Deck 2: Bipolar Junction Transistors BJTS

Full screen (f)
exit full mode
Question
    Figure 6.1.1 The BJT in the circuit in Fig. 6.1.1 has  \beta=100 . Find  V_{E}, V_{C} , and  I_{B}  for the three cases: (a)  V_{B}=0 \mathrm{~V} , (b)  V_{B}=3 \mathrm{~V} , and (c)  V_{B}=5 \mathrm{~V} .<div style=padding-top: 35px>

Figure 6.1.1
The BJT in the circuit in Fig. 6.1.1 has β=100\beta=100 . Find VE,VCV_{E}, V_{C} , and IBI_{B} for the three cases:
(a) VB=0 VV_{B}=0 \mathrm{~V} , (b) VB=3 VV_{B}=3 \mathrm{~V} , and (c) VB=5 VV_{B}=5 \mathrm{~V} .
Use Space or
up arrow
down arrow
to flip the card.
Question
    (a)The BJTs in the circuits of Fig. 6.2.1 have  \beta=100 . (a) For the circuit in Fig. 6.2.1(a), find  V_{E}, I_{B} , and  V_{C} . (b) For the circuit in Fig. 6.2.1(b), find  I_{B}, I_{C} , and  V_{C} .<div style=padding-top: 35px>

(a)The BJTs in the circuits of Fig. 6.2.1 have β=100\beta=100 . (a) For the circuit in Fig. 6.2.1(a), find VE,IBV_{E}, I_{B} , and VCV_{C} .
(b) For the circuit in Fig. 6.2.1(b), find IB,ICI_{B}, I_{C} , and VCV_{C} .
Question
    The transistor in the circuit of Fig. 6.3.1 has  \beta=  100. Find the values of the four resistors so that  V_{B}=+5 \mathrm{~V}, I_{1}=0.1 \mathrm{~mA}, I_{E}=1 \mathrm{~mA} , and  V_{C}=   +6 \mathrm{~V} .<div style=padding-top: 35px>

The transistor in the circuit of Fig. 6.3.1 has β=\beta= 100. Find the values of the four resistors so that VB=+5 V,I1=0.1 mA,IE=1 mAV_{B}=+5 \mathrm{~V}, I_{1}=0.1 \mathrm{~mA}, I_{E}=1 \mathrm{~mA} , and VC=V_{C}= +6 V+6 \mathrm{~V} .
Question
    Figure 6.4.1 The BJTs in the circuit of Fig. 6.4.1 have  \beta=100  and  \left|V_{C E \text { sat }}\right|=0.3 \mathrm{~V} . Find  v_{O}  for each of the following cases: (a)  v_{I}=0 \mathrm{~V}  (b)  v_{I}=+5 \mathrm{~V}  (c)  v_{I}=-5 \mathrm{~V}  (d)  v_{I}=+10 \mathrm{~V}  (e)  v_{I}=-10 \mathrm{~V} <div style=padding-top: 35px>

Figure 6.4.1
The BJTs in the circuit of Fig. 6.4.1 have β=100\beta=100 and VCE sat =0.3 V\left|V_{C E \text { sat }}\right|=0.3 \mathrm{~V} . Find vOv_{O} for each of the following cases:
(a) vI=0 Vv_{I}=0 \mathrm{~V}
(b) vI=+5 Vv_{I}=+5 \mathrm{~V}
(c) vI=5 Vv_{I}=-5 \mathrm{~V}
(d) vI=+10 Vv_{I}=+10 \mathrm{~V}
(e) vI=10 Vv_{I}=-10 \mathrm{~V}
Question
    Figure 6.5.1 Design the circuit in Fig. 6.5.1 to obtain  I_{1}=   0.1 \mathrm{~mA}, V_{B 1}=+4 \mathrm{~V}, I_{E 1}=1 \mathrm{~mA}, V_{C 1}=+6 \mathrm{~V} ,  I_{E 2}=2 \mathrm{~mA} , and  V_{C 2}=+4 \mathrm{~V} . Let  \beta_{1}=\beta_{2}=100  and  \left|V_{B E}\right|=0.7 \mathrm{~V} . Specify the required values of all resistors.<div style=padding-top: 35px>

Figure 6.5.1
Design the circuit in Fig. 6.5.1 to obtain I1=I_{1}= 0.1 mA,VB1=+4 V,IE1=1 mA,VC1=+6 V0.1 \mathrm{~mA}, V_{B 1}=+4 \mathrm{~V}, I_{E 1}=1 \mathrm{~mA}, V_{C 1}=+6 \mathrm{~V} , IE2=2 mAI_{E 2}=2 \mathrm{~mA} , and VC2=+4 VV_{C 2}=+4 \mathrm{~V} . Let β1=β2=100\beta_{1}=\beta_{2}=100 and VBE=0.7 V\left|V_{B E}\right|=0.7 \mathrm{~V} . Specify the required values of all resistors.
Question
    The BJT in the circuit in Fig. 6.6.1 has  I_{S}=   10^{-15} \mathrm{~A}  at room temperature. (a) Find  V_{O}  at room temperature where  V_{T}  is  25 \mathrm{mV} . (b) If the temperature increases by  50^{\circ} \mathrm{C} , what will  V_{O}  become? (c) If, alternatively, the temperature decreases by  50^{\circ} \mathrm{C} , what will  V_{O}  become?<div style=padding-top: 35px>

The BJT in the circuit in Fig. 6.6.1 has IS=I_{S}= 1015 A10^{-15} \mathrm{~A} at room temperature.
(a) Find VOV_{O} at room temperature where VTV_{T} is 25mV25 \mathrm{mV} .
(b) If the temperature increases by 50C50^{\circ} \mathrm{C} , what will VOV_{O} become?
(c) If, alternatively, the temperature decreases by 50C50^{\circ} \mathrm{C} , what will VOV_{O} become?
Unlock Deck
Sign up to unlock the cards in this deck!
Unlock Deck
Unlock Deck
1/6
auto play flashcards
Play
simple tutorial
Full screen (f)
exit full mode
Deck 2: Bipolar Junction Transistors BJTS
1
    Figure 6.1.1 The BJT in the circuit in Fig. 6.1.1 has  \beta=100 . Find  V_{E}, V_{C} , and  I_{B}  for the three cases: (a)  V_{B}=0 \mathrm{~V} , (b)  V_{B}=3 \mathrm{~V} , and (c)  V_{B}=5 \mathrm{~V} .

Figure 6.1.1
The BJT in the circuit in Fig. 6.1.1 has β=100\beta=100 . Find VE,VCV_{E}, V_{C} , and IBI_{B} for the three cases:
(a) VB=0 VV_{B}=0 \mathrm{~V} , (b) VB=3 VV_{B}=3 \mathrm{~V} , and (c) VB=5 VV_{B}=5 \mathrm{~V} .
(a)
 (a)    Figure 6.1.2(a) The solution is illustrated in Fig. 6.1.2(a). The transistor is cut off with  V_{E}=0 \mathrm{~V}, \quad V_{C}=+10 \mathrm{~V}, \quad I_{B}=0 \mathrm{~mA}  (b)    The solution is illustrated in Fig. 6.1.2(b). The transistor is operating in the active region with the following results:  V_{E}=+2.3 \mathrm{~V}, \quad V_{C}=+4.3 \mathrm{~V}, \quad I_{B}=0.01 \mathrm{~mA}  (c)      The analysis performed in Fig. 6.1.2(c) shows that the transistor cannot be operating in the active region. Thus, it must be saturated. The corresponding analysis is shown in Fig. 6.1.2(d) with the following results:  V_{E}=+4.3 \mathrm{~V}, \quad V_{C}=+4.6 \mathrm{~V}, \quad I_{B}=1.07 \mathrm{~mA}

Figure 6.1.2(a)
The solution is illustrated in Fig. 6.1.2(a). The transistor is cut off with
VE=0 V,VC=+10 V,IB=0 mAV_{E}=0 \mathrm{~V}, \quad V_{C}=+10 \mathrm{~V}, \quad I_{B}=0 \mathrm{~mA}
(b)
 (a)    Figure 6.1.2(a) The solution is illustrated in Fig. 6.1.2(a). The transistor is cut off with  V_{E}=0 \mathrm{~V}, \quad V_{C}=+10 \mathrm{~V}, \quad I_{B}=0 \mathrm{~mA}  (b)    The solution is illustrated in Fig. 6.1.2(b). The transistor is operating in the active region with the following results:  V_{E}=+2.3 \mathrm{~V}, \quad V_{C}=+4.3 \mathrm{~V}, \quad I_{B}=0.01 \mathrm{~mA}  (c)      The analysis performed in Fig. 6.1.2(c) shows that the transistor cannot be operating in the active region. Thus, it must be saturated. The corresponding analysis is shown in Fig. 6.1.2(d) with the following results:  V_{E}=+4.3 \mathrm{~V}, \quad V_{C}=+4.6 \mathrm{~V}, \quad I_{B}=1.07 \mathrm{~mA}

The solution is illustrated in Fig. 6.1.2(b). The transistor is operating in the active region with the following results:
VE=+2.3 V,VC=+4.3 V,IB=0.01 mAV_{E}=+2.3 \mathrm{~V}, \quad V_{C}=+4.3 \mathrm{~V}, \quad I_{B}=0.01 \mathrm{~mA}
(c)
 (a)    Figure 6.1.2(a) The solution is illustrated in Fig. 6.1.2(a). The transistor is cut off with  V_{E}=0 \mathrm{~V}, \quad V_{C}=+10 \mathrm{~V}, \quad I_{B}=0 \mathrm{~mA}  (b)    The solution is illustrated in Fig. 6.1.2(b). The transistor is operating in the active region with the following results:  V_{E}=+2.3 \mathrm{~V}, \quad V_{C}=+4.3 \mathrm{~V}, \quad I_{B}=0.01 \mathrm{~mA}  (c)      The analysis performed in Fig. 6.1.2(c) shows that the transistor cannot be operating in the active region. Thus, it must be saturated. The corresponding analysis is shown in Fig. 6.1.2(d) with the following results:  V_{E}=+4.3 \mathrm{~V}, \quad V_{C}=+4.6 \mathrm{~V}, \quad I_{B}=1.07 \mathrm{~mA}
 (a)    Figure 6.1.2(a) The solution is illustrated in Fig. 6.1.2(a). The transistor is cut off with  V_{E}=0 \mathrm{~V}, \quad V_{C}=+10 \mathrm{~V}, \quad I_{B}=0 \mathrm{~mA}  (b)    The solution is illustrated in Fig. 6.1.2(b). The transistor is operating in the active region with the following results:  V_{E}=+2.3 \mathrm{~V}, \quad V_{C}=+4.3 \mathrm{~V}, \quad I_{B}=0.01 \mathrm{~mA}  (c)      The analysis performed in Fig. 6.1.2(c) shows that the transistor cannot be operating in the active region. Thus, it must be saturated. The corresponding analysis is shown in Fig. 6.1.2(d) with the following results:  V_{E}=+4.3 \mathrm{~V}, \quad V_{C}=+4.6 \mathrm{~V}, \quad I_{B}=1.07 \mathrm{~mA}

The analysis performed in Fig. 6.1.2(c) shows that the transistor cannot be operating in the active region. Thus, it must be saturated. The corresponding analysis is shown in Fig. 6.1.2(d) with the following results:
VE=+4.3 V,VC=+4.6 V,IB=1.07 mAV_{E}=+4.3 \mathrm{~V}, \quad V_{C}=+4.6 \mathrm{~V}, \quad I_{B}=1.07 \mathrm{~mA}
2
    (a)The BJTs in the circuits of Fig. 6.2.1 have  \beta=100 . (a) For the circuit in Fig. 6.2.1(a), find  V_{E}, I_{B} , and  V_{C} . (b) For the circuit in Fig. 6.2.1(b), find  I_{B}, I_{C} , and  V_{C} .

(a)The BJTs in the circuits of Fig. 6.2.1 have β=100\beta=100 . (a) For the circuit in Fig. 6.2.1(a), find VE,IBV_{E}, I_{B} , and VCV_{C} .
(b) For the circuit in Fig. 6.2.1(b), find IB,ICI_{B}, I_{C} , and VCV_{C} .
(a)
 (a)    Figure 6.2.2(a) The analysis is illustrated in Fig. 6.2.2(a). We have assumed that  Q  is operating in the active mode, and the results obtained justify this assumption:  V_{C}  is lower than  V_{B} , keeping the CBJ reverse biased. The results are  V_{E}=+0.7 \mathrm{~V}, \quad I_{B}=0.01 \mathrm{~mA}, \quad V_{C}=-2.03 \mathrm{~V}  (b)     Q  cannot be in Active Mode; must be in Saturation Figure 6.2.2(b)   The analysis in Fig. 6.2.2(b) is based on the assumption that the transistor is operating in the active mode. The results obtained show that this assumption is not justified:  V_{C}  at  -425 \mathrm{~V}  implies that the CBJ has a forward bias of  425.7 \mathrm{~V}  ! Thus, the transistor must be in saturation. The corresponding analysis is shown in Fig. 6.2.2(c) and the results are  I_{B}=0.43 \mathrm{~mA}, \quad I_{C}=0.47 \mathrm{~mA}, \quad V_{C}=+0.3 \mathrm{~V}

Figure 6.2.2(a)
The analysis is illustrated in Fig. 6.2.2(a). We have assumed that QQ is operating in the active mode, and the results obtained justify this assumption: VCV_{C} is lower than VBV_{B} , keeping the CBJ reverse biased. The results are
VE=+0.7 V,IB=0.01 mA,VC=2.03 VV_{E}=+0.7 \mathrm{~V}, \quad I_{B}=0.01 \mathrm{~mA}, \quad V_{C}=-2.03 \mathrm{~V}
(b)
 (a)    Figure 6.2.2(a) The analysis is illustrated in Fig. 6.2.2(a). We have assumed that  Q  is operating in the active mode, and the results obtained justify this assumption:  V_{C}  is lower than  V_{B} , keeping the CBJ reverse biased. The results are  V_{E}=+0.7 \mathrm{~V}, \quad I_{B}=0.01 \mathrm{~mA}, \quad V_{C}=-2.03 \mathrm{~V}  (b)     Q  cannot be in Active Mode; must be in Saturation Figure 6.2.2(b)   The analysis in Fig. 6.2.2(b) is based on the assumption that the transistor is operating in the active mode. The results obtained show that this assumption is not justified:  V_{C}  at  -425 \mathrm{~V}  implies that the CBJ has a forward bias of  425.7 \mathrm{~V}  ! Thus, the transistor must be in saturation. The corresponding analysis is shown in Fig. 6.2.2(c) and the results are  I_{B}=0.43 \mathrm{~mA}, \quad I_{C}=0.47 \mathrm{~mA}, \quad V_{C}=+0.3 \mathrm{~V}

QQ cannot be in Active Mode; must be in Saturation
Figure 6.2.2(b)
 (a)    Figure 6.2.2(a) The analysis is illustrated in Fig. 6.2.2(a). We have assumed that  Q  is operating in the active mode, and the results obtained justify this assumption:  V_{C}  is lower than  V_{B} , keeping the CBJ reverse biased. The results are  V_{E}=+0.7 \mathrm{~V}, \quad I_{B}=0.01 \mathrm{~mA}, \quad V_{C}=-2.03 \mathrm{~V}  (b)     Q  cannot be in Active Mode; must be in Saturation Figure 6.2.2(b)   The analysis in Fig. 6.2.2(b) is based on the assumption that the transistor is operating in the active mode. The results obtained show that this assumption is not justified:  V_{C}  at  -425 \mathrm{~V}  implies that the CBJ has a forward bias of  425.7 \mathrm{~V}  ! Thus, the transistor must be in saturation. The corresponding analysis is shown in Fig. 6.2.2(c) and the results are  I_{B}=0.43 \mathrm{~mA}, \quad I_{C}=0.47 \mathrm{~mA}, \quad V_{C}=+0.3 \mathrm{~V} The analysis in Fig. 6.2.2(b) is based on the assumption that the transistor is operating in the active mode. The results obtained show that this assumption is not justified: VCV_{C} at 425 V-425 \mathrm{~V} implies that the CBJ has a forward bias of 425.7 V425.7 \mathrm{~V} ! Thus, the transistor must be in saturation. The corresponding analysis is shown in Fig. 6.2.2(c) and the results are
IB=0.43 mA,IC=0.47 mA,VC=+0.3 VI_{B}=0.43 \mathrm{~mA}, \quad I_{C}=0.47 \mathrm{~mA}, \quad V_{C}=+0.3 \mathrm{~V}
3
    The transistor in the circuit of Fig. 6.3.1 has  \beta=  100. Find the values of the four resistors so that  V_{B}=+5 \mathrm{~V}, I_{1}=0.1 \mathrm{~mA}, I_{E}=1 \mathrm{~mA} , and  V_{C}=   +6 \mathrm{~V} .

The transistor in the circuit of Fig. 6.3.1 has β=\beta= 100. Find the values of the four resistors so that VB=+5 V,I1=0.1 mA,IE=1 mAV_{B}=+5 \mathrm{~V}, I_{1}=0.1 \mathrm{~mA}, I_{E}=1 \mathrm{~mA} , and VC=V_{C}= +6 V+6 \mathrm{~V} .
    The complete solution is performed directly on the circuit diagram in Fig. 6.3.2. The solution is based on the fact that the transistor is operating in the active mode because  V_{C}>V_{B} . The results are  \begin{aligned} R_{B 1} & =100 \mathrm{k} \Omega, & & R_{B 2}=55.6 \mathrm{k} \Omega, \\ R_{E} & =4.3 \mathrm{k} \Omega, & & R_{C}=9.1 \mathrm{k} \Omega \end{aligned}

The complete solution is performed directly on the circuit diagram in Fig. 6.3.2. The solution is based on the fact that the transistor is operating in the active mode because VC>VBV_{C}>V_{B} . The results are
RB1=100kΩ,RB2=55.6kΩ,RE=4.3kΩ,RC=9.1kΩ\begin{aligned}R_{B 1} & =100 \mathrm{k} \Omega, & & R_{B 2}=55.6 \mathrm{k} \Omega, \\R_{E} & =4.3 \mathrm{k} \Omega, & & R_{C}=9.1 \mathrm{k} \Omega\end{aligned}
4
    Figure 6.4.1 The BJTs in the circuit of Fig. 6.4.1 have  \beta=100  and  \left|V_{C E \text { sat }}\right|=0.3 \mathrm{~V} . Find  v_{O}  for each of the following cases: (a)  v_{I}=0 \mathrm{~V}  (b)  v_{I}=+5 \mathrm{~V}  (c)  v_{I}=-5 \mathrm{~V}  (d)  v_{I}=+10 \mathrm{~V}  (e)  v_{I}=-10 \mathrm{~V}

Figure 6.4.1
The BJTs in the circuit of Fig. 6.4.1 have β=100\beta=100 and VCE sat =0.3 V\left|V_{C E \text { sat }}\right|=0.3 \mathrm{~V} . Find vOv_{O} for each of the following cases:
(a) vI=0 Vv_{I}=0 \mathrm{~V}
(b) vI=+5 Vv_{I}=+5 \mathrm{~V}
(c) vI=5 Vv_{I}=-5 \mathrm{~V}
(d) vI=+10 Vv_{I}=+10 \mathrm{~V}
(e) vI=10 Vv_{I}=-10 \mathrm{~V}
Unlock Deck
Unlock for access to all 6 flashcards in this deck.
Unlock Deck
k this deck
5
    Figure 6.5.1 Design the circuit in Fig. 6.5.1 to obtain  I_{1}=   0.1 \mathrm{~mA}, V_{B 1}=+4 \mathrm{~V}, I_{E 1}=1 \mathrm{~mA}, V_{C 1}=+6 \mathrm{~V} ,  I_{E 2}=2 \mathrm{~mA} , and  V_{C 2}=+4 \mathrm{~V} . Let  \beta_{1}=\beta_{2}=100  and  \left|V_{B E}\right|=0.7 \mathrm{~V} . Specify the required values of all resistors.

Figure 6.5.1
Design the circuit in Fig. 6.5.1 to obtain I1=I_{1}= 0.1 mA,VB1=+4 V,IE1=1 mA,VC1=+6 V0.1 \mathrm{~mA}, V_{B 1}=+4 \mathrm{~V}, I_{E 1}=1 \mathrm{~mA}, V_{C 1}=+6 \mathrm{~V} , IE2=2 mAI_{E 2}=2 \mathrm{~mA} , and VC2=+4 VV_{C 2}=+4 \mathrm{~V} . Let β1=β2=100\beta_{1}=\beta_{2}=100 and VBE=0.7 V\left|V_{B E}\right|=0.7 \mathrm{~V} . Specify the required values of all resistors.
Unlock Deck
Unlock for access to all 6 flashcards in this deck.
Unlock Deck
k this deck
6
    The BJT in the circuit in Fig. 6.6.1 has  I_{S}=   10^{-15} \mathrm{~A}  at room temperature. (a) Find  V_{O}  at room temperature where  V_{T}  is  25 \mathrm{mV} . (b) If the temperature increases by  50^{\circ} \mathrm{C} , what will  V_{O}  become? (c) If, alternatively, the temperature decreases by  50^{\circ} \mathrm{C} , what will  V_{O}  become?

The BJT in the circuit in Fig. 6.6.1 has IS=I_{S}= 1015 A10^{-15} \mathrm{~A} at room temperature.
(a) Find VOV_{O} at room temperature where VTV_{T} is 25mV25 \mathrm{mV} .
(b) If the temperature increases by 50C50^{\circ} \mathrm{C} , what will VOV_{O} become?
(c) If, alternatively, the temperature decreases by 50C50^{\circ} \mathrm{C} , what will VOV_{O} become?
Unlock Deck
Unlock for access to all 6 flashcards in this deck.
Unlock Deck
k this deck
locked card icon
Unlock Deck
Unlock for access to all 6 flashcards in this deck.