} \mathrm{~m}
B) 3.38×107 m3.38 \times 10^{-7} \mathrm{~m}
C) 1.13×107 m1.13 \times 10^{-7} \mathrm{~m}
D) 0.75×107 m0.75 \times 10^{-7} \mathrm{~m}
E) 3.75×107 m3.75 \times 10^{-7} \mathrm{~m}
Unlock Deck
Unlock for access to all 56 flashcards in this deck.
Unlock Deck
k this deck
38
The mean free path of a molecule is 2.25×107 m2.25 \times 10^{-7} \mathrm{~m} in an ideal gas at standard temperature and pressure (0C\left(0^{\circ} \mathrm{C}\right. and 1 atm)1 \mathrm{~atm}) . What is the mean free path if the pressure of the gas is doubled and the temperature is tripled?

A) 0.75×107 m0.75 \times 10^{-7} \mathrm{~m}
B) 3.38×107 m3.38 \times 10^{-7} \mathrm{~m}
C) 3.75×107 m3.75 \times 10^{-7} \mathrm{~m}
D) 2.25×107 m2.25 \times 10^{-7} \mathrm{~m}
E) 1.13×107 m1.13 \times 10^{-7} \mathrm{~m}
Unlock Deck
Unlock for access to all 56 flashcards in this deck.
Unlock Deck
k this deck
39
The reaction rate of a chemical reaction doubles when the temperature increases from 10C10^{\circ} \mathrm{C} to 50C50^{\circ} \mathrm{C} . What is the activation energy?

A) 3.85×1020 J3.85 \times 10^{-20} \mathrm{~J}
B) 2.19×1020 J2.19 \times 10^{-20} \mathrm{~J}
C) 1.76×1020 J1.76 \times 10^{-20} \mathrm{~J}
D) 2.98×1020 J2.98 \times 10^{-20} \mathrm{~J}
E) 3.33×1020 J3.33 \times 10^{-20} \mathrm{~J}
Unlock Deck
Unlock for access to all 56 flashcards in this deck.
Unlock Deck
k this deck
40
What is the activation energy of a chemical reaction if the reaction rate triples when the temperature goes from 10C10^{\circ} \mathrm{C} to 30C30^{\circ} \mathrm{C} ?

A) 6.0×1020 J6.0 \times 10^{-20} \mathrm{~J}
B) 7.0×1020 J7.0 \times 10^{-20} \mathrm{~J}
C) 6.5×1020 J6.5 \times 10^{-20} \mathrm{~J}
D) 5.5×1020 J5.5 \times 10^{-20} \mathrm{~J}
E) 7.5×1020 J7.5 \times 10^{-20} \mathrm{~J}
Unlock Deck
Unlock for access to all 56 flashcards in this deck.
Unlock Deck
k this deck
41
The diffusion constant for oxygen through water is 1.0×109 m2/s1.0 \times 10^{-9} \mathrm{~m}^{2} / \mathrm{s} . What is the time for an oxygen molecule to diffuse 1 cm1 \mathrm{~cm} ?

A) 5.0×104sec5.0 \times 10^{4} \mathrm{sec}
B) 6.0×104sec6.0 \times 10^{4} \mathrm{sec}
C) 2.0×104sec2.0 \times 10^{4} \mathrm{sec}
D) 4.0×104sec4.0 \times 10^{4} \mathrm{sec}
E) 3.0×104sec3.0 \times 10^{4} \mathrm{sec}
Unlock Deck
Unlock for access to all 56 flashcards in this deck.
Unlock Deck
k this deck
42
The diffusion constant for oxygen diffusing through tissue is 1.0×1011 m2/s1.0 \times 10^{-11} \mathrm{~m} 2 / \mathrm{s} . In a certain sample oxygen diffuses through the tissue at a rate of 2.0×106 kg/s2.0 \times 10^{-6} \mathrm{~kg} / \mathrm{s} . If the thickness of the tissue is doubled, then what is the rate of oxygen flow through the tissue?

A) 0.6×106 kg/s0.6 \times 10^{-6} \mathrm{~kg} / \mathrm{s}
B) 0.4×106 kg/s0.4 \times 10^{-6} \mathrm{~kg} / \mathrm{s}
C) 1.2×106 kg/s1.2 \times 10^{-6} \mathrm{~kg} / \mathrm{s}
D) 1.0×106 kg/s1.0 \times 10^{-6} \mathrm{~kg} / \mathrm{s}
E) 1.5×106 kg/s1.5 \times 10^{-6} \mathrm{~kg} / \mathrm{s}
Unlock Deck
Unlock for access to all 56 flashcards in this deck.
Unlock Deck
k this deck
43
What are the dimensions of the diffusion constant?

A) m2/s\mathrm{m}^{2} / \mathrm{s}
B) m/s2\mathrm{m} / \mathrm{s}^{2}
C) m3/s2\mathrm{m}^{3 / \mathrm{s}^{2}}
D) m/s3\mathrm{m} / \mathrm{s} 3
E) m3/s\mathrm{m}^{3 / \mathrm{s}}
Unlock Deck
Unlock for access to all 56 flashcards in this deck.
Unlock Deck
k this deck
44
The density of copper at 293 K293 \mathrm{~K} is 8,940 kg/m38,940 \mathrm{~kg} / \mathrm{m}^{3} and its linear expansion coefficient is 17.0×106 K117.0 \times 10^{-6} \mathrm{~K}^{-1} . Consider a hot cube of copper that is 1.0 cm1.0 \mathrm{~cm} on a side when its temperature is 1.356 K1.356 \mathrm{~K} . What is the cube's mass?

A) 8.78 g8.78 \mathrm{~g}
B) 8.80 g8.80 \mathrm{~g}
C) 8.48 g8.48 \mathrm{~g}
D) 8.94 g8.94 \mathrm{~g}
E) 8.38 g8.38 \mathrm{~g}
Unlock Deck
Unlock for access to all 56 flashcards in this deck.
Unlock Deck
k this deck
45

147.5ml147.5 \mathrm{ml} of ethyl alcohol (coefficient of volume expansion β=1,120×106 K1\beta=1,120 \times 10^{-6} \mathrm{~K}^{-1} ), at a temperature of 273.1 K\mathrm{K} , is poured into a 150.0ml150.0 \mathrm{ml} glass beaker (whose coefficient of volume expansion is negligible by comparison). To what temperature does the beaker have to be warmed for it to be completely full (i.e., for the volume of the alcohol to reach 150.0ml)150.0 \mathrm{ml}) ?

A) 288.0 K288.0 \mathrm{~K}
B) 283.1 K283.1 \mathrm{~K}
C) 278.1 K278.1 \mathrm{~K}
D) 288.2 K288.2 \mathrm{~K}

Unlock Deck
Unlock for access to all 56 flashcards in this deck.
Unlock Deck
k this deck
46
A 50.00ml50.00 \mathrm{ml} sample of mercury at room temperature (293.0 K)(293.0 \mathrm{~K}) is cooled. What is the volume of the sample when the mercury reaches 273.0 K273.0 \mathrm{~K} ? The coefficient of volume expansion of mercury is 182.0×106 K1182.0 \times 10^{-6} \mathrm{~K}^{-1} .

A) 49.82ml49.82 \mathrm{ml}
B) 49.96ml49.96 \mathrm{ml}
C) 49.94ml49.94 \mathrm{ml}
D) 48.18ml48.18 \mathrm{ml}
E) 49.39ml49.39 \mathrm{ml}
Unlock Deck
Unlock for access to all 56 flashcards in this deck.
Unlock Deck
k this deck
47
A glass thermometer using a thin column of ethyl alcohol at room temperature (293.0 K)(293.0 \mathrm{~K}) is cooled. When the temperature reaches 273.0 K273.0 \mathrm{~K} the column of alcohol is 15.50 cm15.50 \mathrm{~cm} high. How tall was it when the temperature was 293.0 K293.0 \mathrm{~K} ? The coefficient of volume expansion of ethyl alcohol is 1,120×106 K11,120 \times 10^{-6} \mathrm{~K}^{-1} .

A) 15.85 cm15.85 \mathrm{~cm}
B) Cannot answer without knowing the diameter of the column
C) 15.68 cm15.68 \mathrm{~cm}
D) 15.62 cm15.62 \mathrm{~cm}
Unlock Deck
Unlock for access to all 56 flashcards in this deck.
Unlock Deck
k this deck
48
What is the mass of exactly 1 million helium atoms? The atomic mass of helium is 4.00u4.00 \mathrm{u} .

A) 6.6×1021 kg6.6 \times 10^{-21} \mathrm{~kg}
B) 6.0×1017 kg6.0 \times 10^{-17} \mathrm{~kg}
C) 6.6×1018 kg6.6 \times 10^{-18} \mathrm{~kg}
D) 6.0×1020 kg6.0 \times 10^{-20} \mathrm{~kg}
Unlock Deck
Unlock for access to all 56 flashcards in this deck.
Unlock Deck
k this deck
49
The mass of 6 million molecules of a diatomic gas is 5.1×1019 kg5.1 \times 10-19 \mathrm{~kg} . What is the atomic mass of the element in this gas?

A) 5.10u5.10 \mathrm{u}
B) 2.55u2.55 \mathrm{u}
C) 25.6u25.6 \mathrm{u}
D) 51.2u51.2 \mathrm{u}
Unlock Deck
Unlock for access to all 56 flashcards in this deck.
Unlock Deck
k this deck
50
The mass density of pure water is 1,000 kg/m31,000 \mathrm{~kg} / \mathrm{m}^{3} . If the molecular mass of water is 18.0u18.0 \mathrm{u} , how many water molecules are in spherical water balloon of radius 1.0 cm1.0 \mathrm{~cm} ?

A) 1.4×10231.4 \times 10^{23}
B) 1.0×10231.0 \times10^{23}
C) 2.5×10242.5 \times 10^{24}
D) 4.2×10234.2 \times 10^{23}
Unlock Deck
Unlock for access to all 56 flashcards in this deck.
Unlock Deck
k this deck
51
The mass density of normal air at a certain temperature is 1.29 kg/m31.29 \mathrm{~kg} / \mathrm{m}^{3} . If the average molecular mass of air is 29.0u29.0 \mathrm{u} , how many air molecules are in spherical balloon of radius 15.0 cm15.0 \mathrm{~cm} ?

A) 3.8×10233.8 \times 10^{23}
B) 2.5×10252.5 \times 10^{25}
C) 3.3×10253.3 \times 10^{25}
D) 8.5×10238.5 \times 10^{23}
E) 1.1×10241.1 \times 10^{24}
F) 9.8×10249.8 \times 10^{24}
Unlock Deck
Unlock for access to all 56 flashcards in this deck.
Unlock Deck
k this deck
52
The mass density of normal air at room temperature (293 K) is 1.29 kg/m31.29 \mathrm{~kg} / \mathrm{m}^{3} , and the average molecular mass of air is 29.0u29.0 \mathrm{u} . If the mean free path of an air molecule at room temperature is measured to be 111 nm111 \mathrm{~nm} , what is the average diameter of an air molecule?

A) 0.31 nm0.31 \mathrm{~nm}
B) 0.23 nm0.23 \mathrm{~nm}
C) 0.49 nm0.49 \mathrm{~nm}
D) 0.26 nm0.26 \mathrm{~nm}
E) 0.28 nm0.28 \mathrm{~nm}
F) 0.56 nm0.56 \mathrm{~nm}
Unlock Deck
Unlock for access to all 56 flashcards in this deck.
Unlock Deck
k this deck
53
A nitrogen molecule has a diameter of about 0.29 nm0.29 \mathrm{~nm} . The mean free path of a nitrogen molecule in a tank of dry nitrogen at room temperature (293 K)(293 \mathrm{~K}) and standard pressure (1 atm)(1 \mathrm{~atm}) is about 0.10μm0.10 \mu \mathrm{m} . A tank containing nitrogen at standard temperature (273 K)(273 \mathrm{~K}) and pressure has volume V\mathrm{V} . If the tank is compressed by means of a piston to 20%20 \% of its original volume, what is the mean free path for a nitrogen molecule under the new conditions?

A) 0.125μm0.125 \mu \mathrm{m}
B) 0.112μm0.112 \mu \mathrm{m}
C) 0.020μm0.020 \mu \mathrm{m}
D) 0.080μm0.080 \mu \mathrm{m}
Unlock Deck
Unlock for access to all 56 flashcards in this deck.
Unlock Deck
k this deck
54
The mean free path for a nitrogen molecule in a tank of dry nitrogen at 273 K273 \mathrm{~K} is 0.15μm0.15 \mu \mathrm{m} . If the diameter of a nitrogen molecule is 0.29 nm0.29 \mathrm{~nm} , what is the pressure in the tank?

A) 67.2kPa67.2 \mathrm{kPa}
B) 211kPa211 \mathrm{kPa}
C) 95.1kPa95.1 \mathrm{kPa}
D) 48.0kPa48.0 \mathrm{kPa}
E) 299kPa299 \mathrm{kPa}
Unlock Deck
Unlock for access to all 56 flashcards in this deck.
Unlock Deck
k this deck
55
A particular chemical reaction occurs at room temperature (293 K) at half the rate that it does at 300 K300 \mathrm{~K} . What is the activation energy for this reaction?

A) 1.73×1019 J1.73 \times 10^{-19} \mathrm{~J}
B) 1.17×1019 J1.17 \times 10^{-19} \mathrm{~J}
C) 1.20×1019 J1.20 \times 10^{-19} \mathrm{~J}
D) 1.69×1019 J1.69 \times 10^{-19} \mathrm{~J}
Unlock Deck
Unlock for access to all 56 flashcards in this deck.
Unlock Deck
k this deck
56
A particular chemical reaction that produces hydrogen gas as a byproduct has an activation energy of 19.2×19.2 \times 1020 J10^{-20} \mathrm{~J} . If the reaction produces 0.15×103 molH2/hr0.15 \times 10^{-3} \mathrm{~mol} \mathrm{H}_{2} / \mathrm{hr} at room temperature (20C)\left(20^{\circ} \mathrm{C}\right) , what is the rate of production of H2\mathrm{H}_{2} at 52C52^{\circ} \mathrm{C} ?

A) 0.24×103 mol/hr0.24 \times 10^{-3} \mathrm{~mol} / \mathrm{hr}
B) 0.14×105 mol/hr0.14 \times 10^{-5} \mathrm{~mol} / \mathrm{hr}
C) 0.16×102 mol/hr0.16 \times 10^{-2} \mathrm{~mol} / \mathrm{hr}
D) 0.14×103 mol/hr0.14 \times 10^{-3} \mathrm{~mol} / \mathrm{hr}
Unlock Deck
Unlock for access to all 56 flashcards in this deck.
Unlock Deck
k this deck
locked card icon
Unlock Deck
Unlock for access to all 56 flashcards in this deck.