Deck 20: Electromagnetic Induction

Full screen (f)
exit full mode
Question
A conducting rod is free to slide on horizontal, frictionless rails separated by 2.0 m2.0 \mathrm{~m} . At a particular time, the rod is sliding at 4.0 m/s4.0 \mathrm{~m} / \mathrm{s} to the right, as shown. A uniform magnetic field is directed into the page. If a current of 40 mA40 \mathrm{~mA} is generated in the circuit at this time, and the resistance R\mathrm{R} is 0.36Ω0.36 \Omega , what is the magnitude of the magnetic field between the rails?
 <strong>A conducting rod is free to slide on horizontal, frictionless rails separated by  2.0 \mathrm{~m} . At a particular time, the rod is sliding at  4.0 \mathrm{~m} / \mathrm{s}  to the right, as shown. A uniform magnetic field is directed into the page. If a current of  40 \mathrm{~mA}  is generated in the circuit at this time, and the resistance  \mathrm{R}  is  0.36 \Omega , what is the magnitude of the magnetic field between the rails?  </strong> A)  0.028 \mathrm{~T}  B)  1.8 \mathrm{mT}  C)  0.11 \mathrm{~T}  D)  3.6 \mathrm{mT}  E)  14 \mathrm{mT}  <div style=padding-top: 35px>

A) 0.028 T0.028 \mathrm{~T}
B) 1.8mT1.8 \mathrm{mT}
C) 0.11 T0.11 \mathrm{~T}
D) 3.6mT3.6 \mathrm{mT}
E) 14mT14 \mathrm{mT}
Use Space or
up arrow
down arrow
to flip the card.
Question
The emf produced by an ac generator is given by ε=ωNBAsinωt\varepsilon=\omega \mathrm{NBA} \sin \omega \mathrm{t} . In SI units, what is the value of ω\omega for a frequency of 60.0 Hz60.0 \mathrm{~Hz} ?

A) 60.0 Hz60.0 \mathrm{~Hz}
B) 377 Hz377 \mathrm{~Hz}
C) 2.00πrad/s2.00 \pi \mathrm{rad} / \mathrm{s}
D) 120rad/s120 \mathrm{rad} / \mathrm{s}
E) 377rad/s377 \mathrm{rad} / \mathrm{s}
Question
The SI unit H\mathrm{H} (the henry) is equal to a

A) V/m\mathrm{V} / \mathrm{m} .
B) V/A\mathrm{V} / \mathrm{A} .
C) V.s/A.
D) Vs\mathrm{V} \cdot \mathrm{s} .
E) VA/s\mathrm{V} \cdot \mathrm{A} / \mathrm{s}
Question
The unit of magnetic flux is the weber. 1 Wb1 \mathrm{~Wb} equals

A) 1 Vs/A1 \mathrm{~V} \cdot \mathrm{s} / \mathrm{A} .
B) 1 Vm1 \mathrm{~V} \cdot \mathrm{m} .
C) 1 Tm21 \mathrm{~T} \cdot \mathrm{m}^{2} .
D) π\pi lines /m2/ \mathrm{m}^{2} .
Question
A flat coil has a maximum flux of 4.0×103 Tm24.0 \times 10^{-3} \mathrm{~T} \cdot \mathrm{m}^{2} through it, with its area perpendicular to a uniform magnetic field. When the coil is rotated 6060^{\circ} (so that its normal makes a 6060^{\circ} angle with the field), what is the flux through it?

A) 3.5×103 Tm23.5 \times 10^{-3} \mathrm{~T} \cdot \mathrm{m}^{2}
B) 6.9×103 Tm26.9 \times 10^{-3} \mathrm{~T} \cdot \mathrm{m}^{2}
C) 2.0×103 Tm22.0 \times 10^{-3} \mathrm{~T} \cdot \mathrm{m}^{2}
D) 4.0×103 Tm24.0 \times 10^{-3} \mathrm{~T} \cdot \mathrm{m}^{2}
E) 8.0×103 Tm28.0 \times 10^{-3} \mathrm{~T} \cdot \mathrm{m}^{2}
Question
A hollow copper pipe is held vertically, and a magnet is dropped down the pipe. The magnet is oriented with its north pole down. What direction do the eddy currents flow as viewed from above the pipe? If copper bar of approximately the same size and weight as the magnet is dropped down the tube instead, will it fall faster or slower than the magnet?

A) CCW above the magnet and CW below the magnet; copper bar will fall slower
B) CW\mathrm{CW} above the magnet and CCW\mathrm{CCW} below the magnet; copper bar will fall faster
C) CCW\mathrm{CCW} above the magnet and CW\mathrm{CW} below the magnet; copper bar will fall faster
D) CW\mathrm{CW} above the magnet and CCW below the magnet; copper bar will fall slower
Question
A solenoid of length 4.00 cm4.00 \mathrm{~cm} and cross-sectional area 2.00 cm22.00 \mathrm{~cm}^{2} has 80 turns. What is its self-inductance?

A) 120μH120 \mu \mathrm{H}
B) 40.2μH40.2 \mu \mathrm{H}
C) 80.0μH80.0 \mu \mathrm{H}
D) 160μH160 \mu \mathrm{H}
E) 0.500μH0.500 \mu \mathrm{H}
Question
If the magnetic energy stored by a 0.50H0.50 \mathrm{H} inductor is 3.6 J3.6 \mathrm{~J} , what is the current through it?

A) 0.90 A0.90 \mathrm{~A}
B) 5.4 A5.4 \mathrm{~A}
C) 0.13 A0.13 \mathrm{~A}
D) 1.8 A1.8 \mathrm{~A}
E) 3.8 A3.8 \mathrm{~A}
Question
What is the magnetic energy stored by a 300mH300 \mathrm{mH} inductor with a 2.0 A current going through it?

A) 1.2 J1.2 \mathrm{~J}
B) 0.60 J0.60 \mathrm{~J}
C) 30 mJ30 \mathrm{~mJ}
D) 0.075 J0.075 \mathrm{~J}
E) 0.15 J0.15 \mathrm{~J}
Question
The current in a 0.40H0.40 \mathrm{H} inductor increases form 2.0 A2.0 \mathrm{~A} to 3.0 A3.0 \mathrm{~A} in 1.5 s1.5 \mathrm{~s} . The energy stored by the inductor during this process increases by

A) 1.8 J1.8 \mathrm{~J} .
B) 3.6 J3.6 \mathrm{~J} .
C) 1.0 J1.0 \mathrm{~J} .
D) 0.6 J0.6 \mathrm{~J} .
E) 1.2 J1.2 \mathrm{~J} .
Question
What is the magnetic energy density in a volume where the magnetic field is 4.0mT4.0 \mathrm{mT} ?

A) 3.2×103 J/m33.2 \times 10^{-3} \mathrm{~J} / \mathrm{m}^{3}
B) 13×103 J/m313 \times 10^{-3} \mathrm{~J} / \mathrm{m}^{3}
C) 6.4 J/m36.4 \mathrm{~J} / \mathrm{m}^{3}
D) 3.2 J/m33.2 \mathrm{~J} / \mathrm{m}^{3}
E) 13 J/m313 \mathrm{~J} / \mathrm{m}^{3}
Question
A 0.40H0.40 \mathrm{H} inductor has a current that rises from zero to 3.0 A3.0 \mathrm{~A} in 6.0 s6.0 \mathrm{~s} . What is the average power required to accomplish this?

A) 1.5 W1.5 \mathrm{~W}
B) 0.60 W0.60 \mathrm{~W}
C) 9.0 W9.0 \mathrm{~W}
D) 15 W15 \mathrm{~W}
E) 0.30 W0.30 \mathrm{~W}
Question
What electric field has the same energy density as a 1.0 T1.0 \mathrm{~T} magnetic field?

A) 1.1×1017 V/m1.1 \times 10-17 \mathrm{~V} / \mathrm{m}
B) 9.0×1016 V/m9.0 \times 1016 \mathrm{~V} / \mathrm{m}
C) 1.0 V/m1.0 \mathrm{~V} / \mathrm{m}
D) 3.0×108 V/m3.0 \times 10^{8} \mathrm{~V} / \mathrm{m}
E) 3.3×109 V/m3.3 \times 10-9 \mathrm{~V} / \mathrm{m}
Question
A series LR circuit includes a 9.00 V9.00 \mathrm{~V} battery, a 30.0mH30.0 \mathrm{mH} inductor, and a resistance of 5.00Ω5.00 \Omega . What is the time constant of this circuit?
 <strong>A series LR circuit includes a  9.00 \mathrm{~V}  battery, a  30.0 \mathrm{mH}  inductor, and a resistance of  5.00 \Omega . What is the time constant of this circuit?  </strong> A)  170 \mathrm{~s}  B)  115 \mathrm{~s}  C)  4.20 \mathrm{~ms}  D)  8.30 \mathrm{~ms}  E)  6.00 \mathrm{~ms}  <div style=padding-top: 35px>

A) 170 s170 \mathrm{~s}
B) 115 s115 \mathrm{~s}
C) 4.20 ms4.20 \mathrm{~ms}
D) 8.30 ms8.30 \mathrm{~ms}
E) 6.00 ms6.00 \mathrm{~ms}
Question
A series LR circuit includes a 9.0 V9.0 \mathrm{~V} battery, a resistance of 0.50Ω0.50 \Omega , and an inductance of 0.80H0.80 \mathrm{H} . What is the current 2.0 s after the switch is closed?

A) 13 A13 \mathrm{~A}
B) 6.4 A6.4 \mathrm{~A}
C) 4.3 A4.3 \mathrm{~A}
D) 18 A18 \mathrm{~A}
E) 5.2 A5.2 \mathrm{~A}
Question
A series LR circuit includes a 9.0 V9.0 \mathrm{~V} battery, a resistance of 0.50Ω0.50 \Omega , and an inductance of 0.80H0.80 \mathrm{H} . What is the induced emf 2.0 s2.0 \mathrm{~s} after the switch has been closed?

A) 0.0
B) 19mV19 \mathrm{mV}
C) 9.0 V9.0 \mathrm{~V}
D) 2.6 V2.6 \mathrm{~V}
E) 5.2 V5.2 \mathrm{~V}
Question
A series LR circuit includes a 9.0 V9.0 \mathrm{~V} battery, a resistance of 0.50Ω0.50 \Omega , and an inductance of 0.80H0.80 \mathrm{H} . What is the energy stored by the inductor 2.0 s2.0 \mathrm{~s} after the switch is closed?

A) 13 J13 \mathrm{~J}
B) 33 mJ33 \mathrm{~mJ}
C) 66 J66 \mathrm{~J}
D) 30 mJ30 \mathrm{~mJ}
E) 33 J33 \mathrm{~J}
Question
A series LR circuit includes a 9.00 V9.00 \mathrm{~V} battery, a resistance of 0.500Ω0.500 \Omega , and an inductance of 0.800H0.800 \mathrm{H} . What is the greatest energy stored by the inductor after the switch is closed?

A) 33.0 mJ33.0 \mathrm{~mJ}
B) 65.0 J65.0 \mathrm{~J}
C) 130 J130 \mathrm{~J}
D) 33.0 J33.0 \mathrm{~J}
E) 13.0 mJ13.0 \mathrm{~mJ}
Question
A square conducting loop is situated such that it is vertical, in the xz-plane. The Earth's gravitational field points downward (in the z-\mathrm{z} direction). The loop is dropped and maintains its orientation in the xz-plane. A magnetic field pointing in the +y+y direction exists and is uniform with respect to time, but it varies as a function of z:By(z)=B0(10 mz)\mathrm{z}: \mathrm{B}_{\mathrm{y}}(\mathrm{z})=\mathrm{B}_{0}(10 \mathrm{~m}-\mathrm{z}) . The loop is dropped and allowed to fall under the influence of gravitation. You observe the loop from the +y+y direction (i.e., looking toward the y-y direction). Which of the following occurs?

A) The situation is unclear because we do not know the initial conditions.
B) There is a counter-clockwise induced current.
C) There is a clockwise induced current.
D) There is no induced current.
Question
A horse and rider travel in a region in which the vertical component of the Earth's magnetic field is 0.035mT0.035 \mathrm{mT} , while the horizontal component is 0.022mT0.022 \mathrm{mT} . Attached to the horse's bridle is a metal bit, a horizontal cylinder approximately 15 cm15 \mathrm{~cm} long, in the horse's mouth. If the horse is galloping at 15 m/s15 \mathrm{~m} / \mathrm{s} , what is the induced potential difference between the ends of the bit?

A) 50μV50 \mu \mathrm{V}
B) 93mV93 \mathrm{mV}
C) 79μV79 \mu \mathrm{V}
D) 79mV79 \mathrm{mV}
E) 93μV93 \mu \mathrm{V}
F) 50mV50 \mathrm{mV}
Unlock Deck
Sign up to unlock the cards in this deck!
Unlock Deck
Unlock Deck
1/20
auto play flashcards
Play
simple tutorial
Full screen (f)
exit full mode
Deck 20: Electromagnetic Induction
1
A conducting rod is free to slide on horizontal, frictionless rails separated by 2.0 m2.0 \mathrm{~m} . At a particular time, the rod is sliding at 4.0 m/s4.0 \mathrm{~m} / \mathrm{s} to the right, as shown. A uniform magnetic field is directed into the page. If a current of 40 mA40 \mathrm{~mA} is generated in the circuit at this time, and the resistance R\mathrm{R} is 0.36Ω0.36 \Omega , what is the magnitude of the magnetic field between the rails?
 <strong>A conducting rod is free to slide on horizontal, frictionless rails separated by  2.0 \mathrm{~m} . At a particular time, the rod is sliding at  4.0 \mathrm{~m} / \mathrm{s}  to the right, as shown. A uniform magnetic field is directed into the page. If a current of  40 \mathrm{~mA}  is generated in the circuit at this time, and the resistance  \mathrm{R}  is  0.36 \Omega , what is the magnitude of the magnetic field between the rails?  </strong> A)  0.028 \mathrm{~T}  B)  1.8 \mathrm{mT}  C)  0.11 \mathrm{~T}  D)  3.6 \mathrm{mT}  E)  14 \mathrm{mT}

A) 0.028 T0.028 \mathrm{~T}
B) 1.8mT1.8 \mathrm{mT}
C) 0.11 T0.11 \mathrm{~T}
D) 3.6mT3.6 \mathrm{mT}
E) 14mT14 \mathrm{mT}
1.8mT1.8 \mathrm{mT}
2
The emf produced by an ac generator is given by ε=ωNBAsinωt\varepsilon=\omega \mathrm{NBA} \sin \omega \mathrm{t} . In SI units, what is the value of ω\omega for a frequency of 60.0 Hz60.0 \mathrm{~Hz} ?

A) 60.0 Hz60.0 \mathrm{~Hz}
B) 377 Hz377 \mathrm{~Hz}
C) 2.00πrad/s2.00 \pi \mathrm{rad} / \mathrm{s}
D) 120rad/s120 \mathrm{rad} / \mathrm{s}
E) 377rad/s377 \mathrm{rad} / \mathrm{s}
377rad/s377 \mathrm{rad} / \mathrm{s}
3
The SI unit H\mathrm{H} (the henry) is equal to a

A) V/m\mathrm{V} / \mathrm{m} .
B) V/A\mathrm{V} / \mathrm{A} .
C) V.s/A.
D) Vs\mathrm{V} \cdot \mathrm{s} .
E) VA/s\mathrm{V} \cdot \mathrm{A} / \mathrm{s}
V.s/A.
4
The unit of magnetic flux is the weber. 1 Wb1 \mathrm{~Wb} equals

A) 1 Vs/A1 \mathrm{~V} \cdot \mathrm{s} / \mathrm{A} .
B) 1 Vm1 \mathrm{~V} \cdot \mathrm{m} .
C) 1 Tm21 \mathrm{~T} \cdot \mathrm{m}^{2} .
D) π\pi lines /m2/ \mathrm{m}^{2} .
Unlock Deck
Unlock for access to all 20 flashcards in this deck.
Unlock Deck
k this deck
5
A flat coil has a maximum flux of 4.0×103 Tm24.0 \times 10^{-3} \mathrm{~T} \cdot \mathrm{m}^{2} through it, with its area perpendicular to a uniform magnetic field. When the coil is rotated 6060^{\circ} (so that its normal makes a 6060^{\circ} angle with the field), what is the flux through it?

A) 3.5×103 Tm23.5 \times 10^{-3} \mathrm{~T} \cdot \mathrm{m}^{2}
B) 6.9×103 Tm26.9 \times 10^{-3} \mathrm{~T} \cdot \mathrm{m}^{2}
C) 2.0×103 Tm22.0 \times 10^{-3} \mathrm{~T} \cdot \mathrm{m}^{2}
D) 4.0×103 Tm24.0 \times 10^{-3} \mathrm{~T} \cdot \mathrm{m}^{2}
E) 8.0×103 Tm28.0 \times 10^{-3} \mathrm{~T} \cdot \mathrm{m}^{2}
Unlock Deck
Unlock for access to all 20 flashcards in this deck.
Unlock Deck
k this deck
6
A hollow copper pipe is held vertically, and a magnet is dropped down the pipe. The magnet is oriented with its north pole down. What direction do the eddy currents flow as viewed from above the pipe? If copper bar of approximately the same size and weight as the magnet is dropped down the tube instead, will it fall faster or slower than the magnet?

A) CCW above the magnet and CW below the magnet; copper bar will fall slower
B) CW\mathrm{CW} above the magnet and CCW\mathrm{CCW} below the magnet; copper bar will fall faster
C) CCW\mathrm{CCW} above the magnet and CW\mathrm{CW} below the magnet; copper bar will fall faster
D) CW\mathrm{CW} above the magnet and CCW below the magnet; copper bar will fall slower
Unlock Deck
Unlock for access to all 20 flashcards in this deck.
Unlock Deck
k this deck
7
A solenoid of length 4.00 cm4.00 \mathrm{~cm} and cross-sectional area 2.00 cm22.00 \mathrm{~cm}^{2} has 80 turns. What is its self-inductance?

A) 120μH120 \mu \mathrm{H}
B) 40.2μH40.2 \mu \mathrm{H}
C) 80.0μH80.0 \mu \mathrm{H}
D) 160μH160 \mu \mathrm{H}
E) 0.500μH0.500 \mu \mathrm{H}
Unlock Deck
Unlock for access to all 20 flashcards in this deck.
Unlock Deck
k this deck
8
If the magnetic energy stored by a 0.50H0.50 \mathrm{H} inductor is 3.6 J3.6 \mathrm{~J} , what is the current through it?

A) 0.90 A0.90 \mathrm{~A}
B) 5.4 A5.4 \mathrm{~A}
C) 0.13 A0.13 \mathrm{~A}
D) 1.8 A1.8 \mathrm{~A}
E) 3.8 A3.8 \mathrm{~A}
Unlock Deck
Unlock for access to all 20 flashcards in this deck.
Unlock Deck
k this deck
9
What is the magnetic energy stored by a 300mH300 \mathrm{mH} inductor with a 2.0 A current going through it?

A) 1.2 J1.2 \mathrm{~J}
B) 0.60 J0.60 \mathrm{~J}
C) 30 mJ30 \mathrm{~mJ}
D) 0.075 J0.075 \mathrm{~J}
E) 0.15 J0.15 \mathrm{~J}
Unlock Deck
Unlock for access to all 20 flashcards in this deck.
Unlock Deck
k this deck
10
The current in a 0.40H0.40 \mathrm{H} inductor increases form 2.0 A2.0 \mathrm{~A} to 3.0 A3.0 \mathrm{~A} in 1.5 s1.5 \mathrm{~s} . The energy stored by the inductor during this process increases by

A) 1.8 J1.8 \mathrm{~J} .
B) 3.6 J3.6 \mathrm{~J} .
C) 1.0 J1.0 \mathrm{~J} .
D) 0.6 J0.6 \mathrm{~J} .
E) 1.2 J1.2 \mathrm{~J} .
Unlock Deck
Unlock for access to all 20 flashcards in this deck.
Unlock Deck
k this deck
11
What is the magnetic energy density in a volume where the magnetic field is 4.0mT4.0 \mathrm{mT} ?

A) 3.2×103 J/m33.2 \times 10^{-3} \mathrm{~J} / \mathrm{m}^{3}
B) 13×103 J/m313 \times 10^{-3} \mathrm{~J} / \mathrm{m}^{3}
C) 6.4 J/m36.4 \mathrm{~J} / \mathrm{m}^{3}
D) 3.2 J/m33.2 \mathrm{~J} / \mathrm{m}^{3}
E) 13 J/m313 \mathrm{~J} / \mathrm{m}^{3}
Unlock Deck
Unlock for access to all 20 flashcards in this deck.
Unlock Deck
k this deck
12
A 0.40H0.40 \mathrm{H} inductor has a current that rises from zero to 3.0 A3.0 \mathrm{~A} in 6.0 s6.0 \mathrm{~s} . What is the average power required to accomplish this?

A) 1.5 W1.5 \mathrm{~W}
B) 0.60 W0.60 \mathrm{~W}
C) 9.0 W9.0 \mathrm{~W}
D) 15 W15 \mathrm{~W}
E) 0.30 W0.30 \mathrm{~W}
Unlock Deck
Unlock for access to all 20 flashcards in this deck.
Unlock Deck
k this deck
13
What electric field has the same energy density as a 1.0 T1.0 \mathrm{~T} magnetic field?

A) 1.1×1017 V/m1.1 \times 10-17 \mathrm{~V} / \mathrm{m}
B) 9.0×1016 V/m9.0 \times 1016 \mathrm{~V} / \mathrm{m}
C) 1.0 V/m1.0 \mathrm{~V} / \mathrm{m}
D) 3.0×108 V/m3.0 \times 10^{8} \mathrm{~V} / \mathrm{m}
E) 3.3×109 V/m3.3 \times 10-9 \mathrm{~V} / \mathrm{m}
Unlock Deck
Unlock for access to all 20 flashcards in this deck.
Unlock Deck
k this deck
14
A series LR circuit includes a 9.00 V9.00 \mathrm{~V} battery, a 30.0mH30.0 \mathrm{mH} inductor, and a resistance of 5.00Ω5.00 \Omega . What is the time constant of this circuit?
 <strong>A series LR circuit includes a  9.00 \mathrm{~V}  battery, a  30.0 \mathrm{mH}  inductor, and a resistance of  5.00 \Omega . What is the time constant of this circuit?  </strong> A)  170 \mathrm{~s}  B)  115 \mathrm{~s}  C)  4.20 \mathrm{~ms}  D)  8.30 \mathrm{~ms}  E)  6.00 \mathrm{~ms}

A) 170 s170 \mathrm{~s}
B) 115 s115 \mathrm{~s}
C) 4.20 ms4.20 \mathrm{~ms}
D) 8.30 ms8.30 \mathrm{~ms}
E) 6.00 ms6.00 \mathrm{~ms}
Unlock Deck
Unlock for access to all 20 flashcards in this deck.
Unlock Deck
k this deck
15
A series LR circuit includes a 9.0 V9.0 \mathrm{~V} battery, a resistance of 0.50Ω0.50 \Omega , and an inductance of 0.80H0.80 \mathrm{H} . What is the current 2.0 s after the switch is closed?

A) 13 A13 \mathrm{~A}
B) 6.4 A6.4 \mathrm{~A}
C) 4.3 A4.3 \mathrm{~A}
D) 18 A18 \mathrm{~A}
E) 5.2 A5.2 \mathrm{~A}
Unlock Deck
Unlock for access to all 20 flashcards in this deck.
Unlock Deck
k this deck
16
A series LR circuit includes a 9.0 V9.0 \mathrm{~V} battery, a resistance of 0.50Ω0.50 \Omega , and an inductance of 0.80H0.80 \mathrm{H} . What is the induced emf 2.0 s2.0 \mathrm{~s} after the switch has been closed?

A) 0.0
B) 19mV19 \mathrm{mV}
C) 9.0 V9.0 \mathrm{~V}
D) 2.6 V2.6 \mathrm{~V}
E) 5.2 V5.2 \mathrm{~V}
Unlock Deck
Unlock for access to all 20 flashcards in this deck.
Unlock Deck
k this deck
17
A series LR circuit includes a 9.0 V9.0 \mathrm{~V} battery, a resistance of 0.50Ω0.50 \Omega , and an inductance of 0.80H0.80 \mathrm{H} . What is the energy stored by the inductor 2.0 s2.0 \mathrm{~s} after the switch is closed?

A) 13 J13 \mathrm{~J}
B) 33 mJ33 \mathrm{~mJ}
C) 66 J66 \mathrm{~J}
D) 30 mJ30 \mathrm{~mJ}
E) 33 J33 \mathrm{~J}
Unlock Deck
Unlock for access to all 20 flashcards in this deck.
Unlock Deck
k this deck
18
A series LR circuit includes a 9.00 V9.00 \mathrm{~V} battery, a resistance of 0.500Ω0.500 \Omega , and an inductance of 0.800H0.800 \mathrm{H} . What is the greatest energy stored by the inductor after the switch is closed?

A) 33.0 mJ33.0 \mathrm{~mJ}
B) 65.0 J65.0 \mathrm{~J}
C) 130 J130 \mathrm{~J}
D) 33.0 J33.0 \mathrm{~J}
E) 13.0 mJ13.0 \mathrm{~mJ}
Unlock Deck
Unlock for access to all 20 flashcards in this deck.
Unlock Deck
k this deck
19
A square conducting loop is situated such that it is vertical, in the xz-plane. The Earth's gravitational field points downward (in the z-\mathrm{z} direction). The loop is dropped and maintains its orientation in the xz-plane. A magnetic field pointing in the +y+y direction exists and is uniform with respect to time, but it varies as a function of z:By(z)=B0(10 mz)\mathrm{z}: \mathrm{B}_{\mathrm{y}}(\mathrm{z})=\mathrm{B}_{0}(10 \mathrm{~m}-\mathrm{z}) . The loop is dropped and allowed to fall under the influence of gravitation. You observe the loop from the +y+y direction (i.e., looking toward the y-y direction). Which of the following occurs?

A) The situation is unclear because we do not know the initial conditions.
B) There is a counter-clockwise induced current.
C) There is a clockwise induced current.
D) There is no induced current.
Unlock Deck
Unlock for access to all 20 flashcards in this deck.
Unlock Deck
k this deck
20
A horse and rider travel in a region in which the vertical component of the Earth's magnetic field is 0.035mT0.035 \mathrm{mT} , while the horizontal component is 0.022mT0.022 \mathrm{mT} . Attached to the horse's bridle is a metal bit, a horizontal cylinder approximately 15 cm15 \mathrm{~cm} long, in the horse's mouth. If the horse is galloping at 15 m/s15 \mathrm{~m} / \mathrm{s} , what is the induced potential difference between the ends of the bit?

A) 50μV50 \mu \mathrm{V}
B) 93mV93 \mathrm{mV}
C) 79μV79 \mu \mathrm{V}
D) 79mV79 \mathrm{mV}
E) 93μV93 \mu \mathrm{V}
F) 50mV50 \mathrm{mV}
Unlock Deck
Unlock for access to all 20 flashcards in this deck.
Unlock Deck
k this deck
locked card icon
Unlock Deck
Unlock for access to all 20 flashcards in this deck.