Deck 19: Magnetic Forces and Fields

Full screen (f)
exit full mode
Question
A proton is moving at 2.0×107 m/s2.0 \times 10^{7} \mathrm{~m} / \mathrm{s} in a magnetic field of 30mT30 \mathrm{mT} . What is the magnitude of the magnetic force on the proton?

A) 0.0
B) 6.0×105 N6.0 \times 10^{-5} \mathrm{~N}
C) 9.6×1014 N9.6 \times 10^{-14} \mathrm{~N}
D) 4.8×1014 N4.8 \times 10^{-14} \mathrm{~N}
E) More information is needed.
Use Space or
up arrow
down arrow
to flip the card.
Question
A proton is moving perpendicular to a magnetic field at 3.0×106 m/s3.0 \times 106 \mathrm{~m} / \mathrm{s} and experiences a magnetic force of magnitude 2.5×1016 N2.5 \times 10^{-16} \mathrm{~N} . What is the magnitude of the magnetic field?

A) 3.8×102 T3.8 \times 10^{-2} \mathrm{~T}
B) 1.9×103 T1.9 \times 10^{-3} \mathrm{~T}
C) 2.6×104 T2.6 \times 10^{-4} \mathrm{~T}
D) 0.52 T0.52 \mathrm{~T}
E) 5.2×104 T5.2 \times 10^{-4} \mathrm{~T}
Question
An electron is moving at 2.5×106 m/s2.5 \times 106 \mathrm{~m} / \mathrm{s} perpendicular to a uniform 3.5mT3.5 \mathrm{mT} magnetic field. What is the radius of its path?

A) 4.1 mm4.1 \mathrm{~mm}
B) 1.6 cm1.6 \mathrm{~cm}
C) 3.9 cm3.9 \mathrm{~cm}
D) 2.0 mm2.0 \mathrm{~mm}
E) 5.1 cm5.1 \mathrm{~cm}
Question
An electron is moving at 3.0×106 m/s3.0 \times 10^{6} \mathrm{~m} / \mathrm{s} perpendicular to a uniform magnetic field. If the radius of the motion is 18 mm18 \mathrm{~mm} , what is the magnitude of the magnetic field?

A) 70mT70 \mathrm{mT}
B) 8.9nT8.9 \mathrm{nT}
C) 1.6μT1.6 \mu \mathrm{T}
D) 9.3mT9.3 \mathrm{mT}
E) 0.95mT0.95 \mathrm{mT}
Question
A proton cyclotron has a magnetic field of 0.20 T0.20 \mathrm{~T} between its poles and a radius of 0.40 m0.40 \mathrm{~m} . What is the maximum energy for the protons from this machine?

A) 1.6×1013 J1.6 \times 10^{-13} \mathrm{~J}
B) 4.9×1013 J4.9 \times 10^{-13} \mathrm{~J}
C) 3.2×1014 J3.2 \times 10^{-14} \mathrm{~J}
D) 4.9×1014 J4.9 \times 10^{-14} \mathrm{~J}
E) 3.2×1013 J3.2 \times 10^{-13} \mathrm{~J}
Question
What is the speed of a proton in a cyclotron having a 0.50 T0.50 \mathrm{~T} magnetic field when the proton is at a distance of 25 cm25 \mathrm{~cm} from the center?

A) 1.1×104 m/s1.1 \times 10^{4} \mathrm{~m} / \mathrm{s}
B) 3.2×106 m/s3.2 \times 10^{6} \mathrm{~m} / \mathrm{s}
C) 3.7×107 m/s3.7 \times 10^{7} \mathrm{~m} / \mathrm{s}
D) 1.2×107 m/s1.2 \times 10^{7} \mathrm{~m} / \mathrm{s}
E) 6.0×106 m/s6.0 \times 10^{6} \mathrm{~m} / \mathrm{s}
Question
A proton is moving at 3.0×106 m/s3.0 \times 10^{6} \mathrm{~m} / \mathrm{s} and experiences a magnetic force of magnitude 2.5×1016 N2.5 \times 10^{-16} \mathrm{~N} . If the magnetic field makes an angle of 4040^{\circ} with respect to the velocity of the proton, what is the field's magnitude?

A) 3.3×104 T3.3 \times 10^{-4} \mathrm{~T}
B) 1.7×104 T1.7 \times 10^{-4} \mathrm{~T}
C) 4.1×104 T4.1 \times 10^{-4} \mathrm{~T}
D) 8.1×104 T8.1 \times 10^{-4} \mathrm{~T}
E) 1.6×103 T1.6 \times 10^{-3} \mathrm{~T}
Question
Find the force (magnitude and direction) exerted on an electron moving vertically upward at a speed of 2.0×2.0 \times 107 m/s10^{7} \mathrm{~m} / \mathrm{s} by a horizontal magnetic field of 0.50 T0.50 \mathrm{~T} directed north.

A) 1.6×1012 N1.6 \times 10^{-12} \mathrm{~N} west
B) 1.8×1012 N1.8 \times 10^{-12} \mathrm{~N} east
C) 1.6×1012 N1.6 \times 10^{-12} \mathrm{~N} east
D) 1.8×1012 N1.8 \times 10^{-12} \mathrm{~N} west
Question
An electron is moving at 3.0×106 m/s3.0 \times 10^{6} \mathrm{~m} / \mathrm{s} at an angle of 4040^{\circ} to a 0.80 T0.80 \mathrm{~T} magnetic field. What is the magnitude of the force on the electron?

A) 3.8×1013 N3.8 \times 10^{-13} \mathrm{~N}
B) 1.2×1013 N1.2 \times 10^{-13} \mathrm{~N}
C) 2.5×1013 N2.5 \times 10^{-13} \mathrm{~N}
D) 2.9×1013 N2.9 \times 10^{-13} \mathrm{~N}
E) 4.8×1013 N4.8 \times 10^{-13} \mathrm{~N}
Question
An electron is moving at 3.0×106 m/s3.0 \times 106 \mathrm{~m} / \mathrm{s} at an angle of 4040^{\circ} to a 0.80 T0.80 \mathrm{~T} magnetic field. What is the magnitude of the acceleration of the electron?

A) 7.8×1017 m/s27.8 \times 1017 \mathrm{~m} / \mathrm{s}^{2}
B) 1.4×1017 m/s21.4 \times 1017 \mathrm{~m} / \mathrm{s}^{2}
C) 5.2×1017 m/s25.2 \times 1017 \mathrm{~m} / \mathrm{s}^{2}
D) 9.8×1017 m/s29.8 \times 10^{17} \mathrm{~m} / \mathrm{s}^{2}
E) 2.7×1017 m/s22.7 \times 1017 \mathrm{~m} / \mathrm{s}^{2}
Question
The magnetic field in a cyclotron is 0.50 T0.50 \mathrm{~T} . Find the magnitude of the magnetic force on a proton with velocity of 1.0×107 m/s1.0 \times 10^{7} \mathrm{~m} / \mathrm{s} in a plane perpendicular to the field.

A) 8.0×1013 N8.0 \times 10^{-13} \mathrm{~N}
B) 6.0×1013 N6.0 \times 10^{-13} \mathrm{~N}
C) 6.0×1014 N6.0 \times 10^{-14} \mathrm{~N}
D) 8.0×1014 N8.0 \times 10^{-14} \mathrm{~N}
Question
The magnetic field in a cyclotron is 0.50 T0.50 \mathrm{~T} . What is the radius of the vacuum chamber for a maximum proton velocity of 1.0×107 m/s1.0 \times 10^{7} \mathrm{~m} / \mathrm{s} ?

A) 0.013 m0.013 \mathrm{~m}
B) 0.21 m0.21 \mathrm{~m}
C) 1.2 m1.2 \mathrm{~m}
D) 0.11 m0.11 \mathrm{~m}
Question
An electric field perpendicular to a magnetic field is used as a velocity selector for Li+\mathrm{Li}^{+} ions, selecting the velocity v1\mathrm{v}_{1} . Next, Li++\mathrm{Li}^{++} ions are sent through the same velocity selector, selecting velocity v2\mathrm{v}_{2} . If neither the electric nor magnetic fields have changed between the two processes, how do v1\mathrm{v}_{1} and v2\mathrm{v}_{2} compare?

A) v2=v1/2\mathrm{v}_{2}=\mathrm{v}_{1} / 2
B) v2=v1/4v_{2}=v_{1} / 4
C) v2=v1\mathrm{v}_{2}=\mathrm{v}_{1}
D) v2=4v1\mathrm{v}_{2}=4 \mathrm{v}_{1}
E) v2=2v1v_{2}=2 v_{1}
Question
In a velocity selector for ions, when the velocity of the ions is double the value for which the selector is set, how do the magnetic force FM\mathrm{F}_{\mathrm{M}} and the electric force FE\mathrm{F}_{\mathrm{E}} compare?

A) FM=4 FE\mathrm{F}_{\mathrm{M}}=4 \mathrm{~F}_{\mathrm{E}}
B) FM=1.414 FE\mathrm{F}_{\mathrm{M}}=1.414 \mathrm{~F}_{\mathrm{E}}
C) FM=FE/2\mathrm{F}_{\mathrm{M}}=\mathrm{F}_{\mathrm{E}} / 2
D) FM=FE/4F_{M}=F_{E} / 4
E) FM=2FEF_{M}=2 F_{E}
Question
A flat conductor of thickness 0.500 mm0.500 \mathrm{~mm} is placed in a magnetic field of 0.200 T0.200 \mathrm{~T} perpendicular to the flat surface. If there are 8.00×10248.00 \times 1024 charge carriers (i.e., electrons) per m3\mathrm{m}^{3} , what is the Hall voltage generated when 3.40 A flows along the conductor?

A) 0.531mV0.531 \mathrm{mV}
B) 0.266mV0.266 \mathrm{mV}
C) 0.797mV0.797 \mathrm{mV}
D) 1.06mV1.06 \mathrm{mV}
E) 2.12mV2.12 \mathrm{mV}
Question
A 10 m10 \mathrm{~m} long wire carrying a current of 22 A makes an angle of 3737^{\circ} with the Earth's magnetic field of 0.51 mT\mathrm{mT} . What is the magnetic force on the wire?

A) 0.068 N0.068 \mathrm{~N}
B) 0.011 N0.011 \mathrm{~N}
C) 0.19 N0.19 \mathrm{~N}
D) 0.090 N0.090 \mathrm{~N}
E) 0.11 N0.11 \mathrm{~N}
Question
If the magnetic field from a long, straight, current-carrying wire has a magnitude B0\mathrm{B}_{0} at a distance d\mathrm{d} , what is the magnitude of the field at a distance 2 d2 \mathrm{~d} ?

A) also B0\mathrm{B}_{0}
B) B0/2\mathrm{B}_{0} / 2
C) 0.693 B00.693 \mathrm{~B}_{0}
D) B0/4\mathrm{B}_{0} / 4
E) 0.707 B00.707 \mathrm{~B}_{0}
Question
A power line carries 1000 A1000 \mathrm{~A} at a height of 20 m20 \mathrm{~m} above the ground. What is the resulting magnetic field at ground level?

A) 13μT13 \mu \mathrm{T}
B) 10μT10 \mu \mathrm{T}
C) 0.13mT0.13 \mathrm{mT}
D) 5.0μT5.0 \mu \mathrm{T}
E) 50mT50 \mathrm{mT}
Question
Two parallel wires are each carrying 10 A10 \mathrm{~A} and are separated by 4.0 m4.0 \mathrm{~m} . If the currents are in opposite directions, what is the magnitude of the magnetic field halfway between them?

A) 1.0μT1.0 \mu \mathrm{T}
B) 2.0μT2.0 \mu \mathrm{T}
C) 0.0
D) 1.4μT1.4 \mu \mathrm{T}
E) 4.0μT4.0 \mu \mathrm{T}
Question
If magnetic field inside a solenoid having 100 turns per cm\mathrm{cm} and a current of 5.0 A5.0 \mathrm{~A} is

A) 1.0×104 T1.0 \times 10^{-4} \mathrm{~T} .
B) 6.3×104 T6.3 \times 10^{-4} \mathrm{~T} .
C) 2.0×102 T2.0 \times 10^{-2} \mathrm{~T} .
D) 1.0×102 T1.0 \times 10^{-2} \mathrm{~T} .
E) 6.3×102 T6.3 \times 10^{-2} \mathrm{~T}
Question
Two long straight wires each carry a current of 12 A12 \mathrm{~A} . One wire lies on the x\mathrm{x} -axis with its current in the positive x\mathrm{x} -direction. The other wire lies on the y\mathrm{y} -axis with its current in the positive y\mathrm{y} -direction. In the xy\mathrm{x}-\mathrm{y} plane, which quadrant (quadrants) has/have points where the magnetic field is zero?

A) I
B) I and III
C) II
D) II and IV
E) none of them
F) all of them
Question
One wire, lying on the xx -axis, carries a current of 8.0 A8.0 \mathrm{~A} in the positive xx -direction. Another wire, lying on the y\mathrm{y} -axis, carries a current of 12 A12 \mathrm{~A} in the positive y\mathrm{y} -direction. What is the magnitude of the magnetic field at ( x\mathrm{x} , y) =(8.0 cm,12.0 cm)=(8.0 \mathrm{~cm}, 12.0 \mathrm{~cm}) ?

A) 3.0×105 T3.0 \times 10^{-5} \mathrm{~T}
B) 4.3×105 T4.3 \times 10^{-5} \mathrm{~T}
C) 1.7×105 T1.7 \times 10^{-5} \mathrm{~T}
D) 4.0×1010 T4.0 \times 10^{-10} \mathrm{~T}
E) 1.3×105 T1.3 \times 10^{-5} \mathrm{~T}
Question
A solenoid of radius 1.1 cm1.1 \mathrm{~cm} , carrying a current of 2.2 A2.2 \mathrm{~A} , produces a magnetic field at its center of 0.28 T0.28 \mathrm{~T} . How many turns per unit length does the solenoid have?

A) 1.0×105 m11.0 \times 10^{5} \mathrm{~m}^{-1}
B) 1.1×103 m11.1 \times 10^{3} \mathrm{~m}^{-1}
C) 7.0×103 m17.0 \times 10^{3} \mathrm{~m}^{-1}
D) 1.0×109 m11.0 \times 10^{-9} \mathrm{~m}^{-1}
E) 2.2×103 m12.2 \times 10^{3} \mathrm{~m}^{-1}
Question
Find the circulation for the path shown.
 <strong> Find the circulation for the path shown.  </strong> A)  -(4  A  ) \mu_{0}  B)  -\left(28\right.  A)  \mu_{0}  C)  (28 \mathrm{~A}) \mu_{0}  D)  (4 \mathrm{~A}) \mu_{0}  E)  (7 \mathrm{~A}) \mu_{0}  <div style=padding-top: 35px>

A) (4-(4 A )μ0) \mu_{0}
B) (28-\left(28\right. A) μ0\mu_{0}
C) (28 A)μ0(28 \mathrm{~A}) \mu_{0}
D) (4 A)μ0(4 \mathrm{~A}) \mu_{0}
E) (7 A)μ0(7 \mathrm{~A}) \mu_{0}
Question
Find the circulation for the path shown.
 <strong> Find the circulation for the path shown.  </strong> A)  \left(4\right.  A)  \mu_{0}  B)  -(28 \mathrm{~A}) \mu_{0}  C)  (28 \mathrm{~A}) \mu_{0}  D)  -(4 \mathrm{~A}) \mu_{0}  E)  -(7 \mathrm{~A}) \mu_{0}  <div style=padding-top: 35px>

A) (4\left(4\right. A) μ0\mu_{0}
B) (28 A)μ0-(28 \mathrm{~A}) \mu_{0}
C) (28 A)μ0(28 \mathrm{~A}) \mu_{0}
D) (4 A)μ0-(4 \mathrm{~A}) \mu_{0}
E) (7 A)μ0-(7 \mathrm{~A}) \mu_{0}
Question
A proton and electron, each travelling with the same velocity, enter a region of uniform magnetic field. They experience

A) forces in the same direction and having ratio Fp/Fe=me/mp\mathrm{F}_{\mathrm{p}} / \mathrm{F}_{\mathrm{e}}=\mathrm{m}_{\mathrm{e}} / \mathrm{m}_{\mathrm{p}} .
B) the same force.
C) forces equal in magnitude, but opposite in direction.
D) forces opposite in direction and having ratio Fp/Fe=me/mp\mathrm{F}_{\mathrm{p}} / \mathrm{F}_{\mathrm{e}}=\mathrm{m}_{\mathrm{e}} / \mathrm{m}_{\mathrm{p}} .
Question
A proton and electron, travelling with the same velocity in the +x+x direction, enter separate regions, each with a uniform magnetic field in the ±y\pm \mathrm{y} direction (magnitude Bp\mathrm{B}_{\mathrm{p}} for the proton, Be\mathrm{B}_{\mathrm{e}} for the electron). They each experience the same acceleration. What can we conclude?

A) The magnetic fields were in the same direction and have ratio Bp/Be=me/mpB_{p} / B_{e}=m_{e} / m_{p} .
B) The magnetic fields were in the opposite direction and have ratio Bp/Be=mp/meB_{p} / B_{e}=m_{p} / m_{e} .
C) The magnetic fields were identical in magnitude and direction.
D) The magnetic fields were in the opposite direction and have ratio Bp/Be=me/mpB_{p} / B_{e}=m_{e} / m_{p} .
E) The magnetic fields were identical in magnitude and opposite in direction.
F) The magnetic fields were in the same direction and have ratio Bp/Be=mp/meB_{p} / B_{e}=m_{p} / m_{e} .
Question
A proton and electron, each travelling with the same velocity in the +x+x direction, enter a region of uniform magnetic field in the +y+y direction. If the acceleration of the electron is aa in the +z+z direction, what is the acceleration of the proton?

A) a mp/mea \mathrm{~m}_{\mathrm{p}} / \mathrm{m}_{\mathrm{e}} in the z-\mathrm{z} direction
B) a mp/mea \mathrm{~m}_{\mathrm{p}} / \mathrm{m}_{\mathrm{e}} in the +z+\mathrm{z} direction
C) aa in the z-\mathrm{z} direction
D) aa in the +z+\mathrm{z} direction
E) a me/mpa \mathrm{~m}_{\mathrm{e}} / \mathrm{m}_{\mathrm{p}} in the +z+\mathrm{z} direction
F) a me/mpa \mathrm{~m}_{\mathrm{e}} / \mathrm{m}_{\mathrm{p}} in the z-\mathrm{z} direction
Question
A cyclotron is designed to accelerate protons (mass 1.67×1027 kg1.67 \times 10^{-27} \mathrm{~kg} ) up to a kinetic energy of 2.5×1013 J2.5 \times 10^{-13} \mathrm{~J} . If the magnetic field in the cyclotron is 0.75 T0.75 \mathrm{~T} , what is the radius of the dipole magnets in the cyclotron?

A) 5.8 cm5.8 \mathrm{~cm}
B) 14 cm14 \mathrm{~cm}
C) 24 cm24 \mathrm{~cm}
D) 17 cm17 \mathrm{~cm}
Question
A cyclotron is designed to accelerate protons (mass 1.67×1027 kg1.67 \times 10^{-27} \mathrm{~kg} ) up to a kinetic energy of 2.5×1013 J2.5 \times 10^{-13} \mathrm{~J} . If the radius of the dipole magnets is 96 cm96 \mathrm{~cm} , what is the magnetic field used in the cyclotron?

A) 0.13 T0.13 \mathrm{~T}
B) 0.21 T0.21 \mathrm{~T}
C) 35mT35 \mathrm{mT}
D) 0.19 T0.19 \mathrm{~T}
Question
A cyclotron is designed to accelerate protons to a maximum kinetic energy K. Assuming one then tried to accelerate alpha particles (about four times the mass and twice the charge), what kinetic energy could be achieved?

A) 2 K2 \mathrm{~K}
B) 1/2 K1 / 2 \mathrm{~K}
C) 4 K4 \mathrm{~K}
D) K\mathrm{K}
E) 1/4 K1 / 4 \mathrm{~K}
F) 8 K8 \mathrm{~K}
Question
A charged particle of mass 1.0×1026 kg1.0 \times 10^{-26} \mathrm{~kg} enters a region of uniform magnetic field at a speed of 2.8×1062.8 \times 10^{6} m/s\mathrm{m} / \mathrm{s} , at an angle of 37 degrees relative to the magnetic field direction. If the magnetic field strength is 1.2 T1.2 \mathrm{~T} and the charge of the particle is +e+\mathrm{e} , what will be the radius of the helical path it takes?

A) 11 cm11 \mathrm{~cm}
B) Insufficient information is given.
C) 8.8 cm8.8 \mathrm{~cm}
D) 15 cm15 \mathrm{~cm}
Question
A charged particle of mass 1.0×1026 kg1.0 \times 10^{-26} \mathrm{~kg} enters a region of uniform magnetic field at a speed of 2.8×1062.8 \times 10^{6} m/s\mathrm{m} / \mathrm{s} , at an angle of 37 degrees relative to the magnetic field direction. If the magnetic field strength is 1.2 T1.2 \mathrm{~T} what will be the radius of the helical path it takes?

A) 8.9 cm8.9 \mathrm{~cm} .
B) 15 cm15 \mathrm{~cm}
C) 11 cm11 \mathrm{~cm}
D) Insufficient information given.
Unlock Deck
Sign up to unlock the cards in this deck!
Unlock Deck
Unlock Deck
1/33
auto play flashcards
Play
simple tutorial
Full screen (f)
exit full mode
Deck 19: Magnetic Forces and Fields
1
A proton is moving at 2.0×107 m/s2.0 \times 10^{7} \mathrm{~m} / \mathrm{s} in a magnetic field of 30mT30 \mathrm{mT} . What is the magnitude of the magnetic force on the proton?

A) 0.0
B) 6.0×105 N6.0 \times 10^{-5} \mathrm{~N}
C) 9.6×1014 N9.6 \times 10^{-14} \mathrm{~N}
D) 4.8×1014 N4.8 \times 10^{-14} \mathrm{~N}
E) More information is needed.
More information is needed.
2
A proton is moving perpendicular to a magnetic field at 3.0×106 m/s3.0 \times 106 \mathrm{~m} / \mathrm{s} and experiences a magnetic force of magnitude 2.5×1016 N2.5 \times 10^{-16} \mathrm{~N} . What is the magnitude of the magnetic field?

A) 3.8×102 T3.8 \times 10^{-2} \mathrm{~T}
B) 1.9×103 T1.9 \times 10^{-3} \mathrm{~T}
C) 2.6×104 T2.6 \times 10^{-4} \mathrm{~T}
D) 0.52 T0.52 \mathrm{~T}
E) 5.2×104 T5.2 \times 10^{-4} \mathrm{~T}
5.2×104 T5.2 \times 10^{-4} \mathrm{~T}
3
An electron is moving at 2.5×106 m/s2.5 \times 106 \mathrm{~m} / \mathrm{s} perpendicular to a uniform 3.5mT3.5 \mathrm{mT} magnetic field. What is the radius of its path?

A) 4.1 mm4.1 \mathrm{~mm}
B) 1.6 cm1.6 \mathrm{~cm}
C) 3.9 cm3.9 \mathrm{~cm}
D) 2.0 mm2.0 \mathrm{~mm}
E) 5.1 cm5.1 \mathrm{~cm}
4.1 mm4.1 \mathrm{~mm}
4
An electron is moving at 3.0×106 m/s3.0 \times 10^{6} \mathrm{~m} / \mathrm{s} perpendicular to a uniform magnetic field. If the radius of the motion is 18 mm18 \mathrm{~mm} , what is the magnitude of the magnetic field?

A) 70mT70 \mathrm{mT}
B) 8.9nT8.9 \mathrm{nT}
C) 1.6μT1.6 \mu \mathrm{T}
D) 9.3mT9.3 \mathrm{mT}
E) 0.95mT0.95 \mathrm{mT}
Unlock Deck
Unlock for access to all 33 flashcards in this deck.
Unlock Deck
k this deck
5
A proton cyclotron has a magnetic field of 0.20 T0.20 \mathrm{~T} between its poles and a radius of 0.40 m0.40 \mathrm{~m} . What is the maximum energy for the protons from this machine?

A) 1.6×1013 J1.6 \times 10^{-13} \mathrm{~J}
B) 4.9×1013 J4.9 \times 10^{-13} \mathrm{~J}
C) 3.2×1014 J3.2 \times 10^{-14} \mathrm{~J}
D) 4.9×1014 J4.9 \times 10^{-14} \mathrm{~J}
E) 3.2×1013 J3.2 \times 10^{-13} \mathrm{~J}
Unlock Deck
Unlock for access to all 33 flashcards in this deck.
Unlock Deck
k this deck
6
What is the speed of a proton in a cyclotron having a 0.50 T0.50 \mathrm{~T} magnetic field when the proton is at a distance of 25 cm25 \mathrm{~cm} from the center?

A) 1.1×104 m/s1.1 \times 10^{4} \mathrm{~m} / \mathrm{s}
B) 3.2×106 m/s3.2 \times 10^{6} \mathrm{~m} / \mathrm{s}
C) 3.7×107 m/s3.7 \times 10^{7} \mathrm{~m} / \mathrm{s}
D) 1.2×107 m/s1.2 \times 10^{7} \mathrm{~m} / \mathrm{s}
E) 6.0×106 m/s6.0 \times 10^{6} \mathrm{~m} / \mathrm{s}
Unlock Deck
Unlock for access to all 33 flashcards in this deck.
Unlock Deck
k this deck
7
A proton is moving at 3.0×106 m/s3.0 \times 10^{6} \mathrm{~m} / \mathrm{s} and experiences a magnetic force of magnitude 2.5×1016 N2.5 \times 10^{-16} \mathrm{~N} . If the magnetic field makes an angle of 4040^{\circ} with respect to the velocity of the proton, what is the field's magnitude?

A) 3.3×104 T3.3 \times 10^{-4} \mathrm{~T}
B) 1.7×104 T1.7 \times 10^{-4} \mathrm{~T}
C) 4.1×104 T4.1 \times 10^{-4} \mathrm{~T}
D) 8.1×104 T8.1 \times 10^{-4} \mathrm{~T}
E) 1.6×103 T1.6 \times 10^{-3} \mathrm{~T}
Unlock Deck
Unlock for access to all 33 flashcards in this deck.
Unlock Deck
k this deck
8
Find the force (magnitude and direction) exerted on an electron moving vertically upward at a speed of 2.0×2.0 \times 107 m/s10^{7} \mathrm{~m} / \mathrm{s} by a horizontal magnetic field of 0.50 T0.50 \mathrm{~T} directed north.

A) 1.6×1012 N1.6 \times 10^{-12} \mathrm{~N} west
B) 1.8×1012 N1.8 \times 10^{-12} \mathrm{~N} east
C) 1.6×1012 N1.6 \times 10^{-12} \mathrm{~N} east
D) 1.8×1012 N1.8 \times 10^{-12} \mathrm{~N} west
Unlock Deck
Unlock for access to all 33 flashcards in this deck.
Unlock Deck
k this deck
9
An electron is moving at 3.0×106 m/s3.0 \times 10^{6} \mathrm{~m} / \mathrm{s} at an angle of 4040^{\circ} to a 0.80 T0.80 \mathrm{~T} magnetic field. What is the magnitude of the force on the electron?

A) 3.8×1013 N3.8 \times 10^{-13} \mathrm{~N}
B) 1.2×1013 N1.2 \times 10^{-13} \mathrm{~N}
C) 2.5×1013 N2.5 \times 10^{-13} \mathrm{~N}
D) 2.9×1013 N2.9 \times 10^{-13} \mathrm{~N}
E) 4.8×1013 N4.8 \times 10^{-13} \mathrm{~N}
Unlock Deck
Unlock for access to all 33 flashcards in this deck.
Unlock Deck
k this deck
10
An electron is moving at 3.0×106 m/s3.0 \times 106 \mathrm{~m} / \mathrm{s} at an angle of 4040^{\circ} to a 0.80 T0.80 \mathrm{~T} magnetic field. What is the magnitude of the acceleration of the electron?

A) 7.8×1017 m/s27.8 \times 1017 \mathrm{~m} / \mathrm{s}^{2}
B) 1.4×1017 m/s21.4 \times 1017 \mathrm{~m} / \mathrm{s}^{2}
C) 5.2×1017 m/s25.2 \times 1017 \mathrm{~m} / \mathrm{s}^{2}
D) 9.8×1017 m/s29.8 \times 10^{17} \mathrm{~m} / \mathrm{s}^{2}
E) 2.7×1017 m/s22.7 \times 1017 \mathrm{~m} / \mathrm{s}^{2}
Unlock Deck
Unlock for access to all 33 flashcards in this deck.
Unlock Deck
k this deck
11
The magnetic field in a cyclotron is 0.50 T0.50 \mathrm{~T} . Find the magnitude of the magnetic force on a proton with velocity of 1.0×107 m/s1.0 \times 10^{7} \mathrm{~m} / \mathrm{s} in a plane perpendicular to the field.

A) 8.0×1013 N8.0 \times 10^{-13} \mathrm{~N}
B) 6.0×1013 N6.0 \times 10^{-13} \mathrm{~N}
C) 6.0×1014 N6.0 \times 10^{-14} \mathrm{~N}
D) 8.0×1014 N8.0 \times 10^{-14} \mathrm{~N}
Unlock Deck
Unlock for access to all 33 flashcards in this deck.
Unlock Deck
k this deck
12
The magnetic field in a cyclotron is 0.50 T0.50 \mathrm{~T} . What is the radius of the vacuum chamber for a maximum proton velocity of 1.0×107 m/s1.0 \times 10^{7} \mathrm{~m} / \mathrm{s} ?

A) 0.013 m0.013 \mathrm{~m}
B) 0.21 m0.21 \mathrm{~m}
C) 1.2 m1.2 \mathrm{~m}
D) 0.11 m0.11 \mathrm{~m}
Unlock Deck
Unlock for access to all 33 flashcards in this deck.
Unlock Deck
k this deck
13
An electric field perpendicular to a magnetic field is used as a velocity selector for Li+\mathrm{Li}^{+} ions, selecting the velocity v1\mathrm{v}_{1} . Next, Li++\mathrm{Li}^{++} ions are sent through the same velocity selector, selecting velocity v2\mathrm{v}_{2} . If neither the electric nor magnetic fields have changed between the two processes, how do v1\mathrm{v}_{1} and v2\mathrm{v}_{2} compare?

A) v2=v1/2\mathrm{v}_{2}=\mathrm{v}_{1} / 2
B) v2=v1/4v_{2}=v_{1} / 4
C) v2=v1\mathrm{v}_{2}=\mathrm{v}_{1}
D) v2=4v1\mathrm{v}_{2}=4 \mathrm{v}_{1}
E) v2=2v1v_{2}=2 v_{1}
Unlock Deck
Unlock for access to all 33 flashcards in this deck.
Unlock Deck
k this deck
14
In a velocity selector for ions, when the velocity of the ions is double the value for which the selector is set, how do the magnetic force FM\mathrm{F}_{\mathrm{M}} and the electric force FE\mathrm{F}_{\mathrm{E}} compare?

A) FM=4 FE\mathrm{F}_{\mathrm{M}}=4 \mathrm{~F}_{\mathrm{E}}
B) FM=1.414 FE\mathrm{F}_{\mathrm{M}}=1.414 \mathrm{~F}_{\mathrm{E}}
C) FM=FE/2\mathrm{F}_{\mathrm{M}}=\mathrm{F}_{\mathrm{E}} / 2
D) FM=FE/4F_{M}=F_{E} / 4
E) FM=2FEF_{M}=2 F_{E}
Unlock Deck
Unlock for access to all 33 flashcards in this deck.
Unlock Deck
k this deck
15
A flat conductor of thickness 0.500 mm0.500 \mathrm{~mm} is placed in a magnetic field of 0.200 T0.200 \mathrm{~T} perpendicular to the flat surface. If there are 8.00×10248.00 \times 1024 charge carriers (i.e., electrons) per m3\mathrm{m}^{3} , what is the Hall voltage generated when 3.40 A flows along the conductor?

A) 0.531mV0.531 \mathrm{mV}
B) 0.266mV0.266 \mathrm{mV}
C) 0.797mV0.797 \mathrm{mV}
D) 1.06mV1.06 \mathrm{mV}
E) 2.12mV2.12 \mathrm{mV}
Unlock Deck
Unlock for access to all 33 flashcards in this deck.
Unlock Deck
k this deck
16
A 10 m10 \mathrm{~m} long wire carrying a current of 22 A makes an angle of 3737^{\circ} with the Earth's magnetic field of 0.51 mT\mathrm{mT} . What is the magnetic force on the wire?

A) 0.068 N0.068 \mathrm{~N}
B) 0.011 N0.011 \mathrm{~N}
C) 0.19 N0.19 \mathrm{~N}
D) 0.090 N0.090 \mathrm{~N}
E) 0.11 N0.11 \mathrm{~N}
Unlock Deck
Unlock for access to all 33 flashcards in this deck.
Unlock Deck
k this deck
17
If the magnetic field from a long, straight, current-carrying wire has a magnitude B0\mathrm{B}_{0} at a distance d\mathrm{d} , what is the magnitude of the field at a distance 2 d2 \mathrm{~d} ?

A) also B0\mathrm{B}_{0}
B) B0/2\mathrm{B}_{0} / 2
C) 0.693 B00.693 \mathrm{~B}_{0}
D) B0/4\mathrm{B}_{0} / 4
E) 0.707 B00.707 \mathrm{~B}_{0}
Unlock Deck
Unlock for access to all 33 flashcards in this deck.
Unlock Deck
k this deck
18
A power line carries 1000 A1000 \mathrm{~A} at a height of 20 m20 \mathrm{~m} above the ground. What is the resulting magnetic field at ground level?

A) 13μT13 \mu \mathrm{T}
B) 10μT10 \mu \mathrm{T}
C) 0.13mT0.13 \mathrm{mT}
D) 5.0μT5.0 \mu \mathrm{T}
E) 50mT50 \mathrm{mT}
Unlock Deck
Unlock for access to all 33 flashcards in this deck.
Unlock Deck
k this deck
19
Two parallel wires are each carrying 10 A10 \mathrm{~A} and are separated by 4.0 m4.0 \mathrm{~m} . If the currents are in opposite directions, what is the magnitude of the magnetic field halfway between them?

A) 1.0μT1.0 \mu \mathrm{T}
B) 2.0μT2.0 \mu \mathrm{T}
C) 0.0
D) 1.4μT1.4 \mu \mathrm{T}
E) 4.0μT4.0 \mu \mathrm{T}
Unlock Deck
Unlock for access to all 33 flashcards in this deck.
Unlock Deck
k this deck
20
If magnetic field inside a solenoid having 100 turns per cm\mathrm{cm} and a current of 5.0 A5.0 \mathrm{~A} is

A) 1.0×104 T1.0 \times 10^{-4} \mathrm{~T} .
B) 6.3×104 T6.3 \times 10^{-4} \mathrm{~T} .
C) 2.0×102 T2.0 \times 10^{-2} \mathrm{~T} .
D) 1.0×102 T1.0 \times 10^{-2} \mathrm{~T} .
E) 6.3×102 T6.3 \times 10^{-2} \mathrm{~T}
Unlock Deck
Unlock for access to all 33 flashcards in this deck.
Unlock Deck
k this deck
21
Two long straight wires each carry a current of 12 A12 \mathrm{~A} . One wire lies on the x\mathrm{x} -axis with its current in the positive x\mathrm{x} -direction. The other wire lies on the y\mathrm{y} -axis with its current in the positive y\mathrm{y} -direction. In the xy\mathrm{x}-\mathrm{y} plane, which quadrant (quadrants) has/have points where the magnetic field is zero?

A) I
B) I and III
C) II
D) II and IV
E) none of them
F) all of them
Unlock Deck
Unlock for access to all 33 flashcards in this deck.
Unlock Deck
k this deck
22
One wire, lying on the xx -axis, carries a current of 8.0 A8.0 \mathrm{~A} in the positive xx -direction. Another wire, lying on the y\mathrm{y} -axis, carries a current of 12 A12 \mathrm{~A} in the positive y\mathrm{y} -direction. What is the magnitude of the magnetic field at ( x\mathrm{x} , y) =(8.0 cm,12.0 cm)=(8.0 \mathrm{~cm}, 12.0 \mathrm{~cm}) ?

A) 3.0×105 T3.0 \times 10^{-5} \mathrm{~T}
B) 4.3×105 T4.3 \times 10^{-5} \mathrm{~T}
C) 1.7×105 T1.7 \times 10^{-5} \mathrm{~T}
D) 4.0×1010 T4.0 \times 10^{-10} \mathrm{~T}
E) 1.3×105 T1.3 \times 10^{-5} \mathrm{~T}
Unlock Deck
Unlock for access to all 33 flashcards in this deck.
Unlock Deck
k this deck
23
A solenoid of radius 1.1 cm1.1 \mathrm{~cm} , carrying a current of 2.2 A2.2 \mathrm{~A} , produces a magnetic field at its center of 0.28 T0.28 \mathrm{~T} . How many turns per unit length does the solenoid have?

A) 1.0×105 m11.0 \times 10^{5} \mathrm{~m}^{-1}
B) 1.1×103 m11.1 \times 10^{3} \mathrm{~m}^{-1}
C) 7.0×103 m17.0 \times 10^{3} \mathrm{~m}^{-1}
D) 1.0×109 m11.0 \times 10^{-9} \mathrm{~m}^{-1}
E) 2.2×103 m12.2 \times 10^{3} \mathrm{~m}^{-1}
Unlock Deck
Unlock for access to all 33 flashcards in this deck.
Unlock Deck
k this deck
24
Find the circulation for the path shown.
 <strong> Find the circulation for the path shown.  </strong> A)  -(4  A  ) \mu_{0}  B)  -\left(28\right.  A)  \mu_{0}  C)  (28 \mathrm{~A}) \mu_{0}  D)  (4 \mathrm{~A}) \mu_{0}  E)  (7 \mathrm{~A}) \mu_{0}

A) (4-(4 A )μ0) \mu_{0}
B) (28-\left(28\right. A) μ0\mu_{0}
C) (28 A)μ0(28 \mathrm{~A}) \mu_{0}
D) (4 A)μ0(4 \mathrm{~A}) \mu_{0}
E) (7 A)μ0(7 \mathrm{~A}) \mu_{0}
Unlock Deck
Unlock for access to all 33 flashcards in this deck.
Unlock Deck
k this deck
25
Find the circulation for the path shown.
 <strong> Find the circulation for the path shown.  </strong> A)  \left(4\right.  A)  \mu_{0}  B)  -(28 \mathrm{~A}) \mu_{0}  C)  (28 \mathrm{~A}) \mu_{0}  D)  -(4 \mathrm{~A}) \mu_{0}  E)  -(7 \mathrm{~A}) \mu_{0}

A) (4\left(4\right. A) μ0\mu_{0}
B) (28 A)μ0-(28 \mathrm{~A}) \mu_{0}
C) (28 A)μ0(28 \mathrm{~A}) \mu_{0}
D) (4 A)μ0-(4 \mathrm{~A}) \mu_{0}
E) (7 A)μ0-(7 \mathrm{~A}) \mu_{0}
Unlock Deck
Unlock for access to all 33 flashcards in this deck.
Unlock Deck
k this deck
26
A proton and electron, each travelling with the same velocity, enter a region of uniform magnetic field. They experience

A) forces in the same direction and having ratio Fp/Fe=me/mp\mathrm{F}_{\mathrm{p}} / \mathrm{F}_{\mathrm{e}}=\mathrm{m}_{\mathrm{e}} / \mathrm{m}_{\mathrm{p}} .
B) the same force.
C) forces equal in magnitude, but opposite in direction.
D) forces opposite in direction and having ratio Fp/Fe=me/mp\mathrm{F}_{\mathrm{p}} / \mathrm{F}_{\mathrm{e}}=\mathrm{m}_{\mathrm{e}} / \mathrm{m}_{\mathrm{p}} .
Unlock Deck
Unlock for access to all 33 flashcards in this deck.
Unlock Deck
k this deck
27
A proton and electron, travelling with the same velocity in the +x+x direction, enter separate regions, each with a uniform magnetic field in the ±y\pm \mathrm{y} direction (magnitude Bp\mathrm{B}_{\mathrm{p}} for the proton, Be\mathrm{B}_{\mathrm{e}} for the electron). They each experience the same acceleration. What can we conclude?

A) The magnetic fields were in the same direction and have ratio Bp/Be=me/mpB_{p} / B_{e}=m_{e} / m_{p} .
B) The magnetic fields were in the opposite direction and have ratio Bp/Be=mp/meB_{p} / B_{e}=m_{p} / m_{e} .
C) The magnetic fields were identical in magnitude and direction.
D) The magnetic fields were in the opposite direction and have ratio Bp/Be=me/mpB_{p} / B_{e}=m_{e} / m_{p} .
E) The magnetic fields were identical in magnitude and opposite in direction.
F) The magnetic fields were in the same direction and have ratio Bp/Be=mp/meB_{p} / B_{e}=m_{p} / m_{e} .
Unlock Deck
Unlock for access to all 33 flashcards in this deck.
Unlock Deck
k this deck
28
A proton and electron, each travelling with the same velocity in the +x+x direction, enter a region of uniform magnetic field in the +y+y direction. If the acceleration of the electron is aa in the +z+z direction, what is the acceleration of the proton?

A) a mp/mea \mathrm{~m}_{\mathrm{p}} / \mathrm{m}_{\mathrm{e}} in the z-\mathrm{z} direction
B) a mp/mea \mathrm{~m}_{\mathrm{p}} / \mathrm{m}_{\mathrm{e}} in the +z+\mathrm{z} direction
C) aa in the z-\mathrm{z} direction
D) aa in the +z+\mathrm{z} direction
E) a me/mpa \mathrm{~m}_{\mathrm{e}} / \mathrm{m}_{\mathrm{p}} in the +z+\mathrm{z} direction
F) a me/mpa \mathrm{~m}_{\mathrm{e}} / \mathrm{m}_{\mathrm{p}} in the z-\mathrm{z} direction
Unlock Deck
Unlock for access to all 33 flashcards in this deck.
Unlock Deck
k this deck
29
A cyclotron is designed to accelerate protons (mass 1.67×1027 kg1.67 \times 10^{-27} \mathrm{~kg} ) up to a kinetic energy of 2.5×1013 J2.5 \times 10^{-13} \mathrm{~J} . If the magnetic field in the cyclotron is 0.75 T0.75 \mathrm{~T} , what is the radius of the dipole magnets in the cyclotron?

A) 5.8 cm5.8 \mathrm{~cm}
B) 14 cm14 \mathrm{~cm}
C) 24 cm24 \mathrm{~cm}
D) 17 cm17 \mathrm{~cm}
Unlock Deck
Unlock for access to all 33 flashcards in this deck.
Unlock Deck
k this deck
30
A cyclotron is designed to accelerate protons (mass 1.67×1027 kg1.67 \times 10^{-27} \mathrm{~kg} ) up to a kinetic energy of 2.5×1013 J2.5 \times 10^{-13} \mathrm{~J} . If the radius of the dipole magnets is 96 cm96 \mathrm{~cm} , what is the magnetic field used in the cyclotron?

A) 0.13 T0.13 \mathrm{~T}
B) 0.21 T0.21 \mathrm{~T}
C) 35mT35 \mathrm{mT}
D) 0.19 T0.19 \mathrm{~T}
Unlock Deck
Unlock for access to all 33 flashcards in this deck.
Unlock Deck
k this deck
31
A cyclotron is designed to accelerate protons to a maximum kinetic energy K. Assuming one then tried to accelerate alpha particles (about four times the mass and twice the charge), what kinetic energy could be achieved?

A) 2 K2 \mathrm{~K}
B) 1/2 K1 / 2 \mathrm{~K}
C) 4 K4 \mathrm{~K}
D) K\mathrm{K}
E) 1/4 K1 / 4 \mathrm{~K}
F) 8 K8 \mathrm{~K}
Unlock Deck
Unlock for access to all 33 flashcards in this deck.
Unlock Deck
k this deck
32
A charged particle of mass 1.0×1026 kg1.0 \times 10^{-26} \mathrm{~kg} enters a region of uniform magnetic field at a speed of 2.8×1062.8 \times 10^{6} m/s\mathrm{m} / \mathrm{s} , at an angle of 37 degrees relative to the magnetic field direction. If the magnetic field strength is 1.2 T1.2 \mathrm{~T} and the charge of the particle is +e+\mathrm{e} , what will be the radius of the helical path it takes?

A) 11 cm11 \mathrm{~cm}
B) Insufficient information is given.
C) 8.8 cm8.8 \mathrm{~cm}
D) 15 cm15 \mathrm{~cm}
Unlock Deck
Unlock for access to all 33 flashcards in this deck.
Unlock Deck
k this deck
33
A charged particle of mass 1.0×1026 kg1.0 \times 10^{-26} \mathrm{~kg} enters a region of uniform magnetic field at a speed of 2.8×1062.8 \times 10^{6} m/s\mathrm{m} / \mathrm{s} , at an angle of 37 degrees relative to the magnetic field direction. If the magnetic field strength is 1.2 T1.2 \mathrm{~T} what will be the radius of the helical path it takes?

A) 8.9 cm8.9 \mathrm{~cm} .
B) 15 cm15 \mathrm{~cm}
C) 11 cm11 \mathrm{~cm}
D) Insufficient information given.
Unlock Deck
Unlock for access to all 33 flashcards in this deck.
Unlock Deck
k this deck
locked card icon
Unlock Deck
Unlock for access to all 33 flashcards in this deck.