Exam 6: Rational Expression and Equations

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

To quickly find the sum of a list of fractions, such as 12+14+18+116+132+164+1128\frac { 1 } { 2 } + \frac { 1 } { 4 } + \frac { 1 } { 8 } + \frac { 1 } { 16 } + \frac { 1 } { 32 } + \frac { 1 } { 64 } + \frac { 1 } { 128 } mathematicians use the formula S=b(1rk)1rS = \frac { b \left( 1 - r ^ { k } \right) } { 1 - r } Solve the formula for b .

Free
(Essay)
4.9/5
(26)
Correct Answer:
Verified

b=S(1r)1rkb = \frac { S ( 1 - r ) } { 1 - r ^ { k } }

a. What numbers cannot be solutions of the equation xx5+10x=3\frac { x } { x - 5 } + \frac { 10 } { x } = 3 ? b. Solve: xx5+10x=3\frac { x } { x - 5 } + \frac { 10 } { x } = 3

Free
(Essay)
4.7/5
(37)
Correct Answer:
Verified

a. x=0x = 0 , x=5x = 5
b. {52,10}\left\{ \frac { 5 } { 2 } , 10 \right\}

Perform the operations and simplify the result when possible. 5xx2+11x+18+5xx24\frac { 5 x } { x ^ { 2 } + 11 x + 18 } + \frac { 5 x } { x ^ { 2 } - 4 }

Free
(Essay)
4.9/5
(35)
Correct Answer:
Verified

5x(2x+7)(x+9)(x2)(x+2)\frac { 5 x \cdot ( 2 x + 7 ) } { ( x + 9 ) \cdot ( x - 2 ) \cdot ( x + 2 ) }

Multiply, then simplify if possible. x+37xx+3\frac { x + 3 } { 7 } \cdot \frac { x } { x + 3 }

(Essay)
4.9/5
(31)

Use synthetic division to perform the division. (x29x+18)÷(x3)\left( x ^ { 2 } - 9 x + 18 \right) \div ( x - 3 )

(Multiple Choice)
4.9/5
(37)

A recipe for guacamole dip calls for 7 avocados. If they are advertised at 3 for $1.86, what will 7 avocados cost? $ __________

(Short Answer)
4.9/5
(31)

Add, and then simplify, if possible. 7x+2+8x4\frac { 7 } { x + 2 } + \frac { 8 } { x - 4 }

(Multiple Choice)
4.8/5
(37)

Perform the division. 6a3+a25a+7a+1\frac { 6 a ^ { 3 } + a ^ { 2 } - 5 a + 7 } { a + 1 }

(Multiple Choice)
4.9/5
(33)

Express the verbal model in symbols. C varies jointly with v , z , and x .

(Multiple Choice)
4.9/5
(45)

Use synthetic division to perform the division. 33x2+2xx4\frac { 3 - 3 x ^ { 2 } + 2 x } { x - 4 }

(Multiple Choice)
4.8/5
(37)

A man roller-blades at a rate 6 miles per hour faster than he jogs. In the same time it takes him to roller-blade 6 miles he can jog 2 miles. How fast does he jog?

(Short Answer)
4.7/5
(38)

Perform the operations and simplify the result when possible. x+4x+5x5x+7\frac { x + 4 } { x + 5 } - \frac { x - 5 } { x + 7 }

(Multiple Choice)
4.8/5
(40)

Find 35 by using synthetic division to evaluate the polynomial f(x)=x5 at x=3f ( x ) = x ^ { 5 } \text { at } x = 3

(Short Answer)
4.8/5
(27)

Use synthetic division to perform the division. 13x2+2xx4\frac { 1 - 3 x ^ { 2 } + 2 x } { x - 4 }

(Essay)
4.8/5
(34)

Divide using long division: 2x3+5x21x24x+2\frac { 2 x ^ { 3 } + 5 x ^ { 2 } - 1 } { x ^ { 2 } - 4 x + 2 }

(Multiple Choice)
4.7/5
(37)

Divide 20x27x220 x ^ { 2 } - 7 x - 2 by 4x+54 x + 5 .

(Essay)
4.9/5
(34)

Multiply, then simplify if possible. (x+3)2x+8x+8x+3\frac { ( x + 3 ) ^ { 2 } } { x + 8 } \cdot \frac { x + 8 } { x + 3 }

(Essay)
4.9/5
(35)

If P ( x ) is a polynomial and if P(k)=0P ( k ) = 0 , then k is called a __________ of the polynomial.

(Multiple Choice)
4.9/5
(38)

A boat that travels 19 mph in still water can travel 24 miles downstream in the same time as it takes to travel 14 miles upstream. Find the speed of the current in the river. A boat that travels 19 mph in still water can travel 24 miles downstream in the same time as it takes to travel 14 miles upstream. Find the speed of the current in the river.   __________ mph __________ mph

(Short Answer)
4.7/5
(27)

Use the remainder theorem and synthetic division to find P ( k ). P(x)=x33x2+x5;k=2P ( x ) = x ^ { 3 } - 3 x ^ { 2 } + x - 5 ; k = 2 P(2)=P ( 2 ) = __________

(Short Answer)
4.9/5
(33)
Showing 1 - 20 of 297
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)