Deck 5: The Integral

Full screen (f)
exit full mode
Question
Integrate (6x24x+9)dx\int\left(6 x^{2}-4 x+9\right) d x .

A) 12x412 x-4
B) 2x32x2+C2 x^{3}-2 x^{2}+C
C) 2x32x2+9x+C2 x^{3}-2 x^{2}+9 x+C
D) 2x3x4+9x+C2 x^{3}-x^{4}+9 x+C
Use Space or
up arrow
down arrow
to flip the card.
Question
Integrate 2xx2+3dx\int \frac{2 x}{\sqrt{x^{2}+3}} d x .

A) 12x2+3+C\frac{1}{2} \sqrt{\mathrm{x}^{2}+3}+\mathrm{C}
B) 2x2+3+C2 \sqrt{x^{2}+3}+C
C) x2+3+C\sqrt{x^{2}+3}+C
D) 43(x2+3)3/2+C\frac{4}{3}\left(x^{2}+3\right)^{3 / 2}+C
Question
Integrate 1(5x+2)2dx\int \frac{1}{(5 x+2)^{2}} d x .

A) ln(5x+2)2+C\ln (5 x+2)^{2}+C
B) 15(5x+2)+C\frac{-1}{5(5 x+2)}+C
C) 15x+2+C\frac{-1}{5 x+2}+C
D) 15ln(5x+2)2+C\frac{1}{5} \ln (5 x+2)^{2}+C
Question
Recall that the voltage across a capacitor is given by VC=1Ci(t)dtV_{C}=\frac{1}{C} \int i(t) d t . Find the formula for VCV_{C} if C=C= .01 farad, i(t)=2t+3i(t)=2 t+3 amperes, and VC(0)=12V_{C}(0)=12 volts.

A) VC(t)=100t2+300t2+1200V_{C}(t)=100 t^{2}+300 t^{2}+1200 volts
B) VC(t)=t2+3t+1200V_{C}(t)=t^{2}+3 t+1200 volts
C) VC(t)=100t2+300t+12V_{C}(t)=100 t^{2}+300 t+12 volts
D) VC(t)=t2+3t+12V_{C}(t)=t^{2}+3 t+12 volts
Question
Find the area under the curve y=43x2y=4-3 x^{2} from x=0x=0 to x=1x=1 .

A) 10
B) 4
C) 3
D) 7
Question
Evaluate the definite integral 20(2x34x)dx\int_{-2}^{0}\left(2 x^{3}-4 x\right) d x .

A) 0
B) -2
C) 4
D) 2
Question
Evaluate the definite integral 01(2x+1)3dx\int_{0}^{1}(2 x+1)^{3} d x .

A) 20
B) 10
C) 814=20.25\frac{81}{4}=20.25
D) 40
Question
For the problems below, integrate.
-8 3x23dx\int 3 x^{23} d x
Question
For the problems below, integrate.
-9 (3x+1)1/2dx\int(3 x+1)^{1 / 2} d x
Question
For the problems below, integrate.
-10 x2dx(4x35)3\int \frac{x^{2} d x}{\left(4 x^{3}-5\right)^{3}}
Question
For the problems below, integrate.
-11 (x4+2x2)dx3x5+10x34\int \frac{\left(x^{4}+2 x^{2}\right) d x}{\sqrt[4]{3 x^{5}+10 x^{3}}}
Question
For the problems below, integrate.
-Find the equation of the curve y=f(x)y=f(x) satisfying the conditions: dxdy=(x26)3xdx\frac{d x}{d y}=\left(x^{2}-6\right)^{3} x d x and passing through (2,5)(2,5) .
Question
For the problems below, integrate.
-A ball is hurled straight up from the top of a 28ft28 \mathrm{ft} building at a velocity of 44ft/s44 \mathrm{ft} / \mathrm{s} . a) Find the equation describing the altitude of the ball from the ground. b) How long does it take for the ball to hit the ground? Round to three significant digits.
Question
For the problems below, integrate.

-A capacitor with a capacitance 103 F10^{-3} \mathrm{~F} has a voltage of 120 V120 \mathrm{~V} across it. At a given instant (t =0=0 ) the capacitor is connected to a source that sends a current i=6t+.01 Ai=6 \sqrt{t}+.01 \mathrm{~A} through the circuit. Find the voltage across the capacitor when t=0.36 s\mathrm{t}=0.36 \mathrm{~s} .
Question
For the problems below, find the area under the curve.

- y=x2+3x+10y=-x^{2}+3 x+10 from x=1x=1 to x=4x=4
Question
For the problems below, find the area under the curve.

- y=4x+1y=\sqrt{4 x+1} from x=2x=2 to x=6x=6
Question
For the problems below, find the area under the curve.

-Find the area bounded by the xx - axis and y=x2+10x16y=-x^{2}+10 x-16 .
Question
For the problems below, evaluate each definite integral.

- 23(6x2x6)dx\int_{2}^{3}\left(6 x^{2}-x-6\right) d x
Question
302x25x2dx\int_{-3}^{0} 2 x \sqrt{25-x^{2}} d x
Question
0418x9x2+25dx\int_{0}^{4} \frac{18 x}{\sqrt{9 x^{2}+25}} d x
Question
25(x39x2+6x3)dx\int_{2}^{5}\left(x^{3}-9 x^{2}+6 x-3\right) d x
Unlock Deck
Sign up to unlock the cards in this deck!
Unlock Deck
Unlock Deck
1/21
auto play flashcards
Play
simple tutorial
Full screen (f)
exit full mode
Deck 5: The Integral
1
Integrate (6x24x+9)dx\int\left(6 x^{2}-4 x+9\right) d x .

A) 12x412 x-4
B) 2x32x2+C2 x^{3}-2 x^{2}+C
C) 2x32x2+9x+C2 x^{3}-2 x^{2}+9 x+C
D) 2x3x4+9x+C2 x^{3}-x^{4}+9 x+C
2x32x2+9x+C2 x^{3}-2 x^{2}+9 x+C
2
Integrate 2xx2+3dx\int \frac{2 x}{\sqrt{x^{2}+3}} d x .

A) 12x2+3+C\frac{1}{2} \sqrt{\mathrm{x}^{2}+3}+\mathrm{C}
B) 2x2+3+C2 \sqrt{x^{2}+3}+C
C) x2+3+C\sqrt{x^{2}+3}+C
D) 43(x2+3)3/2+C\frac{4}{3}\left(x^{2}+3\right)^{3 / 2}+C
2x2+3+C2 \sqrt{x^{2}+3}+C
3
Integrate 1(5x+2)2dx\int \frac{1}{(5 x+2)^{2}} d x .

A) ln(5x+2)2+C\ln (5 x+2)^{2}+C
B) 15(5x+2)+C\frac{-1}{5(5 x+2)}+C
C) 15x+2+C\frac{-1}{5 x+2}+C
D) 15ln(5x+2)2+C\frac{1}{5} \ln (5 x+2)^{2}+C
15(5x+2)+C\frac{-1}{5(5 x+2)}+C
4
Recall that the voltage across a capacitor is given by VC=1Ci(t)dtV_{C}=\frac{1}{C} \int i(t) d t . Find the formula for VCV_{C} if C=C= .01 farad, i(t)=2t+3i(t)=2 t+3 amperes, and VC(0)=12V_{C}(0)=12 volts.

A) VC(t)=100t2+300t2+1200V_{C}(t)=100 t^{2}+300 t^{2}+1200 volts
B) VC(t)=t2+3t+1200V_{C}(t)=t^{2}+3 t+1200 volts
C) VC(t)=100t2+300t+12V_{C}(t)=100 t^{2}+300 t+12 volts
D) VC(t)=t2+3t+12V_{C}(t)=t^{2}+3 t+12 volts
Unlock Deck
Unlock for access to all 21 flashcards in this deck.
Unlock Deck
k this deck
5
Find the area under the curve y=43x2y=4-3 x^{2} from x=0x=0 to x=1x=1 .

A) 10
B) 4
C) 3
D) 7
Unlock Deck
Unlock for access to all 21 flashcards in this deck.
Unlock Deck
k this deck
6
Evaluate the definite integral 20(2x34x)dx\int_{-2}^{0}\left(2 x^{3}-4 x\right) d x .

A) 0
B) -2
C) 4
D) 2
Unlock Deck
Unlock for access to all 21 flashcards in this deck.
Unlock Deck
k this deck
7
Evaluate the definite integral 01(2x+1)3dx\int_{0}^{1}(2 x+1)^{3} d x .

A) 20
B) 10
C) 814=20.25\frac{81}{4}=20.25
D) 40
Unlock Deck
Unlock for access to all 21 flashcards in this deck.
Unlock Deck
k this deck
8
For the problems below, integrate.
-8 3x23dx\int 3 x^{23} d x
Unlock Deck
Unlock for access to all 21 flashcards in this deck.
Unlock Deck
k this deck
9
For the problems below, integrate.
-9 (3x+1)1/2dx\int(3 x+1)^{1 / 2} d x
Unlock Deck
Unlock for access to all 21 flashcards in this deck.
Unlock Deck
k this deck
10
For the problems below, integrate.
-10 x2dx(4x35)3\int \frac{x^{2} d x}{\left(4 x^{3}-5\right)^{3}}
Unlock Deck
Unlock for access to all 21 flashcards in this deck.
Unlock Deck
k this deck
11
For the problems below, integrate.
-11 (x4+2x2)dx3x5+10x34\int \frac{\left(x^{4}+2 x^{2}\right) d x}{\sqrt[4]{3 x^{5}+10 x^{3}}}
Unlock Deck
Unlock for access to all 21 flashcards in this deck.
Unlock Deck
k this deck
12
For the problems below, integrate.
-Find the equation of the curve y=f(x)y=f(x) satisfying the conditions: dxdy=(x26)3xdx\frac{d x}{d y}=\left(x^{2}-6\right)^{3} x d x and passing through (2,5)(2,5) .
Unlock Deck
Unlock for access to all 21 flashcards in this deck.
Unlock Deck
k this deck
13
For the problems below, integrate.
-A ball is hurled straight up from the top of a 28ft28 \mathrm{ft} building at a velocity of 44ft/s44 \mathrm{ft} / \mathrm{s} . a) Find the equation describing the altitude of the ball from the ground. b) How long does it take for the ball to hit the ground? Round to three significant digits.
Unlock Deck
Unlock for access to all 21 flashcards in this deck.
Unlock Deck
k this deck
14
For the problems below, integrate.

-A capacitor with a capacitance 103 F10^{-3} \mathrm{~F} has a voltage of 120 V120 \mathrm{~V} across it. At a given instant (t =0=0 ) the capacitor is connected to a source that sends a current i=6t+.01 Ai=6 \sqrt{t}+.01 \mathrm{~A} through the circuit. Find the voltage across the capacitor when t=0.36 s\mathrm{t}=0.36 \mathrm{~s} .
Unlock Deck
Unlock for access to all 21 flashcards in this deck.
Unlock Deck
k this deck
15
For the problems below, find the area under the curve.

- y=x2+3x+10y=-x^{2}+3 x+10 from x=1x=1 to x=4x=4
Unlock Deck
Unlock for access to all 21 flashcards in this deck.
Unlock Deck
k this deck
16
For the problems below, find the area under the curve.

- y=4x+1y=\sqrt{4 x+1} from x=2x=2 to x=6x=6
Unlock Deck
Unlock for access to all 21 flashcards in this deck.
Unlock Deck
k this deck
17
For the problems below, find the area under the curve.

-Find the area bounded by the xx - axis and y=x2+10x16y=-x^{2}+10 x-16 .
Unlock Deck
Unlock for access to all 21 flashcards in this deck.
Unlock Deck
k this deck
18
For the problems below, evaluate each definite integral.

- 23(6x2x6)dx\int_{2}^{3}\left(6 x^{2}-x-6\right) d x
Unlock Deck
Unlock for access to all 21 flashcards in this deck.
Unlock Deck
k this deck
19
302x25x2dx\int_{-3}^{0} 2 x \sqrt{25-x^{2}} d x
Unlock Deck
Unlock for access to all 21 flashcards in this deck.
Unlock Deck
k this deck
20
0418x9x2+25dx\int_{0}^{4} \frac{18 x}{\sqrt{9 x^{2}+25}} d x
Unlock Deck
Unlock for access to all 21 flashcards in this deck.
Unlock Deck
k this deck
21
25(x39x2+6x3)dx\int_{2}^{5}\left(x^{3}-9 x^{2}+6 x-3\right) d x
Unlock Deck
Unlock for access to all 21 flashcards in this deck.
Unlock Deck
k this deck
locked card icon
Unlock Deck
Unlock for access to all 21 flashcards in this deck.