Deck 13: Multiple Regression Analysis

Full screen (f)
exit full mode
Question
In a multiple regression analysis with N observations and k independent variables, the degrees of freedom for the residual error is given by (N - k - 1).
Use Space or
up arrow
down arrow
to flip the card.
Question
In a multiple regression model, the proportion of the variation of the dependent variable, y, accounted for the independent variables in the regression model is given by the coefficient of multiple correlation.
Question
The F value that is used to test for the overall significance of a multiple regression model is calculated by dividing the sum of mean squares regression (SSreg)by the sum of squares error (SSerr).
Question
If we reject H0: β1= β2=0 using the F-test, then we should conclude that both slopes are different from zero.
Question
The model y = β\beta 0 + β\beta 1x1 + β\beta 2x2 + ε\varepsilon is a second-order regression model.
Question
In the model y = β\beta 0 + β\beta 1x1 + β\beta 2x2 + β\beta 3x3 + ε\varepsilon ,y is the independent variable.
Question
The F value that is used to test for the overall significance of a multiple regression model is calculated by dividing the mean square regression (MSreg)by the mean square error (MSerr).
Question
The mean square error (MSerr)is calculated by dividing the sum of squares error (SSerr)by the number of degrees of freedom in the error (dferr).
Question
In a multiple regression analysis with N observations and k independent variables, the degrees of freedom for the residual error is given by (N - k).
Question
The model y = β\beta 0 + β\beta 1x1 + β\beta 2x2 + β\beta 3x3 + ε\varepsilon is a first-order regression model.
Question
Multiple t-tests are used to determine whether the independent variables in the regression model are significant.
Question
The standard error of the estimate of a multiple regression model is computed by taking the square root of the SSE divided by the degrees of freedom of error for the model.
Question
In the model y = β\beta 0 + β\beta 1x1 + β\beta 2x2 + β\beta 3x3 + ε\varepsilon , ε\varepsilon is a constant.
Question
The mean square error (MSerr)is calculated by dividing the sum of squares error (SSerr)by the number of observations in the data set (N).
Question
Regression analysis with two dependent variables and two or more independent variables is called multiple regression.
Question
The standard error of the estimate of a multiple regression model is essentially the standard deviation of the residuals for the regression model.
Question
The F test is used to determine whether the overall regression model is significant.
Question
In the multiple regression model y = β\beta 0 + β\beta 1x1 + β\beta 2x2 + β\beta 3x3 + ε\varepsilon , the β\beta coefficients of the x variables are called partial regression coefficients.
Question
In a multiple regression model, the partial regression coefficient of an independent variable represents the increase in the y variable when that independent variable is increased by one unit if the values of all other independent variables are held constant.
Question
A slope in a multiple regression model is known as a partial slope because it ignores the effects of other explanatory variables.
Question
A multiple regression analysis produced the following tables.  Predictor  Coefficients  Stardard Eror t Statistic p-value  Irtercept 616.6849154.55343.9901080.000947x13.338332.3335481.430580.170675x21.7800750.3356055.304075.83E05\begin{array} { | c | c | c | c | c | } \hline \text { Predictor } & \text { Coefficients } & \text { Stardard Eror } & \boldsymbol { t } \text { Statistic } & p \text {-value } \\\hline \text { Irtercept } & 616.6849 & 154.5534 & 3.990108 & 0.000947 \\\hline \boldsymbol { x } _ { 1 } & - 3.33833 & \mathbf { 2 . 3 3 3 5 4 8 } & - 1.43058 & \mathbf { 0 . 1 7 0 6 7 5 } \\\hline \mathbf { x } _ { 2 } & 1.780075 & \mathbf { 0 . 3 3 5 6 0 5 } & 5.30407 & 5.83 \mathrm { E } - 05 \\\hline\end{array}  Source df SS  MS Fp-value  Repression 212178360891.4814.761170.000286 Residual 1561876.684125.112 Total 17183659.6\begin{array} { | c | c | c | c | c | c | } \hline \text { Source } & \mathrm { df } & \text { SS } & \text { MS } & F & p \text {-value } \\\hline \text { Repression } & 2 & 121783 & 60891.48 & 14.76117 & 0.000286 \\\hline \text { Residual } & 15 & 61876.68 & 4125.112 & & \\\hline \text { Total } & 17 & 183659.6 & & & \\\hline\end{array} The sample size for this analysis is ____________.

A)19
B)17
C)34
D)15
E)18
Question
A cost accountant is developing a regression model to predict the total cost of producing a batch of printed circuit boards as a linear function of batch size (the number of boards produced in one lot or batch), production plant (Kingsland, and Yorktown), and production shift (day, and evening).In this model, "shift" is ______.

A)a response variable
B)an independent variable
C)a quantitative variable
D)a dependent variable
E)a constant
Question
A cost accountant is developing a regression model to predict the total cost of producing a batch of printed circuit boards as a linear function of batch size (the number of boards produced in one lot or batch), production plant (Kingsland, and Yorktown), and production shift (day, and evening).The response variable in this model is ______.

A)batch size
B)production shift
C)production plant
D)total cost
E)variable cost
Question
The multiple regression formulas used to estimate the regression coefficients are designed to ________________.

A)minimize the total sum of squares (SST)
B)minimize the sum of squares of error (SSE)
C)maximize the standard error of the estimate
D)maximize the p-value for the calculated F value
E)minimize the mean error
Question
A market analyst is developing a regression model to predict monthly household expenditures on groceries as a function of family size, household income, and household neighborhood (urban, suburban, and rural).The response variable in this model is _____.

A)family size
B)expenditures on groceries
C)household income
D)suburban
E)household neighborhood
Question
Minitab and Excel output for a multiple regression model show the t tests for the regression coefficients but do not provide a t test for the regression constant.
Question
A multiple regression analysis produced the following tables. <strong>A multiple regression analysis produced the following tables.   The regression equation for this analysis is ____________.</strong> A)ŷ = 1959.71 + 0.46 x<sub>1</sub> + 2.16 x<sub>2</sub> B)ŷ = 1959.71 - 0.46 x<sub>1</sub> + 2.16 x<sub>2</sub> C)ŷ = 1959.71 - 0.46 x<sub>1</sub> - 2.16 x<sub>2</sub> D)ŷ =1959.71 + 0.46 x<sub>1</sub> - 2.16 x<sub>2</sub> E)ŷ =- 0.46 x<sub>1</sub> - 2.16 x<sub>2</sub> <div style=padding-top: 35px> The regression equation for this analysis is ____________.

A)ŷ = 1959.71 + 0.46 x1 + 2.16 x2
B)ŷ = 1959.71 - 0.46 x1 + 2.16 x2
C)ŷ = 1959.71 - 0.46 x1 - 2.16 x2
D)ŷ =1959.71 + 0.46 x1 - 2.16 x2
E)ŷ =- 0.46 x1 - 2.16 x2
Question
The value of adjusted R2 always goes up when a nontrivial explanatory variable is added to a regression model.
Question
A market analyst is developing a regression model to predict monthly household expenditures on groceries as a function of family size, household income, and household neighborhood (urban, suburban, and rural).The "income" variable in this model is ____.

A)an indicator variable
B)a response variable
C)a qualitative variable
D)a dependent variable
E)an independent variable
Question
A multiple regression analysis produced the following tables. <strong>A multiple regression analysis produced the following tables.   For x<sub>1</sub>= 360 and x<sub>2</sub> = 220, the predicted value of y is ____________.</strong> A)1314.70 B)1959.71 C)1077.58 D)2635.19 E)2265.57 <div style=padding-top: 35px> For x1= 360 and x2 = 220, the predicted value of y is ____________.

A)1314.70
B)1959.71
C)1077.58
D)2635.19
E)2265.57
Question
Minitab and Excel output for a multiple regression model show the F test for the overall model, but do not provide the t tests for the regression coefficients.
Question
A human resources analyst is developing a regression model to predict electricity plant manager compensation as a function of production capacity of the plant, number of employees at the plant, and plant technology (coal, oil, and nuclear).The response variable in this model is ______.

A)plant manager compensation
B)plant capacity
C)number of employees
D)plant technology
E)nuclear
Question
A real estate appraiser is developing a regression model to predict the market value of single-family residential houses as a function of heated area, number of bedrooms, number of bathrooms, age of the house, and central heating (yes, no).The "central heating" variable in this model is _______.

A)a response variable
B)an independent variable
C)a quantitative variable
D)a dependent variable
E)a constant
Question
A human resources analyst is developing a regression model to predict electricity plant manager compensation as a function of production capacity of the plant, number of employees at the plant, and plant technology (coal, oil, and nuclear).The "number of employees at the plant" variable in this model is ______.

A)a qualitative variable
B)a dependent variable
C)a response variable
D)an indicator variable
E)an independent variable
Question
A multiple regression analysis produced the following tables.  Predictor  Coefficients  Stardard Eror t Statistic p-value  Irtercept 616.6849154.55343.9901080.000947x13.338332.3335481.430580.170675x21.7800750.3356055.304075.83E05\begin{array} { | c | c | c | c | c | } \hline \text { Predictor } & \text { Coefficients } & \text { Stardard Eror } & \boldsymbol { t } \text { Statistic } & p \text {-value } \\\hline \text { Irtercept } & 616.6849 & 154.5534 & 3.990108 & 0.000947 \\\hline \boldsymbol { x } _ { 1 } & - 3.33833 & \mathbf { 2 . 3 3 3 5 4 8 } & - 1.43058 & \mathbf { 0 . 1 7 0 6 7 5 } \\\hline \mathbf { x } _ { 2 } & 1.780075 & \mathbf { 0 . 3 3 5 6 0 5 } & 5.30407 & 5.83 \mathrm { E } - 05 \\\hline\end{array}  Source df SS  MS Fp-value  Repression 212178360891.4814.761170.000286 Residual 1561876.684125.112 Total 17183659.6\begin{array} { | c | c | c | c | c | c | } \hline \text { Source } & \mathrm { df } & \text { SS } & \text { MS } & F & p \text {-value } \\\hline \text { Repression } & 2 & 121783 & 60891.48 & 14.76117 & 0.000286 \\\hline \text { Residual } & 15 & 61876.68 & 4125.112 & & \\\hline \text { Total } & 17 & 183659.6 & & & \\\hline\end{array} The regression equation for this analysis is ____________.

A) <strong>A multiple regression analysis produced the following tables.  \begin{array} { | c | c | c | c | c | } \hline \text { Predictor } & \text { Coefficients } & \text { Stardard Eror } & \boldsymbol { t } \text { Statistic } & p \text {-value } \\ \hline \text { Irtercept } & 616.6849 & 154.5534 & 3.990108 & 0.000947 \\ \hline \boldsymbol { x } _ { 1 } & - 3.33833 & \mathbf { 2 . 3 3 3 5 4 8 } & - 1.43058 & \mathbf { 0 . 1 7 0 6 7 5 } \\ \hline \mathbf { x } _ { 2 } & 1.780075 & \mathbf { 0 . 3 3 5 6 0 5 } & 5.30407 & 5.83 \mathrm { E } - 05 \\ \hline \end{array}   \begin{array} { | c | c | c | c | c | c | } \hline \text { Source } & \mathrm { df } & \text { SS } & \text { MS } & F & p \text {-value } \\ \hline \text { Repression } & 2 & 121783 & 60891.48 & 14.76117 & 0.000286 \\ \hline \text { Residual } & 15 & 61876.68 & 4125.112 & & \\ \hline \text { Total } & 17 & 183659.6 & & & \\ \hline \end{array}  The regression equation for this analysis is ____________.</strong> A)  = 616.6849 + 3.33833 x<sub>1</sub> + 1.780075 x<sub>2</sub> B)  = 154.5535 - 1.43058 x<sub>1</sub> + 5.30407 x<sub>2</sub> C)  = 616.6849 - 3.33833 x<sub>1</sub> - 1.780075 x<sub>2</sub> D)  = 154.5535 + 2.333548 x<sub>1</sub> + 0.335605 x<sub>2</sub> E)  = 616.6849 - 3.33833 x<sub>1</sub> + 1.780075 x<sub>2</sub> <div style=padding-top: 35px>  = 616.6849 + 3.33833 x1 + 1.780075 x2
B)11efcd22_071b_cfd6_b057_0f6ae9b62e31_TB7041_00 = 154.5535 - 1.43058 x1 + 5.30407 x2
C)11efcd22_071b_cfd6_b057_0f6ae9b62e31_TB7041_00 = 616.6849 - 3.33833 x1 - 1.780075 x2
D)11efcd22_071b_cfd6_b057_0f6ae9b62e31_TB7041_00 = 154.5535 + 2.333548 x1 + 0.335605 x2
E)11efcd22_071b_cfd6_b057_0f6ae9b62e31_TB7041_00 = 616.6849 - 3.33833 x1 + 1.780075 x2
Question
The value of R2 always goes up when a nontrivial explanatory variable is added to a regression model.
Question
A human resources analyst is developing a regression model to predict electricity plant manager compensation as a function of production capacity of the plant, number of employees at the plant, and plant technology (coal, oil, and nuclear).The "plant technology" variable in this model is ______.

A)a response variable
B)a dependent variable
C)a quantitative variable
D)an independent variable
E)a constant
Question
A market analyst is developing a regression model to predict monthly household expenditures on groceries as a function of family size, household income, and household neighborhood (urban, suburban, and rural).The "neighborhood" variable in this model is ______.

A)an independent variable
B)a response variable
C)a quantitative variable
D)a dependent variable
E)a constant
Question
A cost accountant is developing a regression model to predict the total cost of producing a batch of printed circuit boards as a linear function of batch size (the number of boards produced in one lot or batch), production plant (Kingsland, and Yorktown), and production shift (day, and evening).In this model, "batch size" is ______.

A)a response variable
B)an indicator variable
C)a dependent variable
D)a qualitative variable
E)an independent variable
Question
A real estate appraiser is developing a regression model to predict the market value of single-family residential houses as a function of heated area, number of bedrooms, number of bathrooms, age of the house, and central heating (yes, no).The response variable in this model is _______.

A)heated area
B)number of bedrooms
C)market value
D)central heating
E)residential houses
Question
A multiple regression analysis produced the following tables.  Predictor  Coefficierts  Stardard Error Etatisticp-value  Irntercept 752.083333631582.2362410.042132x111.873755.320472.2317110.042493x21.9081830.6627422.8792260.01213\begin{array} { | c | c | c | c | c | } \hline \text { Predictor } & \text { Coefficierts } & \text { Stardard Error } & \mathbf { E t a t i s t i c } & \boldsymbol { p } \text {-value } \\\hline \text { Irntercept } & 752.0833 & \mathbf { 3 3 6 3 1 5 8 } & \mathbf { 2 . 2 3 6 2 4 1 } & \mathbf { 0 . 0 4 2 1 3 2 } \\\hline \mathbf { x } _ { 1 } & 11.87375 & 5.32047 & \mathbf { 2 . 2 3 1 7 1 1 } & \mathbf { 0 . 0 4 2 4 9 3 } \\\hline \mathbf { x } _ { 2 } & 1.908183 & \mathbf { 0 . 6 6 2 7 4 2 } & \mathbf { 2 . 8 7 9 2 2 6 } & \mathbf { 0 . 0 1 2 1 3 } \\\hline\end{array}  Source df SS  MS Fp-value  Regression 2203693.3101846.76.7454060.010884 Residual 12181184.115098.67 Total 14384877.4\begin{array} { | c | c | c | c | c | c | } \hline \text { Source } & \mathrm { df } & \text { SS } & \text { MS } & F & p \text {-value } \\\hline \text { Regression } & 2 & 203693.3 & 101846.7 & 6.745406 & 0.010884 \\\hline \text { Residual } & 12 & 181184.1 & 15098.67 & & \\\hline \text { Total } & 14 & 384877.4 & & & \\\hline\end{array} These results indicate that ____________.

A)none of the predictor variables are significant at the 5% level
B)each predictor variable is significant at the 5% level
C)x1 is the only predictor variable significant at the 5% level
D)x2 is the only predictor variable significant at the 5% level
E)the intercept is not significant at the 5% level
Question
The following ANOVA table is from a multiple regression analysis with n = 35 and four independent variables.  Source dfSSMSFp Repression 700 Error  Total 1000\begin{array} { | c | c | c | c | c | c | } \hline \text { Source } & \mathrm { df } & \mathrm { SS } & \mathrm { MS } & F & p \\\hline \text { Repression } & & 700 & & & \\\hline \text { Error } & & & & & \\\hline \text { Total } & & 1000 & & & \\\hline\end{array} The value of the standard error of the estimate se is __________.

A)13.23
B)3.16
C)17.32
D)26.46
E)10.00
Question
A multiple regression analysis produced the following tables.  Predictor  Coefficients  Stardard Eror t Statistic p-value  Irtercept 616.6849154.55343.9901080.000947x13.338332.3335481.430580.170675x21.7800750.3356055.304075.83E05\begin{array} { | c | c | c | c | c | } \hline \text { Predictor } & \text { Coefficients } & \text { Stardard Eror } & \boldsymbol { t } \text { Statistic } & p \text {-value } \\\hline \text { Irtercept } & 616.6849 & 154.5534 & 3.990108 & 0.000947 \\\hline \boldsymbol { x } _ { 1 } & - 3.33833 & \mathbf { 2 . 3 3 3 5 4 8 } & - 1.43058 & \mathbf { 0 . 1 7 0 6 7 5 } \\\hline \mathbf { x } _ { 2 } & 1.780075 & \mathbf { 0 . 3 3 5 6 0 5 } & 5.30407 & 5.83 \mathrm { E } - 05 \\\hline\end{array}  Source df SS  MS Fp-value  Repression 212178360891.4814.761170.000286 Residual 1561876.684125.112 Total 17183659.6\begin{array} { | c | c | c | c | c | c | } \hline \text { Source } & \mathrm { df } & \text { SS } & \text { MS } & F & p \text {-value } \\\hline \text { Repression } & 2 & 121783 & 60891.48 & 14.76117 & 0.000286 \\\hline \text { Residual } & 15 & 61876.68 & 4125.112 & & \\\hline \text { Total } & 17 & 183659.6 & & & \\\hline\end{array} These results indicate that ____________.

A)none of the predictor variables are significant at the 5% level
B)each predictor variable is significant at the 5% level
C)x1 is significant at the 5% level
D)x2 is significant at the 5% level
E)the intercept is not significant at 5% level
Question
A multiple regression analysis produced the following tables.  <strong>A multiple regression analysis produced the following tables.   Using  \alpha = 0.05 to test the null hypothesis H<sub>0</sub>:  \beta <sub>1</sub> = 0, the correct decision is ____.</strong> A)fail to reject the null hypothesis B)reject the null hypothesis C)fail to reject the alternative hypothesis D)reject the alternative hypothesis E)there is not enought information provided to make a decision <div style=padding-top: 35px>  Using α\alpha = 0.05 to test the null hypothesis H0: β\beta 1 = 0, the correct decision is ____.

A)fail to reject the null hypothesis
B)reject the null hypothesis
C)fail to reject the alternative hypothesis
D)reject the alternative hypothesis
E)there is not enought information provided to make a decision
Question
The following ANOVA table is from a multiple regression analysis with n = 35 and four independent variables.  Source dfSSMSFp Repression 700 Error  Total 1000\begin{array} { | c | c | c | c | c | c | } \hline \text { Source } & \mathrm { df } & \mathrm { SS } & \mathrm { MS } & F & p \\\hline \text { Repression } & & 700 & & & \\\hline \text { Error } & & & & & \\\hline \text { Total } & & 1000 & & & \\\hline\end{array} The number of degrees of freedom for this regression is __________.

A)1
B)4
C)34
D)30
E)35
Question
A multiple regression analysis produced the following tables.  Predictor  Coefficients  Stardard Eror t Statistic p-value  Irtercept 616.6849154.55343.9901080.000947x13.338332.3335481.430580.170675x21.7800750.3356055.304075.83E05\begin{array} { | c | c | c | c | c | } \hline \text { Predictor } & \text { Coefficients } & \text { Stardard Eror } & \boldsymbol { t } \text { Statistic } & p \text {-value } \\\hline \text { Irtercept } & 616.6849 & 154.5534 & 3.990108 & 0.000947 \\\hline \boldsymbol { x } _ { 1 } & - 3.33833 & \mathbf { 2 . 3 3 3 5 4 8 } & - 1.43058 & \mathbf { 0 . 1 7 0 6 7 5 } \\\hline \mathbf { x } _ { 2 } & 1.780075 & \mathbf { 0 . 3 3 5 6 0 5 } & 5.30407 & 5.83 \mathrm { E } - 05 \\\hline\end{array}  Source df SS  MS Fp-value  Repression 212178360891.4814.761170.000286 Residual 1561876.684125.112 Total 17183659.6\begin{array} { | c | c | c | c | c | c | } \hline \text { Source } & \mathrm { df } & \text { SS } & \text { MS } & F & p \text {-value } \\\hline \text { Repression } & 2 & 121783 & 60891.48 & 14.76117 & 0.000286 \\\hline \text { Residual } & 15 & 61876.68 & 4125.112 & & \\\hline \text { Total } & 17 & 183659.6 & & & \\\hline\end{array} Using α\alpha = 0.01 to test the null hypothesis H0: β\beta 1 = β\beta 2 = 0, the critical F value is ____.

A)8.68
B)6.36
C)8.40
D)6.11
E)3.36
Question
The following ANOVA table is from a multiple regression analysis with n = 35 and four independent variables.  Source dfSSMSFp Repression 700 Error  Total 1000\begin{array} { | c | c | c | c | c | c | } \hline \text { Source } & \mathrm { df } & \mathrm { SS } & \mathrm { MS } & F & p \\\hline \text { Repression } & & 700 & & & \\\hline \text { Error } & & & & & \\\hline \text { Total } & & 1000 & & & \\\hline\end{array} The MSE value is __________.

A)8.57
B)8.82
C)10.00
D)75.00
E)20.00
Question
The following ANOVA table is from a multiple regression analysis with n = 35 and four independent variables.  Source dfSSMSFp Repression 700 Error  Total 1000\begin{array} { | c | c | c | c | c | c | } \hline \text { Source } & \mathrm { df } & \mathrm { SS } & \mathrm { MS } & F & p \\\hline \text { Repression } & & 700 & & & \\\hline \text { Error } & & & & & \\\hline \text { Total } & & 1000 & & & \\\hline\end{array} The adjusted R2 value is __________.

A)0.80
B)0.70
C)0.66
D)0.76
E)0.30
Question
The following ANOVA table is from a multiple regression analysis with n = 35 and four independent variables.  Source dfSSMSFp Repression 700 Error  Total 1000\begin{array} { | c | c | c | c | c | c | } \hline \text { Source } & \mathrm { df } & \mathrm { SS } & \mathrm { MS } & F & p \\\hline \text { Repression } & & 700 & & & \\\hline \text { Error } & & & & & \\\hline \text { Total } & & 1000 & & & \\\hline\end{array} The MSR value is __________.

A)700.00
B)350.00
C)233.33
D)175.00
E)275.00
Question
A multiple regression analysis produced the following tables. <strong>A multiple regression analysis produced the following tables.   These results indicate that ____________.</strong> A)none of the predictor variables are significant at the 10% level B)each predictor variable is significant at the 10% level C)x<sub>1</sub> is significant at the 10% level D)x<sub>2</sub> is significant at the 10% level E)the intercept is not significant at 10% level <div style=padding-top: 35px> These results indicate that ____________.

A)none of the predictor variables are significant at the 10% level
B)each predictor variable is significant at the 10% level
C)x1 is significant at the 10% level
D)x2 is significant at the 10% level
E)the intercept is not significant at 10% level
Question
A multiple regression analysis produced the following tables.  <strong>A multiple regression analysis produced the following tables.   Using  \alpha  = 0.05 to test the null hypothesis H<sub>0</sub>:  \beta <sub>2</sub> = 0, the correct decision is ____.</strong> A)fail to reject the null hypothesis B)reject the null hypothesis C)fail to reject the alternative hypothesis D)reject the alternative hypothesis E)there is not enought information provided to make a decision <div style=padding-top: 35px>  Using α\alpha = 0.05 to test the null hypothesis H0: β\beta 2 = 0, the correct decision is ____.

A)fail to reject the null hypothesis
B)reject the null hypothesis
C)fail to reject the alternative hypothesis
D)reject the alternative hypothesis
E)there is not enought information provided to make a decision
Question
A multiple regression analysis produced the following tables.  <strong>A multiple regression analysis produced the following tables.   Using  \alpha = 0.01 to test the model, these results indicate that ____________.</strong> A)at least one of the regression variables is a significant predictor of y B)none of the regression variables are significant predictors of y C)y cannot be sufficiently predicted using these data D)y is a good predictor of the regression variables in the model E)the y intercept in this model is the best predictor variable <div style=padding-top: 35px>  Using α\alpha = 0.01 to test the model, these results indicate that ____________.

A)at least one of the regression variables is a significant predictor of y
B)none of the regression variables are significant predictors of y
C)y cannot be sufficiently predicted using these data
D)y is a good predictor of the regression variables in the model
E)the y intercept in this model is the best predictor variable
Question
A multiple regression analysis produced the following tables.  Predictor  Coefficierts  Stardard Error Etatisticp-value  Irntercept 752.083333631582.2362410.042132x111.873755.320472.2317110.042493x21.9081830.6627422.8792260.01213\begin{array} { | c | c | c | c | c | } \hline \text { Predictor } & \text { Coefficierts } & \text { Stardard Error } & \mathbf { E t a t i s t i c } & \boldsymbol { p } \text {-value } \\\hline \text { Irntercept } & 752.0833 & \mathbf { 3 3 6 3 1 5 8 } & \mathbf { 2 . 2 3 6 2 4 1 } & \mathbf { 0 . 0 4 2 1 3 2 } \\\hline \mathbf { x } _ { 1 } & 11.87375 & 5.32047 & \mathbf { 2 . 2 3 1 7 1 1 } & \mathbf { 0 . 0 4 2 4 9 3 } \\\hline \mathbf { x } _ { 2 } & 1.908183 & \mathbf { 0 . 6 6 2 7 4 2 } & \mathbf { 2 . 8 7 9 2 2 6 } & \mathbf { 0 . 0 1 2 1 3 } \\\hline\end{array}  Source df SS  MS Fp-value  Regression 2203693.3101846.76.7454060.010884 Residual 12181184.115098.67 Total 14384877.4\begin{array} { | c | c | c | c | c | c | } \hline \text { Source } & \mathrm { df } & \text { SS } & \text { MS } & F & p \text {-value } \\\hline \text { Regression } & 2 & 203693.3 & 101846.7 & 6.745406 & 0.010884 \\\hline \text { Residual } & 12 & 181184.1 & 15098.67 & & \\\hline \text { Total } & 14 & 384877.4 & & & \\\hline\end{array} Using α\alpha = 0.10 to test the null hypothesis H0: β\beta 2 = 0, the critical t value is ____.

A)±1.345
B)±1.356
C)±1.761
D)±2.782
E)±1.782
Question
In regression analysis, outliers may be identified by examining the ________.

A)coefficient of determination
B)coefficient of correlation
C)p-values for the partial coefficients
D)residuals
E)R-squared value
Question
The following ANOVA table is from a multiple regression analysis with n = 35 and four independent variables.  Source dfSSMSFp Repression 700 Error  Total 1000\begin{array} { | c | c | c | c | c | c | } \hline \text { Source } & \mathrm { df } & \mathrm { SS } & \mathrm { MS } & F & p \\\hline \text { Repression } & & 700 & & & \\\hline \text { Error } & & & & & \\\hline \text { Total } & & 1000 & & & \\\hline\end{array} The R2 value is __________.

A)0.80
B)0.70
C)0.66
D)0.76
E)0.30
Question
A multiple regression analysis produced the following tables.  Predictor  Coefficients  Stardard Eror t Statistic p-value  Irtercept 616.6849154.55343.9901080.000947x13.338332.3335481.430580.170675x21.7800750.3356055.304075.83E05\begin{array} { | c | c | c | c | c | } \hline \text { Predictor } & \text { Coefficients } & \text { Stardard Eror } & \boldsymbol { t } \text { Statistic } & p \text {-value } \\\hline \text { Irtercept } & 616.6849 & 154.5534 & 3.990108 & 0.000947 \\\hline \boldsymbol { x } _ { 1 } & - 3.33833 & \mathbf { 2 . 3 3 3 5 4 8 } & - 1.43058 & \mathbf { 0 . 1 7 0 6 7 5 } \\\hline \mathbf { x } _ { 2 } & 1.780075 & \mathbf { 0 . 3 3 5 6 0 5 } & 5.30407 & 5.83 \mathrm { E } - 05 \\\hline\end{array}  Source df SS  MS Fp-value  Repression 212178360891.4814.761170.000286 Residual 1561876.684125.112 Total 17183659.6\begin{array} { | c | c | c | c | c | c | } \hline \text { Source } & \mathrm { df } & \text { SS } & \text { MS } & F & p \text {-value } \\\hline \text { Repression } & 2 & 121783 & 60891.48 & 14.76117 & 0.000286 \\\hline \text { Residual } & 15 & 61876.68 & 4125.112 & & \\\hline \text { Total } & 17 & 183659.6 & & & \\\hline\end{array} Using α\alpha = 0.05 to test the null hypothesis H0: β\beta 1 = 0, the critical t value is ____.

A)± 1.753
B)± 2.110
C)± 2.131
D)± 1.740
E)± 2.500
Question
A multiple regression analysis produced the following tables.  Predictor  Coefficierts  Stardard Error Etatisticp-value  Irntercept 752.083333631582.2362410.042132x111.873755.320472.2317110.042493x21.9081830.6627422.8792260.01213\begin{array} { | c | c | c | c | c | } \hline \text { Predictor } & \text { Coefficierts } & \text { Stardard Error } & \mathbf { E t a t i s t i c } & \boldsymbol { p } \text {-value } \\\hline \text { Irntercept } & 752.0833 & \mathbf { 3 3 6 3 1 5 8 } & \mathbf { 2 . 2 3 6 2 4 1 } & \mathbf { 0 . 0 4 2 1 3 2 } \\\hline \mathbf { x } _ { 1 } & 11.87375 & 5.32047 & \mathbf { 2 . 2 3 1 7 1 1 } & \mathbf { 0 . 0 4 2 4 9 3 } \\\hline \mathbf { x } _ { 2 } & 1.908183 & \mathbf { 0 . 6 6 2 7 4 2 } & \mathbf { 2 . 8 7 9 2 2 6 } & \mathbf { 0 . 0 1 2 1 3 } \\\hline\end{array}  Source df SS  MS Fp-value  Regression 2203693.3101846.76.7454060.010884 Residual 12181184.115098.67 Total 14384877.4\begin{array} { | c | c | c | c | c | c | } \hline \text { Source } & \mathrm { df } & \text { SS } & \text { MS } & F & p \text {-value } \\\hline \text { Regression } & 2 & 203693.3 & 101846.7 & 6.745406 & 0.010884 \\\hline \text { Residual } & 12 & 181184.1 & 15098.67 & & \\\hline \text { Total } & 14 & 384877.4 & & & \\\hline\end{array} Using α\alpha = 0.05 to test the null hypothesis H0: β\beta 1 = β\beta 2 = 0, the critical F value is ____.

A)3.74
B)3.89
C)4.75
D)4.60
E)2.74
Question
The following ANOVA table is from a multiple regression analysis with n = 35 and four independent variables.  Source dfSSMSFp Repression 700 Error  Total 1000\begin{array} { | c | c | c | c | c | c | } \hline \text { Source } & \mathrm { df } & \mathrm { SS } & \mathrm { MS } & F & p \\\hline \text { Repression } & & 700 & & & \\\hline \text { Error } & & & & & \\\hline \text { Total } & & 1000 & & & \\\hline\end{array} The observed F value is __________.

A)17.50
B)2.33
C)0.70
D)0.43
E)0.50
Question
A multiple regression analysis produced the following tables. <strong>A multiple regression analysis produced the following tables.   The sample size for this analysis is ____________.</strong> A)12 B)15 C)17 D)18 E)24 <div style=padding-top: 35px> The sample size for this analysis is ____________.

A)12
B)15
C)17
D)18
E)24
Question
The following ANOVA table is from a multiple regression analysis with n = 35 and four independent variables.  Source dfSSMSFp Repression 700 Error  Total 1000\begin{array} { | c | c | c | c | c | c | } \hline \text { Source } & \mathrm { df } & \mathrm { SS } & \mathrm { MS } & F & p \\\hline \text { Repression } & & 700 & & & \\\hline \text { Error } & & & & & \\\hline \text { Total } & & 1000 & & & \\\hline\end{array} The number of degrees of freedom for error is __________.

A)1
B)4
C)34
D)30
E)35
Question
A multiple regression analysis produced the following tables.  Predictor  Coefficients  Stardard Error t Statistic p-value  Irtercept 139.6092548.9890.054770.957154x124.2461922.252671.0895860.295682x232.1017117.445591.8401050.08869\begin{array} { | c | c | c | c | c | } \hline \text { Predictor } & \text { Coefficients } & \text { Stardard Error } & \boldsymbol { t } \text { Statistic } & p \text {-value } \\\hline \text { Irtercept } & - 139.609 & 2548.989 & - 0.05477 & 0.957154 \\\hline \boldsymbol { x } _ { 1 } & 24.24619 & 22.25267 & 1.089586 & \mathbf { 0 . 2 9 5 6 8 2 } \\\hline \mathbf { x } _ { 2 } & 32.10171 & 17.44559 & 1.840105 & 0.08869 \\\hline\end{array}  Source df SS  MS Fp-value  Repression 2302689151344.51.7059420.219838 Residual 13115330988716.07 Total 151455998\begin{array} { | c | c | c | c | c | c | } \hline \text { Source } & \mathrm { df } & \text { SS } & \text { MS } & F & p \text {-value } \\\hline \text { Repression } & 2 & 302689 & 151344.5 & 1.705942 & 0.219838 \\\hline \text { Residual } & 13 & 1153309 & 88716.07 & & \\\hline \text { Total } & 15 & 1455998 & & & \\\hline\end{array} The regression equation for this analysis is ____________.

A) <strong>A multiple regression analysis produced the following tables.  \begin{array} { | c | c | c | c | c | } \hline \text { Predictor } & \text { Coefficients } & \text { Stardard Error } & \boldsymbol { t } \text { Statistic } & p \text {-value } \\ \hline \text { Irtercept } & - 139.609 & 2548.989 & - 0.05477 & 0.957154 \\ \hline \boldsymbol { x } _ { 1 } & 24.24619 & 22.25267 & 1.089586 & \mathbf { 0 . 2 9 5 6 8 2 } \\ \hline \mathbf { x } _ { 2 } & 32.10171 & 17.44559 & 1.840105 & 0.08869 \\ \hline \end{array}   \begin{array} { | c | c | c | c | c | c | } \hline \text { Source } & \mathrm { df } & \text { SS } & \text { MS } & F & p \text {-value } \\ \hline \text { Repression } & 2 & 302689 & 151344.5 & 1.705942 & 0.219838 \\ \hline \text { Residual } & 13 & 1153309 & 88716.07 & & \\ \hline \text { Total } & 15 & 1455998 & & & \\ \hline \end{array}  The regression equation for this analysis is ____________.</strong> A)  = 302689 + 1153309 x<sub>1</sub> + 1455998 x<sub>2</sub> B)  = -139.609 + 24.24619 x<sub>1</sub> + 32.10171 x<sub>2</sub> C)  = 2548.989 + 22.25267 x<sub>1</sub> + 17.44559 x<sub>2</sub> D)  = -0.05477 + 1.089586 x<sub>1</sub> + 1.840105 x<sub>2</sub> E)  = 0.05477 + 1.089586 x<sub>1</sub> + 1.840105 x<sub>2</sub> <div style=padding-top: 35px>  = 302689 + 1153309 x1 + 1455998 x2
B)11efcd22_071b_cfd6_b057_0f6ae9b62e31_TB7041_00 = -139.609 + 24.24619 x1 + 32.10171 x2
C)11efcd22_071b_cfd6_b057_0f6ae9b62e31_TB7041_00 = 2548.989 + 22.25267 x1 + 17.44559 x2
D)11efcd22_071b_cfd6_b057_0f6ae9b62e31_TB7041_00 = -0.05477 + 1.089586 x1 + 1.840105 x2
E)11efcd22_071b_cfd6_b057_0f6ae9b62e31_TB7041_00 = 0.05477 + 1.089586 x1 + 1.840105 x2
Question
A multiple regression analysis produced the following tables.  Predictor  Coefficients  Stardard Error t Statistic p-value  Irtercept 139.6092548.9890.054770.957154x124.2461922.252671.0895860.295682x232.1017117.445591.8401050.08869\begin{array} { | c | c | c | c | c | } \hline \text { Predictor } & \text { Coefficients } & \text { Stardard Error } & \boldsymbol { t } \text { Statistic } & p \text {-value } \\\hline \text { Irtercept } & - 139.609 & 2548.989 & - 0.05477 & 0.957154 \\\hline \boldsymbol { x } _ { 1 } & 24.24619 & 22.25267 & 1.089586 & \mathbf { 0 . 2 9 5 6 8 2 } \\\hline \mathbf { x } _ { 2 } & 32.10171 & 17.44559 & 1.840105 & 0.08869 \\\hline\end{array}  Source df SS  MS Fp-value  Repression 2302689151344.51.7059420.219838 Residual 13115330988716.07 Total 151455998\begin{array} { | c | c | c | c | c | c | } \hline \text { Source } & \mathrm { df } & \text { SS } & \text { MS } & F & p \text {-value } \\\hline \text { Repression } & 2 & 302689 & 151344.5 & 1.705942 & 0.219838 \\\hline \text { Residual } & 13 & 1153309 & 88716.07 & & \\\hline \text { Total } & 15 & 1455998 & & & \\\hline\end{array} The sample size for this analysis is ____________.

A)17
B)13
C)16
D)11
E)15
Question
The following ANOVA table is from a multiple regression analysis.  Source dfSSMSFp Repression 31500 Error 26 Total 2300\begin{array} { | c | c | c | c | c | c | } \hline \text { Source } & \mathrm { df } & \mathrm { SS } & \mathrm { MS } & F & p \\\hline \text { Repression } & 3 & 1500 & & & \\\hline \text { Error } & 26 & & & & \\\hline \text { Total } & & 2300 & & & \\\hline\end{array} The MSE value is closest to__________.

A)31
B)500
C)16
D)2300
E)8.7
Question
The following ANOVA table is from a multiple regression analysis.  Source dfSSMSFp Repression 31500 Error 26 Total 2300\begin{array} { | c | c | c | c | c | c | } \hline \text { Source } & \mathrm { df } & \mathrm { SS } & \mathrm { MS } & F & p \\\hline \text { Repression } & 3 & 1500 & & & \\\hline \text { Error } & 26 & & & & \\\hline \text { Total } & & 2300 & & & \\\hline\end{array} The observed F value is __________.

A)16.25
B)30.77
C)500
D)0.049
E)0.039
Question
A multiple regression analysis produced the following tables.  Predictor  Coefficients  Stardard Error t Statistic p-value  Irtercept 139.6092548.9890.054770.957154x124.2461922.252671.0895860.295682x232.1017117.445591.8401050.08869\begin{array} { | c | c | c | c | c | } \hline \text { Predictor } & \text { Coefficients } & \text { Stardard Error } & \boldsymbol { t } \text { Statistic } & p \text {-value } \\\hline \text { Irtercept } & - 139.609 & 2548.989 & - 0.05477 & 0.957154 \\\hline \boldsymbol { x } _ { 1 } & 24.24619 & 22.25267 & 1.089586 & \mathbf { 0 . 2 9 5 6 8 2 } \\\hline \mathbf { x } _ { 2 } & 32.10171 & 17.44559 & 1.840105 & 0.08869 \\\hline\end{array}  Source df SS  MS Fp-value  Repression 2302689151344.51.7059420.219838 Residual 13115330988716.07 Total 151455998\begin{array} { | c | c | c | c | c | c | } \hline \text { Source } & \mathrm { df } & \text { SS } & \text { MS } & F & p \text {-value } \\\hline \text { Repression } & 2 & 302689 & 151344.5 & 1.705942 & 0.219838 \\\hline \text { Residual } & 13 & 1153309 & 88716.07 & & \\\hline \text { Total } & 15 & 1455998 & & & \\\hline\end{array} For x1= 40 and x2 = 90, the predicted value of y is ____________.

A)753.77
B)1,173.00
C)1,355.26
D)3,719.39
E)1,565.75
Question
The following ANOVA table is from a multiple regression analysis.  Source dfSSMSFp Repression 31500 Error 26 Total 2300\begin{array} { | c | c | c | c | c | c | } \hline \text { Source } & \mathrm { df } & \mathrm { SS } & \mathrm { MS } & F & p \\\hline \text { Repression } & 3 & 1500 & & & \\\hline \text { Error } & 26 & & & & \\\hline \text { Total } & & 2300 & & & \\\hline\end{array} The R2 value is __________.

A)0.65
B)0.53
C)0.35
D)0.43
E)1.37
Question
A multiple regression analysis produced the following tables.  Predictor  Coefficients  Stardard Error t Statistic p-value  Irtercept 624.536978.497127.9561766.88E06x18.5691221.6522555.1863190.000301x24.7365150.6991946.7742483.06E05\begin{array} { | c | c | c | c | c | } \hline \text { Predictor } & \text { Coefficients } & \text { Stardard Error } & t \text { Statistic } & p \text {-value } \\\hline \text { Irtercept } & 624.5369 & 78.49712 & 7.956176 & 6.88 E - 06 \\\hline \boldsymbol { x } _ { 1 } & 8.569122 & 1.652255 & 5.186319 & \mathbf { 0 . 0 0 0 3 0 1 } \\\hline \mathbf { x } _ { 2 } & 4.736515 & 0.699194 & 6.774248 & \mathbf { 3 . 0 6 E - 0 5 } \\\hline\end{array}  Source df SS  MS Fp-value  Repression 21660914830457.158.319561.4E06 Residual 11156637.514239.77 Total 131817552\begin{array} { | c | c | c | c | c | c | } \hline \text { Source } & \mathrm { df } & \text { SS } & \text { MS } & F & p \text {-value } \\\hline \text { Repression } & 2 & 1660914 & \mathbf { 8 3 0 4 5 7 . 1 } & 58.31956 & 1.4 \mathrm { E } - 06 \\\hline \text { Residual } & 11 & 156637.5 & 14239.77 & & \\\hline \text { Total } & 13 & 1817552 & & & \\\hline\end{array} These results indicate that ____________.

A)none of the predictor variables are significant at the 5% level
B)each predictor variable is significant at the 5% level
C)x1 is the only predictor variable significant at the 5% level
D)x2 is the only predictor variable significant at the 5% level
E)the intercept is not significant at 5% level
Question
The following ANOVA table is from a multiple regression analysis.  Source dfSSMSFp Repression 31500 Error 26 Total 2300\begin{array} { | c | c | c | c | c | c | } \hline \text { Source } & \mathrm { df } & \mathrm { SS } & \mathrm { MS } & F & p \\\hline \text { Repression } & 3 & 1500 & & & \\\hline \text { Error } & 26 & & & & \\\hline \text { Total } & & 2300 & & & \\\hline\end{array} The sample size for the analysis is __________.

A)30
B)26
C)3
D)29
E)31
Question
A multiple regression analysis produced the following tables.  Predictor  Coefficients  Stardard Error t Statistic p-value  Irtercept 139.6092548.9890.054770.957154x124.2461922.252671.0895860.295682x232.1017117.445591.8401050.08869\begin{array} { | c | c | c | c | c | } \hline \text { Predictor } & \text { Coefficients } & \text { Stardard Error } & \boldsymbol { t } \text { Statistic } & p \text {-value } \\\hline \text { Irtercept } & - 139.609 & 2548.989 & - 0.05477 & 0.957154 \\\hline \boldsymbol { x } _ { 1 } & 24.24619 & 22.25267 & 1.089586 & \mathbf { 0 . 2 9 5 6 8 2 } \\\hline \mathbf { x } _ { 2 } & 32.10171 & 17.44559 & 1.840105 & 0.08869 \\\hline\end{array}  Source df SS  MS Fp-value  Repression 2302689151344.51.7059420.219838 Residual 13115330988716.07 Total 151455998\begin{array} { | c | c | c | c | c | c | } \hline \text { Source } & \mathrm { df } & \text { SS } & \text { MS } & F & p \text {-value } \\\hline \text { Repression } & 2 & 302689 & 151344.5 & 1.705942 & 0.219838 \\\hline \text { Residual } & 13 & 1153309 & 88716.07 & & \\\hline \text { Total } & 15 & 1455998 & & & \\\hline\end{array} Using α\alpha = 0.01 to test the null hypothesis H0: β\beta 2 = 0, the critical t value is ____.

A)± 1.174
B)± 2.093
C)± 2.131
D)± 4.012
E)± 3.012
Question
The following ANOVA table is from a multiple regression analysis.  Source dfSSMSFp Repression 31500 Error 26 Total 2300\begin{array} { | c | c | c | c | c | c | } \hline \text { Source } & \mathrm { df } & \mathrm { SS } & \mathrm { MS } & F & p \\\hline \text { Repression } & 3 & 1500 & & & \\\hline \text { Error } & 26 & & & & \\\hline \text { Total } & & 2300 & & & \\\hline\end{array} The value of the standard error of the estimate se is __________.

A)30.77
B)5.55
C)4.03
D)3.20
E)0.73
Question
A multiple regression analysis produced the following tables.  Predictor  Coefficients  Stardard Error t Statistic p-value  Irtercept 624.536978.497127.9561766.88E06x18.5691221.6522555.1863190.000301x24.7365150.6991946.7742483.06E05\begin{array} { | c | c | c | c | c | } \hline \text { Predictor } & \text { Coefficients } & \text { Stardard Error } & t \text { Statistic } & p \text {-value } \\\hline \text { Irtercept } & 624.5369 & 78.49712 & 7.956176 & 6.88 E - 06 \\\hline \boldsymbol { x } _ { 1 } & 8.569122 & 1.652255 & 5.186319 & \mathbf { 0 . 0 0 0 3 0 1 } \\\hline \mathbf { x } _ { 2 } & 4.736515 & 0.699194 & 6.774248 & \mathbf { 3 . 0 6 E - 0 5 } \\\hline\end{array}  Source df SS  MS Fp-value  Repression 21660914830457.158.319561.4E06 Residual 11156637.514239.77 Total 131817552\begin{array} { | c | c | c | c | c | c | } \hline \text { Source } & \mathrm { df } & \text { SS } & \text { MS } & F & p \text {-value } \\\hline \text { Repression } & 2 & 1660914 & \mathbf { 8 3 0 4 5 7 . 1 } & 58.31956 & 1.4 \mathrm { E } - 06 \\\hline \text { Residual } & 11 & 156637.5 & 14239.77 & & \\\hline \text { Total } & 13 & 1817552 & & & \\\hline\end{array} The coefficient of multiple determination is ____________.

A)0.0592
B)0.9138
C)0.1149
D)0.9559
E)1.0000
Question
The following ANOVA table is from a multiple regression analysis.  Source dfSSMSFp Repression 31500 Error 26 Total 2300\begin{array} { | c | c | c | c | c | c | } \hline \text { Source } & \mathrm { df } & \mathrm { SS } & \mathrm { MS } & F & p \\\hline \text { Repression } & 3 & 1500 & & & \\\hline \text { Error } & 26 & & & & \\\hline \text { Total } & & 2300 & & & \\\hline\end{array} The MSR value is __________.

A)1500
B)50
C)2300
D)500
E)31
Question
The following ANOVA table is from a multiple regression analysis.  Source dfSSMSFp Repression 31500 Error 26 Total 2300\begin{array} { | c | c | c | c | c | c | } \hline \text { Source } & \mathrm { df } & \mathrm { SS } & \mathrm { MS } & F & p \\\hline \text { Repression } & 3 & 1500 & & & \\\hline \text { Error } & 26 & & & & \\\hline \text { Total } & & 2300 & & & \\\hline\end{array} The adjusted R2 value is __________.

A)0.65
B)0.39
C)0.61
D)0.53
E)0.78
Question
The following ANOVA table is from a multiple regression analysis.  Source dfSSMSFp Repression 31500 Error 26 Total 2300\begin{array} { | c | c | c | c | c | c | } \hline \text { Source } & \mathrm { df } & \mathrm { SS } & \mathrm { MS } & F & p \\\hline \text { Repression } & 3 & 1500 & & & \\\hline \text { Error } & 26 & & & & \\\hline \text { Total } & & 2300 & & & \\\hline\end{array} The number of independent variables in the analysis is __________.

A)30
B)26
C)1
D)3
E)2
Question
A multiple regression analysis produced the following tables.  Predictor  Coefficients  Stardard Error t Statistic p-value  Irtercept 139.6092548.9890.054770.957154x124.2461922.252671.0895860.295682x232.1017117.445591.8401050.08869\begin{array} { | c | c | c | c | c | } \hline \text { Predictor } & \text { Coefficients } & \text { Stardard Error } & \boldsymbol { t } \text { Statistic } & p \text {-value } \\\hline \text { Irtercept } & - 139.609 & 2548.989 & - 0.05477 & 0.957154 \\\hline \boldsymbol { x } _ { 1 } & 24.24619 & 22.25267 & 1.089586 & \mathbf { 0 . 2 9 5 6 8 2 } \\\hline \mathbf { x } _ { 2 } & 32.10171 & 17.44559 & 1.840105 & 0.08869 \\\hline\end{array}  Source df SS  MS Fp-value  Repression 2302689151344.51.7059420.219838 Residual 13115330988716.07 Total 151455998\begin{array} { | c | c | c | c | c | c | } \hline \text { Source } & \mathrm { df } & \text { SS } & \text { MS } & F & p \text {-value } \\\hline \text { Repression } & 2 & 302689 & 151344.5 & 1.705942 & 0.219838 \\\hline \text { Residual } & 13 & 1153309 & 88716.07 & & \\\hline \text { Total } & 15 & 1455998 & & & \\\hline\end{array} Using α\alpha = 0.01 to test the null hypothesis H0: β\beta 1 = β\beta 2 = 0, the critical F value is ____.

A)5.99
B)5.70
C)1.96
D)4.84
E)6.70
Question
A multiple regression analysis produced the following tables.  Predictor  Coefficients  Stardard Error t Statistic p-value  Irtercept 139.6092548.9890.054770.957154x124.2461922.252671.0895860.295682x232.1017117.445591.8401050.08869\begin{array} { | c | c | c | c | c | } \hline \text { Predictor } & \text { Coefficients } & \text { Stardard Error } & \boldsymbol { t } \text { Statistic } & p \text {-value } \\\hline \text { Irtercept } & - 139.609 & 2548.989 & - 0.05477 & 0.957154 \\\hline \boldsymbol { x } _ { 1 } & 24.24619 & 22.25267 & 1.089586 & \mathbf { 0 . 2 9 5 6 8 2 } \\\hline \mathbf { x } _ { 2 } & 32.10171 & 17.44559 & 1.840105 & 0.08869 \\\hline\end{array}  Source df SS  MS Fp-value  Repression 2302689151344.51.7059420.219838 Residual 13115330988716.07 Total 151455998\begin{array} { | c | c | c | c | c | c | } \hline \text { Source } & \mathrm { df } & \text { SS } & \text { MS } & F & p \text {-value } \\\hline \text { Repression } & 2 & 302689 & 151344.5 & 1.705942 & 0.219838 \\\hline \text { Residual } & 13 & 1153309 & 88716.07 & & \\\hline \text { Total } & 15 & 1455998 & & & \\\hline\end{array} The coefficient of multiple determination is ____________.

A)0.2079
B)0.0860
C)0.5440
D)0.7921
E)0.5000
Question
A multiple regression analysis produced the following tables.  Predictor  Coefficients  Stardard Error t Statistic p-value  Irtercept 624.536978.497127.9561766.88E06x18.5691221.6522555.1863190.000301x24.7365150.6991946.7742483.06E05\begin{array} { | c | c | c | c | c | } \hline \text { Predictor } & \text { Coefficients } & \text { Stardard Error } & t \text { Statistic } & p \text {-value } \\\hline \text { Irtercept } & 624.5369 & 78.49712 & 7.956176 & 6.88 E - 06 \\\hline \boldsymbol { x } _ { 1 } & 8.569122 & 1.652255 & 5.186319 & \mathbf { 0 . 0 0 0 3 0 1 } \\\hline \mathbf { x } _ { 2 } & 4.736515 & 0.699194 & 6.774248 & \mathbf { 3 . 0 6 E - 0 5 } \\\hline\end{array}  Source df SS  MS Fp-value  Repression 21660914830457.158.319561.4E06 Residual 11156637.514239.77 Total 131817552\begin{array} { | c | c | c | c | c | c | } \hline \text { Source } & \mathrm { df } & \text { SS } & \text { MS } & F & p \text {-value } \\\hline \text { Repression } & 2 & 1660914 & \mathbf { 8 3 0 4 5 7 . 1 } & 58.31956 & 1.4 \mathrm { E } - 06 \\\hline \text { Residual } & 11 & 156637.5 & 14239.77 & & \\\hline \text { Total } & 13 & 1817552 & & & \\\hline\end{array} The adjusted R2 is ____________.

A)0.9138
B)0.9408
C)0.8981
D)0.8851
E)0.8891
Question
A multiple regression analysis produced the following tables.  Predictor  Coefficients  Stardard Error t Statistic p-value  Irtercept 624.536978.497127.9561766.88E06x18.5691221.6522555.1863190.000301x24.7365150.6991946.7742483.06E05\begin{array} { | c | c | c | c | c | } \hline \text { Predictor } & \text { Coefficients } & \text { Stardard Error } & t \text { Statistic } & p \text {-value } \\\hline \text { Irtercept } & 624.5369 & 78.49712 & 7.956176 & 6.88 E - 06 \\\hline \boldsymbol { x } _ { 1 } & 8.569122 & 1.652255 & 5.186319 & \mathbf { 0 . 0 0 0 3 0 1 } \\\hline \mathbf { x } _ { 2 } & 4.736515 & 0.699194 & 6.774248 & \mathbf { 3 . 0 6 E - 0 5 } \\\hline\end{array}  Source df SS  MS Fp-value  Repression 21660914830457.158.319561.4E06 Residual 11156637.514239.77 Total 131817552\begin{array} { | c | c | c | c | c | c | } \hline \text { Source } & \mathrm { df } & \text { SS } & \text { MS } & F & p \text {-value } \\\hline \text { Repression } & 2 & 1660914 & \mathbf { 8 3 0 4 5 7 . 1 } & 58.31956 & 1.4 \mathrm { E } - 06 \\\hline \text { Residual } & 11 & 156637.5 & 14239.77 & & \\\hline \text { Total } & 13 & 1817552 & & & \\\hline\end{array} For x1= 30 and x2 = 100, the predicted value of y is ____________.

A)753.77
B)1,173.00
C)1,355.26
D)615.13
E)6153.13
Question
A multiple regression analysis produced the following tables.  Predictor  Coefficients  Stardard Error t Statistic p-value  Irtercept 139.6092548.9890.054770.957154x124.2461922.252671.0895860.295682x232.1017117.445591.8401050.08869\begin{array} { | c | c | c | c | c | } \hline \text { Predictor } & \text { Coefficients } & \text { Stardard Error } & \boldsymbol { t } \text { Statistic } & p \text {-value } \\\hline \text { Irtercept } & - 139.609 & 2548.989 & - 0.05477 & 0.957154 \\\hline \boldsymbol { x } _ { 1 } & 24.24619 & 22.25267 & 1.089586 & \mathbf { 0 . 2 9 5 6 8 2 } \\\hline \mathbf { x } _ { 2 } & 32.10171 & 17.44559 & 1.840105 & 0.08869 \\\hline\end{array}  Source df SS  MS Fp-value  Repression 2302689151344.51.7059420.219838 Residual 13115330988716.07 Total 151455998\begin{array} { | c | c | c | c | c | c | } \hline \text { Source } & \mathrm { df } & \text { SS } & \text { MS } & F & p \text {-value } \\\hline \text { Repression } & 2 & 302689 & 151344.5 & 1.705942 & 0.219838 \\\hline \text { Residual } & 13 & 1153309 & 88716.07 & & \\\hline \text { Total } & 15 & 1455998 & & & \\\hline\end{array} These results indicate that ____________.

A)none of the predictor variables are significant at the 5% level
B)each predictor variable is significant at the 5% level
C)x1 is the only predictor variable significant at the 5% level
D)x2 is the only predictor variable significant at the 5% level
E)all variables are significant at 5% level
Question
The following ANOVA table is from a multiple regression analysis.  Source dfSSMSFp Repression 31500 Error 26 Total 2300\begin{array} { | c | c | c | c | c | c | } \hline \text { Source } & \mathrm { df } & \mathrm { SS } & \mathrm { MS } & F & p \\\hline \text { Repression } & 3 & 1500 & & & \\\hline \text { Error } & 26 & & & & \\\hline \text { Total } & & 2300 & & & \\\hline\end{array} The SSE value is __________.

A)30
B)1500
C)500
D)800
E)2300
Unlock Deck
Sign up to unlock the cards in this deck!
Unlock Deck
Unlock Deck
1/90
auto play flashcards
Play
simple tutorial
Full screen (f)
exit full mode
Deck 13: Multiple Regression Analysis
1
In a multiple regression analysis with N observations and k independent variables, the degrees of freedom for the residual error is given by (N - k - 1).
True
2
In a multiple regression model, the proportion of the variation of the dependent variable, y, accounted for the independent variables in the regression model is given by the coefficient of multiple correlation.
False
3
The F value that is used to test for the overall significance of a multiple regression model is calculated by dividing the sum of mean squares regression (SSreg)by the sum of squares error (SSerr).
False
4
If we reject H0: β1= β2=0 using the F-test, then we should conclude that both slopes are different from zero.
Unlock Deck
Unlock for access to all 90 flashcards in this deck.
Unlock Deck
k this deck
5
The model y = β\beta 0 + β\beta 1x1 + β\beta 2x2 + ε\varepsilon is a second-order regression model.
Unlock Deck
Unlock for access to all 90 flashcards in this deck.
Unlock Deck
k this deck
6
In the model y = β\beta 0 + β\beta 1x1 + β\beta 2x2 + β\beta 3x3 + ε\varepsilon ,y is the independent variable.
Unlock Deck
Unlock for access to all 90 flashcards in this deck.
Unlock Deck
k this deck
7
The F value that is used to test for the overall significance of a multiple regression model is calculated by dividing the mean square regression (MSreg)by the mean square error (MSerr).
Unlock Deck
Unlock for access to all 90 flashcards in this deck.
Unlock Deck
k this deck
8
The mean square error (MSerr)is calculated by dividing the sum of squares error (SSerr)by the number of degrees of freedom in the error (dferr).
Unlock Deck
Unlock for access to all 90 flashcards in this deck.
Unlock Deck
k this deck
9
In a multiple regression analysis with N observations and k independent variables, the degrees of freedom for the residual error is given by (N - k).
Unlock Deck
Unlock for access to all 90 flashcards in this deck.
Unlock Deck
k this deck
10
The model y = β\beta 0 + β\beta 1x1 + β\beta 2x2 + β\beta 3x3 + ε\varepsilon is a first-order regression model.
Unlock Deck
Unlock for access to all 90 flashcards in this deck.
Unlock Deck
k this deck
11
Multiple t-tests are used to determine whether the independent variables in the regression model are significant.
Unlock Deck
Unlock for access to all 90 flashcards in this deck.
Unlock Deck
k this deck
12
The standard error of the estimate of a multiple regression model is computed by taking the square root of the SSE divided by the degrees of freedom of error for the model.
Unlock Deck
Unlock for access to all 90 flashcards in this deck.
Unlock Deck
k this deck
13
In the model y = β\beta 0 + β\beta 1x1 + β\beta 2x2 + β\beta 3x3 + ε\varepsilon , ε\varepsilon is a constant.
Unlock Deck
Unlock for access to all 90 flashcards in this deck.
Unlock Deck
k this deck
14
The mean square error (MSerr)is calculated by dividing the sum of squares error (SSerr)by the number of observations in the data set (N).
Unlock Deck
Unlock for access to all 90 flashcards in this deck.
Unlock Deck
k this deck
15
Regression analysis with two dependent variables and two or more independent variables is called multiple regression.
Unlock Deck
Unlock for access to all 90 flashcards in this deck.
Unlock Deck
k this deck
16
The standard error of the estimate of a multiple regression model is essentially the standard deviation of the residuals for the regression model.
Unlock Deck
Unlock for access to all 90 flashcards in this deck.
Unlock Deck
k this deck
17
The F test is used to determine whether the overall regression model is significant.
Unlock Deck
Unlock for access to all 90 flashcards in this deck.
Unlock Deck
k this deck
18
In the multiple regression model y = β\beta 0 + β\beta 1x1 + β\beta 2x2 + β\beta 3x3 + ε\varepsilon , the β\beta coefficients of the x variables are called partial regression coefficients.
Unlock Deck
Unlock for access to all 90 flashcards in this deck.
Unlock Deck
k this deck
19
In a multiple regression model, the partial regression coefficient of an independent variable represents the increase in the y variable when that independent variable is increased by one unit if the values of all other independent variables are held constant.
Unlock Deck
Unlock for access to all 90 flashcards in this deck.
Unlock Deck
k this deck
20
A slope in a multiple regression model is known as a partial slope because it ignores the effects of other explanatory variables.
Unlock Deck
Unlock for access to all 90 flashcards in this deck.
Unlock Deck
k this deck
21
A multiple regression analysis produced the following tables.  Predictor  Coefficients  Stardard Eror t Statistic p-value  Irtercept 616.6849154.55343.9901080.000947x13.338332.3335481.430580.170675x21.7800750.3356055.304075.83E05\begin{array} { | c | c | c | c | c | } \hline \text { Predictor } & \text { Coefficients } & \text { Stardard Eror } & \boldsymbol { t } \text { Statistic } & p \text {-value } \\\hline \text { Irtercept } & 616.6849 & 154.5534 & 3.990108 & 0.000947 \\\hline \boldsymbol { x } _ { 1 } & - 3.33833 & \mathbf { 2 . 3 3 3 5 4 8 } & - 1.43058 & \mathbf { 0 . 1 7 0 6 7 5 } \\\hline \mathbf { x } _ { 2 } & 1.780075 & \mathbf { 0 . 3 3 5 6 0 5 } & 5.30407 & 5.83 \mathrm { E } - 05 \\\hline\end{array}  Source df SS  MS Fp-value  Repression 212178360891.4814.761170.000286 Residual 1561876.684125.112 Total 17183659.6\begin{array} { | c | c | c | c | c | c | } \hline \text { Source } & \mathrm { df } & \text { SS } & \text { MS } & F & p \text {-value } \\\hline \text { Repression } & 2 & 121783 & 60891.48 & 14.76117 & 0.000286 \\\hline \text { Residual } & 15 & 61876.68 & 4125.112 & & \\\hline \text { Total } & 17 & 183659.6 & & & \\\hline\end{array} The sample size for this analysis is ____________.

A)19
B)17
C)34
D)15
E)18
Unlock Deck
Unlock for access to all 90 flashcards in this deck.
Unlock Deck
k this deck
22
A cost accountant is developing a regression model to predict the total cost of producing a batch of printed circuit boards as a linear function of batch size (the number of boards produced in one lot or batch), production plant (Kingsland, and Yorktown), and production shift (day, and evening).In this model, "shift" is ______.

A)a response variable
B)an independent variable
C)a quantitative variable
D)a dependent variable
E)a constant
Unlock Deck
Unlock for access to all 90 flashcards in this deck.
Unlock Deck
k this deck
23
A cost accountant is developing a regression model to predict the total cost of producing a batch of printed circuit boards as a linear function of batch size (the number of boards produced in one lot or batch), production plant (Kingsland, and Yorktown), and production shift (day, and evening).The response variable in this model is ______.

A)batch size
B)production shift
C)production plant
D)total cost
E)variable cost
Unlock Deck
Unlock for access to all 90 flashcards in this deck.
Unlock Deck
k this deck
24
The multiple regression formulas used to estimate the regression coefficients are designed to ________________.

A)minimize the total sum of squares (SST)
B)minimize the sum of squares of error (SSE)
C)maximize the standard error of the estimate
D)maximize the p-value for the calculated F value
E)minimize the mean error
Unlock Deck
Unlock for access to all 90 flashcards in this deck.
Unlock Deck
k this deck
25
A market analyst is developing a regression model to predict monthly household expenditures on groceries as a function of family size, household income, and household neighborhood (urban, suburban, and rural).The response variable in this model is _____.

A)family size
B)expenditures on groceries
C)household income
D)suburban
E)household neighborhood
Unlock Deck
Unlock for access to all 90 flashcards in this deck.
Unlock Deck
k this deck
26
Minitab and Excel output for a multiple regression model show the t tests for the regression coefficients but do not provide a t test for the regression constant.
Unlock Deck
Unlock for access to all 90 flashcards in this deck.
Unlock Deck
k this deck
27
A multiple regression analysis produced the following tables. <strong>A multiple regression analysis produced the following tables.   The regression equation for this analysis is ____________.</strong> A)ŷ = 1959.71 + 0.46 x<sub>1</sub> + 2.16 x<sub>2</sub> B)ŷ = 1959.71 - 0.46 x<sub>1</sub> + 2.16 x<sub>2</sub> C)ŷ = 1959.71 - 0.46 x<sub>1</sub> - 2.16 x<sub>2</sub> D)ŷ =1959.71 + 0.46 x<sub>1</sub> - 2.16 x<sub>2</sub> E)ŷ =- 0.46 x<sub>1</sub> - 2.16 x<sub>2</sub> The regression equation for this analysis is ____________.

A)ŷ = 1959.71 + 0.46 x1 + 2.16 x2
B)ŷ = 1959.71 - 0.46 x1 + 2.16 x2
C)ŷ = 1959.71 - 0.46 x1 - 2.16 x2
D)ŷ =1959.71 + 0.46 x1 - 2.16 x2
E)ŷ =- 0.46 x1 - 2.16 x2
Unlock Deck
Unlock for access to all 90 flashcards in this deck.
Unlock Deck
k this deck
28
The value of adjusted R2 always goes up when a nontrivial explanatory variable is added to a regression model.
Unlock Deck
Unlock for access to all 90 flashcards in this deck.
Unlock Deck
k this deck
29
A market analyst is developing a regression model to predict monthly household expenditures on groceries as a function of family size, household income, and household neighborhood (urban, suburban, and rural).The "income" variable in this model is ____.

A)an indicator variable
B)a response variable
C)a qualitative variable
D)a dependent variable
E)an independent variable
Unlock Deck
Unlock for access to all 90 flashcards in this deck.
Unlock Deck
k this deck
30
A multiple regression analysis produced the following tables. <strong>A multiple regression analysis produced the following tables.   For x<sub>1</sub>= 360 and x<sub>2</sub> = 220, the predicted value of y is ____________.</strong> A)1314.70 B)1959.71 C)1077.58 D)2635.19 E)2265.57 For x1= 360 and x2 = 220, the predicted value of y is ____________.

A)1314.70
B)1959.71
C)1077.58
D)2635.19
E)2265.57
Unlock Deck
Unlock for access to all 90 flashcards in this deck.
Unlock Deck
k this deck
31
Minitab and Excel output for a multiple regression model show the F test for the overall model, but do not provide the t tests for the regression coefficients.
Unlock Deck
Unlock for access to all 90 flashcards in this deck.
Unlock Deck
k this deck
32
A human resources analyst is developing a regression model to predict electricity plant manager compensation as a function of production capacity of the plant, number of employees at the plant, and plant technology (coal, oil, and nuclear).The response variable in this model is ______.

A)plant manager compensation
B)plant capacity
C)number of employees
D)plant technology
E)nuclear
Unlock Deck
Unlock for access to all 90 flashcards in this deck.
Unlock Deck
k this deck
33
A real estate appraiser is developing a regression model to predict the market value of single-family residential houses as a function of heated area, number of bedrooms, number of bathrooms, age of the house, and central heating (yes, no).The "central heating" variable in this model is _______.

A)a response variable
B)an independent variable
C)a quantitative variable
D)a dependent variable
E)a constant
Unlock Deck
Unlock for access to all 90 flashcards in this deck.
Unlock Deck
k this deck
34
A human resources analyst is developing a regression model to predict electricity plant manager compensation as a function of production capacity of the plant, number of employees at the plant, and plant technology (coal, oil, and nuclear).The "number of employees at the plant" variable in this model is ______.

A)a qualitative variable
B)a dependent variable
C)a response variable
D)an indicator variable
E)an independent variable
Unlock Deck
Unlock for access to all 90 flashcards in this deck.
Unlock Deck
k this deck
35
A multiple regression analysis produced the following tables.  Predictor  Coefficients  Stardard Eror t Statistic p-value  Irtercept 616.6849154.55343.9901080.000947x13.338332.3335481.430580.170675x21.7800750.3356055.304075.83E05\begin{array} { | c | c | c | c | c | } \hline \text { Predictor } & \text { Coefficients } & \text { Stardard Eror } & \boldsymbol { t } \text { Statistic } & p \text {-value } \\\hline \text { Irtercept } & 616.6849 & 154.5534 & 3.990108 & 0.000947 \\\hline \boldsymbol { x } _ { 1 } & - 3.33833 & \mathbf { 2 . 3 3 3 5 4 8 } & - 1.43058 & \mathbf { 0 . 1 7 0 6 7 5 } \\\hline \mathbf { x } _ { 2 } & 1.780075 & \mathbf { 0 . 3 3 5 6 0 5 } & 5.30407 & 5.83 \mathrm { E } - 05 \\\hline\end{array}  Source df SS  MS Fp-value  Repression 212178360891.4814.761170.000286 Residual 1561876.684125.112 Total 17183659.6\begin{array} { | c | c | c | c | c | c | } \hline \text { Source } & \mathrm { df } & \text { SS } & \text { MS } & F & p \text {-value } \\\hline \text { Repression } & 2 & 121783 & 60891.48 & 14.76117 & 0.000286 \\\hline \text { Residual } & 15 & 61876.68 & 4125.112 & & \\\hline \text { Total } & 17 & 183659.6 & & & \\\hline\end{array} The regression equation for this analysis is ____________.

A) <strong>A multiple regression analysis produced the following tables.  \begin{array} { | c | c | c | c | c | } \hline \text { Predictor } & \text { Coefficients } & \text { Stardard Eror } & \boldsymbol { t } \text { Statistic } & p \text {-value } \\ \hline \text { Irtercept } & 616.6849 & 154.5534 & 3.990108 & 0.000947 \\ \hline \boldsymbol { x } _ { 1 } & - 3.33833 & \mathbf { 2 . 3 3 3 5 4 8 } & - 1.43058 & \mathbf { 0 . 1 7 0 6 7 5 } \\ \hline \mathbf { x } _ { 2 } & 1.780075 & \mathbf { 0 . 3 3 5 6 0 5 } & 5.30407 & 5.83 \mathrm { E } - 05 \\ \hline \end{array}   \begin{array} { | c | c | c | c | c | c | } \hline \text { Source } & \mathrm { df } & \text { SS } & \text { MS } & F & p \text {-value } \\ \hline \text { Repression } & 2 & 121783 & 60891.48 & 14.76117 & 0.000286 \\ \hline \text { Residual } & 15 & 61876.68 & 4125.112 & & \\ \hline \text { Total } & 17 & 183659.6 & & & \\ \hline \end{array}  The regression equation for this analysis is ____________.</strong> A)  = 616.6849 + 3.33833 x<sub>1</sub> + 1.780075 x<sub>2</sub> B)  = 154.5535 - 1.43058 x<sub>1</sub> + 5.30407 x<sub>2</sub> C)  = 616.6849 - 3.33833 x<sub>1</sub> - 1.780075 x<sub>2</sub> D)  = 154.5535 + 2.333548 x<sub>1</sub> + 0.335605 x<sub>2</sub> E)  = 616.6849 - 3.33833 x<sub>1</sub> + 1.780075 x<sub>2</sub>  = 616.6849 + 3.33833 x1 + 1.780075 x2
B)11efcd22_071b_cfd6_b057_0f6ae9b62e31_TB7041_00 = 154.5535 - 1.43058 x1 + 5.30407 x2
C)11efcd22_071b_cfd6_b057_0f6ae9b62e31_TB7041_00 = 616.6849 - 3.33833 x1 - 1.780075 x2
D)11efcd22_071b_cfd6_b057_0f6ae9b62e31_TB7041_00 = 154.5535 + 2.333548 x1 + 0.335605 x2
E)11efcd22_071b_cfd6_b057_0f6ae9b62e31_TB7041_00 = 616.6849 - 3.33833 x1 + 1.780075 x2
Unlock Deck
Unlock for access to all 90 flashcards in this deck.
Unlock Deck
k this deck
36
The value of R2 always goes up when a nontrivial explanatory variable is added to a regression model.
Unlock Deck
Unlock for access to all 90 flashcards in this deck.
Unlock Deck
k this deck
37
A human resources analyst is developing a regression model to predict electricity plant manager compensation as a function of production capacity of the plant, number of employees at the plant, and plant technology (coal, oil, and nuclear).The "plant technology" variable in this model is ______.

A)a response variable
B)a dependent variable
C)a quantitative variable
D)an independent variable
E)a constant
Unlock Deck
Unlock for access to all 90 flashcards in this deck.
Unlock Deck
k this deck
38
A market analyst is developing a regression model to predict monthly household expenditures on groceries as a function of family size, household income, and household neighborhood (urban, suburban, and rural).The "neighborhood" variable in this model is ______.

A)an independent variable
B)a response variable
C)a quantitative variable
D)a dependent variable
E)a constant
Unlock Deck
Unlock for access to all 90 flashcards in this deck.
Unlock Deck
k this deck
39
A cost accountant is developing a regression model to predict the total cost of producing a batch of printed circuit boards as a linear function of batch size (the number of boards produced in one lot or batch), production plant (Kingsland, and Yorktown), and production shift (day, and evening).In this model, "batch size" is ______.

A)a response variable
B)an indicator variable
C)a dependent variable
D)a qualitative variable
E)an independent variable
Unlock Deck
Unlock for access to all 90 flashcards in this deck.
Unlock Deck
k this deck
40
A real estate appraiser is developing a regression model to predict the market value of single-family residential houses as a function of heated area, number of bedrooms, number of bathrooms, age of the house, and central heating (yes, no).The response variable in this model is _______.

A)heated area
B)number of bedrooms
C)market value
D)central heating
E)residential houses
Unlock Deck
Unlock for access to all 90 flashcards in this deck.
Unlock Deck
k this deck
41
A multiple regression analysis produced the following tables.  Predictor  Coefficierts  Stardard Error Etatisticp-value  Irntercept 752.083333631582.2362410.042132x111.873755.320472.2317110.042493x21.9081830.6627422.8792260.01213\begin{array} { | c | c | c | c | c | } \hline \text { Predictor } & \text { Coefficierts } & \text { Stardard Error } & \mathbf { E t a t i s t i c } & \boldsymbol { p } \text {-value } \\\hline \text { Irntercept } & 752.0833 & \mathbf { 3 3 6 3 1 5 8 } & \mathbf { 2 . 2 3 6 2 4 1 } & \mathbf { 0 . 0 4 2 1 3 2 } \\\hline \mathbf { x } _ { 1 } & 11.87375 & 5.32047 & \mathbf { 2 . 2 3 1 7 1 1 } & \mathbf { 0 . 0 4 2 4 9 3 } \\\hline \mathbf { x } _ { 2 } & 1.908183 & \mathbf { 0 . 6 6 2 7 4 2 } & \mathbf { 2 . 8 7 9 2 2 6 } & \mathbf { 0 . 0 1 2 1 3 } \\\hline\end{array}  Source df SS  MS Fp-value  Regression 2203693.3101846.76.7454060.010884 Residual 12181184.115098.67 Total 14384877.4\begin{array} { | c | c | c | c | c | c | } \hline \text { Source } & \mathrm { df } & \text { SS } & \text { MS } & F & p \text {-value } \\\hline \text { Regression } & 2 & 203693.3 & 101846.7 & 6.745406 & 0.010884 \\\hline \text { Residual } & 12 & 181184.1 & 15098.67 & & \\\hline \text { Total } & 14 & 384877.4 & & & \\\hline\end{array} These results indicate that ____________.

A)none of the predictor variables are significant at the 5% level
B)each predictor variable is significant at the 5% level
C)x1 is the only predictor variable significant at the 5% level
D)x2 is the only predictor variable significant at the 5% level
E)the intercept is not significant at the 5% level
Unlock Deck
Unlock for access to all 90 flashcards in this deck.
Unlock Deck
k this deck
42
The following ANOVA table is from a multiple regression analysis with n = 35 and four independent variables.  Source dfSSMSFp Repression 700 Error  Total 1000\begin{array} { | c | c | c | c | c | c | } \hline \text { Source } & \mathrm { df } & \mathrm { SS } & \mathrm { MS } & F & p \\\hline \text { Repression } & & 700 & & & \\\hline \text { Error } & & & & & \\\hline \text { Total } & & 1000 & & & \\\hline\end{array} The value of the standard error of the estimate se is __________.

A)13.23
B)3.16
C)17.32
D)26.46
E)10.00
Unlock Deck
Unlock for access to all 90 flashcards in this deck.
Unlock Deck
k this deck
43
A multiple regression analysis produced the following tables.  Predictor  Coefficients  Stardard Eror t Statistic p-value  Irtercept 616.6849154.55343.9901080.000947x13.338332.3335481.430580.170675x21.7800750.3356055.304075.83E05\begin{array} { | c | c | c | c | c | } \hline \text { Predictor } & \text { Coefficients } & \text { Stardard Eror } & \boldsymbol { t } \text { Statistic } & p \text {-value } \\\hline \text { Irtercept } & 616.6849 & 154.5534 & 3.990108 & 0.000947 \\\hline \boldsymbol { x } _ { 1 } & - 3.33833 & \mathbf { 2 . 3 3 3 5 4 8 } & - 1.43058 & \mathbf { 0 . 1 7 0 6 7 5 } \\\hline \mathbf { x } _ { 2 } & 1.780075 & \mathbf { 0 . 3 3 5 6 0 5 } & 5.30407 & 5.83 \mathrm { E } - 05 \\\hline\end{array}  Source df SS  MS Fp-value  Repression 212178360891.4814.761170.000286 Residual 1561876.684125.112 Total 17183659.6\begin{array} { | c | c | c | c | c | c | } \hline \text { Source } & \mathrm { df } & \text { SS } & \text { MS } & F & p \text {-value } \\\hline \text { Repression } & 2 & 121783 & 60891.48 & 14.76117 & 0.000286 \\\hline \text { Residual } & 15 & 61876.68 & 4125.112 & & \\\hline \text { Total } & 17 & 183659.6 & & & \\\hline\end{array} These results indicate that ____________.

A)none of the predictor variables are significant at the 5% level
B)each predictor variable is significant at the 5% level
C)x1 is significant at the 5% level
D)x2 is significant at the 5% level
E)the intercept is not significant at 5% level
Unlock Deck
Unlock for access to all 90 flashcards in this deck.
Unlock Deck
k this deck
44
A multiple regression analysis produced the following tables.  <strong>A multiple regression analysis produced the following tables.   Using  \alpha = 0.05 to test the null hypothesis H<sub>0</sub>:  \beta <sub>1</sub> = 0, the correct decision is ____.</strong> A)fail to reject the null hypothesis B)reject the null hypothesis C)fail to reject the alternative hypothesis D)reject the alternative hypothesis E)there is not enought information provided to make a decision  Using α\alpha = 0.05 to test the null hypothesis H0: β\beta 1 = 0, the correct decision is ____.

A)fail to reject the null hypothesis
B)reject the null hypothesis
C)fail to reject the alternative hypothesis
D)reject the alternative hypothesis
E)there is not enought information provided to make a decision
Unlock Deck
Unlock for access to all 90 flashcards in this deck.
Unlock Deck
k this deck
45
The following ANOVA table is from a multiple regression analysis with n = 35 and four independent variables.  Source dfSSMSFp Repression 700 Error  Total 1000\begin{array} { | c | c | c | c | c | c | } \hline \text { Source } & \mathrm { df } & \mathrm { SS } & \mathrm { MS } & F & p \\\hline \text { Repression } & & 700 & & & \\\hline \text { Error } & & & & & \\\hline \text { Total } & & 1000 & & & \\\hline\end{array} The number of degrees of freedom for this regression is __________.

A)1
B)4
C)34
D)30
E)35
Unlock Deck
Unlock for access to all 90 flashcards in this deck.
Unlock Deck
k this deck
46
A multiple regression analysis produced the following tables.  Predictor  Coefficients  Stardard Eror t Statistic p-value  Irtercept 616.6849154.55343.9901080.000947x13.338332.3335481.430580.170675x21.7800750.3356055.304075.83E05\begin{array} { | c | c | c | c | c | } \hline \text { Predictor } & \text { Coefficients } & \text { Stardard Eror } & \boldsymbol { t } \text { Statistic } & p \text {-value } \\\hline \text { Irtercept } & 616.6849 & 154.5534 & 3.990108 & 0.000947 \\\hline \boldsymbol { x } _ { 1 } & - 3.33833 & \mathbf { 2 . 3 3 3 5 4 8 } & - 1.43058 & \mathbf { 0 . 1 7 0 6 7 5 } \\\hline \mathbf { x } _ { 2 } & 1.780075 & \mathbf { 0 . 3 3 5 6 0 5 } & 5.30407 & 5.83 \mathrm { E } - 05 \\\hline\end{array}  Source df SS  MS Fp-value  Repression 212178360891.4814.761170.000286 Residual 1561876.684125.112 Total 17183659.6\begin{array} { | c | c | c | c | c | c | } \hline \text { Source } & \mathrm { df } & \text { SS } & \text { MS } & F & p \text {-value } \\\hline \text { Repression } & 2 & 121783 & 60891.48 & 14.76117 & 0.000286 \\\hline \text { Residual } & 15 & 61876.68 & 4125.112 & & \\\hline \text { Total } & 17 & 183659.6 & & & \\\hline\end{array} Using α\alpha = 0.01 to test the null hypothesis H0: β\beta 1 = β\beta 2 = 0, the critical F value is ____.

A)8.68
B)6.36
C)8.40
D)6.11
E)3.36
Unlock Deck
Unlock for access to all 90 flashcards in this deck.
Unlock Deck
k this deck
47
The following ANOVA table is from a multiple regression analysis with n = 35 and four independent variables.  Source dfSSMSFp Repression 700 Error  Total 1000\begin{array} { | c | c | c | c | c | c | } \hline \text { Source } & \mathrm { df } & \mathrm { SS } & \mathrm { MS } & F & p \\\hline \text { Repression } & & 700 & & & \\\hline \text { Error } & & & & & \\\hline \text { Total } & & 1000 & & & \\\hline\end{array} The MSE value is __________.

A)8.57
B)8.82
C)10.00
D)75.00
E)20.00
Unlock Deck
Unlock for access to all 90 flashcards in this deck.
Unlock Deck
k this deck
48
The following ANOVA table is from a multiple regression analysis with n = 35 and four independent variables.  Source dfSSMSFp Repression 700 Error  Total 1000\begin{array} { | c | c | c | c | c | c | } \hline \text { Source } & \mathrm { df } & \mathrm { SS } & \mathrm { MS } & F & p \\\hline \text { Repression } & & 700 & & & \\\hline \text { Error } & & & & & \\\hline \text { Total } & & 1000 & & & \\\hline\end{array} The adjusted R2 value is __________.

A)0.80
B)0.70
C)0.66
D)0.76
E)0.30
Unlock Deck
Unlock for access to all 90 flashcards in this deck.
Unlock Deck
k this deck
49
The following ANOVA table is from a multiple regression analysis with n = 35 and four independent variables.  Source dfSSMSFp Repression 700 Error  Total 1000\begin{array} { | c | c | c | c | c | c | } \hline \text { Source } & \mathrm { df } & \mathrm { SS } & \mathrm { MS } & F & p \\\hline \text { Repression } & & 700 & & & \\\hline \text { Error } & & & & & \\\hline \text { Total } & & 1000 & & & \\\hline\end{array} The MSR value is __________.

A)700.00
B)350.00
C)233.33
D)175.00
E)275.00
Unlock Deck
Unlock for access to all 90 flashcards in this deck.
Unlock Deck
k this deck
50
A multiple regression analysis produced the following tables. <strong>A multiple regression analysis produced the following tables.   These results indicate that ____________.</strong> A)none of the predictor variables are significant at the 10% level B)each predictor variable is significant at the 10% level C)x<sub>1</sub> is significant at the 10% level D)x<sub>2</sub> is significant at the 10% level E)the intercept is not significant at 10% level These results indicate that ____________.

A)none of the predictor variables are significant at the 10% level
B)each predictor variable is significant at the 10% level
C)x1 is significant at the 10% level
D)x2 is significant at the 10% level
E)the intercept is not significant at 10% level
Unlock Deck
Unlock for access to all 90 flashcards in this deck.
Unlock Deck
k this deck
51
A multiple regression analysis produced the following tables.  <strong>A multiple regression analysis produced the following tables.   Using  \alpha  = 0.05 to test the null hypothesis H<sub>0</sub>:  \beta <sub>2</sub> = 0, the correct decision is ____.</strong> A)fail to reject the null hypothesis B)reject the null hypothesis C)fail to reject the alternative hypothesis D)reject the alternative hypothesis E)there is not enought information provided to make a decision  Using α\alpha = 0.05 to test the null hypothesis H0: β\beta 2 = 0, the correct decision is ____.

A)fail to reject the null hypothesis
B)reject the null hypothesis
C)fail to reject the alternative hypothesis
D)reject the alternative hypothesis
E)there is not enought information provided to make a decision
Unlock Deck
Unlock for access to all 90 flashcards in this deck.
Unlock Deck
k this deck
52
A multiple regression analysis produced the following tables.  <strong>A multiple regression analysis produced the following tables.   Using  \alpha = 0.01 to test the model, these results indicate that ____________.</strong> A)at least one of the regression variables is a significant predictor of y B)none of the regression variables are significant predictors of y C)y cannot be sufficiently predicted using these data D)y is a good predictor of the regression variables in the model E)the y intercept in this model is the best predictor variable  Using α\alpha = 0.01 to test the model, these results indicate that ____________.

A)at least one of the regression variables is a significant predictor of y
B)none of the regression variables are significant predictors of y
C)y cannot be sufficiently predicted using these data
D)y is a good predictor of the regression variables in the model
E)the y intercept in this model is the best predictor variable
Unlock Deck
Unlock for access to all 90 flashcards in this deck.
Unlock Deck
k this deck
53
A multiple regression analysis produced the following tables.  Predictor  Coefficierts  Stardard Error Etatisticp-value  Irntercept 752.083333631582.2362410.042132x111.873755.320472.2317110.042493x21.9081830.6627422.8792260.01213\begin{array} { | c | c | c | c | c | } \hline \text { Predictor } & \text { Coefficierts } & \text { Stardard Error } & \mathbf { E t a t i s t i c } & \boldsymbol { p } \text {-value } \\\hline \text { Irntercept } & 752.0833 & \mathbf { 3 3 6 3 1 5 8 } & \mathbf { 2 . 2 3 6 2 4 1 } & \mathbf { 0 . 0 4 2 1 3 2 } \\\hline \mathbf { x } _ { 1 } & 11.87375 & 5.32047 & \mathbf { 2 . 2 3 1 7 1 1 } & \mathbf { 0 . 0 4 2 4 9 3 } \\\hline \mathbf { x } _ { 2 } & 1.908183 & \mathbf { 0 . 6 6 2 7 4 2 } & \mathbf { 2 . 8 7 9 2 2 6 } & \mathbf { 0 . 0 1 2 1 3 } \\\hline\end{array}  Source df SS  MS Fp-value  Regression 2203693.3101846.76.7454060.010884 Residual 12181184.115098.67 Total 14384877.4\begin{array} { | c | c | c | c | c | c | } \hline \text { Source } & \mathrm { df } & \text { SS } & \text { MS } & F & p \text {-value } \\\hline \text { Regression } & 2 & 203693.3 & 101846.7 & 6.745406 & 0.010884 \\\hline \text { Residual } & 12 & 181184.1 & 15098.67 & & \\\hline \text { Total } & 14 & 384877.4 & & & \\\hline\end{array} Using α\alpha = 0.10 to test the null hypothesis H0: β\beta 2 = 0, the critical t value is ____.

A)±1.345
B)±1.356
C)±1.761
D)±2.782
E)±1.782
Unlock Deck
Unlock for access to all 90 flashcards in this deck.
Unlock Deck
k this deck
54
In regression analysis, outliers may be identified by examining the ________.

A)coefficient of determination
B)coefficient of correlation
C)p-values for the partial coefficients
D)residuals
E)R-squared value
Unlock Deck
Unlock for access to all 90 flashcards in this deck.
Unlock Deck
k this deck
55
The following ANOVA table is from a multiple regression analysis with n = 35 and four independent variables.  Source dfSSMSFp Repression 700 Error  Total 1000\begin{array} { | c | c | c | c | c | c | } \hline \text { Source } & \mathrm { df } & \mathrm { SS } & \mathrm { MS } & F & p \\\hline \text { Repression } & & 700 & & & \\\hline \text { Error } & & & & & \\\hline \text { Total } & & 1000 & & & \\\hline\end{array} The R2 value is __________.

A)0.80
B)0.70
C)0.66
D)0.76
E)0.30
Unlock Deck
Unlock for access to all 90 flashcards in this deck.
Unlock Deck
k this deck
56
A multiple regression analysis produced the following tables.  Predictor  Coefficients  Stardard Eror t Statistic p-value  Irtercept 616.6849154.55343.9901080.000947x13.338332.3335481.430580.170675x21.7800750.3356055.304075.83E05\begin{array} { | c | c | c | c | c | } \hline \text { Predictor } & \text { Coefficients } & \text { Stardard Eror } & \boldsymbol { t } \text { Statistic } & p \text {-value } \\\hline \text { Irtercept } & 616.6849 & 154.5534 & 3.990108 & 0.000947 \\\hline \boldsymbol { x } _ { 1 } & - 3.33833 & \mathbf { 2 . 3 3 3 5 4 8 } & - 1.43058 & \mathbf { 0 . 1 7 0 6 7 5 } \\\hline \mathbf { x } _ { 2 } & 1.780075 & \mathbf { 0 . 3 3 5 6 0 5 } & 5.30407 & 5.83 \mathrm { E } - 05 \\\hline\end{array}  Source df SS  MS Fp-value  Repression 212178360891.4814.761170.000286 Residual 1561876.684125.112 Total 17183659.6\begin{array} { | c | c | c | c | c | c | } \hline \text { Source } & \mathrm { df } & \text { SS } & \text { MS } & F & p \text {-value } \\\hline \text { Repression } & 2 & 121783 & 60891.48 & 14.76117 & 0.000286 \\\hline \text { Residual } & 15 & 61876.68 & 4125.112 & & \\\hline \text { Total } & 17 & 183659.6 & & & \\\hline\end{array} Using α\alpha = 0.05 to test the null hypothesis H0: β\beta 1 = 0, the critical t value is ____.

A)± 1.753
B)± 2.110
C)± 2.131
D)± 1.740
E)± 2.500
Unlock Deck
Unlock for access to all 90 flashcards in this deck.
Unlock Deck
k this deck
57
A multiple regression analysis produced the following tables.  Predictor  Coefficierts  Stardard Error Etatisticp-value  Irntercept 752.083333631582.2362410.042132x111.873755.320472.2317110.042493x21.9081830.6627422.8792260.01213\begin{array} { | c | c | c | c | c | } \hline \text { Predictor } & \text { Coefficierts } & \text { Stardard Error } & \mathbf { E t a t i s t i c } & \boldsymbol { p } \text {-value } \\\hline \text { Irntercept } & 752.0833 & \mathbf { 3 3 6 3 1 5 8 } & \mathbf { 2 . 2 3 6 2 4 1 } & \mathbf { 0 . 0 4 2 1 3 2 } \\\hline \mathbf { x } _ { 1 } & 11.87375 & 5.32047 & \mathbf { 2 . 2 3 1 7 1 1 } & \mathbf { 0 . 0 4 2 4 9 3 } \\\hline \mathbf { x } _ { 2 } & 1.908183 & \mathbf { 0 . 6 6 2 7 4 2 } & \mathbf { 2 . 8 7 9 2 2 6 } & \mathbf { 0 . 0 1 2 1 3 } \\\hline\end{array}  Source df SS  MS Fp-value  Regression 2203693.3101846.76.7454060.010884 Residual 12181184.115098.67 Total 14384877.4\begin{array} { | c | c | c | c | c | c | } \hline \text { Source } & \mathrm { df } & \text { SS } & \text { MS } & F & p \text {-value } \\\hline \text { Regression } & 2 & 203693.3 & 101846.7 & 6.745406 & 0.010884 \\\hline \text { Residual } & 12 & 181184.1 & 15098.67 & & \\\hline \text { Total } & 14 & 384877.4 & & & \\\hline\end{array} Using α\alpha = 0.05 to test the null hypothesis H0: β\beta 1 = β\beta 2 = 0, the critical F value is ____.

A)3.74
B)3.89
C)4.75
D)4.60
E)2.74
Unlock Deck
Unlock for access to all 90 flashcards in this deck.
Unlock Deck
k this deck
58
The following ANOVA table is from a multiple regression analysis with n = 35 and four independent variables.  Source dfSSMSFp Repression 700 Error  Total 1000\begin{array} { | c | c | c | c | c | c | } \hline \text { Source } & \mathrm { df } & \mathrm { SS } & \mathrm { MS } & F & p \\\hline \text { Repression } & & 700 & & & \\\hline \text { Error } & & & & & \\\hline \text { Total } & & 1000 & & & \\\hline\end{array} The observed F value is __________.

A)17.50
B)2.33
C)0.70
D)0.43
E)0.50
Unlock Deck
Unlock for access to all 90 flashcards in this deck.
Unlock Deck
k this deck
59
A multiple regression analysis produced the following tables. <strong>A multiple regression analysis produced the following tables.   The sample size for this analysis is ____________.</strong> A)12 B)15 C)17 D)18 E)24 The sample size for this analysis is ____________.

A)12
B)15
C)17
D)18
E)24
Unlock Deck
Unlock for access to all 90 flashcards in this deck.
Unlock Deck
k this deck
60
The following ANOVA table is from a multiple regression analysis with n = 35 and four independent variables.  Source dfSSMSFp Repression 700 Error  Total 1000\begin{array} { | c | c | c | c | c | c | } \hline \text { Source } & \mathrm { df } & \mathrm { SS } & \mathrm { MS } & F & p \\\hline \text { Repression } & & 700 & & & \\\hline \text { Error } & & & & & \\\hline \text { Total } & & 1000 & & & \\\hline\end{array} The number of degrees of freedom for error is __________.

A)1
B)4
C)34
D)30
E)35
Unlock Deck
Unlock for access to all 90 flashcards in this deck.
Unlock Deck
k this deck
61
A multiple regression analysis produced the following tables.  Predictor  Coefficients  Stardard Error t Statistic p-value  Irtercept 139.6092548.9890.054770.957154x124.2461922.252671.0895860.295682x232.1017117.445591.8401050.08869\begin{array} { | c | c | c | c | c | } \hline \text { Predictor } & \text { Coefficients } & \text { Stardard Error } & \boldsymbol { t } \text { Statistic } & p \text {-value } \\\hline \text { Irtercept } & - 139.609 & 2548.989 & - 0.05477 & 0.957154 \\\hline \boldsymbol { x } _ { 1 } & 24.24619 & 22.25267 & 1.089586 & \mathbf { 0 . 2 9 5 6 8 2 } \\\hline \mathbf { x } _ { 2 } & 32.10171 & 17.44559 & 1.840105 & 0.08869 \\\hline\end{array}  Source df SS  MS Fp-value  Repression 2302689151344.51.7059420.219838 Residual 13115330988716.07 Total 151455998\begin{array} { | c | c | c | c | c | c | } \hline \text { Source } & \mathrm { df } & \text { SS } & \text { MS } & F & p \text {-value } \\\hline \text { Repression } & 2 & 302689 & 151344.5 & 1.705942 & 0.219838 \\\hline \text { Residual } & 13 & 1153309 & 88716.07 & & \\\hline \text { Total } & 15 & 1455998 & & & \\\hline\end{array} The regression equation for this analysis is ____________.

A) <strong>A multiple regression analysis produced the following tables.  \begin{array} { | c | c | c | c | c | } \hline \text { Predictor } & \text { Coefficients } & \text { Stardard Error } & \boldsymbol { t } \text { Statistic } & p \text {-value } \\ \hline \text { Irtercept } & - 139.609 & 2548.989 & - 0.05477 & 0.957154 \\ \hline \boldsymbol { x } _ { 1 } & 24.24619 & 22.25267 & 1.089586 & \mathbf { 0 . 2 9 5 6 8 2 } \\ \hline \mathbf { x } _ { 2 } & 32.10171 & 17.44559 & 1.840105 & 0.08869 \\ \hline \end{array}   \begin{array} { | c | c | c | c | c | c | } \hline \text { Source } & \mathrm { df } & \text { SS } & \text { MS } & F & p \text {-value } \\ \hline \text { Repression } & 2 & 302689 & 151344.5 & 1.705942 & 0.219838 \\ \hline \text { Residual } & 13 & 1153309 & 88716.07 & & \\ \hline \text { Total } & 15 & 1455998 & & & \\ \hline \end{array}  The regression equation for this analysis is ____________.</strong> A)  = 302689 + 1153309 x<sub>1</sub> + 1455998 x<sub>2</sub> B)  = -139.609 + 24.24619 x<sub>1</sub> + 32.10171 x<sub>2</sub> C)  = 2548.989 + 22.25267 x<sub>1</sub> + 17.44559 x<sub>2</sub> D)  = -0.05477 + 1.089586 x<sub>1</sub> + 1.840105 x<sub>2</sub> E)  = 0.05477 + 1.089586 x<sub>1</sub> + 1.840105 x<sub>2</sub>  = 302689 + 1153309 x1 + 1455998 x2
B)11efcd22_071b_cfd6_b057_0f6ae9b62e31_TB7041_00 = -139.609 + 24.24619 x1 + 32.10171 x2
C)11efcd22_071b_cfd6_b057_0f6ae9b62e31_TB7041_00 = 2548.989 + 22.25267 x1 + 17.44559 x2
D)11efcd22_071b_cfd6_b057_0f6ae9b62e31_TB7041_00 = -0.05477 + 1.089586 x1 + 1.840105 x2
E)11efcd22_071b_cfd6_b057_0f6ae9b62e31_TB7041_00 = 0.05477 + 1.089586 x1 + 1.840105 x2
Unlock Deck
Unlock for access to all 90 flashcards in this deck.
Unlock Deck
k this deck
62
A multiple regression analysis produced the following tables.  Predictor  Coefficients  Stardard Error t Statistic p-value  Irtercept 139.6092548.9890.054770.957154x124.2461922.252671.0895860.295682x232.1017117.445591.8401050.08869\begin{array} { | c | c | c | c | c | } \hline \text { Predictor } & \text { Coefficients } & \text { Stardard Error } & \boldsymbol { t } \text { Statistic } & p \text {-value } \\\hline \text { Irtercept } & - 139.609 & 2548.989 & - 0.05477 & 0.957154 \\\hline \boldsymbol { x } _ { 1 } & 24.24619 & 22.25267 & 1.089586 & \mathbf { 0 . 2 9 5 6 8 2 } \\\hline \mathbf { x } _ { 2 } & 32.10171 & 17.44559 & 1.840105 & 0.08869 \\\hline\end{array}  Source df SS  MS Fp-value  Repression 2302689151344.51.7059420.219838 Residual 13115330988716.07 Total 151455998\begin{array} { | c | c | c | c | c | c | } \hline \text { Source } & \mathrm { df } & \text { SS } & \text { MS } & F & p \text {-value } \\\hline \text { Repression } & 2 & 302689 & 151344.5 & 1.705942 & 0.219838 \\\hline \text { Residual } & 13 & 1153309 & 88716.07 & & \\\hline \text { Total } & 15 & 1455998 & & & \\\hline\end{array} The sample size for this analysis is ____________.

A)17
B)13
C)16
D)11
E)15
Unlock Deck
Unlock for access to all 90 flashcards in this deck.
Unlock Deck
k this deck
63
The following ANOVA table is from a multiple regression analysis.  Source dfSSMSFp Repression 31500 Error 26 Total 2300\begin{array} { | c | c | c | c | c | c | } \hline \text { Source } & \mathrm { df } & \mathrm { SS } & \mathrm { MS } & F & p \\\hline \text { Repression } & 3 & 1500 & & & \\\hline \text { Error } & 26 & & & & \\\hline \text { Total } & & 2300 & & & \\\hline\end{array} The MSE value is closest to__________.

A)31
B)500
C)16
D)2300
E)8.7
Unlock Deck
Unlock for access to all 90 flashcards in this deck.
Unlock Deck
k this deck
64
The following ANOVA table is from a multiple regression analysis.  Source dfSSMSFp Repression 31500 Error 26 Total 2300\begin{array} { | c | c | c | c | c | c | } \hline \text { Source } & \mathrm { df } & \mathrm { SS } & \mathrm { MS } & F & p \\\hline \text { Repression } & 3 & 1500 & & & \\\hline \text { Error } & 26 & & & & \\\hline \text { Total } & & 2300 & & & \\\hline\end{array} The observed F value is __________.

A)16.25
B)30.77
C)500
D)0.049
E)0.039
Unlock Deck
Unlock for access to all 90 flashcards in this deck.
Unlock Deck
k this deck
65
A multiple regression analysis produced the following tables.  Predictor  Coefficients  Stardard Error t Statistic p-value  Irtercept 139.6092548.9890.054770.957154x124.2461922.252671.0895860.295682x232.1017117.445591.8401050.08869\begin{array} { | c | c | c | c | c | } \hline \text { Predictor } & \text { Coefficients } & \text { Stardard Error } & \boldsymbol { t } \text { Statistic } & p \text {-value } \\\hline \text { Irtercept } & - 139.609 & 2548.989 & - 0.05477 & 0.957154 \\\hline \boldsymbol { x } _ { 1 } & 24.24619 & 22.25267 & 1.089586 & \mathbf { 0 . 2 9 5 6 8 2 } \\\hline \mathbf { x } _ { 2 } & 32.10171 & 17.44559 & 1.840105 & 0.08869 \\\hline\end{array}  Source df SS  MS Fp-value  Repression 2302689151344.51.7059420.219838 Residual 13115330988716.07 Total 151455998\begin{array} { | c | c | c | c | c | c | } \hline \text { Source } & \mathrm { df } & \text { SS } & \text { MS } & F & p \text {-value } \\\hline \text { Repression } & 2 & 302689 & 151344.5 & 1.705942 & 0.219838 \\\hline \text { Residual } & 13 & 1153309 & 88716.07 & & \\\hline \text { Total } & 15 & 1455998 & & & \\\hline\end{array} For x1= 40 and x2 = 90, the predicted value of y is ____________.

A)753.77
B)1,173.00
C)1,355.26
D)3,719.39
E)1,565.75
Unlock Deck
Unlock for access to all 90 flashcards in this deck.
Unlock Deck
k this deck
66
The following ANOVA table is from a multiple regression analysis.  Source dfSSMSFp Repression 31500 Error 26 Total 2300\begin{array} { | c | c | c | c | c | c | } \hline \text { Source } & \mathrm { df } & \mathrm { SS } & \mathrm { MS } & F & p \\\hline \text { Repression } & 3 & 1500 & & & \\\hline \text { Error } & 26 & & & & \\\hline \text { Total } & & 2300 & & & \\\hline\end{array} The R2 value is __________.

A)0.65
B)0.53
C)0.35
D)0.43
E)1.37
Unlock Deck
Unlock for access to all 90 flashcards in this deck.
Unlock Deck
k this deck
67
A multiple regression analysis produced the following tables.  Predictor  Coefficients  Stardard Error t Statistic p-value  Irtercept 624.536978.497127.9561766.88E06x18.5691221.6522555.1863190.000301x24.7365150.6991946.7742483.06E05\begin{array} { | c | c | c | c | c | } \hline \text { Predictor } & \text { Coefficients } & \text { Stardard Error } & t \text { Statistic } & p \text {-value } \\\hline \text { Irtercept } & 624.5369 & 78.49712 & 7.956176 & 6.88 E - 06 \\\hline \boldsymbol { x } _ { 1 } & 8.569122 & 1.652255 & 5.186319 & \mathbf { 0 . 0 0 0 3 0 1 } \\\hline \mathbf { x } _ { 2 } & 4.736515 & 0.699194 & 6.774248 & \mathbf { 3 . 0 6 E - 0 5 } \\\hline\end{array}  Source df SS  MS Fp-value  Repression 21660914830457.158.319561.4E06 Residual 11156637.514239.77 Total 131817552\begin{array} { | c | c | c | c | c | c | } \hline \text { Source } & \mathrm { df } & \text { SS } & \text { MS } & F & p \text {-value } \\\hline \text { Repression } & 2 & 1660914 & \mathbf { 8 3 0 4 5 7 . 1 } & 58.31956 & 1.4 \mathrm { E } - 06 \\\hline \text { Residual } & 11 & 156637.5 & 14239.77 & & \\\hline \text { Total } & 13 & 1817552 & & & \\\hline\end{array} These results indicate that ____________.

A)none of the predictor variables are significant at the 5% level
B)each predictor variable is significant at the 5% level
C)x1 is the only predictor variable significant at the 5% level
D)x2 is the only predictor variable significant at the 5% level
E)the intercept is not significant at 5% level
Unlock Deck
Unlock for access to all 90 flashcards in this deck.
Unlock Deck
k this deck
68
The following ANOVA table is from a multiple regression analysis.  Source dfSSMSFp Repression 31500 Error 26 Total 2300\begin{array} { | c | c | c | c | c | c | } \hline \text { Source } & \mathrm { df } & \mathrm { SS } & \mathrm { MS } & F & p \\\hline \text { Repression } & 3 & 1500 & & & \\\hline \text { Error } & 26 & & & & \\\hline \text { Total } & & 2300 & & & \\\hline\end{array} The sample size for the analysis is __________.

A)30
B)26
C)3
D)29
E)31
Unlock Deck
Unlock for access to all 90 flashcards in this deck.
Unlock Deck
k this deck
69
A multiple regression analysis produced the following tables.  Predictor  Coefficients  Stardard Error t Statistic p-value  Irtercept 139.6092548.9890.054770.957154x124.2461922.252671.0895860.295682x232.1017117.445591.8401050.08869\begin{array} { | c | c | c | c | c | } \hline \text { Predictor } & \text { Coefficients } & \text { Stardard Error } & \boldsymbol { t } \text { Statistic } & p \text {-value } \\\hline \text { Irtercept } & - 139.609 & 2548.989 & - 0.05477 & 0.957154 \\\hline \boldsymbol { x } _ { 1 } & 24.24619 & 22.25267 & 1.089586 & \mathbf { 0 . 2 9 5 6 8 2 } \\\hline \mathbf { x } _ { 2 } & 32.10171 & 17.44559 & 1.840105 & 0.08869 \\\hline\end{array}  Source df SS  MS Fp-value  Repression 2302689151344.51.7059420.219838 Residual 13115330988716.07 Total 151455998\begin{array} { | c | c | c | c | c | c | } \hline \text { Source } & \mathrm { df } & \text { SS } & \text { MS } & F & p \text {-value } \\\hline \text { Repression } & 2 & 302689 & 151344.5 & 1.705942 & 0.219838 \\\hline \text { Residual } & 13 & 1153309 & 88716.07 & & \\\hline \text { Total } & 15 & 1455998 & & & \\\hline\end{array} Using α\alpha = 0.01 to test the null hypothesis H0: β\beta 2 = 0, the critical t value is ____.

A)± 1.174
B)± 2.093
C)± 2.131
D)± 4.012
E)± 3.012
Unlock Deck
Unlock for access to all 90 flashcards in this deck.
Unlock Deck
k this deck
70
The following ANOVA table is from a multiple regression analysis.  Source dfSSMSFp Repression 31500 Error 26 Total 2300\begin{array} { | c | c | c | c | c | c | } \hline \text { Source } & \mathrm { df } & \mathrm { SS } & \mathrm { MS } & F & p \\\hline \text { Repression } & 3 & 1500 & & & \\\hline \text { Error } & 26 & & & & \\\hline \text { Total } & & 2300 & & & \\\hline\end{array} The value of the standard error of the estimate se is __________.

A)30.77
B)5.55
C)4.03
D)3.20
E)0.73
Unlock Deck
Unlock for access to all 90 flashcards in this deck.
Unlock Deck
k this deck
71
A multiple regression analysis produced the following tables.  Predictor  Coefficients  Stardard Error t Statistic p-value  Irtercept 624.536978.497127.9561766.88E06x18.5691221.6522555.1863190.000301x24.7365150.6991946.7742483.06E05\begin{array} { | c | c | c | c | c | } \hline \text { Predictor } & \text { Coefficients } & \text { Stardard Error } & t \text { Statistic } & p \text {-value } \\\hline \text { Irtercept } & 624.5369 & 78.49712 & 7.956176 & 6.88 E - 06 \\\hline \boldsymbol { x } _ { 1 } & 8.569122 & 1.652255 & 5.186319 & \mathbf { 0 . 0 0 0 3 0 1 } \\\hline \mathbf { x } _ { 2 } & 4.736515 & 0.699194 & 6.774248 & \mathbf { 3 . 0 6 E - 0 5 } \\\hline\end{array}  Source df SS  MS Fp-value  Repression 21660914830457.158.319561.4E06 Residual 11156637.514239.77 Total 131817552\begin{array} { | c | c | c | c | c | c | } \hline \text { Source } & \mathrm { df } & \text { SS } & \text { MS } & F & p \text {-value } \\\hline \text { Repression } & 2 & 1660914 & \mathbf { 8 3 0 4 5 7 . 1 } & 58.31956 & 1.4 \mathrm { E } - 06 \\\hline \text { Residual } & 11 & 156637.5 & 14239.77 & & \\\hline \text { Total } & 13 & 1817552 & & & \\\hline\end{array} The coefficient of multiple determination is ____________.

A)0.0592
B)0.9138
C)0.1149
D)0.9559
E)1.0000
Unlock Deck
Unlock for access to all 90 flashcards in this deck.
Unlock Deck
k this deck
72
The following ANOVA table is from a multiple regression analysis.  Source dfSSMSFp Repression 31500 Error 26 Total 2300\begin{array} { | c | c | c | c | c | c | } \hline \text { Source } & \mathrm { df } & \mathrm { SS } & \mathrm { MS } & F & p \\\hline \text { Repression } & 3 & 1500 & & & \\\hline \text { Error } & 26 & & & & \\\hline \text { Total } & & 2300 & & & \\\hline\end{array} The MSR value is __________.

A)1500
B)50
C)2300
D)500
E)31
Unlock Deck
Unlock for access to all 90 flashcards in this deck.
Unlock Deck
k this deck
73
The following ANOVA table is from a multiple regression analysis.  Source dfSSMSFp Repression 31500 Error 26 Total 2300\begin{array} { | c | c | c | c | c | c | } \hline \text { Source } & \mathrm { df } & \mathrm { SS } & \mathrm { MS } & F & p \\\hline \text { Repression } & 3 & 1500 & & & \\\hline \text { Error } & 26 & & & & \\\hline \text { Total } & & 2300 & & & \\\hline\end{array} The adjusted R2 value is __________.

A)0.65
B)0.39
C)0.61
D)0.53
E)0.78
Unlock Deck
Unlock for access to all 90 flashcards in this deck.
Unlock Deck
k this deck
74
The following ANOVA table is from a multiple regression analysis.  Source dfSSMSFp Repression 31500 Error 26 Total 2300\begin{array} { | c | c | c | c | c | c | } \hline \text { Source } & \mathrm { df } & \mathrm { SS } & \mathrm { MS } & F & p \\\hline \text { Repression } & 3 & 1500 & & & \\\hline \text { Error } & 26 & & & & \\\hline \text { Total } & & 2300 & & & \\\hline\end{array} The number of independent variables in the analysis is __________.

A)30
B)26
C)1
D)3
E)2
Unlock Deck
Unlock for access to all 90 flashcards in this deck.
Unlock Deck
k this deck
75
A multiple regression analysis produced the following tables.  Predictor  Coefficients  Stardard Error t Statistic p-value  Irtercept 139.6092548.9890.054770.957154x124.2461922.252671.0895860.295682x232.1017117.445591.8401050.08869\begin{array} { | c | c | c | c | c | } \hline \text { Predictor } & \text { Coefficients } & \text { Stardard Error } & \boldsymbol { t } \text { Statistic } & p \text {-value } \\\hline \text { Irtercept } & - 139.609 & 2548.989 & - 0.05477 & 0.957154 \\\hline \boldsymbol { x } _ { 1 } & 24.24619 & 22.25267 & 1.089586 & \mathbf { 0 . 2 9 5 6 8 2 } \\\hline \mathbf { x } _ { 2 } & 32.10171 & 17.44559 & 1.840105 & 0.08869 \\\hline\end{array}  Source df SS  MS Fp-value  Repression 2302689151344.51.7059420.219838 Residual 13115330988716.07 Total 151455998\begin{array} { | c | c | c | c | c | c | } \hline \text { Source } & \mathrm { df } & \text { SS } & \text { MS } & F & p \text {-value } \\\hline \text { Repression } & 2 & 302689 & 151344.5 & 1.705942 & 0.219838 \\\hline \text { Residual } & 13 & 1153309 & 88716.07 & & \\\hline \text { Total } & 15 & 1455998 & & & \\\hline\end{array} Using α\alpha = 0.01 to test the null hypothesis H0: β\beta 1 = β\beta 2 = 0, the critical F value is ____.

A)5.99
B)5.70
C)1.96
D)4.84
E)6.70
Unlock Deck
Unlock for access to all 90 flashcards in this deck.
Unlock Deck
k this deck
76
A multiple regression analysis produced the following tables.  Predictor  Coefficients  Stardard Error t Statistic p-value  Irtercept 139.6092548.9890.054770.957154x124.2461922.252671.0895860.295682x232.1017117.445591.8401050.08869\begin{array} { | c | c | c | c | c | } \hline \text { Predictor } & \text { Coefficients } & \text { Stardard Error } & \boldsymbol { t } \text { Statistic } & p \text {-value } \\\hline \text { Irtercept } & - 139.609 & 2548.989 & - 0.05477 & 0.957154 \\\hline \boldsymbol { x } _ { 1 } & 24.24619 & 22.25267 & 1.089586 & \mathbf { 0 . 2 9 5 6 8 2 } \\\hline \mathbf { x } _ { 2 } & 32.10171 & 17.44559 & 1.840105 & 0.08869 \\\hline\end{array}  Source df SS  MS Fp-value  Repression 2302689151344.51.7059420.219838 Residual 13115330988716.07 Total 151455998\begin{array} { | c | c | c | c | c | c | } \hline \text { Source } & \mathrm { df } & \text { SS } & \text { MS } & F & p \text {-value } \\\hline \text { Repression } & 2 & 302689 & 151344.5 & 1.705942 & 0.219838 \\\hline \text { Residual } & 13 & 1153309 & 88716.07 & & \\\hline \text { Total } & 15 & 1455998 & & & \\\hline\end{array} The coefficient of multiple determination is ____________.

A)0.2079
B)0.0860
C)0.5440
D)0.7921
E)0.5000
Unlock Deck
Unlock for access to all 90 flashcards in this deck.
Unlock Deck
k this deck
77
A multiple regression analysis produced the following tables.  Predictor  Coefficients  Stardard Error t Statistic p-value  Irtercept 624.536978.497127.9561766.88E06x18.5691221.6522555.1863190.000301x24.7365150.6991946.7742483.06E05\begin{array} { | c | c | c | c | c | } \hline \text { Predictor } & \text { Coefficients } & \text { Stardard Error } & t \text { Statistic } & p \text {-value } \\\hline \text { Irtercept } & 624.5369 & 78.49712 & 7.956176 & 6.88 E - 06 \\\hline \boldsymbol { x } _ { 1 } & 8.569122 & 1.652255 & 5.186319 & \mathbf { 0 . 0 0 0 3 0 1 } \\\hline \mathbf { x } _ { 2 } & 4.736515 & 0.699194 & 6.774248 & \mathbf { 3 . 0 6 E - 0 5 } \\\hline\end{array}  Source df SS  MS Fp-value  Repression 21660914830457.158.319561.4E06 Residual 11156637.514239.77 Total 131817552\begin{array} { | c | c | c | c | c | c | } \hline \text { Source } & \mathrm { df } & \text { SS } & \text { MS } & F & p \text {-value } \\\hline \text { Repression } & 2 & 1660914 & \mathbf { 8 3 0 4 5 7 . 1 } & 58.31956 & 1.4 \mathrm { E } - 06 \\\hline \text { Residual } & 11 & 156637.5 & 14239.77 & & \\\hline \text { Total } & 13 & 1817552 & & & \\\hline\end{array} The adjusted R2 is ____________.

A)0.9138
B)0.9408
C)0.8981
D)0.8851
E)0.8891
Unlock Deck
Unlock for access to all 90 flashcards in this deck.
Unlock Deck
k this deck
78
A multiple regression analysis produced the following tables.  Predictor  Coefficients  Stardard Error t Statistic p-value  Irtercept 624.536978.497127.9561766.88E06x18.5691221.6522555.1863190.000301x24.7365150.6991946.7742483.06E05\begin{array} { | c | c | c | c | c | } \hline \text { Predictor } & \text { Coefficients } & \text { Stardard Error } & t \text { Statistic } & p \text {-value } \\\hline \text { Irtercept } & 624.5369 & 78.49712 & 7.956176 & 6.88 E - 06 \\\hline \boldsymbol { x } _ { 1 } & 8.569122 & 1.652255 & 5.186319 & \mathbf { 0 . 0 0 0 3 0 1 } \\\hline \mathbf { x } _ { 2 } & 4.736515 & 0.699194 & 6.774248 & \mathbf { 3 . 0 6 E - 0 5 } \\\hline\end{array}  Source df SS  MS Fp-value  Repression 21660914830457.158.319561.4E06 Residual 11156637.514239.77 Total 131817552\begin{array} { | c | c | c | c | c | c | } \hline \text { Source } & \mathrm { df } & \text { SS } & \text { MS } & F & p \text {-value } \\\hline \text { Repression } & 2 & 1660914 & \mathbf { 8 3 0 4 5 7 . 1 } & 58.31956 & 1.4 \mathrm { E } - 06 \\\hline \text { Residual } & 11 & 156637.5 & 14239.77 & & \\\hline \text { Total } & 13 & 1817552 & & & \\\hline\end{array} For x1= 30 and x2 = 100, the predicted value of y is ____________.

A)753.77
B)1,173.00
C)1,355.26
D)615.13
E)6153.13
Unlock Deck
Unlock for access to all 90 flashcards in this deck.
Unlock Deck
k this deck
79
A multiple regression analysis produced the following tables.  Predictor  Coefficients  Stardard Error t Statistic p-value  Irtercept 139.6092548.9890.054770.957154x124.2461922.252671.0895860.295682x232.1017117.445591.8401050.08869\begin{array} { | c | c | c | c | c | } \hline \text { Predictor } & \text { Coefficients } & \text { Stardard Error } & \boldsymbol { t } \text { Statistic } & p \text {-value } \\\hline \text { Irtercept } & - 139.609 & 2548.989 & - 0.05477 & 0.957154 \\\hline \boldsymbol { x } _ { 1 } & 24.24619 & 22.25267 & 1.089586 & \mathbf { 0 . 2 9 5 6 8 2 } \\\hline \mathbf { x } _ { 2 } & 32.10171 & 17.44559 & 1.840105 & 0.08869 \\\hline\end{array}  Source df SS  MS Fp-value  Repression 2302689151344.51.7059420.219838 Residual 13115330988716.07 Total 151455998\begin{array} { | c | c | c | c | c | c | } \hline \text { Source } & \mathrm { df } & \text { SS } & \text { MS } & F & p \text {-value } \\\hline \text { Repression } & 2 & 302689 & 151344.5 & 1.705942 & 0.219838 \\\hline \text { Residual } & 13 & 1153309 & 88716.07 & & \\\hline \text { Total } & 15 & 1455998 & & & \\\hline\end{array} These results indicate that ____________.

A)none of the predictor variables are significant at the 5% level
B)each predictor variable is significant at the 5% level
C)x1 is the only predictor variable significant at the 5% level
D)x2 is the only predictor variable significant at the 5% level
E)all variables are significant at 5% level
Unlock Deck
Unlock for access to all 90 flashcards in this deck.
Unlock Deck
k this deck
80
The following ANOVA table is from a multiple regression analysis.  Source dfSSMSFp Repression 31500 Error 26 Total 2300\begin{array} { | c | c | c | c | c | c | } \hline \text { Source } & \mathrm { df } & \mathrm { SS } & \mathrm { MS } & F & p \\\hline \text { Repression } & 3 & 1500 & & & \\\hline \text { Error } & 26 & & & & \\\hline \text { Total } & & 2300 & & & \\\hline\end{array} The SSE value is __________.

A)30
B)1500
C)500
D)800
E)2300
Unlock Deck
Unlock for access to all 90 flashcards in this deck.
Unlock Deck
k this deck
locked card icon
Unlock Deck
Unlock for access to all 90 flashcards in this deck.