Deck 7: Integration

Full screen (f)
exit full mode
Question
Integrate (tan7x+cos7x)dx\int(\tan 7 x+\cos 7 x) d x .

A) lncos7x7sin7x7+C\frac{\ln |\cos 7 x|}{7}-\frac{\sin 7 x}{7}+C
B) lncos7x7+sin7x7+C-\frac{\ln |\cos 7 x|}{7}+\frac{\sin 7 x}{7}+C
C) cot7x7sin7x7+C\frac{\cot 7 x}{7}-\frac{\sin 7 x}{7}+C
D) cot7x7+sin7x7+C-\frac{\cot 7 x}{7}+\frac{\sin 7 x}{7}+C
Use Space or
up arrow
down arrow
to flip the card.
Question
Find an antiderivative of x26x+8x3x^{2}-\frac{6}{x}+\frac{8}{x^{3}} .

A) x3312x232x4+C\frac{x^{3}}{3}-\frac{12}{x^{2}}-\frac{32}{x^{4}}+C
B) x336x+8x2+C\frac{x^{3}}{3}-\frac{6}{x}+\frac{8}{x^{2}}+C
C) x336lnx+8x2+C\frac{x^{3}}{3}-6 \ln |x|+\frac{8}{x^{2}}+C
D) x336lnx4x2+C\frac{x^{3}}{3}-6 \ln |x|-\frac{4}{x^{2}}+C
Question
Find the area between f(x)=4xex2f(x)=4 x e^{-x^{2}} and g(x)= x for x \ge 0.Round to 3 decimal places.
Question
Compute RRsinx9+x4dx\int_{-R}^{R} \frac{\sin x}{9+x^{4}} d x .

A) 2cosR9R+R5\frac{2 \cos R}{9 R+R^{5}}
B) 3cos(9+R4)R3\frac{3 \cos \left(9+R^{4}\right)}{R^{3}}
C) 13(9+R4)\frac{1}{3\left(9+R^{4}\right)}
D)0
Question
Use the Fundamental Theorem to evaluate the definite integral Use the Fundamental Theorem to evaluate the definite integral   .Reduce fractions and leave them in the form A/B.<div style=padding-top: 35px> .Reduce fractions and leave them in the form "A/B".
Question
Find 5x4x2dx\int \frac{5 x}{\sqrt{4-x^{2}}} d x

A) 103(4x2)3/2+C-\frac{10}{3\left(4-x^{2}\right)^{3 / 2}}+C
B) 103(4x2)3/2+C\frac{10}{3\left(4-x^{2}\right)^{3 / 2}}+C
C) 54x2+C5 \sqrt{4-x^{2}}+C
D) 54x2+C-5 \sqrt{4-x^{2}}+C
Question
Find et/4sin4tdt\int e^{-t / 4} \sin 4 t d t .

A) 16257et/4(14sin4t+4cos4t)+C-\frac{16}{257} e^{-t / 4}\left(\frac{1}{4} \sin 4 t+4 \cos 4 t\right)+C
B) 16257et/4(14sin4t4cos4t)+C\frac{16}{257} e^{-t / 4}\left(\frac{1}{4} \sin 4 t-4 \cos 4 t\right)+C
C) 132et/4(14sin4t+4cos4t)+C-\frac{1}{32} e^{-t / 4}\left(\frac{1}{4} \sin 4 t+4 \cos 4 t\right)+C
D) 132et/4(14sin4t4cos4t)+C\frac{1}{32} e^{-t / 4}\left(\frac{1}{4} \sin 4 t-4 \cos 4 t\right)+C
Question
Find an antiderivative of (x+sin(3x+9))(xsin(3x+9))(x+\sqrt{\sin (3 x+9)})(x-\sqrt{\sin (3 x+9)}) .

A) x33+13cos(3x+9)+C\frac{x^{3}}{3}+\frac{1}{3} \cos (3 x+9)+C
B) x3313cos(3x+9)+C\frac{x^{3}}{3}-\frac{1}{3} \cos (3 x+9)+C
C) x33+13x+9cos(3x+9)+C\frac{x^{3}}{3}+\frac{1}{3 x+9} \cos (3 x+9)+C
D) x3313x+9cos(3x+9)+C\frac{x^{3}}{3}-\frac{1}{3 x+9} \cos (3 x+9)+C
Question
Evaluate 6x7dx\int 6 x^{7} d x .

A) 34x8+C\frac{3}{4} x^{8}+C
B) x8+Cx^{8}+C
C) 67x8+C\frac{6}{7} x^{8}+C
D) 78x8+C\frac{7}{8} x^{8}+C
Question
Find (lnx)2dx\int(\ln x)^{2} d x .Hint: Integrate by parts.

A) x(lnx)2+2xlnx2x+Cx(\ln x)^{2}+2 x \ln x-2 x+C
B) x(lnx)22xlnx+2x+Cx(\ln x)^{2}-2 x \ln x+2 x+C
C) x(lnx)22xlnx+Cx(\ln x)^{2}-2 x \ln x+C
D) x(lnx)2+2xlnx+Cx(\ln x)^{2}+2 x \ln x+C
Question
Evaluate 8excos(8ex)dx\int 8 e^{x} \cos \left(8 e^{x}\right) d x .

A) sin(8ex)ex+C\frac{\sin \left(8 e^{x}\right)}{e^{x}}+C
B) 19sin(8ex)+C\frac{1}{9} \sin \left(8 e^{x}\right)+C
C) sin(8ex)+C\sin \left(8 e^{x}\right)+C
D) 8ex+1x+1sin(8ex)+C\frac{8 e^{x+1}}{x+1} \sin \left(8 e^{x}\right)+C
Question
Evaluate x2x+5xdx\int \frac{x^{2}-x+5}{x} d x .

A) lnx(x33x22+5x)+C\ln |x|\left(\frac{x^{3}}{3}-\frac{x^{2}}{2}+5 x\right)+C
B) x22x+5lnx+C\frac{x^{2}}{2}-x+5 \ln |x|+C
C) 2x3+10x+C\frac{2 x}{3}+\frac{10}{x}+C
D) x22x+10x2+C\frac{x^{2}}{2}-x+\frac{10}{x^{2}}+C
Question
Suppose 02f(t)=a\int_{0}^{2} f(t)=a , where a is a constant.Calculate 025f(2t)dt\int_{0}^{2} 5 f(2-t) d t .

A) 10a-10 a
B) 10a10 a
C) 5a-5 a
D) 5a5 a
Question
Calculate the area between the curve Calculate the area between the curve   and the x-axis between   and   .Round your answer to 2 decimal places.<div style=padding-top: 35px> and the x-axis between Calculate the area between the curve   and the x-axis between   and   .Round your answer to 2 decimal places.<div style=padding-top: 35px> and Calculate the area between the curve   and the x-axis between   and   .Round your answer to 2 decimal places.<div style=padding-top: 35px> .Round your answer to 2 decimal places.
Question
Fuel pressure in the fuel tanks of the space shuttle is decreasing at a rate of Fuel pressure in the fuel tanks of the space shuttle is decreasing at a rate of   psi per second at time t in seconds.At what rate, in psi/sec, is pressure decreasing at 10 seconds? Round to 2 decimal places.<div style=padding-top: 35px> psi per second at time t in seconds.At what rate, in psi/sec, is pressure decreasing at 10 seconds? Round to 2 decimal places.
Question
Find 3y(y2+2)3dy\int 3 y\left(y^{2}+2\right)^{3} d y

A) 38y(y2+2)4+C\frac{3}{8 y}\left(y^{2}+2\right)^{4}+C
B) 3y28(y2+2)4+C\frac{3 y^{2}}{8}\left(y^{2}+2\right)^{4}+C
C) 38(y2+2)4+C\frac{3}{8}\left(y^{2}+2\right)^{4}+C
D) 34(y2+2)4+C\frac{3}{4}\left(y^{2}+2\right)^{4}+C
Question
Compute 0R1(3+x)2dx\int_{0}^{R} \frac{1}{(3+x)^{2}} d x .

A) 13+R\frac{1}{3+R}
B) 1313+R\frac{1}{3}-\frac{1}{3+R}
C) 13(3+R)3\frac{1}{3(3+R)^{3}}
D) 3R33(3+R)3\frac{3}{R^{3}}-\frac{3}{(3+R)^{3}}
Question
Integrate cos23xsin3xdx\int \cos ^{2} 3 x \sin 3 x d x .

A) cos33x9+C\frac{\cos ^{3} 3 x}{9}+C
B) cos33x9+C-\frac{\cos ^{3} 3 x}{9}+C
C) cos33x3+C\frac{\cos ^{3} 3 x}{3}+C
D) cos33x27+C-\frac{\cos ^{3} 3 x}{27}+C
Question
Suppose 07f(t)dt=a\int_{0}^{7} f(t) d t=a , where a is a constant.Calculate 01f(7t)dt\int_{0}^{1} f(7 t) d t .

A)a
B)7a
C) a7\frac{a}{7}
D) a7a-7
Question
Fuel pressure in the fuel tanks of the space shuttle is decreasing at a rate of Fuel pressure in the fuel tanks of the space shuttle is decreasing at a rate of   psi per second at time t in seconds.By how many total psi has the pressure decreased during the first minute? Round to 2 decimal places.<div style=padding-top: 35px> psi per second at time t in seconds.By how many total psi has the pressure decreased during the first minute? Round to 2 decimal places.
Question
Integrate x4+5x3dx\int \frac{x^{4}+5}{x^{3}} d x .

A) x2252x2+C\frac{x^{2}}{2}-\frac{5}{2 x^{2}}+C
B) x22+52x2+C\frac{x^{2}}{2}+\frac{5}{2 x^{2}}+C
C) 25x5+5xx2+C\frac{2}{5} \cdot \frac{x^{5}+5 x}{x^{2}}+C
D) x5+5xx2+C\frac{x^{5}+5 x}{x^{2}}+C
Question
Calculate dt3+t\int \frac{d t}{3+\sqrt{t}} .

A) 2(3+t)+6ln(3+t)+C2(3+\sqrt{t})+6 \ln (3+\sqrt{t})+C
B) 2(3+t)6ln(3+t)+C2(3+\sqrt{t})-6 \ln (3+\sqrt{t})+C
C) tln(3+t)2+C\frac{\sqrt{t} \ln (3+\sqrt{t})}{2}+C
D) tln(3+t)2+C-\frac{\sqrt{t} \ln (3+\sqrt{t})}{2}+C
Question
Find (1x+11(x+1)2)dx\int\left(\frac{1}{x+1}-\frac{1}{(x+1)^{2}}\right) d x .

A) lnx+13(x+1)3+C\ln |x+1|-\frac{3}{(x+1)^{3}}+C
B) lnx+1+3(x+1)3+C\ln |x+1|+\frac{3}{(x+1)^{3}}+C
C) lnx+11x+1+C\ln |x+1|-\frac{1}{x+1}+C
D) lnx+1+1x+1+C\ln |x+1|+\frac{1}{x+1}+C
Question
Use the table of antiderivatives to determine if the following statement is true. dxx22x+2=lnx+x22x+2+C\int \frac{d x}{\sqrt{x^{2}-2 x+2}}=\ln \left|x+\sqrt{x^{2}-2 x+2}\right|+C
Question
Calculate ze5z2+8dz\int z e^{5 z^{2}+8} d z .

A) z5e5z2+8+C\frac{z}{5} e^{5 z^{2}+8}+C
B) z10e5z2+8+C\frac{z}{10} e^{5 z^{2}+8}+C
C) 15e5z2+8+C\frac{1}{5} e^{5 z^{2}+8}+C
D) 110ez2+8+C\frac{1}{10} e^{z^{2}+8}+C
Question
θ2cos(aθ)dθ=θ2asin(aθ)+2θa2cos(aθ)+C\int \theta^{2} \cos (a \theta) d \theta=\frac{\theta^{2}}{a} \sin (a \theta)+\frac{2 \theta}{a^{2}} \cos (a \theta)+C , where a is a constant.
Question
For f(x)=x2e10xf(x)=x^{2} e^{10 x} , find a function F(x)F(x) such that F(x)=f(x)F^{\prime}(x)=f(x) and F(0)=0F(0)=0 .

A) e10x(110x2150x+1500)1500e^{10 x}\left(\frac{1}{10} x^{2}-\frac{1}{50} x+\frac{1}{500}\right)-\frac{1}{500}
B) e10x(110x2150x+1500)e^{10 x}\left(\frac{1}{10} x^{2}-\frac{1}{50} x+\frac{1}{500}\right)
C) e10x(110x2150x)e^{10 x}\left(\frac{1}{10} x^{2}-\frac{1}{50} x\right)
D) e10x(x330)e^{10 x}\left(\frac{x^{3}}{30}\right)
Question
lnxdx=xlnxx+C\int \ln x d x=x \ln x-x+C .
Question
Calculate sec2θdθ\int \sec ^{2} \theta d \theta

A) 3sinθcos3θ+C\frac{3 \sin \theta}{\cos ^{3} \theta}+C
B) 1cosθ+C-\frac{1}{\cos \theta}+C
C) tanθ+C\tan \theta+C
D) tan2θ+C\tan ^{2} \theta+C
Question
For f(x)=xsin(4x)f(x)=x \sin (4 x) , find a function F(x)F(x) such that F(x)=f(x)F^{\prime}(x)=f(x) and F(0)=0F(0)=0 .

A) 14xcos(4x)14sin(4x)\frac{1}{4} x \cos (4 x)-\frac{1}{4} \sin (4 x)
B) 14xcos(4x)+14sin(4x)-\frac{1}{4} x \cos (4 x)+\frac{1}{4} \sin (4 x)
C) 14xcos(4x)116sin(4x)\frac{1}{4} x \cos (4 x)-\frac{1}{16} \sin (4 x)
D) 14xcos(4x)+116sin(4x)-\frac{1}{4} x \cos (4 x)+\frac{1}{16} \sin (4 x)
Question
Calculate dx(b+ax)8\int \frac{d x}{(b+a x)^{8}} , where a and b are constants.

A) 9a(b+αx)9+C\frac{9}{a(b+\alpha x)^{9}}+C
B) 7a(b+ax)7+C\frac{7 a}{(b+a x)^{7}}+C
C) 17a(b+ax)7+C-\frac{1}{7 a(b+a x)^{7}}+C
D) 17a(b+ax)7+C\frac{1}{7 a(b+ a x)^{7}}+C
Question
Find xcos2xdx\int x \cos 2 x d x .

A) 12xsin2x+14cos2x+C\frac{1}{2} x \sin 2 x+\frac{1}{4} \cos 2 x+C
B) 12xsin2x12cos2x+C\frac{1}{2} x \sin 2 x-\frac{1}{2} \cos 2 x+C
C) x28sin2x+C-\frac{x^{2}}{8} \sin 2 x+C
D) x24sin2x+C\frac{x^{2}}{4} \sin 2 x+C
Question
Integrate Integrate   .Give an exact answer and one rounded to 3 decimal places.<div style=padding-top: 35px> .Give an exact answer and one rounded to 3 decimal places.
Question
Integrate sin(3x)ecos(3x)dx\int \sin (3 x) e^{\cos (3 x)} d x .

A) ecos(3x)+C-e^{\cos (3 x)}+C
B) ecos(3x)+Ce^{\cos (3 x)}+C
C) 13ecos(3x)+C-\frac{1}{3} e^{\cos (3 x)}+C
D) 13ecos(3x)+C\frac{1}{3} e^{\cos (3 x)}+C
Question
Calculate ysec2ydy\int y \sec ^{2} y d y .

A) ytany+lncosy+Cy \tan y+\ln |\cos y|+C
B) ytanylncosy+Cy \tan y-\ln |\cos y|+C
C) y22tany+C\frac{y^{2}}{2}-\tan y+C
D) y22tany+C\frac{y^{2}}{2} \tan y+C
Question
For f(x)=x2(8+x3)10f(x)=x^{2}\left(8+x^{3}\right)^{10} , find a function F(x)F(x) such that F(x)=f(x)F^{\prime}(x)=f(x) and F(0)=0F(0)=0 .

A) 133((8+x3)11)\frac{1}{33}\left(\left(8+x^{3}\right)^{11}\right)
B) 133((8+x3)11811)\frac{1}{33}\left(\left(8+x^{3}\right)^{11}-8^{11}\right)
C) 199((8+x3)11811)\frac{1}{99}\left(\left(8+x^{3}\right)^{11}-8^{11}\right)
D) x99(8+x3)11\frac{x}{99}\left(8+x^{3}\right)^{11}
Question
Use the table of antiderivatives to determine if the following statement is true. x2x2+5dx=x5arctanx5+C\int \frac{x^{2}}{x^{2}+5} d x=x-\sqrt{5} \arctan \frac{x}{\sqrt{5}}+C
Question
Integrate lnx4xdx\int \frac{\sqrt[4]{\ln x}}{x} d x .

A) (lnx)5/4+C(\ln x)^{5 / 4}+C
B) 45(lnx)5/4+C\frac{4}{5}(\ln x)^{5 / 4}+C
C) 2(lnx)5/4x2+C\frac{2(\ln x)^{5 / 4}}{x^{2}}+C
D) lnx55+C\frac{\sqrt[5]{\ln x}}{5}+C
Question
Use the table of antiderivatives to determine if the following statement is true. dxx210x+26=arctan(x5)+C\int \frac{d x}{x^{2}-10 x+26}=\arctan (x-5)+C
Question
teatdt=1ateat1a2eat+C\int t e^{a t} d t=\frac{1}{a} t e^{a t}-\frac{1}{a^{2}} e^{a t}+C , where a is a constant.
Question
3e3x1+e6xdx=tan1(e3x)+C\int \frac{3 e^{3 x}}{1+e^{6 x}} d x=\tan ^{-1}\left(e^{3 x}\right)+C .
Question
Use the table of antiderivatives to determine if the following statement is true. dt47t2=17arcsin(t72)+C\int \frac{d t}{\sqrt{4-7 t^{2}}}=\frac{1}{7} \arcsin \left(\frac{t \sqrt{7}}{2}\right)+C
Question
sin3xdx=13sin4xcosx+313sin5xdx\int \sin ^{-3} x d x=\frac{-1}{-3} \sin ^{-4} x \cos x+\frac{-3-1}{-3} \int \sin ^{-5} x d x
Question
Find the area of the region bounded by y = 0 and Find the area of the region bounded by y = 0 and   between t = 0 and t = 2.Round to 3 decimal places.<div style=padding-top: 35px> between t = 0 and t = 2.Round to 3 decimal places.
Question
The following are some of the values for a function known as the Gudermannian function, G(x).
The following are some of the values for a function known as the Gudermannian function, G(x).   Use these values to approximate the value of   using the trapezoid rule.<div style=padding-top: 35px> Use these values to approximate the value of The following are some of the values for a function known as the Gudermannian function, G(x).   Use these values to approximate the value of   using the trapezoid rule.<div style=padding-top: 35px> using the trapezoid rule.
Question
Which of the following gives the area of the circle x2+y2=1x^{2}+y^{2}=1 ?

A) 111x2dx\int_{-1}^{1} \sqrt{1-x^{2}} d x
B) 4111x2dx4 \int_{-1}^{1} \sqrt{1-x^{2}} d x
C) 4011x2dx4 \int_{0}^{1} \sqrt{1-x^{2}} d x
D) 2011x2dx2 \int_{0}^{1} \sqrt{1-x^{2}} d x
Question
Compute Compute   .Round to 3 decimal places.<div style=padding-top: 35px> .Round to 3 decimal places.
Question
Consider the semicircle of radius 4 pictured below.Which of the following could represent the area of the semicircle? Select all that apply.  <strong>Consider the semicircle of radius 4 pictured below.Which of the following could represent the area of the semicircle? Select all that apply.  </strong> A)  \int_{-4}^{4} \sqrt{16-x^{2}} d x  B)  \frac{1}{2} \cdot \pi \cdot 4^{2}  C)  4 \int_{-1}^{1} \sqrt{16+x^{2}} d x  D)  \left.\frac{1}{2}\left[x \sqrt{16-x^{2}}+16 \arcsin \left(\frac{x}{4}\right)\right]\right|_{-4} ^{4}  E)  \left.\frac{2}{4}\left[x \sqrt{16-x^{2}}\right]\right|_{-4} ^{4}  <div style=padding-top: 35px>

A) 4416x2dx\int_{-4}^{4} \sqrt{16-x^{2}} d x
B) 12π42\frac{1}{2} \cdot \pi \cdot 4^{2}
C) 41116+x2dx4 \int_{-1}^{1} \sqrt{16+x^{2}} d x
D) 12[x16x2+16arcsin(x4)]44\left.\frac{1}{2}\left[x \sqrt{16-x^{2}}+16 \arcsin \left(\frac{x}{4}\right)\right]\right|_{-4} ^{4}
E) 24[x16x2]44\left.\frac{2}{4}\left[x \sqrt{16-x^{2}}\right]\right|_{-4} ^{4}
Question
t+5t2+10t+75dt=lnt2+10t+75+C\int \frac{t+5}{t^{2}+10 t+75} d t=\ln \left|t^{2}+10 t+75\right|+C .
Question
cos(6θ)dθ=16sin(6θ)+C\int \cos (6 \theta) d \theta=-\frac{1}{6} \sin (6 \theta)+C .
Question
Find cos3βdβ\int \cos ^{3} \beta d \beta .

A) sinβ13sin3β+C\sin \beta-\frac{1}{3} \sin ^{3} \beta+C
B) 13sinβ+23sin3β+C\frac{1}{3} \sin \beta+\frac{2}{3} \sin ^{3} \beta+C
C) sinβ23sin3β+C\sin \beta-\frac{2}{3} \sin ^{3} \beta+C
D) 13sinβ+sin3β+C\frac{1}{3} \sin \beta+\sin ^{3} \beta+C
Question
The following numbers are the left, right, trapezoidal, and midpoint approximations to The following numbers are the left, right, trapezoidal, and midpoint approximations to   , where f(x)is as shown.(Each uses the same number of subdivisions.) • 0.36735 • 0.39896 • 0.36814 • 0.33575   Which one is the midpoint approximation?<div style=padding-top: 35px> , where f(x)is as shown.(Each uses the same number of subdivisions.)
• 0.36735
• 0.39896
• 0.36814
• 0.33575 The following numbers are the left, right, trapezoidal, and midpoint approximations to   , where f(x)is as shown.(Each uses the same number of subdivisions.) • 0.36735 • 0.39896 • 0.36814 • 0.33575   Which one is the midpoint approximation?<div style=padding-top: 35px> Which one is the midpoint approximation?
Question
Find the area of the region bounded by Find the area of the region bounded by   , x = 0, and x = 2.Round to 3 decimal places.<div style=padding-top: 35px> , x = 0, and x = 2.Round to 3 decimal places.
Question
Compute Compute   .Round to 3 decimal places.<div style=padding-top: 35px> .Round to 3 decimal places.
Question
Suppose that as a storm dies down, its rainfall rate (in inches/hour)is given by y=10.09+t2y=\frac{1}{0.09+t^{2}} for 0 \le t \le 2, where t is the number of hours since the point of heaviest rainfall.What is the average rainfall rate over these two hours? Round your answer to 3 decimal places.
Question
Find 4x+14x2+4xdx\int \frac{4 x+1}{4 x^{2}+4 x} d x .

A) 34lnx+14lnx+1+C\frac{3}{4} \ln |x|+\frac{1}{4} \ln |x+1|+C
B) 14lnx+34lnx+1+C\frac{1}{4} \ln |x|+\frac{3}{4} \ln |x+1|+C
C) 34lnx+14lnx+1+C\frac{3}{4} \ln |x|+\frac{1}{4} \ln |x+1|+C .
D) lnx+14lnx+1+C\ln |x|+\frac{1}{4} \ln |x+1|+C
Question
2dxx2+4x+3=lnx+1lnx+3+C\int \frac{2 d x}{x^{2}+4 x+3}=\ln |x+1|-\ln |x+3|+C .
Question
Use the table of antiderivatives to determine if the following statement is true. e7xcos8xdx=1113e7x(7cos8x+8sin8x)+C\int e^{7 x} \cos 8 x d x=\frac{1}{113} e^{7 x}(7 \cos 8 x+8 \sin 8 x)+C
Question
Find 1x2+3x10dx\int \frac{1}{x^{2}+3 x-10} d x .

A) 110(lnx+5+lnx2)+C-\frac{1}{10}(\ln |x+5|+\ln |x-2|)+C
B) 17(lnx+5+lnx2)+C\frac{1}{7}(\ln |x+5|+\ln |x-2|)+C
C) 110(lnx+5lnx2)+C\frac{1}{10}(\ln |x+5|-\ln |x-2|)+C
D) 17(lnx+5lnx2)+C-\frac{1}{7}(\ln |x+5|-\ln |x-2|)+C
Question
sin(y)dy=sinyycosy+C\int \sin (\sqrt{y}) d y=\sin \sqrt{y}-\sqrt{y} \cos \sqrt{y}+C .
Question
What is shown in the following graph of 01(1ex)dx\int_{0}^{1}\left(1-e^{-x}\right) d x ?  <strong>What is shown in the following graph of  \int_{0}^{1}\left(1-e^{-x}\right) d x  ?  </strong> A)The right approximation with n = 2. B)The midpoint approximation with n = 2. C)The trapezoid approximation with n = 2. D)The left approximation with n = 2. <div style=padding-top: 35px>

A)The right approximation with n = 2.
B)The midpoint approximation with n = 2.
C)The trapezoid approximation with n = 2.
D)The left approximation with n = 2.
Question
Consider the ellipse pictured below:  Consider the ellipse pictured below:   The perimeter of the ellipse is given by the integral  \int_{0}^{\pi / 2} 8 \sqrt{1-\frac{3}{4} \sin ^{2} \theta} d \theta  .It turns out that there is no elementary antiderivative for the function  f(\theta)=8 \sqrt{1-\frac{3}{4} \sin ^{2} \theta}  , and so the integral must be evaluated numerically.A graph of the integrand f( \theta )is shown below.   Calculate the right sum that approximates the definite integral with N = 4 equal divisions of the interval.Round to 4 decimal places.<div style=padding-top: 35px>  The perimeter of the ellipse is given by the integral 0π/28134sin2θdθ\int_{0}^{\pi / 2} 8 \sqrt{1-\frac{3}{4} \sin ^{2} \theta} d \theta .It turns out that there is no elementary antiderivative for the function f(θ)=8134sin2θf(\theta)=8 \sqrt{1-\frac{3}{4} \sin ^{2} \theta} , and so the integral must be evaluated numerically.A graph of the integrand f( θ\theta )is shown below.  Consider the ellipse pictured below:   The perimeter of the ellipse is given by the integral  \int_{0}^{\pi / 2} 8 \sqrt{1-\frac{3}{4} \sin ^{2} \theta} d \theta  .It turns out that there is no elementary antiderivative for the function  f(\theta)=8 \sqrt{1-\frac{3}{4} \sin ^{2} \theta}  , and so the integral must be evaluated numerically.A graph of the integrand f( \theta )is shown below.   Calculate the right sum that approximates the definite integral with N = 4 equal divisions of the interval.Round to 4 decimal places.<div style=padding-top: 35px>  Calculate the right sum that approximates the definite integral with N = 4 equal divisions of the interval.Round to 4 decimal places.
Question
The table below shows the velocity v(t)of a falling object at various times (time t measured in seconds, velocity v(t)measured in meters per second). t012v(t)172328\begin{array}{cccc}t & 0 & 1 & 2 \\v(t) & 17 & 23 & 28\end{array} The distance the object fell in these three seconds lies within which interval?

A)(68, 75.5)
B)(75.5, 78)
C)(78, 83)
D)(83, 86.5)
Question
03sin39(x)dx>π\int_{0}^{3} \sin ^{39}(x) d x>\pi .
Question
Suppose the points x0,x1,,xnx_{0}, x_{1}, \ldots, x_{n} are equally spaced and α\alpha==x0x_{0}<<x1x_{1} < \text { < } ... <<xnx_{n}=b=b .
Is i=0n1(f(xi)+f(xi+1)2)Δx\sum_{i=0}^{n-1}\left(\frac{f\left(x_{i}\right)+f\left(x_{i+1}\right)}{2}\right) \Delta x the formula (in terms of f and the xix_{i} 's)for the midpoint Riemann sum approximation to abf(x)dx\int_{a}^{b} f(x) d x ?
Question
Below is the graph of Below is the graph of   .   We have the following data: For   , MID(50)= -12.40537 and TRAP(50)= -12.40041. For   , MID(50)= 21.36379 and TRAP(50)= 21.35097. Using this data alone, what is the best upper bound you can give for   ?<div style=padding-top: 35px> . Below is the graph of   .   We have the following data: For   , MID(50)= -12.40537 and TRAP(50)= -12.40041. For   , MID(50)= 21.36379 and TRAP(50)= 21.35097. Using this data alone, what is the best upper bound you can give for   ?<div style=padding-top: 35px> We have the following data:
For Below is the graph of   .   We have the following data: For   , MID(50)= -12.40537 and TRAP(50)= -12.40041. For   , MID(50)= 21.36379 and TRAP(50)= 21.35097. Using this data alone, what is the best upper bound you can give for   ?<div style=padding-top: 35px> , MID(50)= -12.40537 and TRAP(50)= -12.40041.
For Below is the graph of   .   We have the following data: For   , MID(50)= -12.40537 and TRAP(50)= -12.40041. For   , MID(50)= 21.36379 and TRAP(50)= 21.35097. Using this data alone, what is the best upper bound you can give for   ?<div style=padding-top: 35px> , MID(50)= 21.36379 and TRAP(50)= 21.35097.
Using this data alone, what is the best upper bound you can give for Below is the graph of   .   We have the following data: For   , MID(50)= -12.40537 and TRAP(50)= -12.40041. For   , MID(50)= 21.36379 and TRAP(50)= 21.35097. Using this data alone, what is the best upper bound you can give for   ?<div style=padding-top: 35px> ?
Question
Using two subdivisions, find the left approximation to Using two subdivisions, find the left approximation to   .Round to 4 decimal places.<div style=padding-top: 35px> .Round to 4 decimal places.
Question
You want to estimate 01cos(θ2)dθ\int_{0}^{1} \cos \left(\theta^{2}\right) d \theta by finding values, A and B, such that A<01cosA<\int_{0}^{1} \cos (θ2)dθ\left(\theta^{2}\right) d \theta < B , with BAB-A being as small as possible.Which method should you use to find A?

A)The trapezoid rule.
B)The midpoint rule.
C)The left rule.
D)The right rule.
Question
Find the exact value of 13xx13dx\int_{1}^{3} x \sqrt[3]{x-1} d x .

A) 37(2)7/334(2)4/3+928\frac{3}{7}(2)^{7 / 3}-\frac{3}{4}(2)^{4 / 3}+\frac{9}{28}
B) 37(2)7/3+34(2)4/33328\frac{3}{7}(2)^{7 / 3}+\frac{3}{4}(2)^{4 / 3}-\frac{33}{28}
C) 37(2)7/3+34(2)4/3\frac{3}{7}(2)^{7 / 3}+\frac{3}{4}(2)^{4 / 3}
D) 37(2)7/334(2)4/3\frac{3}{7}(2)^{7 / 3}-\frac{3}{4}(2)^{4 / 3}
Question
Consider the definite integral 02/514+25x2dx\int_{0}^{2 / 5} \frac{1}{4+25 x^{2}} d x .Compute the integral using the fundamental theorem of calculus and using the midpoint rule with n = 20.How far apart are your answers?

A)Within 0.03 but not within 0.003
B)Within 0.003 but not within 0.0003
C)Within 0.0003 but not within 0.00003
D)Within 0.00003 but not within 0.000003
Question
The midpoint rule gives exact answers for linear functions, no matter how many subdivisions are used.
Question
For any given function, TRAP(n)is always more accurate than LEFT(n).
Question
The table below shows the velocity v(t)of a falling object at various times (time t measured in seconds, velocity v(t)measured in meters per second). t0123v(t)19253034\begin{array}{ccccc}t & 0 & 1 & 2 & 3 \\v(t) & 19 & 25 & 30 & 34\end{array} Due to air resistance, the object's acceleration is decreasing.What does this tell you about the shape of the graph of v(t)?

A)It is concave down
B)It is concave up
C)Neither of the above
Question
Consider the definite integral π/4π/4sin2θdθ\int_{-\pi / 4}^{\pi / 4} \sin ^{2} \theta d \theta .Compute the integral using the fundamental theorem of calculus and using the trapeziod rule with n = 20.How far apart are your answers?

A)Within 0.1 but not within 0.01
B)Within 0.0001 but not within 0.00001
C)Within 0.001 but not within 0.0001
D)Within 0.01 but not within 0.001
Question
Suppose the points x0,x1,,xnx_{0}, x_{1}, \ldots, x_{n} are equally spaced and α\alpha==x0x_{0}<<x1x_{1} < \text { < } ... <<xnx_{n}=b=b .What is the formula (in terms of f and the xix_{i} 's)for the right Riemann sum approximation to abf(x)dx\int_{a}^{b} f(x) d x ?

A) i=abf(xi)Δx\sum_{i=a}^{b} f\left(x_{i}\right) \Delta x
B) i=a+nb+nf(xi)Δx\sum_{i=a+n}^{b+n} f\left(x_{i}\right) \Delta x
C) i=1nf(xi)Δx\sum_{i=1}^{n} f\left(x_{i}\right) \Delta x
D) i=0n1f(xi)Δx\sum_{i=0}^{n-1} f\left(x_{i}\right) \Delta x
Question
Consider the function f(x)=(1x)1/3f(x)=(1-x)^{1 / 3} .Does the midpoint approximation give an exact answer, an overestimate, or an underestimate?

A)An overestimate
B)An underestimate
C)An exact answer
D)Cannot tell
Question
A drug is being administered intravenously to a patient at a constant rate of 2 mg/hr.The following table shows the rate of change of the amount of the drug in the patient's body at half-hour intervals.Initially there is none of the drug in the patient's body.
A drug is being administered intravenously to a patient at a constant rate of 2 mg/hr.The following table shows the rate of change of the amount of the drug in the patient's body at half-hour intervals.Initially there is none of the drug in the patient's body.   Use the trapezoid rule to estimate of the total amount of the drug in the patient's body after four hours.Round to 2 decimal places.<div style=padding-top: 35px> Use the trapezoid rule to estimate of the total amount of the drug in the patient's body after four hours.Round to 2 decimal places.
Question
Suppose that a computer takes 10710^{-7} seconds to add two numbers together, and it takes 10510^{-5} seconds to multiply two numbers together.The computer is asked to integrate the function f(x)=3x2f(x)=3 \cdot x^{2} from 0 to 1 using left hand sums with n divisions.As a function of n, let T(n)denote the time used by the computer to do the calculation.Compute T(n).(The computer figures x2 as x · x.)

A) 2n×105+(n1)×1072 n \times 10^{-5}+(n-1) \times 10^{-7}
B) 2n×107+2(n1)×1052 n \times 10^{-7}+2(n-1) \times 10^{-5}
C) n×105+n×107n \times 10^{-5}+n \times 10^{-7}
D) n×105+2n×107n \times 10^{-5}+2 n \times 10^{-7}
Question
Last Monday we hired a typist to work from 8am to 12 noon.His typing speed decreased between 8am and his 10am cup of coffee, and increased again afterwards, between 10am and noon.His instantaneous speed (measured in characters per second)was measured each hour and the results are given below:
Last Monday we hired a typist to work from 8am to 12 noon.His typing speed decreased between 8am and his 10am cup of coffee, and increased again afterwards, between 10am and noon.His instantaneous speed (measured in characters per second)was measured each hour and the results are given below:   You want to estimate the total number of characters typed between 8am and 12 noon.Find an upper estimate using Reimann sums.<div style=padding-top: 35px> You want to estimate the total number of characters typed between 8am and 12 noon.Find an upper estimate using Reimann sums.
Question
Evaluate 718arctan(x)dx\int_{-7}^{18} \arctan (x) d x "symbolically" (plug in the limits but don't evaluate).Hint: Integrate by parts using ddxarctanx=11+x2\frac{d}{d x} \arctan x=\frac{1}{1+x^{2}} .

A) 18arctan187arctan(7)+ln(1+182)+ln(1+72)18 \arctan 18-7 \arctan (-7)+\ln \left(1+18^{2}\right)+\ln \left(1+7^{2}\right)
B) 18arctan18+7arctan(7)ln(1+182)ln(1+72)18 \arctan 18+7 \arctan (-7)-\ln \left(1+18^{2}\right)-\ln \left(1+7^{2}\right)
C) 18arctan187arctan(7)+12ln(1+182)12ln(1+72)18 \arctan 18-7 \arctan (-7)+\frac{1}{2} \ln \left(1+18^{2}\right)-\frac{1}{2} \ln \left(1+7^{2}\right)
D) 18arctan18+7arctan(7)12ln(1+182)+12ln(1+72)18 \arctan 18+7 \arctan (-7)-\frac{1}{2} \ln \left(1+18^{2}\right)+\frac{1}{2} \ln \left(1+7^{2}\right)
Unlock Deck
Sign up to unlock the cards in this deck!
Unlock Deck
Unlock Deck
1/179
auto play flashcards
Play
simple tutorial
Full screen (f)
exit full mode
Deck 7: Integration
1
Integrate (tan7x+cos7x)dx\int(\tan 7 x+\cos 7 x) d x .

A) lncos7x7sin7x7+C\frac{\ln |\cos 7 x|}{7}-\frac{\sin 7 x}{7}+C
B) lncos7x7+sin7x7+C-\frac{\ln |\cos 7 x|}{7}+\frac{\sin 7 x}{7}+C
C) cot7x7sin7x7+C\frac{\cot 7 x}{7}-\frac{\sin 7 x}{7}+C
D) cot7x7+sin7x7+C-\frac{\cot 7 x}{7}+\frac{\sin 7 x}{7}+C
lncos7x7+sin7x7+C-\frac{\ln |\cos 7 x|}{7}+\frac{\sin 7 x}{7}+C
2
Find an antiderivative of x26x+8x3x^{2}-\frac{6}{x}+\frac{8}{x^{3}} .

A) x3312x232x4+C\frac{x^{3}}{3}-\frac{12}{x^{2}}-\frac{32}{x^{4}}+C
B) x336x+8x2+C\frac{x^{3}}{3}-\frac{6}{x}+\frac{8}{x^{2}}+C
C) x336lnx+8x2+C\frac{x^{3}}{3}-6 \ln |x|+\frac{8}{x^{2}}+C
D) x336lnx4x2+C\frac{x^{3}}{3}-6 \ln |x|-\frac{4}{x^{2}}+C
x336lnx4x2+C\frac{x^{3}}{3}-6 \ln |x|-\frac{4}{x^{2}}+C
3
Find the area between f(x)=4xex2f(x)=4 x e^{-x^{2}} and g(x)= x for x \ge 0.Round to 3 decimal places.
0.807
4
Compute RRsinx9+x4dx\int_{-R}^{R} \frac{\sin x}{9+x^{4}} d x .

A) 2cosR9R+R5\frac{2 \cos R}{9 R+R^{5}}
B) 3cos(9+R4)R3\frac{3 \cos \left(9+R^{4}\right)}{R^{3}}
C) 13(9+R4)\frac{1}{3\left(9+R^{4}\right)}
D)0
Unlock Deck
Unlock for access to all 179 flashcards in this deck.
Unlock Deck
k this deck
5
Use the Fundamental Theorem to evaluate the definite integral Use the Fundamental Theorem to evaluate the definite integral   .Reduce fractions and leave them in the form A/B. .Reduce fractions and leave them in the form "A/B".
Unlock Deck
Unlock for access to all 179 flashcards in this deck.
Unlock Deck
k this deck
6
Find 5x4x2dx\int \frac{5 x}{\sqrt{4-x^{2}}} d x

A) 103(4x2)3/2+C-\frac{10}{3\left(4-x^{2}\right)^{3 / 2}}+C
B) 103(4x2)3/2+C\frac{10}{3\left(4-x^{2}\right)^{3 / 2}}+C
C) 54x2+C5 \sqrt{4-x^{2}}+C
D) 54x2+C-5 \sqrt{4-x^{2}}+C
Unlock Deck
Unlock for access to all 179 flashcards in this deck.
Unlock Deck
k this deck
7
Find et/4sin4tdt\int e^{-t / 4} \sin 4 t d t .

A) 16257et/4(14sin4t+4cos4t)+C-\frac{16}{257} e^{-t / 4}\left(\frac{1}{4} \sin 4 t+4 \cos 4 t\right)+C
B) 16257et/4(14sin4t4cos4t)+C\frac{16}{257} e^{-t / 4}\left(\frac{1}{4} \sin 4 t-4 \cos 4 t\right)+C
C) 132et/4(14sin4t+4cos4t)+C-\frac{1}{32} e^{-t / 4}\left(\frac{1}{4} \sin 4 t+4 \cos 4 t\right)+C
D) 132et/4(14sin4t4cos4t)+C\frac{1}{32} e^{-t / 4}\left(\frac{1}{4} \sin 4 t-4 \cos 4 t\right)+C
Unlock Deck
Unlock for access to all 179 flashcards in this deck.
Unlock Deck
k this deck
8
Find an antiderivative of (x+sin(3x+9))(xsin(3x+9))(x+\sqrt{\sin (3 x+9)})(x-\sqrt{\sin (3 x+9)}) .

A) x33+13cos(3x+9)+C\frac{x^{3}}{3}+\frac{1}{3} \cos (3 x+9)+C
B) x3313cos(3x+9)+C\frac{x^{3}}{3}-\frac{1}{3} \cos (3 x+9)+C
C) x33+13x+9cos(3x+9)+C\frac{x^{3}}{3}+\frac{1}{3 x+9} \cos (3 x+9)+C
D) x3313x+9cos(3x+9)+C\frac{x^{3}}{3}-\frac{1}{3 x+9} \cos (3 x+9)+C
Unlock Deck
Unlock for access to all 179 flashcards in this deck.
Unlock Deck
k this deck
9
Evaluate 6x7dx\int 6 x^{7} d x .

A) 34x8+C\frac{3}{4} x^{8}+C
B) x8+Cx^{8}+C
C) 67x8+C\frac{6}{7} x^{8}+C
D) 78x8+C\frac{7}{8} x^{8}+C
Unlock Deck
Unlock for access to all 179 flashcards in this deck.
Unlock Deck
k this deck
10
Find (lnx)2dx\int(\ln x)^{2} d x .Hint: Integrate by parts.

A) x(lnx)2+2xlnx2x+Cx(\ln x)^{2}+2 x \ln x-2 x+C
B) x(lnx)22xlnx+2x+Cx(\ln x)^{2}-2 x \ln x+2 x+C
C) x(lnx)22xlnx+Cx(\ln x)^{2}-2 x \ln x+C
D) x(lnx)2+2xlnx+Cx(\ln x)^{2}+2 x \ln x+C
Unlock Deck
Unlock for access to all 179 flashcards in this deck.
Unlock Deck
k this deck
11
Evaluate 8excos(8ex)dx\int 8 e^{x} \cos \left(8 e^{x}\right) d x .

A) sin(8ex)ex+C\frac{\sin \left(8 e^{x}\right)}{e^{x}}+C
B) 19sin(8ex)+C\frac{1}{9} \sin \left(8 e^{x}\right)+C
C) sin(8ex)+C\sin \left(8 e^{x}\right)+C
D) 8ex+1x+1sin(8ex)+C\frac{8 e^{x+1}}{x+1} \sin \left(8 e^{x}\right)+C
Unlock Deck
Unlock for access to all 179 flashcards in this deck.
Unlock Deck
k this deck
12
Evaluate x2x+5xdx\int \frac{x^{2}-x+5}{x} d x .

A) lnx(x33x22+5x)+C\ln |x|\left(\frac{x^{3}}{3}-\frac{x^{2}}{2}+5 x\right)+C
B) x22x+5lnx+C\frac{x^{2}}{2}-x+5 \ln |x|+C
C) 2x3+10x+C\frac{2 x}{3}+\frac{10}{x}+C
D) x22x+10x2+C\frac{x^{2}}{2}-x+\frac{10}{x^{2}}+C
Unlock Deck
Unlock for access to all 179 flashcards in this deck.
Unlock Deck
k this deck
13
Suppose 02f(t)=a\int_{0}^{2} f(t)=a , where a is a constant.Calculate 025f(2t)dt\int_{0}^{2} 5 f(2-t) d t .

A) 10a-10 a
B) 10a10 a
C) 5a-5 a
D) 5a5 a
Unlock Deck
Unlock for access to all 179 flashcards in this deck.
Unlock Deck
k this deck
14
Calculate the area between the curve Calculate the area between the curve   and the x-axis between   and   .Round your answer to 2 decimal places. and the x-axis between Calculate the area between the curve   and the x-axis between   and   .Round your answer to 2 decimal places. and Calculate the area between the curve   and the x-axis between   and   .Round your answer to 2 decimal places. .Round your answer to 2 decimal places.
Unlock Deck
Unlock for access to all 179 flashcards in this deck.
Unlock Deck
k this deck
15
Fuel pressure in the fuel tanks of the space shuttle is decreasing at a rate of Fuel pressure in the fuel tanks of the space shuttle is decreasing at a rate of   psi per second at time t in seconds.At what rate, in psi/sec, is pressure decreasing at 10 seconds? Round to 2 decimal places. psi per second at time t in seconds.At what rate, in psi/sec, is pressure decreasing at 10 seconds? Round to 2 decimal places.
Unlock Deck
Unlock for access to all 179 flashcards in this deck.
Unlock Deck
k this deck
16
Find 3y(y2+2)3dy\int 3 y\left(y^{2}+2\right)^{3} d y

A) 38y(y2+2)4+C\frac{3}{8 y}\left(y^{2}+2\right)^{4}+C
B) 3y28(y2+2)4+C\frac{3 y^{2}}{8}\left(y^{2}+2\right)^{4}+C
C) 38(y2+2)4+C\frac{3}{8}\left(y^{2}+2\right)^{4}+C
D) 34(y2+2)4+C\frac{3}{4}\left(y^{2}+2\right)^{4}+C
Unlock Deck
Unlock for access to all 179 flashcards in this deck.
Unlock Deck
k this deck
17
Compute 0R1(3+x)2dx\int_{0}^{R} \frac{1}{(3+x)^{2}} d x .

A) 13+R\frac{1}{3+R}
B) 1313+R\frac{1}{3}-\frac{1}{3+R}
C) 13(3+R)3\frac{1}{3(3+R)^{3}}
D) 3R33(3+R)3\frac{3}{R^{3}}-\frac{3}{(3+R)^{3}}
Unlock Deck
Unlock for access to all 179 flashcards in this deck.
Unlock Deck
k this deck
18
Integrate cos23xsin3xdx\int \cos ^{2} 3 x \sin 3 x d x .

A) cos33x9+C\frac{\cos ^{3} 3 x}{9}+C
B) cos33x9+C-\frac{\cos ^{3} 3 x}{9}+C
C) cos33x3+C\frac{\cos ^{3} 3 x}{3}+C
D) cos33x27+C-\frac{\cos ^{3} 3 x}{27}+C
Unlock Deck
Unlock for access to all 179 flashcards in this deck.
Unlock Deck
k this deck
19
Suppose 07f(t)dt=a\int_{0}^{7} f(t) d t=a , where a is a constant.Calculate 01f(7t)dt\int_{0}^{1} f(7 t) d t .

A)a
B)7a
C) a7\frac{a}{7}
D) a7a-7
Unlock Deck
Unlock for access to all 179 flashcards in this deck.
Unlock Deck
k this deck
20
Fuel pressure in the fuel tanks of the space shuttle is decreasing at a rate of Fuel pressure in the fuel tanks of the space shuttle is decreasing at a rate of   psi per second at time t in seconds.By how many total psi has the pressure decreased during the first minute? Round to 2 decimal places. psi per second at time t in seconds.By how many total psi has the pressure decreased during the first minute? Round to 2 decimal places.
Unlock Deck
Unlock for access to all 179 flashcards in this deck.
Unlock Deck
k this deck
21
Integrate x4+5x3dx\int \frac{x^{4}+5}{x^{3}} d x .

A) x2252x2+C\frac{x^{2}}{2}-\frac{5}{2 x^{2}}+C
B) x22+52x2+C\frac{x^{2}}{2}+\frac{5}{2 x^{2}}+C
C) 25x5+5xx2+C\frac{2}{5} \cdot \frac{x^{5}+5 x}{x^{2}}+C
D) x5+5xx2+C\frac{x^{5}+5 x}{x^{2}}+C
Unlock Deck
Unlock for access to all 179 flashcards in this deck.
Unlock Deck
k this deck
22
Calculate dt3+t\int \frac{d t}{3+\sqrt{t}} .

A) 2(3+t)+6ln(3+t)+C2(3+\sqrt{t})+6 \ln (3+\sqrt{t})+C
B) 2(3+t)6ln(3+t)+C2(3+\sqrt{t})-6 \ln (3+\sqrt{t})+C
C) tln(3+t)2+C\frac{\sqrt{t} \ln (3+\sqrt{t})}{2}+C
D) tln(3+t)2+C-\frac{\sqrt{t} \ln (3+\sqrt{t})}{2}+C
Unlock Deck
Unlock for access to all 179 flashcards in this deck.
Unlock Deck
k this deck
23
Find (1x+11(x+1)2)dx\int\left(\frac{1}{x+1}-\frac{1}{(x+1)^{2}}\right) d x .

A) lnx+13(x+1)3+C\ln |x+1|-\frac{3}{(x+1)^{3}}+C
B) lnx+1+3(x+1)3+C\ln |x+1|+\frac{3}{(x+1)^{3}}+C
C) lnx+11x+1+C\ln |x+1|-\frac{1}{x+1}+C
D) lnx+1+1x+1+C\ln |x+1|+\frac{1}{x+1}+C
Unlock Deck
Unlock for access to all 179 flashcards in this deck.
Unlock Deck
k this deck
24
Use the table of antiderivatives to determine if the following statement is true. dxx22x+2=lnx+x22x+2+C\int \frac{d x}{\sqrt{x^{2}-2 x+2}}=\ln \left|x+\sqrt{x^{2}-2 x+2}\right|+C
Unlock Deck
Unlock for access to all 179 flashcards in this deck.
Unlock Deck
k this deck
25
Calculate ze5z2+8dz\int z e^{5 z^{2}+8} d z .

A) z5e5z2+8+C\frac{z}{5} e^{5 z^{2}+8}+C
B) z10e5z2+8+C\frac{z}{10} e^{5 z^{2}+8}+C
C) 15e5z2+8+C\frac{1}{5} e^{5 z^{2}+8}+C
D) 110ez2+8+C\frac{1}{10} e^{z^{2}+8}+C
Unlock Deck
Unlock for access to all 179 flashcards in this deck.
Unlock Deck
k this deck
26
θ2cos(aθ)dθ=θ2asin(aθ)+2θa2cos(aθ)+C\int \theta^{2} \cos (a \theta) d \theta=\frac{\theta^{2}}{a} \sin (a \theta)+\frac{2 \theta}{a^{2}} \cos (a \theta)+C , where a is a constant.
Unlock Deck
Unlock for access to all 179 flashcards in this deck.
Unlock Deck
k this deck
27
For f(x)=x2e10xf(x)=x^{2} e^{10 x} , find a function F(x)F(x) such that F(x)=f(x)F^{\prime}(x)=f(x) and F(0)=0F(0)=0 .

A) e10x(110x2150x+1500)1500e^{10 x}\left(\frac{1}{10} x^{2}-\frac{1}{50} x+\frac{1}{500}\right)-\frac{1}{500}
B) e10x(110x2150x+1500)e^{10 x}\left(\frac{1}{10} x^{2}-\frac{1}{50} x+\frac{1}{500}\right)
C) e10x(110x2150x)e^{10 x}\left(\frac{1}{10} x^{2}-\frac{1}{50} x\right)
D) e10x(x330)e^{10 x}\left(\frac{x^{3}}{30}\right)
Unlock Deck
Unlock for access to all 179 flashcards in this deck.
Unlock Deck
k this deck
28
lnxdx=xlnxx+C\int \ln x d x=x \ln x-x+C .
Unlock Deck
Unlock for access to all 179 flashcards in this deck.
Unlock Deck
k this deck
29
Calculate sec2θdθ\int \sec ^{2} \theta d \theta

A) 3sinθcos3θ+C\frac{3 \sin \theta}{\cos ^{3} \theta}+C
B) 1cosθ+C-\frac{1}{\cos \theta}+C
C) tanθ+C\tan \theta+C
D) tan2θ+C\tan ^{2} \theta+C
Unlock Deck
Unlock for access to all 179 flashcards in this deck.
Unlock Deck
k this deck
30
For f(x)=xsin(4x)f(x)=x \sin (4 x) , find a function F(x)F(x) such that F(x)=f(x)F^{\prime}(x)=f(x) and F(0)=0F(0)=0 .

A) 14xcos(4x)14sin(4x)\frac{1}{4} x \cos (4 x)-\frac{1}{4} \sin (4 x)
B) 14xcos(4x)+14sin(4x)-\frac{1}{4} x \cos (4 x)+\frac{1}{4} \sin (4 x)
C) 14xcos(4x)116sin(4x)\frac{1}{4} x \cos (4 x)-\frac{1}{16} \sin (4 x)
D) 14xcos(4x)+116sin(4x)-\frac{1}{4} x \cos (4 x)+\frac{1}{16} \sin (4 x)
Unlock Deck
Unlock for access to all 179 flashcards in this deck.
Unlock Deck
k this deck
31
Calculate dx(b+ax)8\int \frac{d x}{(b+a x)^{8}} , where a and b are constants.

A) 9a(b+αx)9+C\frac{9}{a(b+\alpha x)^{9}}+C
B) 7a(b+ax)7+C\frac{7 a}{(b+a x)^{7}}+C
C) 17a(b+ax)7+C-\frac{1}{7 a(b+a x)^{7}}+C
D) 17a(b+ax)7+C\frac{1}{7 a(b+ a x)^{7}}+C
Unlock Deck
Unlock for access to all 179 flashcards in this deck.
Unlock Deck
k this deck
32
Find xcos2xdx\int x \cos 2 x d x .

A) 12xsin2x+14cos2x+C\frac{1}{2} x \sin 2 x+\frac{1}{4} \cos 2 x+C
B) 12xsin2x12cos2x+C\frac{1}{2} x \sin 2 x-\frac{1}{2} \cos 2 x+C
C) x28sin2x+C-\frac{x^{2}}{8} \sin 2 x+C
D) x24sin2x+C\frac{x^{2}}{4} \sin 2 x+C
Unlock Deck
Unlock for access to all 179 flashcards in this deck.
Unlock Deck
k this deck
33
Integrate Integrate   .Give an exact answer and one rounded to 3 decimal places. .Give an exact answer and one rounded to 3 decimal places.
Unlock Deck
Unlock for access to all 179 flashcards in this deck.
Unlock Deck
k this deck
34
Integrate sin(3x)ecos(3x)dx\int \sin (3 x) e^{\cos (3 x)} d x .

A) ecos(3x)+C-e^{\cos (3 x)}+C
B) ecos(3x)+Ce^{\cos (3 x)}+C
C) 13ecos(3x)+C-\frac{1}{3} e^{\cos (3 x)}+C
D) 13ecos(3x)+C\frac{1}{3} e^{\cos (3 x)}+C
Unlock Deck
Unlock for access to all 179 flashcards in this deck.
Unlock Deck
k this deck
35
Calculate ysec2ydy\int y \sec ^{2} y d y .

A) ytany+lncosy+Cy \tan y+\ln |\cos y|+C
B) ytanylncosy+Cy \tan y-\ln |\cos y|+C
C) y22tany+C\frac{y^{2}}{2}-\tan y+C
D) y22tany+C\frac{y^{2}}{2} \tan y+C
Unlock Deck
Unlock for access to all 179 flashcards in this deck.
Unlock Deck
k this deck
36
For f(x)=x2(8+x3)10f(x)=x^{2}\left(8+x^{3}\right)^{10} , find a function F(x)F(x) such that F(x)=f(x)F^{\prime}(x)=f(x) and F(0)=0F(0)=0 .

A) 133((8+x3)11)\frac{1}{33}\left(\left(8+x^{3}\right)^{11}\right)
B) 133((8+x3)11811)\frac{1}{33}\left(\left(8+x^{3}\right)^{11}-8^{11}\right)
C) 199((8+x3)11811)\frac{1}{99}\left(\left(8+x^{3}\right)^{11}-8^{11}\right)
D) x99(8+x3)11\frac{x}{99}\left(8+x^{3}\right)^{11}
Unlock Deck
Unlock for access to all 179 flashcards in this deck.
Unlock Deck
k this deck
37
Use the table of antiderivatives to determine if the following statement is true. x2x2+5dx=x5arctanx5+C\int \frac{x^{2}}{x^{2}+5} d x=x-\sqrt{5} \arctan \frac{x}{\sqrt{5}}+C
Unlock Deck
Unlock for access to all 179 flashcards in this deck.
Unlock Deck
k this deck
38
Integrate lnx4xdx\int \frac{\sqrt[4]{\ln x}}{x} d x .

A) (lnx)5/4+C(\ln x)^{5 / 4}+C
B) 45(lnx)5/4+C\frac{4}{5}(\ln x)^{5 / 4}+C
C) 2(lnx)5/4x2+C\frac{2(\ln x)^{5 / 4}}{x^{2}}+C
D) lnx55+C\frac{\sqrt[5]{\ln x}}{5}+C
Unlock Deck
Unlock for access to all 179 flashcards in this deck.
Unlock Deck
k this deck
39
Use the table of antiderivatives to determine if the following statement is true. dxx210x+26=arctan(x5)+C\int \frac{d x}{x^{2}-10 x+26}=\arctan (x-5)+C
Unlock Deck
Unlock for access to all 179 flashcards in this deck.
Unlock Deck
k this deck
40
teatdt=1ateat1a2eat+C\int t e^{a t} d t=\frac{1}{a} t e^{a t}-\frac{1}{a^{2}} e^{a t}+C , where a is a constant.
Unlock Deck
Unlock for access to all 179 flashcards in this deck.
Unlock Deck
k this deck
41
3e3x1+e6xdx=tan1(e3x)+C\int \frac{3 e^{3 x}}{1+e^{6 x}} d x=\tan ^{-1}\left(e^{3 x}\right)+C .
Unlock Deck
Unlock for access to all 179 flashcards in this deck.
Unlock Deck
k this deck
42
Use the table of antiderivatives to determine if the following statement is true. dt47t2=17arcsin(t72)+C\int \frac{d t}{\sqrt{4-7 t^{2}}}=\frac{1}{7} \arcsin \left(\frac{t \sqrt{7}}{2}\right)+C
Unlock Deck
Unlock for access to all 179 flashcards in this deck.
Unlock Deck
k this deck
43
sin3xdx=13sin4xcosx+313sin5xdx\int \sin ^{-3} x d x=\frac{-1}{-3} \sin ^{-4} x \cos x+\frac{-3-1}{-3} \int \sin ^{-5} x d x
Unlock Deck
Unlock for access to all 179 flashcards in this deck.
Unlock Deck
k this deck
44
Find the area of the region bounded by y = 0 and Find the area of the region bounded by y = 0 and   between t = 0 and t = 2.Round to 3 decimal places. between t = 0 and t = 2.Round to 3 decimal places.
Unlock Deck
Unlock for access to all 179 flashcards in this deck.
Unlock Deck
k this deck
45
The following are some of the values for a function known as the Gudermannian function, G(x).
The following are some of the values for a function known as the Gudermannian function, G(x).   Use these values to approximate the value of   using the trapezoid rule. Use these values to approximate the value of The following are some of the values for a function known as the Gudermannian function, G(x).   Use these values to approximate the value of   using the trapezoid rule. using the trapezoid rule.
Unlock Deck
Unlock for access to all 179 flashcards in this deck.
Unlock Deck
k this deck
46
Which of the following gives the area of the circle x2+y2=1x^{2}+y^{2}=1 ?

A) 111x2dx\int_{-1}^{1} \sqrt{1-x^{2}} d x
B) 4111x2dx4 \int_{-1}^{1} \sqrt{1-x^{2}} d x
C) 4011x2dx4 \int_{0}^{1} \sqrt{1-x^{2}} d x
D) 2011x2dx2 \int_{0}^{1} \sqrt{1-x^{2}} d x
Unlock Deck
Unlock for access to all 179 flashcards in this deck.
Unlock Deck
k this deck
47
Compute Compute   .Round to 3 decimal places. .Round to 3 decimal places.
Unlock Deck
Unlock for access to all 179 flashcards in this deck.
Unlock Deck
k this deck
48
Consider the semicircle of radius 4 pictured below.Which of the following could represent the area of the semicircle? Select all that apply.  <strong>Consider the semicircle of radius 4 pictured below.Which of the following could represent the area of the semicircle? Select all that apply.  </strong> A)  \int_{-4}^{4} \sqrt{16-x^{2}} d x  B)  \frac{1}{2} \cdot \pi \cdot 4^{2}  C)  4 \int_{-1}^{1} \sqrt{16+x^{2}} d x  D)  \left.\frac{1}{2}\left[x \sqrt{16-x^{2}}+16 \arcsin \left(\frac{x}{4}\right)\right]\right|_{-4} ^{4}  E)  \left.\frac{2}{4}\left[x \sqrt{16-x^{2}}\right]\right|_{-4} ^{4}

A) 4416x2dx\int_{-4}^{4} \sqrt{16-x^{2}} d x
B) 12π42\frac{1}{2} \cdot \pi \cdot 4^{2}
C) 41116+x2dx4 \int_{-1}^{1} \sqrt{16+x^{2}} d x
D) 12[x16x2+16arcsin(x4)]44\left.\frac{1}{2}\left[x \sqrt{16-x^{2}}+16 \arcsin \left(\frac{x}{4}\right)\right]\right|_{-4} ^{4}
E) 24[x16x2]44\left.\frac{2}{4}\left[x \sqrt{16-x^{2}}\right]\right|_{-4} ^{4}
Unlock Deck
Unlock for access to all 179 flashcards in this deck.
Unlock Deck
k this deck
49
t+5t2+10t+75dt=lnt2+10t+75+C\int \frac{t+5}{t^{2}+10 t+75} d t=\ln \left|t^{2}+10 t+75\right|+C .
Unlock Deck
Unlock for access to all 179 flashcards in this deck.
Unlock Deck
k this deck
50
cos(6θ)dθ=16sin(6θ)+C\int \cos (6 \theta) d \theta=-\frac{1}{6} \sin (6 \theta)+C .
Unlock Deck
Unlock for access to all 179 flashcards in this deck.
Unlock Deck
k this deck
51
Find cos3βdβ\int \cos ^{3} \beta d \beta .

A) sinβ13sin3β+C\sin \beta-\frac{1}{3} \sin ^{3} \beta+C
B) 13sinβ+23sin3β+C\frac{1}{3} \sin \beta+\frac{2}{3} \sin ^{3} \beta+C
C) sinβ23sin3β+C\sin \beta-\frac{2}{3} \sin ^{3} \beta+C
D) 13sinβ+sin3β+C\frac{1}{3} \sin \beta+\sin ^{3} \beta+C
Unlock Deck
Unlock for access to all 179 flashcards in this deck.
Unlock Deck
k this deck
52
The following numbers are the left, right, trapezoidal, and midpoint approximations to The following numbers are the left, right, trapezoidal, and midpoint approximations to   , where f(x)is as shown.(Each uses the same number of subdivisions.) • 0.36735 • 0.39896 • 0.36814 • 0.33575   Which one is the midpoint approximation? , where f(x)is as shown.(Each uses the same number of subdivisions.)
• 0.36735
• 0.39896
• 0.36814
• 0.33575 The following numbers are the left, right, trapezoidal, and midpoint approximations to   , where f(x)is as shown.(Each uses the same number of subdivisions.) • 0.36735 • 0.39896 • 0.36814 • 0.33575   Which one is the midpoint approximation? Which one is the midpoint approximation?
Unlock Deck
Unlock for access to all 179 flashcards in this deck.
Unlock Deck
k this deck
53
Find the area of the region bounded by Find the area of the region bounded by   , x = 0, and x = 2.Round to 3 decimal places. , x = 0, and x = 2.Round to 3 decimal places.
Unlock Deck
Unlock for access to all 179 flashcards in this deck.
Unlock Deck
k this deck
54
Compute Compute   .Round to 3 decimal places. .Round to 3 decimal places.
Unlock Deck
Unlock for access to all 179 flashcards in this deck.
Unlock Deck
k this deck
55
Suppose that as a storm dies down, its rainfall rate (in inches/hour)is given by y=10.09+t2y=\frac{1}{0.09+t^{2}} for 0 \le t \le 2, where t is the number of hours since the point of heaviest rainfall.What is the average rainfall rate over these two hours? Round your answer to 3 decimal places.
Unlock Deck
Unlock for access to all 179 flashcards in this deck.
Unlock Deck
k this deck
56
Find 4x+14x2+4xdx\int \frac{4 x+1}{4 x^{2}+4 x} d x .

A) 34lnx+14lnx+1+C\frac{3}{4} \ln |x|+\frac{1}{4} \ln |x+1|+C
B) 14lnx+34lnx+1+C\frac{1}{4} \ln |x|+\frac{3}{4} \ln |x+1|+C
C) 34lnx+14lnx+1+C\frac{3}{4} \ln |x|+\frac{1}{4} \ln |x+1|+C .
D) lnx+14lnx+1+C\ln |x|+\frac{1}{4} \ln |x+1|+C
Unlock Deck
Unlock for access to all 179 flashcards in this deck.
Unlock Deck
k this deck
57
2dxx2+4x+3=lnx+1lnx+3+C\int \frac{2 d x}{x^{2}+4 x+3}=\ln |x+1|-\ln |x+3|+C .
Unlock Deck
Unlock for access to all 179 flashcards in this deck.
Unlock Deck
k this deck
58
Use the table of antiderivatives to determine if the following statement is true. e7xcos8xdx=1113e7x(7cos8x+8sin8x)+C\int e^{7 x} \cos 8 x d x=\frac{1}{113} e^{7 x}(7 \cos 8 x+8 \sin 8 x)+C
Unlock Deck
Unlock for access to all 179 flashcards in this deck.
Unlock Deck
k this deck
59
Find 1x2+3x10dx\int \frac{1}{x^{2}+3 x-10} d x .

A) 110(lnx+5+lnx2)+C-\frac{1}{10}(\ln |x+5|+\ln |x-2|)+C
B) 17(lnx+5+lnx2)+C\frac{1}{7}(\ln |x+5|+\ln |x-2|)+C
C) 110(lnx+5lnx2)+C\frac{1}{10}(\ln |x+5|-\ln |x-2|)+C
D) 17(lnx+5lnx2)+C-\frac{1}{7}(\ln |x+5|-\ln |x-2|)+C
Unlock Deck
Unlock for access to all 179 flashcards in this deck.
Unlock Deck
k this deck
60
sin(y)dy=sinyycosy+C\int \sin (\sqrt{y}) d y=\sin \sqrt{y}-\sqrt{y} \cos \sqrt{y}+C .
Unlock Deck
Unlock for access to all 179 flashcards in this deck.
Unlock Deck
k this deck
61
What is shown in the following graph of 01(1ex)dx\int_{0}^{1}\left(1-e^{-x}\right) d x ?  <strong>What is shown in the following graph of  \int_{0}^{1}\left(1-e^{-x}\right) d x  ?  </strong> A)The right approximation with n = 2. B)The midpoint approximation with n = 2. C)The trapezoid approximation with n = 2. D)The left approximation with n = 2.

A)The right approximation with n = 2.
B)The midpoint approximation with n = 2.
C)The trapezoid approximation with n = 2.
D)The left approximation with n = 2.
Unlock Deck
Unlock for access to all 179 flashcards in this deck.
Unlock Deck
k this deck
62
Consider the ellipse pictured below:  Consider the ellipse pictured below:   The perimeter of the ellipse is given by the integral  \int_{0}^{\pi / 2} 8 \sqrt{1-\frac{3}{4} \sin ^{2} \theta} d \theta  .It turns out that there is no elementary antiderivative for the function  f(\theta)=8 \sqrt{1-\frac{3}{4} \sin ^{2} \theta}  , and so the integral must be evaluated numerically.A graph of the integrand f( \theta )is shown below.   Calculate the right sum that approximates the definite integral with N = 4 equal divisions of the interval.Round to 4 decimal places. The perimeter of the ellipse is given by the integral 0π/28134sin2θdθ\int_{0}^{\pi / 2} 8 \sqrt{1-\frac{3}{4} \sin ^{2} \theta} d \theta .It turns out that there is no elementary antiderivative for the function f(θ)=8134sin2θf(\theta)=8 \sqrt{1-\frac{3}{4} \sin ^{2} \theta} , and so the integral must be evaluated numerically.A graph of the integrand f( θ\theta )is shown below.  Consider the ellipse pictured below:   The perimeter of the ellipse is given by the integral  \int_{0}^{\pi / 2} 8 \sqrt{1-\frac{3}{4} \sin ^{2} \theta} d \theta  .It turns out that there is no elementary antiderivative for the function  f(\theta)=8 \sqrt{1-\frac{3}{4} \sin ^{2} \theta}  , and so the integral must be evaluated numerically.A graph of the integrand f( \theta )is shown below.   Calculate the right sum that approximates the definite integral with N = 4 equal divisions of the interval.Round to 4 decimal places. Calculate the right sum that approximates the definite integral with N = 4 equal divisions of the interval.Round to 4 decimal places.
Unlock Deck
Unlock for access to all 179 flashcards in this deck.
Unlock Deck
k this deck
63
The table below shows the velocity v(t)of a falling object at various times (time t measured in seconds, velocity v(t)measured in meters per second). t012v(t)172328\begin{array}{cccc}t & 0 & 1 & 2 \\v(t) & 17 & 23 & 28\end{array} The distance the object fell in these three seconds lies within which interval?

A)(68, 75.5)
B)(75.5, 78)
C)(78, 83)
D)(83, 86.5)
Unlock Deck
Unlock for access to all 179 flashcards in this deck.
Unlock Deck
k this deck
64
03sin39(x)dx>π\int_{0}^{3} \sin ^{39}(x) d x>\pi .
Unlock Deck
Unlock for access to all 179 flashcards in this deck.
Unlock Deck
k this deck
65
Suppose the points x0,x1,,xnx_{0}, x_{1}, \ldots, x_{n} are equally spaced and α\alpha==x0x_{0}<<x1x_{1} < \text { < } ... <<xnx_{n}=b=b .
Is i=0n1(f(xi)+f(xi+1)2)Δx\sum_{i=0}^{n-1}\left(\frac{f\left(x_{i}\right)+f\left(x_{i+1}\right)}{2}\right) \Delta x the formula (in terms of f and the xix_{i} 's)for the midpoint Riemann sum approximation to abf(x)dx\int_{a}^{b} f(x) d x ?
Unlock Deck
Unlock for access to all 179 flashcards in this deck.
Unlock Deck
k this deck
66
Below is the graph of Below is the graph of   .   We have the following data: For   , MID(50)= -12.40537 and TRAP(50)= -12.40041. For   , MID(50)= 21.36379 and TRAP(50)= 21.35097. Using this data alone, what is the best upper bound you can give for   ? . Below is the graph of   .   We have the following data: For   , MID(50)= -12.40537 and TRAP(50)= -12.40041. For   , MID(50)= 21.36379 and TRAP(50)= 21.35097. Using this data alone, what is the best upper bound you can give for   ? We have the following data:
For Below is the graph of   .   We have the following data: For   , MID(50)= -12.40537 and TRAP(50)= -12.40041. For   , MID(50)= 21.36379 and TRAP(50)= 21.35097. Using this data alone, what is the best upper bound you can give for   ? , MID(50)= -12.40537 and TRAP(50)= -12.40041.
For Below is the graph of   .   We have the following data: For   , MID(50)= -12.40537 and TRAP(50)= -12.40041. For   , MID(50)= 21.36379 and TRAP(50)= 21.35097. Using this data alone, what is the best upper bound you can give for   ? , MID(50)= 21.36379 and TRAP(50)= 21.35097.
Using this data alone, what is the best upper bound you can give for Below is the graph of   .   We have the following data: For   , MID(50)= -12.40537 and TRAP(50)= -12.40041. For   , MID(50)= 21.36379 and TRAP(50)= 21.35097. Using this data alone, what is the best upper bound you can give for   ? ?
Unlock Deck
Unlock for access to all 179 flashcards in this deck.
Unlock Deck
k this deck
67
Using two subdivisions, find the left approximation to Using two subdivisions, find the left approximation to   .Round to 4 decimal places. .Round to 4 decimal places.
Unlock Deck
Unlock for access to all 179 flashcards in this deck.
Unlock Deck
k this deck
68
You want to estimate 01cos(θ2)dθ\int_{0}^{1} \cos \left(\theta^{2}\right) d \theta by finding values, A and B, such that A<01cosA<\int_{0}^{1} \cos (θ2)dθ\left(\theta^{2}\right) d \theta < B , with BAB-A being as small as possible.Which method should you use to find A?

A)The trapezoid rule.
B)The midpoint rule.
C)The left rule.
D)The right rule.
Unlock Deck
Unlock for access to all 179 flashcards in this deck.
Unlock Deck
k this deck
69
Find the exact value of 13xx13dx\int_{1}^{3} x \sqrt[3]{x-1} d x .

A) 37(2)7/334(2)4/3+928\frac{3}{7}(2)^{7 / 3}-\frac{3}{4}(2)^{4 / 3}+\frac{9}{28}
B) 37(2)7/3+34(2)4/33328\frac{3}{7}(2)^{7 / 3}+\frac{3}{4}(2)^{4 / 3}-\frac{33}{28}
C) 37(2)7/3+34(2)4/3\frac{3}{7}(2)^{7 / 3}+\frac{3}{4}(2)^{4 / 3}
D) 37(2)7/334(2)4/3\frac{3}{7}(2)^{7 / 3}-\frac{3}{4}(2)^{4 / 3}
Unlock Deck
Unlock for access to all 179 flashcards in this deck.
Unlock Deck
k this deck
70
Consider the definite integral 02/514+25x2dx\int_{0}^{2 / 5} \frac{1}{4+25 x^{2}} d x .Compute the integral using the fundamental theorem of calculus and using the midpoint rule with n = 20.How far apart are your answers?

A)Within 0.03 but not within 0.003
B)Within 0.003 but not within 0.0003
C)Within 0.0003 but not within 0.00003
D)Within 0.00003 but not within 0.000003
Unlock Deck
Unlock for access to all 179 flashcards in this deck.
Unlock Deck
k this deck
71
The midpoint rule gives exact answers for linear functions, no matter how many subdivisions are used.
Unlock Deck
Unlock for access to all 179 flashcards in this deck.
Unlock Deck
k this deck
72
For any given function, TRAP(n)is always more accurate than LEFT(n).
Unlock Deck
Unlock for access to all 179 flashcards in this deck.
Unlock Deck
k this deck
73
The table below shows the velocity v(t)of a falling object at various times (time t measured in seconds, velocity v(t)measured in meters per second). t0123v(t)19253034\begin{array}{ccccc}t & 0 & 1 & 2 & 3 \\v(t) & 19 & 25 & 30 & 34\end{array} Due to air resistance, the object's acceleration is decreasing.What does this tell you about the shape of the graph of v(t)?

A)It is concave down
B)It is concave up
C)Neither of the above
Unlock Deck
Unlock for access to all 179 flashcards in this deck.
Unlock Deck
k this deck
74
Consider the definite integral π/4π/4sin2θdθ\int_{-\pi / 4}^{\pi / 4} \sin ^{2} \theta d \theta .Compute the integral using the fundamental theorem of calculus and using the trapeziod rule with n = 20.How far apart are your answers?

A)Within 0.1 but not within 0.01
B)Within 0.0001 but not within 0.00001
C)Within 0.001 but not within 0.0001
D)Within 0.01 but not within 0.001
Unlock Deck
Unlock for access to all 179 flashcards in this deck.
Unlock Deck
k this deck
75
Suppose the points x0,x1,,xnx_{0}, x_{1}, \ldots, x_{n} are equally spaced and α\alpha==x0x_{0}<<x1x_{1} < \text { < } ... <<xnx_{n}=b=b .What is the formula (in terms of f and the xix_{i} 's)for the right Riemann sum approximation to abf(x)dx\int_{a}^{b} f(x) d x ?

A) i=abf(xi)Δx\sum_{i=a}^{b} f\left(x_{i}\right) \Delta x
B) i=a+nb+nf(xi)Δx\sum_{i=a+n}^{b+n} f\left(x_{i}\right) \Delta x
C) i=1nf(xi)Δx\sum_{i=1}^{n} f\left(x_{i}\right) \Delta x
D) i=0n1f(xi)Δx\sum_{i=0}^{n-1} f\left(x_{i}\right) \Delta x
Unlock Deck
Unlock for access to all 179 flashcards in this deck.
Unlock Deck
k this deck
76
Consider the function f(x)=(1x)1/3f(x)=(1-x)^{1 / 3} .Does the midpoint approximation give an exact answer, an overestimate, or an underestimate?

A)An overestimate
B)An underestimate
C)An exact answer
D)Cannot tell
Unlock Deck
Unlock for access to all 179 flashcards in this deck.
Unlock Deck
k this deck
77
A drug is being administered intravenously to a patient at a constant rate of 2 mg/hr.The following table shows the rate of change of the amount of the drug in the patient's body at half-hour intervals.Initially there is none of the drug in the patient's body.
A drug is being administered intravenously to a patient at a constant rate of 2 mg/hr.The following table shows the rate of change of the amount of the drug in the patient's body at half-hour intervals.Initially there is none of the drug in the patient's body.   Use the trapezoid rule to estimate of the total amount of the drug in the patient's body after four hours.Round to 2 decimal places. Use the trapezoid rule to estimate of the total amount of the drug in the patient's body after four hours.Round to 2 decimal places.
Unlock Deck
Unlock for access to all 179 flashcards in this deck.
Unlock Deck
k this deck
78
Suppose that a computer takes 10710^{-7} seconds to add two numbers together, and it takes 10510^{-5} seconds to multiply two numbers together.The computer is asked to integrate the function f(x)=3x2f(x)=3 \cdot x^{2} from 0 to 1 using left hand sums with n divisions.As a function of n, let T(n)denote the time used by the computer to do the calculation.Compute T(n).(The computer figures x2 as x · x.)

A) 2n×105+(n1)×1072 n \times 10^{-5}+(n-1) \times 10^{-7}
B) 2n×107+2(n1)×1052 n \times 10^{-7}+2(n-1) \times 10^{-5}
C) n×105+n×107n \times 10^{-5}+n \times 10^{-7}
D) n×105+2n×107n \times 10^{-5}+2 n \times 10^{-7}
Unlock Deck
Unlock for access to all 179 flashcards in this deck.
Unlock Deck
k this deck
79
Last Monday we hired a typist to work from 8am to 12 noon.His typing speed decreased between 8am and his 10am cup of coffee, and increased again afterwards, between 10am and noon.His instantaneous speed (measured in characters per second)was measured each hour and the results are given below:
Last Monday we hired a typist to work from 8am to 12 noon.His typing speed decreased between 8am and his 10am cup of coffee, and increased again afterwards, between 10am and noon.His instantaneous speed (measured in characters per second)was measured each hour and the results are given below:   You want to estimate the total number of characters typed between 8am and 12 noon.Find an upper estimate using Reimann sums. You want to estimate the total number of characters typed between 8am and 12 noon.Find an upper estimate using Reimann sums.
Unlock Deck
Unlock for access to all 179 flashcards in this deck.
Unlock Deck
k this deck
80
Evaluate 718arctan(x)dx\int_{-7}^{18} \arctan (x) d x "symbolically" (plug in the limits but don't evaluate).Hint: Integrate by parts using ddxarctanx=11+x2\frac{d}{d x} \arctan x=\frac{1}{1+x^{2}} .

A) 18arctan187arctan(7)+ln(1+182)+ln(1+72)18 \arctan 18-7 \arctan (-7)+\ln \left(1+18^{2}\right)+\ln \left(1+7^{2}\right)
B) 18arctan18+7arctan(7)ln(1+182)ln(1+72)18 \arctan 18+7 \arctan (-7)-\ln \left(1+18^{2}\right)-\ln \left(1+7^{2}\right)
C) 18arctan187arctan(7)+12ln(1+182)12ln(1+72)18 \arctan 18-7 \arctan (-7)+\frac{1}{2} \ln \left(1+18^{2}\right)-\frac{1}{2} \ln \left(1+7^{2}\right)
D) 18arctan18+7arctan(7)12ln(1+182)+12ln(1+72)18 \arctan 18+7 \arctan (-7)-\frac{1}{2} \ln \left(1+18^{2}\right)+\frac{1}{2} \ln \left(1+7^{2}\right)
Unlock Deck
Unlock for access to all 179 flashcards in this deck.
Unlock Deck
k this deck
locked card icon
Unlock Deck
Unlock for access to all 179 flashcards in this deck.