Deck 7: Symmetrical Components

Full screen (f)
exit full mode
Question
Using the operator a=1120a=1 \angle 120^{\circ} , evaluate the following in polar form: (a) (a+1)/(a+1) / (1+aa2)\left(1+a-a^{2}\right) , (b) (a2+a+j)/(jaa2),(\left(a^{2}+a+j\right) /\left(j a-a^{2}\right),\left(\right. c) (1a)(1+a2)(1-a)\left(1+a^{2}\right) , (d) (a+a2)(a2+1)\left(a+a^{2}\right)\left(a^{2}+1\right) .
Use Space or
up arrow
down arrow
to flip the card.
Question
Determine the symmetrical components of the following line currents: (a) Ia=1090I_{a}=10 \angle 90^{\circ} , Ib=10340,Ic=10200AI_{b}=10 \angle 340^{\circ}, I_{c}=10 \angle 200^{\circ} \mathrm{A} ; (b) Ia=100,Ib=j100,Ic=0 AI_{a}=100, I_{b}=j 100, I_{c}=0 \mathrm{~A} .
Question
Find the phase voltages Van,VbnV_{a n}, V_{b n} , and VcnV_{c n} whose sequence components are: V0=2080,V1=1000,V2=30180VV_{0}=20 \angle 80^{\circ}, V_{1}=100 \angle 0^{\circ}, V_{2}=30 \angle 180^{\circ} \mathrm{V} .
Question
One line of a three-phase generator is open circuited, while the other two are short-circuited to ground. The line currents are Ia=0,Ib=1500/90I_{a}=0, I_{b}=1500 / 90^{\circ} , and Ic=I_{c}= 1500301500 \angle-30^{\circ} A. Find the symmetrical components of these currents. Also find the current into the ground.
Question
Given the line-to-ground voltages Vag=2800,Vbg=290130V_{a g}=280 \angle 0^{\circ}, V_{b g}=290 \angle-130^{\circ} , and Vcg=260110V_{c g}=260 \angle 110^{\circ} volts, calculate (a) the sequence components of the line-to-ground voltages, denoted VLg0,VLg1V_{\mathrm{L} g 0}, V_{\mathrm{L} g 1} , and VLg2V_{\mathrm{L} g 2} ; (b) line-to-line voltages Vab,VbcV_{a b}, V_{b c} , and VcaV_{c a} ; and (c) sequence components of the line-to-line voltages VLL0,VLL1V_{\mathrm{LL} 0}, V_{\mathrm{LL} 1} , and VLL2V_{\mathrm{LL} 2} . Also, verify the following general relation: VLL0=0,VLL1=3VLg1+30V_{\mathrm{LL} 0}=0, V_{\mathrm{LL} 1}=\sqrt{3} V_{\mathrm{L} g 1} \angle+30^{\circ} , and VLL2=3VLg230V_{\mathrm{LL} 2}=\sqrt{3} V_{\mathrm{L} g 2} \angle-30^{\circ} volts.
Question
The currents in a Δ\Delta load are Iab=100,Ibc=2090I_{a b}=10 \angle 0^{\circ}, I_{b c}=20 \angle-90^{\circ} , and Ica=1590I_{c a}=15 \angle 90^{\circ} A. Calculate (a) the sequence components of the Δ\Delta -load currents, denoted IΔ0,IΔ1,IΔ2I_{\Delta 0}, I_{\Delta 1}, I_{\Delta 2} ; (b) the line currents Ia,IbI_{a}, I_{b} , and IcI_{c} , which feed the Δ\Delta load; and (c) sequence components of the line currents IL0,IL1I_{\mathrm{L} 0}, I_{\mathrm{L} 1} , and IL2I_{\mathrm{L} 2} . Also, verify the following general relation: IL0=0I_{\mathrm{L} 0}=0 , IL1=3IΔ130I_{\mathrm{L} 1}=\sqrt{3} I_{\Delta 1} \angle-30^{\circ} , and IL2=3IΔ2+30AI_{\mathrm{L} 2}=\sqrt{3} I_{\Delta 2} \angle+30^{\circ} \mathrm{A} .
Question
Given that the line-to-ground voltages of Vag=2800,Vbg=250110V_{a g}=280 \angle 0^{\circ}, V_{b g}=250 \angle-110^{\circ} , and Vcg=290130V_{c g}=290 \angle 130^{\circ} volts are applied to a balanced-Y load consisting of (12+j16)(12+j 16) ohms per phase. The load neutral is kept open. Draw the sequence networks and calculate I0,I1I_{0}, I_{1} , and I2I_{2} , the sequence components of the line currents. Then calculate the line currents Ia,IbI_{a}, I_{b} , and IcI_{c} .
Question
Given that line-to-ground voltages of Vag=2800,Vbg=250110V_{a g}=280 \angle 0^{\circ}, V_{b g}=250 \angle-110^{\circ} , and Vcg=290130V_{c g}=290 \angle 130^{\circ} volts are applied to a balanced- Δ\Delta load consisting of (12+j16)(12+j 16) ohms per phase. The load neutral is solidly grounded. Draw the sequence networks and calculate I0I_{0} , I1I_{1} , and I2I_{2} , the sequence components of the line currents. Then calculate the line currents Ia,IbI_{a}, I_{b} , and IcI_{c} .
Question
Given that line-to-ground voltages of Vag=2800,Vbg=250110V_{a g}=280 \angle 0^{\circ}, V_{b g}=250 \angle-110^{\circ} , and Vcg=290130V_{c g}=290 \angle 130^{\circ} volts are applied to a balanced-Y load consisting of (3+j4)(3+j 4) ohms per phase between the source and the load. The load neutral is solidly grounded. Draw the sequence networks and calculate I0,I1I_{0}, I_{1} , and I2I_{2} , the sequence components of the line currents. Then calculate the line currents Ia,IbI_{a}, I_{b} , and IcI_{c} .
Question
A balanced Y-connected generator with terminal voltage Vbc=48090V_{b c}=480 \angle 90^{\circ} volts is connected to a balanced- Δ\Delta load whose impedance is 204020 \angle 40^{\circ} ohms per phase. The line impedance between the source and load is 0.5800.5 \angle 80^{\circ} ohm for each phase. The generator neutral is grounded through an impedance of j5ohmsj 5 \mathrm{ohms} . The generator sequence impedances are given by Zg0=j7,Zg1=j15Z_{g 0}=j 7, Z_{g 1}=j 15 , and Zg2=j10ohmsZ_{g 2}=j 10 \mathrm{ohms} . Draw the sequence networks for this system and determine the sequence components of the line currents.
Question
In a three-phase system, a synchronous generator supplies power to a 208-volt synchronous motor through a line having an impedance of 0.5800.5 \angle 80^{\circ} ohm per phase. The motor draws 10 kW10 \mathrm{~kW} at 0.8 p.f. leading and at rated voltage. The neutrals of both the generator and motor are grounded through impedances of j5ohmsj 5 \mathrm{ohms} . The sequence impedances of both machines are Z0=j5,Z1=j15Z_{0}=j 5, Z_{1}=j 15 , and Z2=j10Z_{2}=j 10 ohms. Draw the sequence networks for this system and find the line-to-line voltage at the generator terminals. Assume balanced three-phase operation.
Question

Given that line-to-ground voltages of Vag=2800,Vbg=250110V_{a g}=280 \angle 0^{\circ}, V_{b g}=250 \angle-110^{\circ} , and Vcg=290130V_{c g}=290 \angle 130^{\circ} volts are applied to a balanced-Y load consisting of (3+j4)(3+j 4) ohms per phase between the source and the load. The load neutral is solidly grounded. Draw the sequence networks and calculate I0,I1I_{0}, I_{1} , and I2I_{2} , the sequence components of the line currents. Then calculate the line currents Ia,IbI_{a}, I_{b} , and IcI_{c} . Also calculate the real and reactive power delivered to the three-phase load.
Unlock Deck
Sign up to unlock the cards in this deck!
Unlock Deck
Unlock Deck
1/12
auto play flashcards
Play
simple tutorial
Full screen (f)
exit full mode
Deck 7: Symmetrical Components
1
Using the operator a=1120a=1 \angle 120^{\circ} , evaluate the following in polar form: (a) (a+1)/(a+1) / (1+aa2)\left(1+a-a^{2}\right) , (b) (a2+a+j)/(jaa2),(\left(a^{2}+a+j\right) /\left(j a-a^{2}\right),\left(\right. c) (1a)(1+a2)(1-a)\left(1+a^{2}\right) , (d) (a+a2)(a2+1)\left(a+a^{2}\right)\left(a^{2}+1\right) .
Using the identities given in Table 8.1:
(a)
a+11+aa2=160(1+a+a2)02a2=160(2)(1240)=12180=+120=12\begin{aligned}\frac{a+1}{1+a-a^{2}} & =\frac{1 \angle 60^{\circ}}{\underbrace{\left(1+a+a^{2}\right)}_{0}-2 a^{2}}=\frac{1 \angle 60^{\circ}}{(-2)\left(1 \angle 240^{\circ}\right)}=-\frac{1}{2} \angle-180^{\circ} \\& =+\frac{1}{2} \angle 0^{\circ}=\frac{1}{2}\end{aligned}
(b) (a2+a)+j(jaa2)=1+ja(ja)=2135(1120)(j+12j32)\frac{\left(a^{2}+a\right)+j}{\left(j a-a^{2}\right)}=\frac{-1+j}{a(j-a)}=\frac{\sqrt{2} \angle 135^{\circ}}{\left(1 \angle 120^{\circ}\right)\left(j+\frac{1}{2}-j \frac{\sqrt{3}}{2}\right)}
=21512+j(132)=2150.517715=2.7320=\frac{\sqrt{2} \angle 15^{\circ}}{\frac{1}{2}+j\left(1-\frac{\sqrt{3}}{2}\right)}=\frac{\sqrt{2} \angle 15^{\circ}}{0.5177 \angle 15^{\circ}}=\underline{\underline{2.732 \angle 0^{\circ}}}
(c)
(1a)(1+a2)=(330)(160)=390(1-a)\left(1+a^{2}\right)=\left(\sqrt{3} \angle-30^{\circ}\right)\left(1 \angle-60^{\circ}\right)=\underline{\underline{\sqrt{3} \angle-90^{\circ}}}
(d)
(a+a2)(a2+1)=(1)(160)=1120=a\left(a+a^{2}\right)\left(a^{2}+1\right)=(-1)\left(1 \angle-60^{\circ}\right)=\underline{\underline{1 \angle 120^{\circ}}}=a
2
Determine the symmetrical components of the following line currents: (a) Ia=1090I_{a}=10 \angle 90^{\circ} , Ib=10340,Ic=10200AI_{b}=10 \angle 340^{\circ}, I_{c}=10 \angle 200^{\circ} \mathrm{A} ; (b) Ia=100,Ib=j100,Ic=0 AI_{a}=100, I_{b}=j 100, I_{c}=0 \mathrm{~A} .
(a)
[Iˉ0Iˉ1Iˉ2]=13[1111aa21a2a][10901034010200]=103[190+1340+1200190+1100+180190+1220+1320]=103[0+j0.3160+j2.96960j0.2856]=[1.0533909.8987900.952090]A\begin{aligned}{\left[\begin{array}{l}\bar{I}_{0} \\\bar{I}_{1} \\\bar{I}_{2}\end{array}\right] } & =\frac{1}{3}\left[\begin{array}{ccc}1 & 1 & 1 \\1 & a & a^{2} \\1 & a^{2} & a\end{array}\right]\left[\begin{array}{c}10 \angle 90^{\circ} \\10 \angle 340^{\circ} \\10 \angle 200^{\circ}\end{array}\right]=\frac{10}{3}\left[\begin{array}{c}1 \angle 90^{\circ}+1 \angle 340^{\circ}+1 \angle 200^{\circ} \\1 \angle 90^{\circ}+1 \angle 100^{\circ}+1 \angle 80^{\circ} \\1 \angle 90^{\circ}+1 \angle 220^{\circ}+1 \angle 320^{\circ}\end{array}\right] \\& =\frac{10}{3}\left[\begin{array}{c}0+j 0.316 \\0+j 2.9696 \\0-j 0.2856\end{array}\right]=\left[\begin{array}{c}1.0533 \angle 90^{\circ} \\9.8987 \angle 90^{\circ} \\0.9520 \angle-90^{\circ}\end{array}\right] \mathrm{A}\end{aligned}
(b) [Iˉ0Iˉ1Iˉ2]=13[1111aa21a2a][1000100900]=1003[10+19010+121010+1330]\left[\begin{array}{l}\bar{I}_{0} \\ \bar{I}_{1} \\ \bar{I}_{2}\end{array}\right]=\frac{1}{3}\left[\begin{array}{ccc}1 & 1 & 1 \\ 1 & a & a^{2} \\ 1 & a^{2} & a\end{array}\right]\left[\begin{array}{c}100 \angle 0^{\circ} \\ 100 \angle 90^{\circ} \\ 0\end{array}\right]=\frac{100}{3}\left[\begin{array}{c}1 \angle 0^{\circ}+1 \angle 90^{\circ} \\ 1 \angle 0^{\circ}+1 \angle 210^{\circ} \\ 1 \angle 0^{\circ}+1 \angle 330^{\circ}\end{array}\right]
(c)
=1003[2450.5176751.931915]=[47.134517.2537564.415]A=\frac{100}{3}\left[\begin{array}{c}\sqrt{2} \angle 45^{\circ} \\0.5176 \angle-75^{\circ} \\1.9319 \angle-15^{\circ}\end{array}\right]=\left[\begin{array}{c}47.13 \angle 45^{\circ} \\17.253 \angle-75^{\circ} \\64.4 \angle-15^{\circ}\end{array}\right] \mathrm{A}
3
Find the phase voltages Van,VbnV_{a n}, V_{b n} , and VcnV_{c n} whose sequence components are: V0=2080,V1=1000,V2=30180VV_{0}=20 \angle 80^{\circ}, V_{1}=100 \angle 0^{\circ}, V_{2}=30 \angle 180^{\circ} \mathrm{V} .
[VˉanVˉbnVˉcn]=[1111a2a1aa2][2080100030180]=[2080+1000+301802080+100290+303002080+100120+3060]=[73.47+j19.7031.53j92.8931.53+j132.3]=[76.0715.0198.09251.3135.98103.4]V\begin{aligned}{\left[\begin{array}{l}\bar{V}_{a n} \\\bar{V}_{b n} \\\bar{V}_{c n}\end{array}\right] } & =\left[\begin{array}{ccc}1 & 1 & 1 \\1 & a^{2} & a \\1 & a & a^{2}\end{array}\right]\left[\begin{array}{c}20 \angle 80^{\circ} \\100 \angle 0^{\circ} \\30 \angle 180^{\circ}\end{array}\right]=\left[\begin{array}{c}20 \angle 80^{\circ}+100 \angle 0^{\circ}+30 \angle 180^{\circ} \\20 \angle 80^{\circ}+100 \angle 290^{\circ}+30 \angle 300^{\circ} \\20 \angle 80^{\circ}+100 \angle 120^{\circ}+30 \angle 60^{\circ}\end{array}\right] \\& =\left[\begin{array}{c}73.47+j 19.70 \\-31.53-j 92.89 \\-31.53+j 132.3\end{array}\right]=\left[\begin{array}{c}76.07 \angle 15.01^{\circ} \\98.09 \angle 251.3^{\circ} \\135.98 \angle 103.4^{\circ}\end{array}\right] \mathrm{V}\end{aligned}
4
One line of a three-phase generator is open circuited, while the other two are short-circuited to ground. The line currents are Ia=0,Ib=1500/90I_{a}=0, I_{b}=1500 / 90^{\circ} , and Ic=I_{c}= 1500301500 \angle-30^{\circ} A. Find the symmetrical components of these currents. Also find the current into the ground.
Unlock Deck
Unlock for access to all 12 flashcards in this deck.
Unlock Deck
k this deck
5
Given the line-to-ground voltages Vag=2800,Vbg=290130V_{a g}=280 \angle 0^{\circ}, V_{b g}=290 \angle-130^{\circ} , and Vcg=260110V_{c g}=260 \angle 110^{\circ} volts, calculate (a) the sequence components of the line-to-ground voltages, denoted VLg0,VLg1V_{\mathrm{L} g 0}, V_{\mathrm{L} g 1} , and VLg2V_{\mathrm{L} g 2} ; (b) line-to-line voltages Vab,VbcV_{a b}, V_{b c} , and VcaV_{c a} ; and (c) sequence components of the line-to-line voltages VLL0,VLL1V_{\mathrm{LL} 0}, V_{\mathrm{LL} 1} , and VLL2V_{\mathrm{LL} 2} . Also, verify the following general relation: VLL0=0,VLL1=3VLg1+30V_{\mathrm{LL} 0}=0, V_{\mathrm{LL} 1}=\sqrt{3} V_{\mathrm{L} g 1} \angle+30^{\circ} , and VLL2=3VLg230V_{\mathrm{LL} 2}=\sqrt{3} V_{\mathrm{L} g 2} \angle-30^{\circ} volts.
Unlock Deck
Unlock for access to all 12 flashcards in this deck.
Unlock Deck
k this deck
6
The currents in a Δ\Delta load are Iab=100,Ibc=2090I_{a b}=10 \angle 0^{\circ}, I_{b c}=20 \angle-90^{\circ} , and Ica=1590I_{c a}=15 \angle 90^{\circ} A. Calculate (a) the sequence components of the Δ\Delta -load currents, denoted IΔ0,IΔ1,IΔ2I_{\Delta 0}, I_{\Delta 1}, I_{\Delta 2} ; (b) the line currents Ia,IbI_{a}, I_{b} , and IcI_{c} , which feed the Δ\Delta load; and (c) sequence components of the line currents IL0,IL1I_{\mathrm{L} 0}, I_{\mathrm{L} 1} , and IL2I_{\mathrm{L} 2} . Also, verify the following general relation: IL0=0I_{\mathrm{L} 0}=0 , IL1=3IΔ130I_{\mathrm{L} 1}=\sqrt{3} I_{\Delta 1} \angle-30^{\circ} , and IL2=3IΔ2+30AI_{\mathrm{L} 2}=\sqrt{3} I_{\Delta 2} \angle+30^{\circ} \mathrm{A} .
Unlock Deck
Unlock for access to all 12 flashcards in this deck.
Unlock Deck
k this deck
7
Given that the line-to-ground voltages of Vag=2800,Vbg=250110V_{a g}=280 \angle 0^{\circ}, V_{b g}=250 \angle-110^{\circ} , and Vcg=290130V_{c g}=290 \angle 130^{\circ} volts are applied to a balanced-Y load consisting of (12+j16)(12+j 16) ohms per phase. The load neutral is kept open. Draw the sequence networks and calculate I0,I1I_{0}, I_{1} , and I2I_{2} , the sequence components of the line currents. Then calculate the line currents Ia,IbI_{a}, I_{b} , and IcI_{c} .
Unlock Deck
Unlock for access to all 12 flashcards in this deck.
Unlock Deck
k this deck
8
Given that line-to-ground voltages of Vag=2800,Vbg=250110V_{a g}=280 \angle 0^{\circ}, V_{b g}=250 \angle-110^{\circ} , and Vcg=290130V_{c g}=290 \angle 130^{\circ} volts are applied to a balanced- Δ\Delta load consisting of (12+j16)(12+j 16) ohms per phase. The load neutral is solidly grounded. Draw the sequence networks and calculate I0I_{0} , I1I_{1} , and I2I_{2} , the sequence components of the line currents. Then calculate the line currents Ia,IbI_{a}, I_{b} , and IcI_{c} .
Unlock Deck
Unlock for access to all 12 flashcards in this deck.
Unlock Deck
k this deck
9
Given that line-to-ground voltages of Vag=2800,Vbg=250110V_{a g}=280 \angle 0^{\circ}, V_{b g}=250 \angle-110^{\circ} , and Vcg=290130V_{c g}=290 \angle 130^{\circ} volts are applied to a balanced-Y load consisting of (3+j4)(3+j 4) ohms per phase between the source and the load. The load neutral is solidly grounded. Draw the sequence networks and calculate I0,I1I_{0}, I_{1} , and I2I_{2} , the sequence components of the line currents. Then calculate the line currents Ia,IbI_{a}, I_{b} , and IcI_{c} .
Unlock Deck
Unlock for access to all 12 flashcards in this deck.
Unlock Deck
k this deck
10
A balanced Y-connected generator with terminal voltage Vbc=48090V_{b c}=480 \angle 90^{\circ} volts is connected to a balanced- Δ\Delta load whose impedance is 204020 \angle 40^{\circ} ohms per phase. The line impedance between the source and load is 0.5800.5 \angle 80^{\circ} ohm for each phase. The generator neutral is grounded through an impedance of j5ohmsj 5 \mathrm{ohms} . The generator sequence impedances are given by Zg0=j7,Zg1=j15Z_{g 0}=j 7, Z_{g 1}=j 15 , and Zg2=j10ohmsZ_{g 2}=j 10 \mathrm{ohms} . Draw the sequence networks for this system and determine the sequence components of the line currents.
Unlock Deck
Unlock for access to all 12 flashcards in this deck.
Unlock Deck
k this deck
11
In a three-phase system, a synchronous generator supplies power to a 208-volt synchronous motor through a line having an impedance of 0.5800.5 \angle 80^{\circ} ohm per phase. The motor draws 10 kW10 \mathrm{~kW} at 0.8 p.f. leading and at rated voltage. The neutrals of both the generator and motor are grounded through impedances of j5ohmsj 5 \mathrm{ohms} . The sequence impedances of both machines are Z0=j5,Z1=j15Z_{0}=j 5, Z_{1}=j 15 , and Z2=j10Z_{2}=j 10 ohms. Draw the sequence networks for this system and find the line-to-line voltage at the generator terminals. Assume balanced three-phase operation.
Unlock Deck
Unlock for access to all 12 flashcards in this deck.
Unlock Deck
k this deck
12

Given that line-to-ground voltages of Vag=2800,Vbg=250110V_{a g}=280 \angle 0^{\circ}, V_{b g}=250 \angle-110^{\circ} , and Vcg=290130V_{c g}=290 \angle 130^{\circ} volts are applied to a balanced-Y load consisting of (3+j4)(3+j 4) ohms per phase between the source and the load. The load neutral is solidly grounded. Draw the sequence networks and calculate I0,I1I_{0}, I_{1} , and I2I_{2} , the sequence components of the line currents. Then calculate the line currents Ia,IbI_{a}, I_{b} , and IcI_{c} . Also calculate the real and reactive power delivered to the three-phase load.
Unlock Deck
Unlock for access to all 12 flashcards in this deck.
Unlock Deck
k this deck
locked card icon
Unlock Deck
Unlock for access to all 12 flashcards in this deck.