Deck 11: First-Order Differential Equations

Full screen (f)
exit full mode
Question
State the onder and degree of the differential equation y+y5=2x3y^{\prime \prime}+y^{5}=2 x^{3} .

A) order 2, degree 1
B) order 2, degree 3
C) order 5, degree 3
D) order 2, degree 5
Use Space or
up arrow
down arrow
to flip the card.
Question
Find the particular solution of the differential equation x2dy=ydxx^{2} d y=y d x if y=1y=1 when x=1x=1 .

A) 1y=1x+2\frac{1}{y}=-\frac{1}{x}+2 or y=x2x1y=\frac{x}{2 x-1}
B) lny=1x+1\ln y=-\frac{1}{x}+1 or y=e1x+1y=e^{\frac{-1}{x}+1}
C) lny=lnx2\ln y=\ln x^{2} or y=x2y=x^{2}
D) lny=1x+2\ln y=-\frac{1}{x}+2 or y=e1x+2y=e^{\frac{-1}{x}+2}
Question
Find the general solution of the linear differential equation y+3y=e3xy^{\prime}+3 y=e^{-3 x} .

A) y=(x+C)e3xy=(x+C) e^{-3 x}
B) y=(x+C)e3xy=(x+C) e^{3 x}
C) y=1+Ce3xy=1+C e^{3 x}
D) y=Ce3xy=C e^{-3 x}
Question
Find the particular solution of the differential equation yyx=x2y^{\prime}-\frac{y}{x}=x^{2} if y=4y=4 when x=1x=1 .

A) y=12x3+72xy=\frac{1}{2} x^{3}+\frac{7}{2} x
B) y=12x2+72y=\frac{1}{2} x^{2}+\frac{7}{2}
C) y=x3+7xy=x^{3}+7 x
D) y=12x+72xy=\frac{1}{2} x+\frac{7}{2 x}
Question
Find the equation for the current ii in a series circuit with inductance L=0.1HL=0.1 \mathrm{H} , resistance R=8R=8 ohms, and voltage V=12\mathrm{V}=12 volts. The initial current i0=2\mathrm{i} 0=2 amperes when t=0\mathrm{t}=0 .

A) i=0.5e80t+1.5i=0.5 e^{-80 t}+1.5 amperes
B) i=0.5e80t1.5\mathrm{i}=0.5 \mathrm{e}^{-80 \mathrm{t}}-1.5 amperes
C) i=2e80t+1.5i=2 e^{-80 t}+1.5 amperes
D) i=2e80t1.5i=2 e^{-80 t}-1.5 amperes
Question
A radioactive material with an original mass of 10 g10 \mathrm{~g} has a mass of 8 g8 \mathrm{~g} after 50 years. The material decays at a rate proportional to the amount present. Find an expression for the amount present at any time t. Also find its half-life.

A) Q=10(0.8)t50Q=10(0.8)^{\frac{t}{50}} or Q=10e0.004463tQ=10 e^{-0.004463 t} ; its half- life is about 155 years.
B) Q=10(0.8)t500\mathrm{Q}=10(0.8)^{\frac{\mathrm{t}}{500}} or Q=10e0.0004463t\mathrm{Q}=10 \mathrm{e}^{-0.0004463 \mathrm{t}} ; its half- life is about 1553 years.
C) Q=10(8)t500\mathrm{Q}=10(8)^{\frac{\mathrm{t}}{500}} or Q=10e0.004159t\mathrm{Q}=10 \mathrm{e}^{0.004159 t} ; its half- life is about 167 years.
D) Q=8(0.1)t50\mathrm{Q}=8(0.1)^{\frac{\mathrm{t}}{50}} or Q=8e0.04605t\mathrm{Q}=8 \mathrm{e}^{-0.04605 \mathrm{t}} ; its half- life is about 15 years.
Question
State the order and degree of the differential equation ( y)22xy+5y=0\left.y^{\prime \prime \prime}\right) 2-2 x y^{\prime}+5 y^{\prime \prime}=0 .
Question
Verify that the function y=f(x)y=f(x) is a solution of the differential equation xdxdyy=x5x \frac{d x}{d y}-y=x^{5} . f(x)=14(x5+15x)f(x)=\frac{1}{4}\left(x^{5}+15 x\right)
Question
Solve the differential equation: x(y1)dx+(x2+3)dy=0x(y-1) d x+\left(x^{2}+3\right) d y=0
Question
Find the particular solution to the differential equation dxdy=y2x3\frac{d x}{d y}=\frac{y^{2}}{x^{3}} where y=8y=8 when x=4x=4 .
Question
For the problems below, solve each differential equation.
-11 ydxx2+y2+xdyx2+y2+y2dy\frac{y d x}{x^{2}+y^{2}}+\frac{x d y}{x^{2}+y^{2}}+y^{2} d y
Question
For the problems below, solve each differential equation.
-12 xdy+ydx4x3=dx\frac{x d y+y d x}{4 x^{3}}=d x
Question
Find the particular solution of the differential equation xdyydxx2=2ydy\frac{x d y-y d x}{x^{2}}=2 y d y where y=6\mathrm{y}=6 when x=2\mathrm{x}=2 .
Question
For the problems below, solve each differential equation.

- dxdy+6xy=e3x2sinx\frac{d x}{d y}+6 x y=e^{-3 x^{2}} \sin x
Question
For the problems below, solve each differential equation.

- 4ydx+xdy=5x2dx4 y d x+x d y=5 x^{2} d x
Question
Radioactive material decays at a rate proportional to the amount present. For a certain radioactive substance, approximately 16%16 \% of the original quantity decomposes in 24 years. Find the half- life of this radioactive material.
Question
Find the equation for the current i\mathrm{i} in a series circuit with inductance L=0.2H\mathrm{L}=0.2 \mathrm{H} , resistance R=120Ω\mathrm{R}=120 \Omega , and voltage V=210\mathrm{V}=210 volts if the initial current i0=5\mathrm{i}_{0}=5 amperes when t=0\mathrm{t}=0 . (Hint: Use Ldidt+Ri=V\mathrm{L} \frac{\mathrm{di}}{\mathrm{dt}}+\mathrm{Ri}=\mathrm{V} .)
Question
An object at 450F450^{\circ} \mathrm{F} is cooled in air, which is at 75F75^{\circ} \mathrm{F} . If the object is 420F420^{\circ} \mathrm{F} after 6 min6 \mathrm{~min} , find the temperature of the object after 45 min45 \mathrm{~min} .
Unlock Deck
Sign up to unlock the cards in this deck!
Unlock Deck
Unlock Deck
1/18
auto play flashcards
Play
simple tutorial
Full screen (f)
exit full mode
Deck 11: First-Order Differential Equations
1
State the onder and degree of the differential equation y+y5=2x3y^{\prime \prime}+y^{5}=2 x^{3} .

A) order 2, degree 1
B) order 2, degree 3
C) order 5, degree 3
D) order 2, degree 5
order 2, degree 1
2
Find the particular solution of the differential equation x2dy=ydxx^{2} d y=y d x if y=1y=1 when x=1x=1 .

A) 1y=1x+2\frac{1}{y}=-\frac{1}{x}+2 or y=x2x1y=\frac{x}{2 x-1}
B) lny=1x+1\ln y=-\frac{1}{x}+1 or y=e1x+1y=e^{\frac{-1}{x}+1}
C) lny=lnx2\ln y=\ln x^{2} or y=x2y=x^{2}
D) lny=1x+2\ln y=-\frac{1}{x}+2 or y=e1x+2y=e^{\frac{-1}{x}+2}
lny=1x+1\ln y=-\frac{1}{x}+1 or y=e1x+1y=e^{\frac{-1}{x}+1}
3
Find the general solution of the linear differential equation y+3y=e3xy^{\prime}+3 y=e^{-3 x} .

A) y=(x+C)e3xy=(x+C) e^{-3 x}
B) y=(x+C)e3xy=(x+C) e^{3 x}
C) y=1+Ce3xy=1+C e^{3 x}
D) y=Ce3xy=C e^{-3 x}
y=(x+C)e3xy=(x+C) e^{-3 x}
4
Find the particular solution of the differential equation yyx=x2y^{\prime}-\frac{y}{x}=x^{2} if y=4y=4 when x=1x=1 .

A) y=12x3+72xy=\frac{1}{2} x^{3}+\frac{7}{2} x
B) y=12x2+72y=\frac{1}{2} x^{2}+\frac{7}{2}
C) y=x3+7xy=x^{3}+7 x
D) y=12x+72xy=\frac{1}{2} x+\frac{7}{2 x}
Unlock Deck
Unlock for access to all 18 flashcards in this deck.
Unlock Deck
k this deck
5
Find the equation for the current ii in a series circuit with inductance L=0.1HL=0.1 \mathrm{H} , resistance R=8R=8 ohms, and voltage V=12\mathrm{V}=12 volts. The initial current i0=2\mathrm{i} 0=2 amperes when t=0\mathrm{t}=0 .

A) i=0.5e80t+1.5i=0.5 e^{-80 t}+1.5 amperes
B) i=0.5e80t1.5\mathrm{i}=0.5 \mathrm{e}^{-80 \mathrm{t}}-1.5 amperes
C) i=2e80t+1.5i=2 e^{-80 t}+1.5 amperes
D) i=2e80t1.5i=2 e^{-80 t}-1.5 amperes
Unlock Deck
Unlock for access to all 18 flashcards in this deck.
Unlock Deck
k this deck
6
A radioactive material with an original mass of 10 g10 \mathrm{~g} has a mass of 8 g8 \mathrm{~g} after 50 years. The material decays at a rate proportional to the amount present. Find an expression for the amount present at any time t. Also find its half-life.

A) Q=10(0.8)t50Q=10(0.8)^{\frac{t}{50}} or Q=10e0.004463tQ=10 e^{-0.004463 t} ; its half- life is about 155 years.
B) Q=10(0.8)t500\mathrm{Q}=10(0.8)^{\frac{\mathrm{t}}{500}} or Q=10e0.0004463t\mathrm{Q}=10 \mathrm{e}^{-0.0004463 \mathrm{t}} ; its half- life is about 1553 years.
C) Q=10(8)t500\mathrm{Q}=10(8)^{\frac{\mathrm{t}}{500}} or Q=10e0.004159t\mathrm{Q}=10 \mathrm{e}^{0.004159 t} ; its half- life is about 167 years.
D) Q=8(0.1)t50\mathrm{Q}=8(0.1)^{\frac{\mathrm{t}}{50}} or Q=8e0.04605t\mathrm{Q}=8 \mathrm{e}^{-0.04605 \mathrm{t}} ; its half- life is about 15 years.
Unlock Deck
Unlock for access to all 18 flashcards in this deck.
Unlock Deck
k this deck
7
State the order and degree of the differential equation ( y)22xy+5y=0\left.y^{\prime \prime \prime}\right) 2-2 x y^{\prime}+5 y^{\prime \prime}=0 .
Unlock Deck
Unlock for access to all 18 flashcards in this deck.
Unlock Deck
k this deck
8
Verify that the function y=f(x)y=f(x) is a solution of the differential equation xdxdyy=x5x \frac{d x}{d y}-y=x^{5} . f(x)=14(x5+15x)f(x)=\frac{1}{4}\left(x^{5}+15 x\right)
Unlock Deck
Unlock for access to all 18 flashcards in this deck.
Unlock Deck
k this deck
9
Solve the differential equation: x(y1)dx+(x2+3)dy=0x(y-1) d x+\left(x^{2}+3\right) d y=0
Unlock Deck
Unlock for access to all 18 flashcards in this deck.
Unlock Deck
k this deck
10
Find the particular solution to the differential equation dxdy=y2x3\frac{d x}{d y}=\frac{y^{2}}{x^{3}} where y=8y=8 when x=4x=4 .
Unlock Deck
Unlock for access to all 18 flashcards in this deck.
Unlock Deck
k this deck
11
For the problems below, solve each differential equation.
-11 ydxx2+y2+xdyx2+y2+y2dy\frac{y d x}{x^{2}+y^{2}}+\frac{x d y}{x^{2}+y^{2}}+y^{2} d y
Unlock Deck
Unlock for access to all 18 flashcards in this deck.
Unlock Deck
k this deck
12
For the problems below, solve each differential equation.
-12 xdy+ydx4x3=dx\frac{x d y+y d x}{4 x^{3}}=d x
Unlock Deck
Unlock for access to all 18 flashcards in this deck.
Unlock Deck
k this deck
13
Find the particular solution of the differential equation xdyydxx2=2ydy\frac{x d y-y d x}{x^{2}}=2 y d y where y=6\mathrm{y}=6 when x=2\mathrm{x}=2 .
Unlock Deck
Unlock for access to all 18 flashcards in this deck.
Unlock Deck
k this deck
14
For the problems below, solve each differential equation.

- dxdy+6xy=e3x2sinx\frac{d x}{d y}+6 x y=e^{-3 x^{2}} \sin x
Unlock Deck
Unlock for access to all 18 flashcards in this deck.
Unlock Deck
k this deck
15
For the problems below, solve each differential equation.

- 4ydx+xdy=5x2dx4 y d x+x d y=5 x^{2} d x
Unlock Deck
Unlock for access to all 18 flashcards in this deck.
Unlock Deck
k this deck
16
Radioactive material decays at a rate proportional to the amount present. For a certain radioactive substance, approximately 16%16 \% of the original quantity decomposes in 24 years. Find the half- life of this radioactive material.
Unlock Deck
Unlock for access to all 18 flashcards in this deck.
Unlock Deck
k this deck
17
Find the equation for the current i\mathrm{i} in a series circuit with inductance L=0.2H\mathrm{L}=0.2 \mathrm{H} , resistance R=120Ω\mathrm{R}=120 \Omega , and voltage V=210\mathrm{V}=210 volts if the initial current i0=5\mathrm{i}_{0}=5 amperes when t=0\mathrm{t}=0 . (Hint: Use Ldidt+Ri=V\mathrm{L} \frac{\mathrm{di}}{\mathrm{dt}}+\mathrm{Ri}=\mathrm{V} .)
Unlock Deck
Unlock for access to all 18 flashcards in this deck.
Unlock Deck
k this deck
18
An object at 450F450^{\circ} \mathrm{F} is cooled in air, which is at 75F75^{\circ} \mathrm{F} . If the object is 420F420^{\circ} \mathrm{F} after 6 min6 \mathrm{~min} , find the temperature of the object after 45 min45 \mathrm{~min} .
Unlock Deck
Unlock for access to all 18 flashcards in this deck.
Unlock Deck
k this deck
locked card icon
Unlock Deck
Unlock for access to all 18 flashcards in this deck.