Exam 10: Conics

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Graph the equations to determine whether the system has any solutions. Find any solutions that exist. {3xy=21x2y2=49\left\{ \begin{array} { r } 3 x - y = 21 \\x ^ { 2 } - y ^ { 2 } = 49\end{array} \right.

Free
(Multiple Choice)
4.9/5
(36)
Correct Answer:
Verified

B

Identify the center and vertices of the hyperbola. (x2)225(y+6)21=1\frac { ( x - 2 ) ^ { 2 } } { 25 } - \frac { ( y + 6 ) ^ { 2 } } { 1 } = 1

Free
(Multiple Choice)
4.8/5
(27)
Correct Answer:
Verified

A

Write the standard form of the equation of the hyperbola centered at the origin. Vertices: (2,0),(2,0)( - 2,0 ) , ( 2,0 ) Asymptotes: y=5x,y=5xy = 5 x , y = - 5 x

Free
(Multiple Choice)
4.9/5
(33)
Correct Answer:
Verified

B

Graph the equation (x+2)2=3(y1)( x + 2 ) ^ { 2 } = - 3 ( y - 1 ) .

(Multiple Choice)
4.9/5
(30)

Identify the vertices and co-vertices of the ellipse x249+y24=1\frac { x ^ { 2 } } { 49 } + \frac { y ^ { 2 } } { 4 } = 1 .

(Multiple Choice)
4.8/5
(36)

Write the standard form of the equation of the parabola with focus (4,5) and its vertex at (9,5).

(Multiple Choice)
4.8/5
(30)

Graph the hyperbola. y29x236=1\frac { y ^ { 2 } } { 9 } - \frac { x ^ { 2 } } { 36 } = 1

(Multiple Choice)
4.7/5
(43)

Solve the system by the method of substitution. {y=x227x+2y=4\left\{ \begin{aligned}y & = x ^ { 2 } - 2 \\7 x + 2 y & = - 4\end{aligned} \right.

(Multiple Choice)
4.8/5
(33)

Write the standard form of the equation of the ellipse. Write the standard form of the equation of the ellipse.

(Multiple Choice)
4.9/5
(37)

Identify the center and radius of the circle 9x2+9y216=09 x ^ { 2 } + 9 y ^ { 2 } - 16 = 0 .

(Multiple Choice)
4.8/5
(37)

Identify the vertex and focus of the parabola y2=7xy ^ { 2 } = - 7 x .

(Multiple Choice)
4.9/5
(34)

Write the standard form of the equation of the ellipse centered at the origin, having a vertical 20 units and a minor axis of 10 units.

(Multiple Choice)
4.9/5
(38)

Write the standard form of the equation of the ellipse centered at the origin. Vertices: (6,0)(6,0)( - 6,0 ) ( 6,0 ) Co-vertices: (0,4),(0,4)( 0 , - 4 ) , ( 0,4 )

(Multiple Choice)
4.8/5
(27)

Solve the system by the method of elimination. {3x2+4y2=592x2+5y2=72\left\{ \begin{array} { l } 3 x ^ { 2 } + 4 y ^ { 2 } = 59 \\2 x ^ { 2 } + 5 y ^ { 2 } = 72\end{array} \right.

(Multiple Choice)
4.8/5
(31)

Use a graphing calculator to graph the equations {x4y=1x1=y\left\{ \begin{array} { c } x - 4 y = 1 \\\sqrt { x } - 1 = y\end{array} \right. and find the solutions of the system.

(Multiple Choice)
4.8/5
(30)

Identify the vertices and center of the ellipse. 25(x2)2+9(y+6)2=425 ( x - 2 ) ^ { 2 } + 9 ( y + 6 ) ^ { 2 } = 4

(Multiple Choice)
4.8/5
(42)

Identify the vertices and center of the ellipse. 25x2+16y2100x+96y156=025 x ^ { 2 } + 16 y ^ { 2 } - 100 x + 96 y - 156 = 0

(Multiple Choice)
4.8/5
(43)

Graph the equations to determine whether the system has any solutions. Find any solutions that exist. {9x24y2=368x2y=0\left\{ \begin{array} { c } 9 x ^ { 2 } - 4 y ^ { 2 } = 36 \\8 x - 2 y = 0\end{array} \right.

(Multiple Choice)
5.0/5
(35)

Graph the hyperbola. x29y236=1\frac { x ^ { 2 } } { 9 } - \frac { y ^ { 2 } } { 36 } = 1

(Multiple Choice)
4.8/5
(37)

Solve the system by the method of substitution. {xy2=0xy=42\left\{ \begin{array} { l } x - y ^ { 2 } = 0 \\x - y = 42\end{array} \right.

(Multiple Choice)
4.9/5
(28)
Showing 1 - 20 of 89
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)