Deck 12: Second-Order Differential Equations

Full screen (f)
exit full mode
Question
Find the general solution of the differential equation y+5y+6y=0y^{\prime \prime}+5 y^{\prime}+6 y=0 .

A) y=k1e5x+k2exy=k_{1} e^{-5 x}+k_{2} e^{-x}
B) y=k1e3x+k2e2xy=k_{1} e^{-3 x}+k_{2} e^{-2 x}
C) y=k1e3x+k2e2xy=k_{1} e^{3 x}+k_{2} e^{2 x}
D) y=k1e5x+k2exy=k_{1} e^{5 x}+k_{2} e^{x}
Use Space or
up arrow
down arrow
to flip the card.
Question
Find the general solution of the differential equation y+8y+16y=0y^{\prime \prime}+8 y^{\prime}+16 y=0 .

A) y=k1e4x+k2e4xy=k_{1} e^{-4 x}+k_{2} e^{-4 x}
B) y=k1e4x+k2e4xy=k_{1} e^{4 x}+k_{2} e^{4 x}
C) y=k1e4x+k2e4xy=k_{1} e^{-4 x}+k_{2} e^{4 x}
D) y=k1e4x+k2xe4xy=k_{1} e^{-4 x}+k_{2} x e^{-4 x}
Question
Find the general solution of the differential equation y+6y+25y=0y^{\prime \prime}+6 y^{\prime}+25 y=0 .

A) y=e4x(k1sin3x+k2cos3x)y=e^{4 x}\left(k_{1} \sin 3 x+k_{2} \cos 3 x\right)
B) y=e3x(k1sin4x+k2cos4x)y=e^{-3 x}\left(k_{1} \sin 4 x+k_{2} \cos 4 x\right)
C) y=e3x(k1sin4x+k2cos4x)y=e^{3 x}\left(k_{1} \sin 4 x+k_{2} \cos 4 x\right)
D) y=e4x(k1sin3x+k2cos3x)y=e^{-4 x}\left(k_{1} \sin 3 x+k_{2} \cos 3 x\right)
Question
Find the particular solution of the differential equation y25y=0y^{\prime \prime}-25 y=0 if y=5y=5 and y=2y^{\prime}=2 when x=0x=0 .

A) y=0.4sin5x+5cos5xy=0.4 \sin 5 x+5 \cos 5 x
B) y=2.3e5x+2.7e5xy=2.3 e^{5 x}+2.7 e^{-5 x}
C) y=2.7e5x+2.3e5xy=2.7 e^{5 x}+2.3 e^{-5 x}
D) y=5sin5x+0.4cos5xy=5 \sin 5 x+0.4 \cos 5 x
Question
Find the general solution of the differential equation y+4y+3y=20cosxy^{\prime \prime}+4 y^{\prime}+3 y=20 \cos x .

A) y=k1e3x+k2ex4sinx+2cosxy=k_{1} e^{-3 x}+k_{2} e^{-x}-4 \sin x+2 \cos x
B) y=k1e3x+k2ex+4sinx+2cosxy=k_{1} e^{-3 x}+k_{2} e^{-x}+4 \sin x+2 \cos x
C) y=k1e3x+k2ex+4sinx+2cosxy=k_{1} e^{3 x}+k_{2} e^{x}+4 \sin x+2 \cos x
D) y=k1e3x+k2ex4sinx+2cosxy=k_{1} e^{3 x}+k_{2} e^{x}-4 \sin x+2 \cos x
Question
Find the general solution of the differential equation y4y=8e2xy^{\prime \prime}-4 y=8 e^{2 x} .

A) y=k1sin2x+k2cos2x+e2xy=k_{1} \sin 2 x+k_{2} \cos 2 x+e^{2 x}
B) y=k1e2x+k2e2x+2xe2xy=k_{1} e^{-2 x}+k_{2} e^{2 x}+2 x e^{2 x}
C) y=k1sin2x+k2cos2x+xe2xy=k_{1} \sin 2 x+k_{2} \cos 2 x+x e^{2 x}
D) y=k1e2x+k2e2x+xe2xy=k_{1} e^{-2 x}+k_{2} e^{2 x}+x e^{2 x}
Question
An electric circuit has an inductance L=0.5HL=0.5 \mathrm{H} , a resistance R=1000Ω\mathrm{R}=1000 \Omega , and a capacitance C=1.0×\mathrm{C}=1.0 \times 106 F10^{-6} \mathrm{~F} . Find the equation for the current i\mathrm{i} if the voltage sourœ is 12 V12 \mathrm{~V} .

A) i=e1000t(k1sin1000t+k2cos1000t)+0.000012i=e^{1000 t}\left(k_{1} \sin 1000 t+k_{2} \cos 1000 t\right)+0.000012
B) i=e1000t(k1sin1000t+k2cos1000t)+0.000012i=e^{-1000 t}\left(k_{1} \sin 1000 t+k_{2} \cos 1000 t\right)+0.000012
C) i=e1000t(k1sin1000t+k2cos1000t)i=e^{1000 t}\left(k_{1} \sin 1000 t+k_{2} \cos 1000 t\right)
D) i=e1000t(k1sin1000t+k2cos1000t)i=e^{-1000 t}\left(k_{1} \sin 1000 t+k_{2} \cos 1000 t\right)
Question
Using a table of Laplace transforms, find the Laplace transform of f(t)=te3tf(t)=t e^{-3 t} .

A) 1(s3)2\frac{1}{(s-3)^{2}}
B) s(s+3)2\frac{\mathrm{s}}{(\mathrm{s}+3)^{2}}
C) s2s3\frac{s^{2}}{s-3}
D) 1(s+3)2\frac{1}{(s+3)^{2}}
Question
Using a table of Laplace transforms, find the inverse transform of F(s)=1s2+10s+29F(s)=\frac{1}{s^{2}+10 s+29} .

A) f(t)=12e2tsin5tf(t)=\frac{1}{2} e^{-2 t} \sin 5 t

B) f(t)=e2tcos5tf(t)=e^{-2 t} \cos 5 t

C) f(t)=e2tsin5tf(t)=e^{-2 t} \sin 5 t

D) f(t)=12e2tcos5tf(t)=\frac{1}{2} e^{-2 t} \cos 5 t
Question
For the problems below, solve each differential equation.

- y+4y21y=0y^{\prime \prime}+4 y^{\prime}-21 y=0
Question
For the problems below, solve each differential equation.

- y+8y=0y^{\prime \prime}+8 y^{\prime}=0
Question
Find the particular solution subject to the given conditions. y4y12y=0;y=1\mathrm{y}^{\prime \prime}-4 \mathrm{y}^{\prime}-12 \mathrm{y}=0 ; \mathrm{y}=1 and y=18\mathrm{y}^{\prime}=-18 when x=0\mathrm{x}=0 .
Question
For the problems below, solve each differential equation.

- y22y+121y=0y^{\prime \prime}-22 y^{\prime}+121 y=0
Question
For the problems below, solve each differential equation.

- y4y+29y=0y^{\prime \prime}-4 y^{\prime}+29 y=0
Question
Find the particular solution subject to the given conditions. y+81y=0;y=7 and y=27 when x=π18\mathrm{y}^{\prime \prime}+81 \mathrm{y}=0 ; \mathrm{y}=7 \text { and } \mathrm{y}^{\prime}=-27 \text { when } \mathrm{x}=\frac{\pi}{18}
Question
For the problems below, solve each differential equation.

- y+2y15y=x+e2xy^{\prime \prime}+2 y^{\prime}-15 y=x+e^{2 x}
Question
For the problems below, solve each differential equation.

- y+y=4sinx\mathrm{y}^{\prime \prime}+\mathrm{y}=4 \sin \mathrm{x}
Question
A spring is stretched 6in6 \mathrm{in} . by a weight of 10lb10 \mathrm{lb} . If the weight is displaced a distance of 4in4 \mathrm{in} . from a rest position and then released, find the equation of motion.
Question
A spring is stretched 8in8 \mathrm{in} . by a weight of 25lb25 \mathrm{lb} . A damping force exerts a force of 6lb6 \mathrm{lb} for a velocity of 5in5 \mathrm{in} ./s. If the weight is displaced from the rest position and then released, find the general equation of motion.
Question
An electric circuit has an inductance L=0.4HL=0.4 \mathrm{H} , a resistance R=250ΩR=250 \Omega , and a capacitance CC =5×104=5 \times 10^{-4} F. Find the equation for the current ii . (Hint: d2idt2+RdiLdt+1CLi=0\frac{d^{2} i}{d t^{2}}+\frac{R d i}{L d t}+\frac{1}{C L} i=0 )
Question
Use a table of Laplace Transforms to find the Laplace transform of each function f(t)\mathrm{f}(\mathrm{t}) in the problems below.

- f(t)=e4tcos8t+5te10tf(t)=e^{4 t} \cos 8 t+5 t e^{10 t}
Question
Use a table of Laplace Transforms to find the Laplace transform of each function f(t)\mathrm{f}(\mathrm{t}) in the problems below.

- f(t)=t424+1cos6tf(t)=\frac{t^{4}}{24}+1-\cos 6 t
Question
Find the inverse transform for the function F(s)F(s) . F(s)=9s2+81+1(s+5)3F(s)=\frac{9}{s^{2}+81}+\frac{1}{(s+5)^{3}}
Question
For the problems below, solve each differential equation subject to the given conditions by using Laplace transforms.

- y5y24y=0;y(0)=17y^{\prime \prime}-5 y^{\prime}-24 y=0 ; y(0)=17 and y(0)=26y^{\prime}(0)=26
Question
For the problems below, solve each differential equation subject to the given conditions by using Laplace transforms.

- y8y+16y=te4t;y(0)=0y^{\prime \prime}-8 y^{\prime}+16 y=t e^{4 t} ; y(0)=0 and y(0)=0y^{\prime}(0)=0
Unlock Deck
Sign up to unlock the cards in this deck!
Unlock Deck
Unlock Deck
1/25
auto play flashcards
Play
simple tutorial
Full screen (f)
exit full mode
Deck 12: Second-Order Differential Equations
1
Find the general solution of the differential equation y+5y+6y=0y^{\prime \prime}+5 y^{\prime}+6 y=0 .

A) y=k1e5x+k2exy=k_{1} e^{-5 x}+k_{2} e^{-x}
B) y=k1e3x+k2e2xy=k_{1} e^{-3 x}+k_{2} e^{-2 x}
C) y=k1e3x+k2e2xy=k_{1} e^{3 x}+k_{2} e^{2 x}
D) y=k1e5x+k2exy=k_{1} e^{5 x}+k_{2} e^{x}
y=k1e3x+k2e2xy=k_{1} e^{-3 x}+k_{2} e^{-2 x}
2
Find the general solution of the differential equation y+8y+16y=0y^{\prime \prime}+8 y^{\prime}+16 y=0 .

A) y=k1e4x+k2e4xy=k_{1} e^{-4 x}+k_{2} e^{-4 x}
B) y=k1e4x+k2e4xy=k_{1} e^{4 x}+k_{2} e^{4 x}
C) y=k1e4x+k2e4xy=k_{1} e^{-4 x}+k_{2} e^{4 x}
D) y=k1e4x+k2xe4xy=k_{1} e^{-4 x}+k_{2} x e^{-4 x}
y=k1e4x+k2xe4xy=k_{1} e^{-4 x}+k_{2} x e^{-4 x}
3
Find the general solution of the differential equation y+6y+25y=0y^{\prime \prime}+6 y^{\prime}+25 y=0 .

A) y=e4x(k1sin3x+k2cos3x)y=e^{4 x}\left(k_{1} \sin 3 x+k_{2} \cos 3 x\right)
B) y=e3x(k1sin4x+k2cos4x)y=e^{-3 x}\left(k_{1} \sin 4 x+k_{2} \cos 4 x\right)
C) y=e3x(k1sin4x+k2cos4x)y=e^{3 x}\left(k_{1} \sin 4 x+k_{2} \cos 4 x\right)
D) y=e4x(k1sin3x+k2cos3x)y=e^{-4 x}\left(k_{1} \sin 3 x+k_{2} \cos 3 x\right)
y=e3x(k1sin4x+k2cos4x)y=e^{-3 x}\left(k_{1} \sin 4 x+k_{2} \cos 4 x\right)
4
Find the particular solution of the differential equation y25y=0y^{\prime \prime}-25 y=0 if y=5y=5 and y=2y^{\prime}=2 when x=0x=0 .

A) y=0.4sin5x+5cos5xy=0.4 \sin 5 x+5 \cos 5 x
B) y=2.3e5x+2.7e5xy=2.3 e^{5 x}+2.7 e^{-5 x}
C) y=2.7e5x+2.3e5xy=2.7 e^{5 x}+2.3 e^{-5 x}
D) y=5sin5x+0.4cos5xy=5 \sin 5 x+0.4 \cos 5 x
Unlock Deck
Unlock for access to all 25 flashcards in this deck.
Unlock Deck
k this deck
5
Find the general solution of the differential equation y+4y+3y=20cosxy^{\prime \prime}+4 y^{\prime}+3 y=20 \cos x .

A) y=k1e3x+k2ex4sinx+2cosxy=k_{1} e^{-3 x}+k_{2} e^{-x}-4 \sin x+2 \cos x
B) y=k1e3x+k2ex+4sinx+2cosxy=k_{1} e^{-3 x}+k_{2} e^{-x}+4 \sin x+2 \cos x
C) y=k1e3x+k2ex+4sinx+2cosxy=k_{1} e^{3 x}+k_{2} e^{x}+4 \sin x+2 \cos x
D) y=k1e3x+k2ex4sinx+2cosxy=k_{1} e^{3 x}+k_{2} e^{x}-4 \sin x+2 \cos x
Unlock Deck
Unlock for access to all 25 flashcards in this deck.
Unlock Deck
k this deck
6
Find the general solution of the differential equation y4y=8e2xy^{\prime \prime}-4 y=8 e^{2 x} .

A) y=k1sin2x+k2cos2x+e2xy=k_{1} \sin 2 x+k_{2} \cos 2 x+e^{2 x}
B) y=k1e2x+k2e2x+2xe2xy=k_{1} e^{-2 x}+k_{2} e^{2 x}+2 x e^{2 x}
C) y=k1sin2x+k2cos2x+xe2xy=k_{1} \sin 2 x+k_{2} \cos 2 x+x e^{2 x}
D) y=k1e2x+k2e2x+xe2xy=k_{1} e^{-2 x}+k_{2} e^{2 x}+x e^{2 x}
Unlock Deck
Unlock for access to all 25 flashcards in this deck.
Unlock Deck
k this deck
7
An electric circuit has an inductance L=0.5HL=0.5 \mathrm{H} , a resistance R=1000Ω\mathrm{R}=1000 \Omega , and a capacitance C=1.0×\mathrm{C}=1.0 \times 106 F10^{-6} \mathrm{~F} . Find the equation for the current i\mathrm{i} if the voltage sourœ is 12 V12 \mathrm{~V} .

A) i=e1000t(k1sin1000t+k2cos1000t)+0.000012i=e^{1000 t}\left(k_{1} \sin 1000 t+k_{2} \cos 1000 t\right)+0.000012
B) i=e1000t(k1sin1000t+k2cos1000t)+0.000012i=e^{-1000 t}\left(k_{1} \sin 1000 t+k_{2} \cos 1000 t\right)+0.000012
C) i=e1000t(k1sin1000t+k2cos1000t)i=e^{1000 t}\left(k_{1} \sin 1000 t+k_{2} \cos 1000 t\right)
D) i=e1000t(k1sin1000t+k2cos1000t)i=e^{-1000 t}\left(k_{1} \sin 1000 t+k_{2} \cos 1000 t\right)
Unlock Deck
Unlock for access to all 25 flashcards in this deck.
Unlock Deck
k this deck
8
Using a table of Laplace transforms, find the Laplace transform of f(t)=te3tf(t)=t e^{-3 t} .

A) 1(s3)2\frac{1}{(s-3)^{2}}
B) s(s+3)2\frac{\mathrm{s}}{(\mathrm{s}+3)^{2}}
C) s2s3\frac{s^{2}}{s-3}
D) 1(s+3)2\frac{1}{(s+3)^{2}}
Unlock Deck
Unlock for access to all 25 flashcards in this deck.
Unlock Deck
k this deck
9
Using a table of Laplace transforms, find the inverse transform of F(s)=1s2+10s+29F(s)=\frac{1}{s^{2}+10 s+29} .

A) f(t)=12e2tsin5tf(t)=\frac{1}{2} e^{-2 t} \sin 5 t

B) f(t)=e2tcos5tf(t)=e^{-2 t} \cos 5 t

C) f(t)=e2tsin5tf(t)=e^{-2 t} \sin 5 t

D) f(t)=12e2tcos5tf(t)=\frac{1}{2} e^{-2 t} \cos 5 t
Unlock Deck
Unlock for access to all 25 flashcards in this deck.
Unlock Deck
k this deck
10
For the problems below, solve each differential equation.

- y+4y21y=0y^{\prime \prime}+4 y^{\prime}-21 y=0
Unlock Deck
Unlock for access to all 25 flashcards in this deck.
Unlock Deck
k this deck
11
For the problems below, solve each differential equation.

- y+8y=0y^{\prime \prime}+8 y^{\prime}=0
Unlock Deck
Unlock for access to all 25 flashcards in this deck.
Unlock Deck
k this deck
12
Find the particular solution subject to the given conditions. y4y12y=0;y=1\mathrm{y}^{\prime \prime}-4 \mathrm{y}^{\prime}-12 \mathrm{y}=0 ; \mathrm{y}=1 and y=18\mathrm{y}^{\prime}=-18 when x=0\mathrm{x}=0 .
Unlock Deck
Unlock for access to all 25 flashcards in this deck.
Unlock Deck
k this deck
13
For the problems below, solve each differential equation.

- y22y+121y=0y^{\prime \prime}-22 y^{\prime}+121 y=0
Unlock Deck
Unlock for access to all 25 flashcards in this deck.
Unlock Deck
k this deck
14
For the problems below, solve each differential equation.

- y4y+29y=0y^{\prime \prime}-4 y^{\prime}+29 y=0
Unlock Deck
Unlock for access to all 25 flashcards in this deck.
Unlock Deck
k this deck
15
Find the particular solution subject to the given conditions. y+81y=0;y=7 and y=27 when x=π18\mathrm{y}^{\prime \prime}+81 \mathrm{y}=0 ; \mathrm{y}=7 \text { and } \mathrm{y}^{\prime}=-27 \text { when } \mathrm{x}=\frac{\pi}{18}
Unlock Deck
Unlock for access to all 25 flashcards in this deck.
Unlock Deck
k this deck
16
For the problems below, solve each differential equation.

- y+2y15y=x+e2xy^{\prime \prime}+2 y^{\prime}-15 y=x+e^{2 x}
Unlock Deck
Unlock for access to all 25 flashcards in this deck.
Unlock Deck
k this deck
17
For the problems below, solve each differential equation.

- y+y=4sinx\mathrm{y}^{\prime \prime}+\mathrm{y}=4 \sin \mathrm{x}
Unlock Deck
Unlock for access to all 25 flashcards in this deck.
Unlock Deck
k this deck
18
A spring is stretched 6in6 \mathrm{in} . by a weight of 10lb10 \mathrm{lb} . If the weight is displaced a distance of 4in4 \mathrm{in} . from a rest position and then released, find the equation of motion.
Unlock Deck
Unlock for access to all 25 flashcards in this deck.
Unlock Deck
k this deck
19
A spring is stretched 8in8 \mathrm{in} . by a weight of 25lb25 \mathrm{lb} . A damping force exerts a force of 6lb6 \mathrm{lb} for a velocity of 5in5 \mathrm{in} ./s. If the weight is displaced from the rest position and then released, find the general equation of motion.
Unlock Deck
Unlock for access to all 25 flashcards in this deck.
Unlock Deck
k this deck
20
An electric circuit has an inductance L=0.4HL=0.4 \mathrm{H} , a resistance R=250ΩR=250 \Omega , and a capacitance CC =5×104=5 \times 10^{-4} F. Find the equation for the current ii . (Hint: d2idt2+RdiLdt+1CLi=0\frac{d^{2} i}{d t^{2}}+\frac{R d i}{L d t}+\frac{1}{C L} i=0 )
Unlock Deck
Unlock for access to all 25 flashcards in this deck.
Unlock Deck
k this deck
21
Use a table of Laplace Transforms to find the Laplace transform of each function f(t)\mathrm{f}(\mathrm{t}) in the problems below.

- f(t)=e4tcos8t+5te10tf(t)=e^{4 t} \cos 8 t+5 t e^{10 t}
Unlock Deck
Unlock for access to all 25 flashcards in this deck.
Unlock Deck
k this deck
22
Use a table of Laplace Transforms to find the Laplace transform of each function f(t)\mathrm{f}(\mathrm{t}) in the problems below.

- f(t)=t424+1cos6tf(t)=\frac{t^{4}}{24}+1-\cos 6 t
Unlock Deck
Unlock for access to all 25 flashcards in this deck.
Unlock Deck
k this deck
23
Find the inverse transform for the function F(s)F(s) . F(s)=9s2+81+1(s+5)3F(s)=\frac{9}{s^{2}+81}+\frac{1}{(s+5)^{3}}
Unlock Deck
Unlock for access to all 25 flashcards in this deck.
Unlock Deck
k this deck
24
For the problems below, solve each differential equation subject to the given conditions by using Laplace transforms.

- y5y24y=0;y(0)=17y^{\prime \prime}-5 y^{\prime}-24 y=0 ; y(0)=17 and y(0)=26y^{\prime}(0)=26
Unlock Deck
Unlock for access to all 25 flashcards in this deck.
Unlock Deck
k this deck
25
For the problems below, solve each differential equation subject to the given conditions by using Laplace transforms.

- y8y+16y=te4t;y(0)=0y^{\prime \prime}-8 y^{\prime}+16 y=t e^{4 t} ; y(0)=0 and y(0)=0y^{\prime}(0)=0
Unlock Deck
Unlock for access to all 25 flashcards in this deck.
Unlock Deck
k this deck
locked card icon
Unlock Deck
Unlock for access to all 25 flashcards in this deck.