Exam 8: Quadratic Equations and Functions

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Express the sum using summation notation. Use a lower limit of summation, not necessarily 1, and k for the index of summation. - 15+25+35++751 ^ { 5 } + 2 ^ { 5 } + 3 ^ { 5 } + \ldots + 7 ^ { 5 }

(Multiple Choice)
4.8/5
(35)

Find the common ratio for the geometric sequence. -6, -2.4, 0.96, -0.384, . . .

(Multiple Choice)
4.9/5
(32)

Use the formula for the general term (the nth term) of an arithmetic sequence to find the indicated term of the sequence with the given first term, a1, and common difference, d. - a1=9,d=0.5a _ { 1 } = - 9 , d = - 0.5

(Multiple Choice)
4.8/5
(31)

Use the formula for the sum of the first n terms of an arithmetic sequence to find the indicated sum. - i=149(5i+5)\sum _ { \mathrm { i } = 1 } ^ { 49 } ( 5 \mathrm { i } + 5 )

(Multiple Choice)
4.9/5
(42)

Find the indicated sum. - i=478i\sum _ { i = 4 } ^ { 7 } 8 i

(Multiple Choice)
4.9/5
(40)

Write out the first three terms and the last term of the arithmetic sequence. - i=112\sum _ { i = 1 } ^ { 12 }

(Multiple Choice)
4.8/5
(42)

Express the sum using summation notation. Use a lower limit of summation, not necessarily 1, and k for the index of summation. - 15+19+23+27++4715 + 19 + 23 + 27 + \ldots + 47

(Multiple Choice)
4.8/5
(31)

Write the first four terms of the sequence whose general term is given. - an=n4a _ { n } = n - 4

(Multiple Choice)
4.8/5
(35)

Find the common ratio for the geometric sequence. -1, 3, 9, 27, 81, . . .

(Multiple Choice)
4.8/5
(39)

Write a formula for the general term (the nth term) of the geometric sequence. - 2,4,8,16,32,2 , - 4,8 , - 16,32 , \ldots

(Multiple Choice)
4.9/5
(36)

Write the first four terms of the sequence whose general term is given. - an=(1)n+1n+8\mathrm { a } _ { \mathrm { n } } = \frac { ( - 1 ) ^ { \mathrm { n } + 1 } } { \mathrm { n } + 8 }

(Multiple Choice)
4.9/5
(30)

Write the first four terms of the sequence whose general term is given. - an=(n1)!n4a _ { n } = \frac { ( n - 1 ) ! } { n ^ { 4 } }

(Multiple Choice)
4.9/5
(31)

Find the common ratio for the geometric sequence. -8, -0.8, 0.08, -0.008, . . .

(Multiple Choice)
4.9/5
(40)

Find the common difference for the arithmetic sequence. --12, -16, -20, -24, . . .

(Multiple Choice)
4.9/5
(39)

Express the sum using summation notation. Use a lower limit of summation, not necessarily 1, and k for the index of summation. - 8+9+10+11++328 + 9 + 10 + 11 + \ldots + 32

(Multiple Choice)
4.8/5
(37)

Find the common ratio for the geometric sequence. - 1,14,116,164,1256,1 , \frac { 1 } { 4 } , \frac { 1 } { 16 } , \frac { 1 } { 64 } , \frac { 1 } { 256 } , \ldots

(Multiple Choice)
4.9/5
(28)

Use the formula for the sum of the first n terms of an arithmetic sequence to find the indicated sum. - i=1502i\sum _ { i = 1 } ^ { 50 } 2 \mathrm { i }

(Multiple Choice)
4.9/5
(39)

Find the indicated sum. - i=15(i10)\sum _ { i = 1 } ^ { 5 } ( i - 10 )

(Multiple Choice)
4.8/5
(32)

Find the indicated sum. - k=14(1)k(k+13)\sum _ { k = 1 } ^ { 4 } ( - 1 ) ^ { k } ( k + 13 )

(Multiple Choice)
4.8/5
(35)

Write the first four terms of the sequence whose general term is given. - an=4(n+1)!a _ { n } = - 4 ( n + 1 ) !

(Multiple Choice)
5.0/5
(34)
Showing 61 - 80 of 115
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)