Deck 7: Natural Deduction in Propositional Logic
Question
Question
Question
Question
Question
Question
Question
Question
Question
Question
Question
Question
Question
Question
Question
Question
Question
Question
Question
Question
Question
Question
Question
Question
Question
Question
Question
Question
Question
Question
Question
Question
Question
Question
Question
Question
Question
Question
Question
Question
Question
Question
Question
Question
Question
Question
Question
Question
Question
Question
Question
Question
Question
Question
Question
Question
Question
Question
Question
Question
Question
Question
Question
Question
Question
Question
Question
Question
Question
Question
Question
Question
Question
Question
Question
Question
Unlock Deck
Sign up to unlock the cards in this deck!
Unlock Deck
Unlock Deck
1/76
Play
Full screen (f)
Deck 7: Natural Deduction in Propositional Logic
1
Given the following premises:
1)T ⊃ (G ∨ G)
2)∼P ⊃ T
3)F ⊃ (B ⊃ ∼P)
A)F ⊃ (P ⊃ ∼B) 3, Trans
B)(F ⊃ B) ⊃ ∼P 3, Assoc
C)F ⊃ (∼B ∨ ∼P) 3, Impl
D)B ⊃ T 2, 3, HS
E)∼P ⊃ G 1, 2, HS
1)T ⊃ (G ∨ G)
2)∼P ⊃ T
3)F ⊃ (B ⊃ ∼P)
A)F ⊃ (P ⊃ ∼B) 3, Trans
B)(F ⊃ B) ⊃ ∼P 3, Assoc
C)F ⊃ (∼B ∨ ∼P) 3, Impl
D)B ⊃ T 2, 3, HS
E)∼P ⊃ G 1, 2, HS
F ⊃ (∼B ∨ ∼P) 3, Impl
2
Use an ordinary proof (not conditional or indirect proof):
1.K ∨ (S • N)
2.∼(K • ∼Q)
3.∼(N • ∼Q)
/ Q
1.K ∨ (S • N)
2.∼(K • ∼Q)
3.∼(N • ∼Q)
/ Q
Answer not provided
3
Given the following premises:
1)F ∨ S
2)∼S
3)(S ⊃ W) • (F ⊃ N)
A)F 1, 2, DS
B)S ⊃ W 3, Simp
C)∼F ⊃ S 1, Impl
D)F ⊃ N 3, Simp
E)W ∨ N 1, 3, CD
1)F ∨ S
2)∼S
3)(S ⊃ W) • (F ⊃ N)
A)F 1, 2, DS
B)S ⊃ W 3, Simp
C)∼F ⊃ S 1, Impl
D)F ⊃ N 3, Simp
E)W ∨ N 1, 3, CD
S ⊃ W 3, Simp
4
Given the following premises:
1)B
2)∼R ⊃ K
3)B ⊃ (K ⊃ E)
A)(B ⊃ K) ⊃ E 3, Assoc
B)∼R ⊃ E 2, 3, HS
C)R ∨ K 2, Impl
D)K ⊃ E 1, 3, MP
E)B • N 1, Add
1)B
2)∼R ⊃ K
3)B ⊃ (K ⊃ E)
A)(B ⊃ K) ⊃ E 3, Assoc
B)∼R ⊃ E 2, 3, HS
C)R ∨ K 2, Impl
D)K ⊃ E 1, 3, MP
E)B • N 1, Add
Unlock Deck
Unlock for access to all 76 flashcards in this deck.
Unlock Deck
k this deck
5
Given the following premises:
1)P ⊃ L
2)∼(J • O)
3)(L ⊃ A) ⊃ (J • O)
A)L ⊃ P 1, Com
B)∼J • ∼O 2, DM
C)P ⊃ A 1, 3, HS
D)∼(L ⊃ A) 2, 3, MT
E)∼J 2, Simp
1)P ⊃ L
2)∼(J • O)
3)(L ⊃ A) ⊃ (J • O)
A)L ⊃ P 1, Com
B)∼J • ∼O 2, DM
C)P ⊃ A 1, 3, HS
D)∼(L ⊃ A) 2, 3, MT
E)∼J 2, Simp
Unlock Deck
Unlock for access to all 76 flashcards in this deck.
Unlock Deck
k this deck
6
Given the following premises:
1)H ∨ M
2)E ⊃ ∼(H ∨ M)
3)(H ⊃ D) • (M ⊃ O)
A)∼H ⊃ M 1, Impl
B)∼E 1, 2, MT
C)H 1, Simp
D)M ⊃ O 3, Simp
E)D ∨ O 1, 3, CD
1)H ∨ M
2)E ⊃ ∼(H ∨ M)
3)(H ⊃ D) • (M ⊃ O)
A)∼H ⊃ M 1, Impl
B)∼E 1, 2, MT
C)H 1, Simp
D)M ⊃ O 3, Simp
E)D ∨ O 1, 3, CD
Unlock Deck
Unlock for access to all 76 flashcards in this deck.
Unlock Deck
k this deck
7
Given the following premises:
1)(G ⊃ A) ∨ T
2)G
3)∼T
A)A 1, 2, MP
B)G • ∼T 2, 3, Conj
C)G ⊃ A 1, 3, DS
D)G ⊃ (A ∨ T) 1, Assoc
E)G ⊃ (A ⊃ T) 1, Exp
1)(G ⊃ A) ∨ T
2)G
3)∼T
A)A 1, 2, MP
B)G • ∼T 2, 3, Conj
C)G ⊃ A 1, 3, DS
D)G ⊃ (A ∨ T) 1, Assoc
E)G ⊃ (A ⊃ T) 1, Exp
Unlock Deck
Unlock for access to all 76 flashcards in this deck.
Unlock Deck
k this deck
8
Given the following premises:
1)Q ⊃ (∼N ∨ ∼N)
2)∼N ⊃ ∼∼P
3)P ⊃ ∼G
A)∼N ⊃ P 2, DN
B)Q ⊃ ∼∼P 1, 2, HS
C)N ∨ P 2, Impl
D)∼N ⊃ ∼G 2, 3, HS
E)G ⊃ ∼P 3, Trans
1)Q ⊃ (∼N ∨ ∼N)
2)∼N ⊃ ∼∼P
3)P ⊃ ∼G
A)∼N ⊃ P 2, DN
B)Q ⊃ ∼∼P 1, 2, HS
C)N ∨ P 2, Impl
D)∼N ⊃ ∼G 2, 3, HS
E)G ⊃ ∼P 3, Trans
Unlock Deck
Unlock for access to all 76 flashcards in this deck.
Unlock Deck
k this deck
9
Given the following premises:
1)∼W
2)C ∨ W
3)R ⊃ ∼(C ∨ W)
A)R ⊃ (∼C • ∼W) 3, DM
B)∼R 2, 3, MT
C)C 1, 2, DS
D)(C ∨ W) ⊃ ∼R 3, Trans
E)∼C ⊃ W 2, Impl
1)∼W
2)C ∨ W
3)R ⊃ ∼(C ∨ W)
A)R ⊃ (∼C • ∼W) 3, DM
B)∼R 2, 3, MT
C)C 1, 2, DS
D)(C ∨ W) ⊃ ∼R 3, Trans
E)∼C ⊃ W 2, Impl
Unlock Deck
Unlock for access to all 76 flashcards in this deck.
Unlock Deck
k this deck
10
Given the following premises:
1)C ⊃ (H • M)
2)(T ⊃ S) ⊃ C
3)T
A)(C ⊃ H) • M 1, Assoc
B)T ⊃ (S • C) 2, Exp
C)(C ⊃ H) • (C ⊃ M) 1, Dist
D)S 2, 3, MP
E)(T ⊃ S) ⊃ (H • M) 1, 2, HS
1)C ⊃ (H • M)
2)(T ⊃ S) ⊃ C
3)T
A)(C ⊃ H) • M 1, Assoc
B)T ⊃ (S • C) 2, Exp
C)(C ⊃ H) • (C ⊃ M) 1, Dist
D)S 2, 3, MP
E)(T ⊃ S) ⊃ (H • M) 1, 2, HS
Unlock Deck
Unlock for access to all 76 flashcards in this deck.
Unlock Deck
k this deck
11
Use an ordinary proof (not conditional or indirect proof):
1.M ⊃ (R • E)
2.(E ∨ H) ⊃ G
/ M ⊃ G
1.M ⊃ (R • E)
2.(E ∨ H) ⊃ G
/ M ⊃ G
Unlock Deck
Unlock for access to all 76 flashcards in this deck.
Unlock Deck
k this deck
12
Given the following premises:
1)C ⊃ (∼L ∨ ∼N)
2)(C • L) ⊃ ∼N
3)N
A)∼(C • L) 2, 3, MT
B)(C ⊃ ∼L) ∨ ∼N 1, Assoc
C)(C ⊃ ∼N) • (L ⊃ ∼N) 2, Dist
D)C ⊃ ∼N 2, Simp
E)C ⊃ ∼(L • N) 1, DM
1)C ⊃ (∼L ∨ ∼N)
2)(C • L) ⊃ ∼N
3)N
A)∼(C • L) 2, 3, MT
B)(C ⊃ ∼L) ∨ ∼N 1, Assoc
C)(C ⊃ ∼N) • (L ⊃ ∼N) 2, Dist
D)C ⊃ ∼N 2, Simp
E)C ⊃ ∼(L • N) 1, DM
Unlock Deck
Unlock for access to all 76 flashcards in this deck.
Unlock Deck
k this deck
13
Given the following premises:
1)(E ⊃ K) ∨ W
2)∼W
3)W ∨ ∼(Q ⊃ E)
A)E ⊃ K 1, 2, DS
B)Q ⊃ K 1, 3, HS
C)∼(Q ⊃ E) 2, 3, DS
D)E ⊃ (K ∨ W) 1, Assoc
E)W ∨ (∼Q ⊃ ∼E) 3, DM
1)(E ⊃ K) ∨ W
2)∼W
3)W ∨ ∼(Q ⊃ E)
A)E ⊃ K 1, 2, DS
B)Q ⊃ K 1, 3, HS
C)∼(Q ⊃ E) 2, 3, DS
D)E ⊃ (K ∨ W) 1, Assoc
E)W ∨ (∼Q ⊃ ∼E) 3, DM
Unlock Deck
Unlock for access to all 76 flashcards in this deck.
Unlock Deck
k this deck
14
Given the following premises:
1)E
2)R ⊃ ∼E
3)N ⊃ (∼C ⊃ R)
A)∼R 1, 2, MT
B)E • H 1, Add
C)∼C ⊃ ∼E 2, 3, HS
D)E ⊃ ∼R 2, Trans
E)(N • ∼C) ⊃ R 3, Exp
1)E
2)R ⊃ ∼E
3)N ⊃ (∼C ⊃ R)
A)∼R 1, 2, MT
B)E • H 1, Add
C)∼C ⊃ ∼E 2, 3, HS
D)E ⊃ ∼R 2, Trans
E)(N • ∼C) ⊃ R 3, Exp
Unlock Deck
Unlock for access to all 76 flashcards in this deck.
Unlock Deck
k this deck
15
Given the following premises:
1)E ⊃ (B • J)
2)(J • B) ⊃ ∼L
3)L
A)E ⊃ ∼L 1, 2, HS
B)∼(J • B) 2, 3, MT
C)(B • J) ⊃ ∼L 2, Com
D)J 2, Simp
E)(E ⊃ B) • (E ⊃ J) 1, Dist
1)E ⊃ (B • J)
2)(J • B) ⊃ ∼L
3)L
A)E ⊃ ∼L 1, 2, HS
B)∼(J • B) 2, 3, MT
C)(B • J) ⊃ ∼L 2, Com
D)J 2, Simp
E)(E ⊃ B) • (E ⊃ J) 1, Dist
Unlock Deck
Unlock for access to all 76 flashcards in this deck.
Unlock Deck
k this deck
16
Given the following premises:
1)S ∨ (∼Q ∨ ∼C)
2)(∼Q ∨ ∼C) ⊃ M
3)T ⊃ (Q • C)
A)S ⊃ M 1, 2, HS
B)S ∨ ∼(Q ∨ C) 1, DM
C)(S ∨ ∼Q) ∨ C 1, Assoc
D)∼Q ∨ (∼C ⊃ M) 2, Assoc
E)(T ⊃ Q) • (T ⊃ C) 3, Dist
1)S ∨ (∼Q ∨ ∼C)
2)(∼Q ∨ ∼C) ⊃ M
3)T ⊃ (Q • C)
A)S ⊃ M 1, 2, HS
B)S ∨ ∼(Q ∨ C) 1, DM
C)(S ∨ ∼Q) ∨ C 1, Assoc
D)∼Q ∨ (∼C ⊃ M) 2, Assoc
E)(T ⊃ Q) • (T ⊃ C) 3, Dist
Unlock Deck
Unlock for access to all 76 flashcards in this deck.
Unlock Deck
k this deck
17
Given the following premises:
1)D ⊃ (∼A ∨ ∼A)
2)∼A ⊃ (R • M)
3)∼R • ∼M
A)D ⊃ ∼A 1, Taut
B)D ⊃ A 1, DN
C)D ⊃ (R • M) 1, 2, HS
D)∼∼A 2, 3, MT
E)∼(R • M) 3, DM
1)D ⊃ (∼A ∨ ∼A)
2)∼A ⊃ (R • M)
3)∼R • ∼M
A)D ⊃ ∼A 1, Taut
B)D ⊃ A 1, DN
C)D ⊃ (R • M) 1, 2, HS
D)∼∼A 2, 3, MT
E)∼(R • M) 3, DM
Unlock Deck
Unlock for access to all 76 flashcards in this deck.
Unlock Deck
k this deck
18
Given the following premises:
1)N ⊃ ∼(S ∨ K)
2)S ∨ K
3)S ⊃ (R • Q)
A)S 2, Simp
B)(S ∨ K) ∨ N 2, Add
C)∼S ⊃ K 2, Impl
D)∼N 1, 2, MT
E)(S ⊃ R) ⊃ Q 3, Exp
1)N ⊃ ∼(S ∨ K)
2)S ∨ K
3)S ⊃ (R • Q)
A)S 2, Simp
B)(S ∨ K) ∨ N 2, Add
C)∼S ⊃ K 2, Impl
D)∼N 1, 2, MT
E)(S ⊃ R) ⊃ Q 3, Exp
Unlock Deck
Unlock for access to all 76 flashcards in this deck.
Unlock Deck
k this deck
19
Given the following premises:
1)∼(G • F)
2)∼F ⊃ H
3)(G ⊃ ∼F) • (∼F ⊃ G)
A)∼F ⊃ G 3, Simp
B)G ⊃ H 2, 3, HS
C)F ∨ H 2, Impl
D)G ≡ ∼F 3, Equiv
E)∼G 1, Simp
1)∼(G • F)
2)∼F ⊃ H
3)(G ⊃ ∼F) • (∼F ⊃ G)
A)∼F ⊃ G 3, Simp
B)G ⊃ H 2, 3, HS
C)F ∨ H 2, Impl
D)G ≡ ∼F 3, Equiv
E)∼G 1, Simp
Unlock Deck
Unlock for access to all 76 flashcards in this deck.
Unlock Deck
k this deck
20
Given the following premises:
1)∼(∼H • J)
2)K ∨ (∼H • J)
3)(M ∨ M) ⊃ (∼H • J)
A)(K ∨ ∼H) • (K ∨ J) 2, Dist
B)∼K ⊃ (∼H • J) 2, Impl
C)K 1, 2, DS
D)H ∨ ∼J 1, DM
E)∼M 1, 3, MT
1)∼(∼H • J)
2)K ∨ (∼H • J)
3)(M ∨ M) ⊃ (∼H • J)
A)(K ∨ ∼H) • (K ∨ J) 2, Dist
B)∼K ⊃ (∼H • J) 2, Impl
C)K 1, 2, DS
D)H ∨ ∼J 1, DM
E)∼M 1, 3, MT
Unlock Deck
Unlock for access to all 76 flashcards in this deck.
Unlock Deck
k this deck
21
Given the following premises:
1)S ⊃ (∼∼T • ∼∼C)
2)(S • Q) ∨ C
3)∼C
A)S 2, Simp
B)S ⊃ (T • C) 1, DN
C)S ⊃ ∼∼T 1, Simp
D)S ⊃ (T • ∼∼C) 1, DN
E)S • Q 2, 3, DS
1)S ⊃ (∼∼T • ∼∼C)
2)(S • Q) ∨ C
3)∼C
A)S 2, Simp
B)S ⊃ (T • C) 1, DN
C)S ⊃ ∼∼T 1, Simp
D)S ⊃ (T • ∼∼C) 1, DN
E)S • Q 2, 3, DS
Unlock Deck
Unlock for access to all 76 flashcards in this deck.
Unlock Deck
k this deck
22
Given the following premises:
1)(∼H • ∼J) ⊃ K
2)∼(∼H • ∼J)
3)(∼H • N) ∨ (∼H • ∼J)
A)(∼H • N) ⊃ K 1, 3, HS
B)∼H • N 2, 3, DS
C)H ∨ J 2, DM
D)∼H ⊃ (J ⊃ K) 1, Exp
E)∼H • (N ∨ ∼J) 3, Dist
1)(∼H • ∼J) ⊃ K
2)∼(∼H • ∼J)
3)(∼H • N) ∨ (∼H • ∼J)
A)(∼H • N) ⊃ K 1, 3, HS
B)∼H • N 2, 3, DS
C)H ∨ J 2, DM
D)∼H ⊃ (J ⊃ K) 1, Exp
E)∼H • (N ∨ ∼J) 3, Dist
Unlock Deck
Unlock for access to all 76 flashcards in this deck.
Unlock Deck
k this deck
23
Given the following premises:
1)∼D ∨ ∼T
2)D ∨ (∼T • ∼R)
3)D
A)(D ∨ ∼T) • (D ∨ ∼R) 2, Dist
B)(D ∨ ∼T) • R 2, Assoc
C)D ∨ T 1, DN
D)∼T 1, 3, DS
E)∼T • ∼R 2, 3, DS
1)∼D ∨ ∼T
2)D ∨ (∼T • ∼R)
3)D
A)(D ∨ ∼T) • (D ∨ ∼R) 2, Dist
B)(D ∨ ∼T) • R 2, Assoc
C)D ∨ T 1, DN
D)∼T 1, 3, DS
E)∼T • ∼R 2, 3, DS
Unlock Deck
Unlock for access to all 76 flashcards in this deck.
Unlock Deck
k this deck
24
Use natural deduction to prove the following logical truth:
(P ⊃ Q) ≡ [P ⊃ (Q ∨ ∼P)]
(P ⊃ Q) ≡ [P ⊃ (Q ∨ ∼P)]
Unlock Deck
Unlock for access to all 76 flashcards in this deck.
Unlock Deck
k this deck
25
Use conditional proof:
1.S ⊃ (B ⊃ T)
2.N ⊃ (T ⊃ ∼B)
/ (S • N) ⊃ ∼B
1.S ⊃ (B ⊃ T)
2.N ⊃ (T ⊃ ∼B)
/ (S • N) ⊃ ∼B
Unlock Deck
Unlock for access to all 76 flashcards in this deck.
Unlock Deck
k this deck
26
Given the following premises:
1)∼∼N
2)K ⊃ ∼N
3)∼N ∨ (K • S)
A)(∼N ∨ K) • S 3, Assoc
B)K 1, 2, MT
C)N ⊃ ∼K 2, Trans
D)K • S 1, 3, DS
E)(∼N • K) ∨ (∼N • S) 3, Dist
1)∼∼N
2)K ⊃ ∼N
3)∼N ∨ (K • S)
A)(∼N ∨ K) • S 3, Assoc
B)K 1, 2, MT
C)N ⊃ ∼K 2, Trans
D)K • S 1, 3, DS
E)(∼N • K) ∨ (∼N • S) 3, Dist
Unlock Deck
Unlock for access to all 76 flashcards in this deck.
Unlock Deck
k this deck
27
Given the following premises:
1)(S ⊃ R) ⊃ (J ⊃ T)
2)(P ⊃ R) ⊃ (S ⊃ R)
3)R ⊃ J
A)(P ⊃ R) ⊃ (J ⊃ T) 1, 2, HS
B)S ⊃ J 1, 3, HS
C)P ⊃ J 2, 3, HS
D)(S ⊃ R) • (P ⊃ R) 1, 2, Conj
E)R ⊃ T 1, 3, HS
1)(S ⊃ R) ⊃ (J ⊃ T)
2)(P ⊃ R) ⊃ (S ⊃ R)
3)R ⊃ J
A)(P ⊃ R) ⊃ (J ⊃ T) 1, 2, HS
B)S ⊃ J 1, 3, HS
C)P ⊃ J 2, 3, HS
D)(S ⊃ R) • (P ⊃ R) 1, 2, Conj
E)R ⊃ T 1, 3, HS
Unlock Deck
Unlock for access to all 76 flashcards in this deck.
Unlock Deck
k this deck
28
Given the following premises:
1)F ⊃ J
2)A ⊃ (F • J)
3)A • (Q ∨ N)
A)J ⊃ F 1, Com
B)A • (N ∨ Q) 3, Com
C)A ⊃ J 1, 2, HS
D)(A ⊃ F) • (A ⊃ J) 2, Dist
E)(A • Q) ∨ N 3, Assoc
1)F ⊃ J
2)A ⊃ (F • J)
3)A • (Q ∨ N)
A)J ⊃ F 1, Com
B)A • (N ∨ Q) 3, Com
C)A ⊃ J 1, 2, HS
D)(A ⊃ F) • (A ⊃ J) 2, Dist
E)(A • Q) ∨ N 3, Assoc
Unlock Deck
Unlock for access to all 76 flashcards in this deck.
Unlock Deck
k this deck
29
Given the following premises:
1)∼T ⊃ E
2)∼K ⊃ (∼T ∨ ∼T)
3)M ⊃ (∼K ∨ ∼L)
A)(M ⊃ ∼K) ∨ L 3, Assoc
B)M ⊃ (K ⊃ ∼L) 3, Impl
C)M ⊃ (K ∨ L) 3, DN
D)∼K ⊃ T 2, Taut
E)∼K ⊃ E 1, 2, HS
1)∼T ⊃ E
2)∼K ⊃ (∼T ∨ ∼T)
3)M ⊃ (∼K ∨ ∼L)
A)(M ⊃ ∼K) ∨ L 3, Assoc
B)M ⊃ (K ⊃ ∼L) 3, Impl
C)M ⊃ (K ∨ L) 3, DN
D)∼K ⊃ T 2, Taut
E)∼K ⊃ E 1, 2, HS
Unlock Deck
Unlock for access to all 76 flashcards in this deck.
Unlock Deck
k this deck
30
Given the following premises:
1)∼R ∨ ∼R
2)R ∨ (∼J • ∼H)
3)∼R ⊃ (H • B)
A)∼J • ∼H 1, 2, DS
B)R 1, DN
C)R ∨ ∼(J ∨ H) 2, DM
D)(R ∨ ∼J) • ∼H 2, Assoc
E)H • B 1, 3, MP
1)∼R ∨ ∼R
2)R ∨ (∼J • ∼H)
3)∼R ⊃ (H • B)
A)∼J • ∼H 1, 2, DS
B)R 1, DN
C)R ∨ ∼(J ∨ H) 2, DM
D)(R ∨ ∼J) • ∼H 2, Assoc
E)H • B 1, 3, MP
Unlock Deck
Unlock for access to all 76 flashcards in this deck.
Unlock Deck
k this deck
31
Given the following premises:
1)(C • ∼F) ⊃ E
2)G ∨ (C • ∼F)
3)∼(C • ∼F)
A)G ⊃ E 1, 2, HS
B)C 1, Simp
C)C ⊃ (∼F ⊃ E) 1, Exp
D)(G ∨ C) • ∼F 2, Assoc
E)(G ∨ C) • ∼F 2, Assoc.
1)(C • ∼F) ⊃ E
2)G ∨ (C • ∼F)
3)∼(C • ∼F)
A)G ⊃ E 1, 2, HS
B)C 1, Simp
C)C ⊃ (∼F ⊃ E) 1, Exp
D)(G ∨ C) • ∼F 2, Assoc
E)(G ∨ C) • ∼F 2, Assoc.
Unlock Deck
Unlock for access to all 76 flashcards in this deck.
Unlock Deck
k this deck
32
Use indirect proof:
1.(P ∨ F) ⊃ (A ∨ D)
2.A ⊃ (M • ∼P)
3.D ⊃ (C • ∼P)
/ ∼P
1.(P ∨ F) ⊃ (A ∨ D)
2.A ⊃ (M • ∼P)
3.D ⊃ (C • ∼P)
/ ∼P
Unlock Deck
Unlock for access to all 76 flashcards in this deck.
Unlock Deck
k this deck
33
Given the following premises:
1)K ∨ ∼H
2)(K ∨ ∼H) ⊃ (B ⊃ J)
3)J ⊃ D
A)H ⊃ K 1, Impl
B)B ⊃ D 2, 3, HS
C)K 1, Simp
D)D ⊃ J 3, Trans
E)B ⊃ J 1, 2, MP
1)K ∨ ∼H
2)(K ∨ ∼H) ⊃ (B ⊃ J)
3)J ⊃ D
A)H ⊃ K 1, Impl
B)B ⊃ D 2, 3, HS
C)K 1, Simp
D)D ⊃ J 3, Trans
E)B ⊃ J 1, 2, MP
Unlock Deck
Unlock for access to all 76 flashcards in this deck.
Unlock Deck
k this deck
34
Given the following premises:
1)T ∨ S
2)A ⊃ T
3)A • (∼T • S)
A)∼T 3, Simp
B)(A • ∼T) • S 3, Assoc
C)T 2, 3, MP
D)T ⊃ A 2, Com
E)S 1, 3, DS
1)T ∨ S
2)A ⊃ T
3)A • (∼T • S)
A)∼T 3, Simp
B)(A • ∼T) • S 3, Assoc
C)T 2, 3, MP
D)T ⊃ A 2, Com
E)S 1, 3, DS
Unlock Deck
Unlock for access to all 76 flashcards in this deck.
Unlock Deck
k this deck
35
Use an ordinary proof (not conditional or indirect proof):
1.F ⊃ (J ∨ ∼F)
2.J ⊃ (L ∨ ∼J)
/ F ⊃ L
1.F ⊃ (J ∨ ∼F)
2.J ⊃ (L ∨ ∼J)
/ F ⊃ L
Unlock Deck
Unlock for access to all 76 flashcards in this deck.
Unlock Deck
k this deck
36
Given the following premises:
1)Q ⊃ (H • ∼F)
2)∼(Q • ∼M)
3)∼G ⊃ (Q • ∼M)
A)G ∨ ∼(Q • M) 2, Add
B)Q 2, Simp
C)∼Q ∨ ∼∼M 2, DM
D)Q ⊃ ∼(∼H ∨ F) 1, DM
E)G 2, 3, MT
1)Q ⊃ (H • ∼F)
2)∼(Q • ∼M)
3)∼G ⊃ (Q • ∼M)
A)G ∨ ∼(Q • M) 2, Add
B)Q 2, Simp
C)∼Q ∨ ∼∼M 2, DM
D)Q ⊃ ∼(∼H ∨ F) 1, DM
E)G 2, 3, MT
Unlock Deck
Unlock for access to all 76 flashcards in this deck.
Unlock Deck
k this deck
37
Given the following premises:
1)R • ∼S
2)R ⊃ ∼(S • ∼F)
3)∼S ⊃ (F • N)
A)(∼S • F) ⊃ N 3, Exp
B)∼S 1, Simp
C)F • N 1, 3, MP
D)R ⊃ (∼S ∨ ∼∼F) 2, DM
E)(∼S ⊃ F) • (∼S ⊃ N) 3, Dist
1)R • ∼S
2)R ⊃ ∼(S • ∼F)
3)∼S ⊃ (F • N)
A)(∼S • F) ⊃ N 3, Exp
B)∼S 1, Simp
C)F • N 1, 3, MP
D)R ⊃ (∼S ∨ ∼∼F) 2, DM
E)(∼S ⊃ F) • (∼S ⊃ N) 3, Dist
Unlock Deck
Unlock for access to all 76 flashcards in this deck.
Unlock Deck
k this deck
38
Given the following premises:
1)R ⊃ (∼B ⊃ F)
2)∼U ⊃ B
3)∼B
A)F 1, 3, MP
B)(R ⊃ ∼B) ⊃ F 1, Assoc
C)R ⊃ (∼F ⊃ ∼∼B) 1, Trans
D)U 2, 3, MT
E)∼B ⊃ U 2, Trans
1)R ⊃ (∼B ⊃ F)
2)∼U ⊃ B
3)∼B
A)F 1, 3, MP
B)(R ⊃ ∼B) ⊃ F 1, Assoc
C)R ⊃ (∼F ⊃ ∼∼B) 1, Trans
D)U 2, 3, MT
E)∼B ⊃ U 2, Trans
Unlock Deck
Unlock for access to all 76 flashcards in this deck.
Unlock Deck
k this deck
39
Given the following premises:
1)Q ⊃ (H • L)
2)H ⊃ ∼Q
3)L ⊃ ∼Q
A)(Q ⊃ H) ⊃ L 1, Exp
B)L ⊃ (H • L) 1, 3, HS
C)Q ⊃ ∼Q 1, 3, HS
D)H ⊃ L 2, 3, HS
E)(L ⊃ ∼Q) • (H ⊃ ∼Q) 2, 3, Conj
1)Q ⊃ (H • L)
2)H ⊃ ∼Q
3)L ⊃ ∼Q
A)(Q ⊃ H) ⊃ L 1, Exp
B)L ⊃ (H • L) 1, 3, HS
C)Q ⊃ ∼Q 1, 3, HS
D)H ⊃ L 2, 3, HS
E)(L ⊃ ∼Q) • (H ⊃ ∼Q) 2, 3, Conj
Unlock Deck
Unlock for access to all 76 flashcards in this deck.
Unlock Deck
k this deck
40
Given the following premises:
1)(F • ∼M) ⊃ (L • ∼G)
2)P ⊃ L
3)∼(L • ∼G)
A)∼(F • ∼M) 1, 3, MT
B)∼L 3, Simp
C)∼P 2, 3, MT
D)∼L ∨ G 3, DM
E)L ⊃ P 2, Trans
1)(F • ∼M) ⊃ (L • ∼G)
2)P ⊃ L
3)∼(L • ∼G)
A)∼(F • ∼M) 1, 3, MT
B)∼L 3, Simp
C)∼P 2, 3, MT
D)∼L ∨ G 3, DM
E)L ⊃ P 2, Trans
Unlock Deck
Unlock for access to all 76 flashcards in this deck.
Unlock Deck
k this deck
41
Use an ordinary proof (not conditional or indirect proof):
1.S ⊃ (K • F)
2.F ⊃ (G • H)
/ S ⊃ H
1.S ⊃ (K • F)
2.F ⊃ (G • H)
/ S ⊃ H
Unlock Deck
Unlock for access to all 76 flashcards in this deck.
Unlock Deck
k this deck
42
Given the following premises:
1)G • ˜A
2)K ⊃ (G • ˜A)
3)G ⊃ M
A)(K ⊃ G ) ⊃ ˜A 2, Exp
B)K ⊃ (˜A • G) 2, Com
C)(K ⊃ G) • ˜A 2, Assoc
D)K 1, 2, MP
E)M 1, 3, MP
1)G • ˜A
2)K ⊃ (G • ˜A)
3)G ⊃ M
A)(K ⊃ G ) ⊃ ˜A 2, Exp
B)K ⊃ (˜A • G) 2, Com
C)(K ⊃ G) • ˜A 2, Assoc
D)K 1, 2, MP
E)M 1, 3, MP
Unlock Deck
Unlock for access to all 76 flashcards in this deck.
Unlock Deck
k this deck
43
Given the following premises:
1)∼N ∨ H
2)Q ⊃ ∼(∼N ∨ H)
3)(∼N ⊃ Q) • (H ⊃ Q)
A)Q ⊃ (N • ∼H) 2, DM
B)H ⊃ Q 3, Simp
C)∼Q 1, 2, MT
D)∼N ⊃ ∼(∼N ∨ H) 2, 3, HS
E)Q ∨ Q 1, 3, CD
1)∼N ∨ H
2)Q ⊃ ∼(∼N ∨ H)
3)(∼N ⊃ Q) • (H ⊃ Q)
A)Q ⊃ (N • ∼H) 2, DM
B)H ⊃ Q 3, Simp
C)∼Q 1, 2, MT
D)∼N ⊃ ∼(∼N ∨ H) 2, 3, HS
E)Q ∨ Q 1, 3, CD
Unlock Deck
Unlock for access to all 76 flashcards in this deck.
Unlock Deck
k this deck
44
Use conditional proof:
1.N ⊃ (F • A)
2.B ⊃ (R • F)
/ (N ∨ B) ⊃ (A ∨ R)
1.N ⊃ (F • A)
2.B ⊃ (R • F)
/ (N ∨ B) ⊃ (A ∨ R)
Unlock Deck
Unlock for access to all 76 flashcards in this deck.
Unlock Deck
k this deck
45
Given the following premises:
1)(L ⊃ M) • (F ⊃ J)
2)M ⊃ ∼(F ∨ L)
3)F ∨ L
A)L ⊃ ∼(F ∨ L) 1, 2, HS
B)M ∨ J 1, 3, CD
C)L ⊃ M 1, Simp
D)∼M 2, 3, MT
E)M ⊃ (∼F ∨ ∼L) 2, DM
1)(L ⊃ M) • (F ⊃ J)
2)M ⊃ ∼(F ∨ L)
3)F ∨ L
A)L ⊃ ∼(F ∨ L) 1, 2, HS
B)M ∨ J 1, 3, CD
C)L ⊃ M 1, Simp
D)∼M 2, 3, MT
E)M ⊃ (∼F ∨ ∼L) 2, DM
Unlock Deck
Unlock for access to all 76 flashcards in this deck.
Unlock Deck
k this deck
46
Given the following premises:
1)∼R ≡ ˜R
2)N • ˜T
3)R ⊃ ˜(N • ˜T)
A)∼T 2, Simp
B)(N • ∼T) ⊃ ∼R 3, Trans
C)∼R 2, 3, MT
D)R ⊃ (∼N ∨ ∼∼T) 3, DM
E)∼R 1, Taut
1)∼R ≡ ˜R
2)N • ˜T
3)R ⊃ ˜(N • ˜T)
A)∼T 2, Simp
B)(N • ∼T) ⊃ ∼R 3, Trans
C)∼R 2, 3, MT
D)R ⊃ (∼N ∨ ∼∼T) 3, DM
E)∼R 1, Taut
Unlock Deck
Unlock for access to all 76 flashcards in this deck.
Unlock Deck
k this deck
47
Given the following premises:
1)N
2)R ⊃ ∼N
3)∼C • (T ⊃ R)
A)∼C 3, Simp
B)T ⊃ ∼N 2, 3, HS
C)(∼C • T) ⊃ R 3, Assoc
D)∼R 1, 2, MT
E)N ⊃ ∼R 2, Trans
1)N
2)R ⊃ ∼N
3)∼C • (T ⊃ R)
A)∼C 3, Simp
B)T ⊃ ∼N 2, 3, HS
C)(∼C • T) ⊃ R 3, Assoc
D)∼R 1, 2, MT
E)N ⊃ ∼R 2, Trans
Unlock Deck
Unlock for access to all 76 flashcards in this deck.
Unlock Deck
k this deck
48
Use natural deduction to prove the following logical truth:
[(P ∨ Q) ⊃ (R • T)] ⊃ (P ⊃ R)
[(P ∨ Q) ⊃ (R • T)] ⊃ (P ⊃ R)
Unlock Deck
Unlock for access to all 76 flashcards in this deck.
Unlock Deck
k this deck
49
Given the following premises:
1)(J • ∼N) ∨ T
2)∼(J • ∼N)
3)∼T
A)T 1, 2, DS
B)∼J ∨ N 2, DM
C)J • ∼N 1, 3, DS
D)J • (∼N ∨ T) 1, Assoc
E)∼J 2, Simp
1)(J • ∼N) ∨ T
2)∼(J • ∼N)
3)∼T
A)T 1, 2, DS
B)∼J ∨ N 2, DM
C)J • ∼N 1, 3, DS
D)J • (∼N ∨ T) 1, Assoc
E)∼J 2, Simp
Unlock Deck
Unlock for access to all 76 flashcards in this deck.
Unlock Deck
k this deck
50
Given the following premises:
1)(S ⊃ ∼F) • (∼F ⊃ B)
2)S ∨ ∼F
3)∼F
A)S ⊃ B 1, HS
B)∼F ∨ B 1, 2, CD
C)S 2, 3, DS
D)B 1, 3, MP
E)∼S 1, 3, MT
1)(S ⊃ ∼F) • (∼F ⊃ B)
2)S ∨ ∼F
3)∼F
A)S ⊃ B 1, HS
B)∼F ∨ B 1, 2, CD
C)S 2, 3, DS
D)B 1, 3, MP
E)∼S 1, 3, MT
Unlock Deck
Unlock for access to all 76 flashcards in this deck.
Unlock Deck
k this deck
51
Given the following premises:
1)(K • ∼T) ∨ (K • ∼H)
2)∼M ⊃ (K • ∼H)
3)∼(K • ∼H)
A)∼K ∨ H 3, DM
B)K • ∼T 1, 3, DS
C)K • (∼T ∨ ∼H) 1, Dist
D)M 2, 3, MT
E)(∼M • K) ⊃ ∼H 2, Exp
1)(K • ∼T) ∨ (K • ∼H)
2)∼M ⊃ (K • ∼H)
3)∼(K • ∼H)
A)∼K ∨ H 3, DM
B)K • ∼T 1, 3, DS
C)K • (∼T ∨ ∼H) 1, Dist
D)M 2, 3, MT
E)(∼M • K) ⊃ ∼H 2, Exp
Unlock Deck
Unlock for access to all 76 flashcards in this deck.
Unlock Deck
k this deck
52
Given the following premises:
1)∼M ⊃ S
2)∼M
3)(M ∨ H) ∨ ∼S
A)H 2, 3, DS
B)M ∨ H 3, Simp
C)M ∨ (H ∨ ∼S) 3, Assoc
D)∼S 1, 2, MP
E)M ∨ S 1, Impl
1)∼M ⊃ S
2)∼M
3)(M ∨ H) ∨ ∼S
A)H 2, 3, DS
B)M ∨ H 3, Simp
C)M ∨ (H ∨ ∼S) 3, Assoc
D)∼S 1, 2, MP
E)M ∨ S 1, Impl
Unlock Deck
Unlock for access to all 76 flashcards in this deck.
Unlock Deck
k this deck
53
Given the following premises:
1)R ⊃ (E • D)
2)R • ∼G
3)∼E ⊃ G
A)∼G 2, Simp
B)E • D 1, 2, MP
C)∼∼E 2, 3, MT
D)(R • ∼G) ∨ F 2, Add
E)E ∨ G 3, Impl
1)R ⊃ (E • D)
2)R • ∼G
3)∼E ⊃ G
A)∼G 2, Simp
B)E • D 1, 2, MP
C)∼∼E 2, 3, MT
D)(R • ∼G) ∨ F 2, Add
E)E ∨ G 3, Impl
Unlock Deck
Unlock for access to all 76 flashcards in this deck.
Unlock Deck
k this deck
54
Given the following premises:
1)N ≡ R
2)(N • ∼R) ⊃ C
3)N
A)(N ⊃ R) ∨ (R ⊃ N) 1, Equiv
B)N • (∼R ⊃ C) 2, Assoc
C)C ⊃ (N • ∼R) 2, Com
D)N ⊃ (∼R ⊃ C) 2, Exp
E)R 1, 3, MP
1)N ≡ R
2)(N • ∼R) ⊃ C
3)N
A)(N ⊃ R) ∨ (R ⊃ N) 1, Equiv
B)N • (∼R ⊃ C) 2, Assoc
C)C ⊃ (N • ∼R) 2, Com
D)N ⊃ (∼R ⊃ C) 2, Exp
E)R 1, 3, MP
Unlock Deck
Unlock for access to all 76 flashcards in this deck.
Unlock Deck
k this deck
55
Given the following premises:
1)∼(Q • ∼S)
2)∼F ⊃ (Q • ∼S)
3)H ∨ (Q • ∼S)
A)(H • Q) ∨ (H • ∼S) 3, Dist
B)∼Q ∨ S 1, DM
C)F 1, 2, MT
D)H 1, 3, DS
E)∼∼F 1, 2, MT
1)∼(Q • ∼S)
2)∼F ⊃ (Q • ∼S)
3)H ∨ (Q • ∼S)
A)(H • Q) ∨ (H • ∼S) 3, Dist
B)∼Q ∨ S 1, DM
C)F 1, 2, MT
D)H 1, 3, DS
E)∼∼F 1, 2, MT
Unlock Deck
Unlock for access to all 76 flashcards in this deck.
Unlock Deck
k this deck
56
Use indirect proof:
1.(R ∨ S) ⊃ (H • ∼G)
2.(K ∨ R) ⊃ (G ∨ ∼H)
/ ∼R
1.(R ∨ S) ⊃ (H • ∼G)
2.(K ∨ R) ⊃ (G ∨ ∼H)
/ ∼R
Unlock Deck
Unlock for access to all 76 flashcards in this deck.
Unlock Deck
k this deck
57
Use an ordinary proof (not conditional or indirect proof):
1.E ⊃ (S ⊃ T)
2.(∼L • M) ⊃ (S • E)
3. ∼(T ∨ L)
/ ∼M
1.E ⊃ (S ⊃ T)
2.(∼L • M) ⊃ (S • E)
3. ∼(T ∨ L)
/ ∼M
Unlock Deck
Unlock for access to all 76 flashcards in this deck.
Unlock Deck
k this deck
58
Given the following premises:
1)A
2)G ⊃ (A ⊃ ∼L)
3)∼A ∨ ∼G
A)A ∨ G 3, DN
B)(G ⊃ A) ⊃ ∼L 2, Assoc
C)∼L 1, 2, MP
D)∼G 1, 3, DS
E)G ⊃ (∼∼L ⊃ ∼A) 2, Trans
1)A
2)G ⊃ (A ⊃ ∼L)
3)∼A ∨ ∼G
A)A ∨ G 3, DN
B)(G ⊃ A) ⊃ ∼L 2, Assoc
C)∼L 1, 2, MP
D)∼G 1, 3, DS
E)G ⊃ (∼∼L ⊃ ∼A) 2, Trans
Unlock Deck
Unlock for access to all 76 flashcards in this deck.
Unlock Deck
k this deck
59
Given the following premises:
1)∼P
2)L ⊃ (P ∨ M)
3)(P • M) ⊃ (∼R ∨ ∼R)
A)(P • M) ⊃ ∼R 3, Taut
B)P 3, Simp
C)L ⊃ (∼R ∨ ∼R) 2, 3, HS
D)(L ⊃ P) ∨ (L ⊃ M) 2, Dist
E)M 1, 2, DS
1)∼P
2)L ⊃ (P ∨ M)
3)(P • M) ⊃ (∼R ∨ ∼R)
A)(P • M) ⊃ ∼R 3, Taut
B)P 3, Simp
C)L ⊃ (∼R ∨ ∼R) 2, 3, HS
D)(L ⊃ P) ∨ (L ⊃ M) 2, Dist
E)M 1, 2, DS
Unlock Deck
Unlock for access to all 76 flashcards in this deck.
Unlock Deck
k this deck
60
Use an ordinary proof (not conditional or indirect proof):
1.A ⊃ (Q ∨ R)
2.(R • Q) ⊃ B
3.A • ∼B
/ R ≡ ∼Q
1.A ⊃ (Q ∨ R)
2.(R • Q) ⊃ B
3.A • ∼B
/ R ≡ ∼Q
Unlock Deck
Unlock for access to all 76 flashcards in this deck.
Unlock Deck
k this deck
61
Given the following premises:
1)∼E ⊃ P
2)∼P
3)∼(P ∨ ∼H)
A)∼H 2, 3, DS
B)∼P • ∼(P ∨ ∼H) 2, 3, Conj
C)∼P • H 3, DM
D)E 1, 2, MT
E)∼P ⊃ E 1, Trans
1)∼E ⊃ P
2)∼P
3)∼(P ∨ ∼H)
A)∼H 2, 3, DS
B)∼P • ∼(P ∨ ∼H) 2, 3, Conj
C)∼P • H 3, DM
D)E 1, 2, MT
E)∼P ⊃ E 1, Trans
Unlock Deck
Unlock for access to all 76 flashcards in this deck.
Unlock Deck
k this deck
62
Use an ordinary proof (not conditional or indirect proof):
1.∼N ⊃ (∼R ⊃ C)
2.R ⊃ N
3.∼C
/ N
1.∼N ⊃ (∼R ⊃ C)
2.R ⊃ N
3.∼C
/ N
Unlock Deck
Unlock for access to all 76 flashcards in this deck.
Unlock Deck
k this deck
63
Use an ordinary proof (not conditional or indirect proof):
1.G ⊃ (H ⊃ K)
2.(H ∨ ∼M) ⊃ ∼K
3.H
/ ∼G
1.G ⊃ (H ⊃ K)
2.(H ∨ ∼M) ⊃ ∼K
3.H
/ ∼G
Unlock Deck
Unlock for access to all 76 flashcards in this deck.
Unlock Deck
k this deck
64
Use an ordinary proof (not conditional or indirect proof):
1.K ⊃ L
2.∼K ∨ F
3.(L • F) ⊃ A
4.∼A
/ ∼K
1.K ⊃ L
2.∼K ∨ F
3.(L • F) ⊃ A
4.∼A
/ ∼K
Unlock Deck
Unlock for access to all 76 flashcards in this deck.
Unlock Deck
k this deck
65
Given the following premises:
1)D ⊃ H
2)∼D
3)˜(D • S)
A)∼H 1, 2, MT
B)∼D ∨ (D ⊃ H) 2, Add
C)H ⊃ D 1, Com
D)S 2, 3, DS
E)∼D • ∼S 3, DM
1)D ⊃ H
2)∼D
3)˜(D • S)
A)∼H 1, 2, MT
B)∼D ∨ (D ⊃ H) 2, Add
C)H ⊃ D 1, Com
D)S 2, 3, DS
E)∼D • ∼S 3, DM
Unlock Deck
Unlock for access to all 76 flashcards in this deck.
Unlock Deck
k this deck
66
Given the following premises:
1)Q ⊃ (A ∨ ∼T)
2)T
3)A ∨ ∼T
A)Q ⊃ (∼∼A ∨ ∼T) 1, DN
B)(A ∨ ∼T) ⊃ Q 1, Com
C)(Q ⊃ A) ∨ ∼T 1, Assoc
D)Q 1, 3, MP
E)A 2, 3, DS
1)Q ⊃ (A ∨ ∼T)
2)T
3)A ∨ ∼T
A)Q ⊃ (∼∼A ∨ ∼T) 1, DN
B)(A ∨ ∼T) ⊃ Q 1, Com
C)(Q ⊃ A) ∨ ∼T 1, Assoc
D)Q 1, 3, MP
E)A 2, 3, DS
Unlock Deck
Unlock for access to all 76 flashcards in this deck.
Unlock Deck
k this deck
67
Use conditional proof:
1.G ⊃ (E ⊃ N)
2.H ⊃ (∼N ⊃ E)
/ G ⊃ (H ⊃ N)
1.G ⊃ (E ⊃ N)
2.H ⊃ (∼N ⊃ E)
/ G ⊃ (H ⊃ N)
Unlock Deck
Unlock for access to all 76 flashcards in this deck.
Unlock Deck
k this deck
68
Given the following premises:
1)P • (∼H ∨ D)
2)∼(∼P • ∼H)
3)(P ⊃ ∼H) • (∼P ⊃ H)
A)P ≡ ∼H 3, Equiv
B)∼H ∨ D 1, Simp
C)(P • ∼H) ∨ D 1, Assoc
D)P • (H ⊃ D) 1, Impl
E)P • H 2, DN
1)P • (∼H ∨ D)
2)∼(∼P • ∼H)
3)(P ⊃ ∼H) • (∼P ⊃ H)
A)P ≡ ∼H 3, Equiv
B)∼H ∨ D 1, Simp
C)(P • ∼H) ∨ D 1, Assoc
D)P • (H ⊃ D) 1, Impl
E)P • H 2, DN
Unlock Deck
Unlock for access to all 76 flashcards in this deck.
Unlock Deck
k this deck
69
Given the following premises:
1)∼U ⊃ (S • K)
2)R ⊃ (∼U • ∼U)
3)S ≡ ∼U
A)(∼U • S) ⊃ K 1, Exp
B)R ⊃ U 2, DN
C)R ⊃ ∼U 2, Taut
D)R ⊃ (S • K) 1, 2, HS
E)(S ⊃ U) • (∼U ⊃ ∼S) 3, Equiv
1)∼U ⊃ (S • K)
2)R ⊃ (∼U • ∼U)
3)S ≡ ∼U
A)(∼U • S) ⊃ K 1, Exp
B)R ⊃ U 2, DN
C)R ⊃ ∼U 2, Taut
D)R ⊃ (S • K) 1, 2, HS
E)(S ⊃ U) • (∼U ⊃ ∼S) 3, Equiv
Unlock Deck
Unlock for access to all 76 flashcards in this deck.
Unlock Deck
k this deck
70
Given the following premises:
1)∼I ∨ ∼∼B
2)M ⊃ ∼I
3)I
A)M ⊃ ∼∼B 1, 2, HS
B)∼∼B 1, 3, DS
C)∼M 2, 3, MT
D)∼I ⊃ M 2, Com
E)∼(I • ∼B) 1, DM
1)∼I ∨ ∼∼B
2)M ⊃ ∼I
3)I
A)M ⊃ ∼∼B 1, 2, HS
B)∼∼B 1, 3, DS
C)∼M 2, 3, MT
D)∼I ⊃ M 2, Com
E)∼(I • ∼B) 1, DM
Unlock Deck
Unlock for access to all 76 flashcards in this deck.
Unlock Deck
k this deck
71
Use indirect proof:
1.S ⊃ (R • ∼T)
2.(S • R) ⊃ (T ∨ E)
3.(Q ∨ ∼T) ⊃ ∼E
/ ∼S
1.S ⊃ (R • ∼T)
2.(S • R) ⊃ (T ∨ E)
3.(Q ∨ ∼T) ⊃ ∼E
/ ∼S
Unlock Deck
Unlock for access to all 76 flashcards in this deck.
Unlock Deck
k this deck
72
Use natural deduction to prove the following logical truth:
[F • (D ⊃ ∼F)] ⊃ (D ⊃ A)
[F • (D ⊃ ∼F)] ⊃ (D ⊃ A)
Unlock Deck
Unlock for access to all 76 flashcards in this deck.
Unlock Deck
k this deck
73
Given the following premises:
1)(S • ∼J) ∨ (∼S • ∼∼J)
2)S ∨ ∼S
3)∼J ⊃ P
A)S 2, Taut
B)∼J ∨ ∼∼J 1, 2, CD
C)S ≡ ∼J 1, Equiv
D)J ∨ P 3, Impl
E)∼P ⊃ J 3, Trans
1)(S • ∼J) ∨ (∼S • ∼∼J)
2)S ∨ ∼S
3)∼J ⊃ P
A)S 2, Taut
B)∼J ∨ ∼∼J 1, 2, CD
C)S ≡ ∼J 1, Equiv
D)J ∨ P 3, Impl
E)∼P ⊃ J 3, Trans
Unlock Deck
Unlock for access to all 76 flashcards in this deck.
Unlock Deck
k this deck
74
Given the following premises:
1)A
2)(A ⊃ ∼T) ⊃ ∼G
3)Q ⊃ (A ⊃ ∼T)
A)Q ⊃ (T ⊃ ∼A) 3, Trans
B)(Q ⊃ A) ⊃ ∼T 3, Assoc
C)A ⊃ (∼T • ∼G) 2, Exp
D)∼T 1, 3, MP
E)Q ⊃ ∼G 2, 3, HS
1)A
2)(A ⊃ ∼T) ⊃ ∼G
3)Q ⊃ (A ⊃ ∼T)
A)Q ⊃ (T ⊃ ∼A) 3, Trans
B)(Q ⊃ A) ⊃ ∼T 3, Assoc
C)A ⊃ (∼T • ∼G) 2, Exp
D)∼T 1, 3, MP
E)Q ⊃ ∼G 2, 3, HS
Unlock Deck
Unlock for access to all 76 flashcards in this deck.
Unlock Deck
k this deck
75
Given the following premises:
1)∼N • ∼F
2)K ⊃ (N • F)
3)U ∨ (K • ∼N)
A)∼K 1, 2, MT
B)(U ∨ K) • ∼N 3, Assoc
C)(K • N) ⊃ F 2, Exp
D)(U ∨ K) • (U ∨ ∼N) 3, Dist
E)∼(N • F) 1, DM
1)∼N • ∼F
2)K ⊃ (N • F)
3)U ∨ (K • ∼N)
A)∼K 1, 2, MT
B)(U ∨ K) • ∼N 3, Assoc
C)(K • N) ⊃ F 2, Exp
D)(U ∨ K) • (U ∨ ∼N) 3, Dist
E)∼(N • F) 1, DM
Unlock Deck
Unlock for access to all 76 flashcards in this deck.
Unlock Deck
k this deck
76
Given the following premises:
1)N ∨ C
2)(N ∨ C) ⊃ (F ⊃ C)
3)∼C
A)F ⊃ C 1, 2, MP
B)N 1, 3, DS
C)∼F 2, 3, MT
D)∼N 1, 3, MT
E)∼C • R 3, Add
1)N ∨ C
2)(N ∨ C) ⊃ (F ⊃ C)
3)∼C
A)F ⊃ C 1, 2, MP
B)N 1, 3, DS
C)∼F 2, 3, MT
D)∼N 1, 3, MT
E)∼C • R 3, Add
Unlock Deck
Unlock for access to all 76 flashcards in this deck.
Unlock Deck
k this deck