Exam 7: Rational Expressions and Equations

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Solve. -According to Ohmʹs law, the electric current, in amperes, in a circuit varies directly as the voltage. When 29 volts are applied, the current is 4 amperes. What is the current when 26 volts are applied?

(Multiple Choice)
4.7/5
(33)

Simplify the complex fraction. - 9xx9191x\frac { \frac { 9 } { x } - \frac { x } { 9 } } { \frac { 1 } { 9 } - \frac { 1 } { x } }

(Multiple Choice)
4.9/5
(32)

For the given functions f(x) and g(x), find f(x) ∙ g(x). - f(x)=x29x+18x27x+12,g(x)=x2+3x4x27x+6f ( x ) = \frac { x ^ { 2 } - 9 x + 18 } { x ^ { 2 } - 7 x + 12 } , g ( x ) = \frac { x ^ { 2 } + 3 x - 4 } { x ^ { 2 } - 7 x + 6 }

(Multiple Choice)
4.8/5
(34)

Solve. -y varies directly as x. If y = 35 when x = 5  find y when x\text { find } y \text { when } x

(Multiple Choice)
4.8/5
(35)

Add. - 34xx26x+5+32xx26x+5\frac { 3 - 4 x } { x ^ { 2 } - 6 x + 5 } + \frac { 3 - 2 x } { x ^ { 2 } - 6 x + 5 }

(Multiple Choice)
4.8/5
(39)

Find all values of the variable for which the rational expression is undefined. - x26x16x281\frac { x ^ { 2 } - 6 x - 16 } { x ^ { 2 } - 81 }

(Multiple Choice)
4.9/5
(39)

Evaluate the rational expression for the given value of the variable - x<86x+2\frac { x < 8 } { 6 x + 2 } for x=2x = - 2

(Multiple Choice)
4.8/5
(38)

Add. - 2x23x+2+7x21\frac { 2 } { x ^ { 2 } - 3 x + 2 } + \frac { 7 } { x ^ { 2 } - 1 }

(Multiple Choice)
4.8/5
(38)

Add. - x25xx2+6x+9+4x12x2+6x+9\frac { x ^ { 2 } - 5 x } { x ^ { 2 } + 6 x + 9 } + \frac { 4 x - 12 } { x ^ { 2 } + 6 x + 9 }

(Multiple Choice)
4.9/5
(36)

Add. - xx21+6xxx2\frac { x } { x ^ { 2 } - 1 } + \frac { 6 x } { x - x ^ { 2 } }

(Multiple Choice)
4.9/5
(35)

For the given functions f(x) and g(x), find f(x) ∙ g(x). - f(x)=x5,g(x)=x23x102x25x25f ( x ) = x - 5 , g ( x ) = \frac { x ^ { 2 } - 3 x - 10 } { 2 x ^ { 2 } - 5 x - 25 }

(Multiple Choice)
4.9/5
(35)

Simplify the complex fraction. - x+2+1xx+4+3x\frac { x + 2 + \frac { 1 } { x } } { x + 4 + \frac { 3 } { x } }

(Multiple Choice)
4.7/5
(35)

Simplify the rational expression. (Assume the denominator is nonzero.) - 3x6(4+x)(2x)\frac { 3 x - 6 } { ( 4 + x ) ( 2 - x ) }

(Multiple Choice)
4.8/5
(42)

For the given functions f(x) and g(x), find f(x) ∙ g(x). - f(x)=x2+4x+4x2+5x+6,g(x)=x2+3xx2+7x+10f ( x ) = \frac { x ^ { 2 } + 4 x + 4 } { x ^ { 2 } + 5 x + 6 } , g ( x ) = \frac { x ^ { 2 } + 3 x } { x ^ { 2 } + 7 x + 10 }

(Multiple Choice)
4.8/5
(39)

Solve. -The sum of a number and 36 times its reciprocal is 12. Find the number.

(Multiple Choice)
4.7/5
(26)

Find the LCD of the given rational expressions. - 8x23x,8x2+3x18\frac { 8 } { x ^ { 2 } - 3 x } , \frac { 8 } { x ^ { 2 } + 3 x - 18 }

(Multiple Choice)
4.8/5
(30)

Divide. - x2+8x+12x+2÷x2362x12\frac { x ^ { 2 } + 8 x + 12 } { x + 2 } \div \frac { x ^ { 2 } - 36 } { 2 x - 12 }

(Multiple Choice)
4.8/5
(36)

Add. - x28xx7+8xx2x7\frac { x ^ { 2 } - 8 x } { x - 7 } + \frac { 8 x - x ^ { 2 } } { x - 7 }

(Multiple Choice)
4.8/5
(37)

Identify the given function as a linear function, a quadratic function, or a rational function. - f(x)=15x264f ( x ) = \frac { 1 } { 5 } x ^ { 2 } - 64

(Multiple Choice)
4.8/5
(39)

For the given rational functions f(x) and g(x), f(x) +g(x). - f(x)=xx2+7x8,g(x)=8x2+7x8f ( x ) = \frac { x } { x ^ { 2 } + 7 x - 8 } , g ( x ) = \frac { 8 } { x ^ { 2 } + 7 x - 8 }

(Multiple Choice)
4.8/5
(31)
Showing 61 - 80 of 193
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)