Exam 5: Circular Motion
Exam 1: Introduction74 Questions
Exam 2: Motion Along a Line68 Questions
Exam 3: Motion in a Plane56 Questions
Exam 4: Force and Newtons Laws of Motion130 Questions
Exam 5: Circular Motion85 Questions
Exam 6: Conservation of Energy83 Questions
Exam 7: Linear Momentum90 Questions
Exam 8: Torque and Angular Momentum91 Questions
Exam 9: Fluids88 Questions
Exam 10: Elasticity and Oscillations90 Questions
Exam 11: Waves86 Questions
Exam 12: Sound80 Questions
Exam 13: Temperature and the Ideal Gas85 Questions
Exam 14: Heat88 Questions
Exam 15: Thermodynamics81 Questions
Exam 16: Electric Forces and Fields86 Questions
Exam 17: Electric Potential81 Questions
Exam 18: Electric Current and Circuits75 Questions
Exam 19: Magnetic Forces and Fields68 Questions
Exam 20: Electromagnetic Induction74 Questions
Exam 21: Alternating Current73 Questions
Exam 22: Electromagnetic Waves78 Questions
Exam 23: Reflection and Refraction of Light77 Questions
Exam 24: Optical Instruments68 Questions
Exam 25: Interference and Diffraction72 Questions
Exam 26: Relativity69 Questions
Exam 27: Early Quantum Physics and the Photon74 Questions
Exam 28: Quantum Physics73 Questions
Exam 29: Nuclear Physics77 Questions
Exam 30: Particle Physics58 Questions
Select questions type
Two planets travel in circular orbits about a star. The period of planet A is T, while that of planet B is 3T. What is the ratio of their orbital radii, RA/RB?
(Multiple Choice)
4.8/5
(35)
A 2.00 kg mass is moving in a circular path with a radius of 5.00 cm. The mass starts from rest and, with constant angular acceleration, obtains an angular velocity of 6.00 rad/sec in 3.00 sec. The mass then comes to a stop with constant angular acceleration in 4.00 sec. The radial component of acceleration of the mass at 2.00 sec is
(Multiple Choice)
4.9/5
(41)
A car travels around an unbanked curve at 17 m/s. If the static friction coefficient between the tires and the road is 0.45, what is the minimum radius curve that the car can take at this speed without slipping?
(Multiple Choice)
4.7/5
(37)
A CD has a diameter of 12.0 cm. If the CD starts from rest and has a constant angular acceleration of 2.00 rad/sec2, then the radial acceleration of a point 3.00 cm from the center of the CD after 3.00 sec is
(Multiple Choice)
4.7/5
(37)
An airplane is traveling at 250 m/s in level flight. In order to make a change in direction, the airplane travels in a horizontal curved path. To fly in the curved path, the pilot banks the airplane at an angle such that the lift has a horizontal component that provides the horizontal radial acceleration to move in a horizontal circular path. If the airplane is banked at an angle of 15.0 degrees, then the radius of curvature of the curved path of the airplane is
(Multiple Choice)
4.8/5
(42)
Showing 81 - 85 of 85
Filters
- Essay(0)
- Multiple Choice(0)
- Short Answer(0)
- True False(0)
- Matching(0)