Exam 7: Matrices

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

If A, B and C are matrices with orders 3×3, 2×3 and 4×2 respectively, how many of the following matrix calculations are possible? 4B, A + B, 3BT + C, AB, BTA, (CB)T, CBA

Free
(Multiple Choice)
4.9/5
(33)
Correct Answer:
Verified

D

Find the value of a if the following matrix is singular [426a]\left[ \begin{array} { l l } - 4 & 2 \\- 6 & a\end{array} \right]

Free
(Multiple Choice)
4.7/5
(37)
Correct Answer:
Verified

B

Find the cofactor, A23, of the matrix A=[527619438]A = \left[ \begin{array} { r r r } 5 & - 2 & 7 \\6 & 1 & - 9 \\4 & - 3 & 8\end{array} \right]

Free
(Multiple Choice)
4.7/5
(38)
Correct Answer:
Verified

E

Find the determinant of the matrix [523415679]\left[ \begin{array} { r r r } 5 & - 2 & 3 \\4 & - 1 & - 5 \\6 & 7 & 9\end{array} \right]

(Multiple Choice)
4.7/5
(37)

Which one of the following matrices has an inverse which is not listed?  Which one of the following matrices has an inverse which is not listed?    A = \left[ \begin{array} { l l } 1 & 1 \\ 1 & 0 \end{array} \right] , B = \left[ \begin{array} { l l } 1 & 0 \\ 0 & 1 \end{array} \right] , C = \left[ \begin{array} { l l } 0 & 1 \\ 1 & - 1 \end{array} \right] , D = \left[ \begin{array} { r r } 1 & - 1 \\ 1 & 0 \end{array} \right] , E = \left[ \begin{array} { l l } - 1 & 0 \\ 0 & 1 \end{array} \right] A=[1110],B=[1001],C=[0111],D=[1110],E=[1001]A = \left[ \begin{array} { l l } 1 & 1 \\ 1 & 0 \end{array} \right] , B = \left[ \begin{array} { l l } 1 & 0 \\ 0 & 1 \end{array} \right] , C = \left[ \begin{array} { l l } 0 & 1 \\ 1 & - 1 \end{array} \right] , D = \left[ \begin{array} { r r } 1 & - 1 \\ 1 & 0 \end{array} \right] , E = \left[ \begin{array} { l l } - 1 & 0 \\ 0 & 1 \end{array} \right]

(Multiple Choice)
4.9/5
(41)

One unit of I1 uses 0.2 units of I1 and 0.6 units of I2. One unit of I2 uses 0.4 units of I1 and 0.2 units of I2. Find the associated Leontief inverse.

(Multiple Choice)
4.8/5
(36)

For the commodity market C = aY + b and I = cr + d For the money market MS = MS* and MD = k1Y + k2r + k3 If both markets are in equilibrium, find the matrix A such that Ax = b where x=[rYˉ] and b=[MSk3b+d]\mathbf { x } = \left[ \begin{array} { l } \boldsymbol { r } \\\bar { Y }\end{array} \right] \text { and } \mathbf { b } = \left[ \begin{array} { c } M _ { S } { } ^ { * } - k _ { 3 } \\b + d\end{array} \right]

(Multiple Choice)
4.8/5
(23)

[327451306]\left[\begin{array}{lrr}3 & -2 & -7 \\-4 & 5 & 1 \\3 & 0 & 6\end{array}\right] -Matrices, A, B and C are given by A=[324610595]A=\left[\begin{array}{lrr}3 & -2 & 4 \\6 & 1 & 0 \\-5 & 9 & 5\end{array}\right] B=[150847239]B=\left[\begin{array}{llr}1 & 5 & 0 \\-8 & 4 & 7 \\2 & 3 & -9\end{array}\right] C=[327451306]C=\left[\begin{array}{lrr}3 & -2 & -7 \\-4 & 5 & 1 \\3 & 0 & 6\end{array}\right] If D = A(2B + 3C)find d23.

(Multiple Choice)
4.9/5
(36)
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)