Deck 9: Exponential and Logarithmic Functions

Full screen (f)
exit full mode
Question
For the given functions f and g, find the composition.
f(x)=x2+3x;g(x)=xf ( x ) = x ^ { 2 } + 3 x ; g ( x ) = \sqrt { x }
Find (gf)(0)( g \circ f ) ( 0 ) .

A) 0
B) 3
C) 3\sqrt { 3 }
D) 232 \sqrt { 3 }
Use Space or
up arrow
down arrow
to flip the card.
Question
f(x)=x+7 ; g(x)=5x - 2
Find (f+g)(x) .

A) 5x+5
B) 5x2+33x145 x ^ { 2 } + 33 x - 14
C) 11x
D) 6x+5
Question
f(x)=3x31;g(x)=3x21f ( x ) = 3 x ^ { 3 } - 1 ; g ( x ) = 3 x ^ { 2 } - 1
Find (fg)(x)( f \cdot g ) ( x )

A) (fg)(x)=9x63x33x2+1( f \cdot g ) ( x ) = 9 x ^ { 6 } - 3 x ^ { 3 } - 3 x ^ { 2 } + 1
B) (fg)(x)=3x3+3x2+1( f \cdot g ) ( x ) = 3 x ^ { 3 } + 3 x ^ { 2 } + 1
C) (fg)(x)=9x53x33x2+1( f \cdot g ) ( x ) = - 9 x ^ { 5 } - 3 x ^ { 3 } - 3 x ^ { 2 } + 1
D) (fg)(x)=9x53x33x2+1( f \cdot g ) ( x ) = 9 x ^ { 5 } - 3 x ^ { 3 } - 3 x ^ { 2 } + 1
Question
For the given functions f and g, find the composition.
f(x)=x2+2x;g(x)=x+4f ( x ) = x ^ { 2 } + 2 x ; g ( x ) = x + 4
Find (fg)(3)( f \circ g ) ( 3 ) .

A) 232 \sqrt { 3 }
B) 0
C) 63
D) 19
Question
For the given functions f and g, find the composition.
f(x)=x2+6x;g(x)=x+3f ( x ) = x ^ { 2 } + 6 x ; g ( x ) = x + 3
Find (gf)(2)( g \circ f ) ( 2 ) .

A) 19
B) 21
C) 80
D) 55
Question
For the given functions f and g, find the composition.
f(x)=x2+9x7;g(x)=xf ( x ) = x ^ { 2 } + 9 x - 7 ; g ( x ) = \sqrt { x }
Find (fg)(9)( f \circ g ) ( 9 ) .

A) 29
B) 36
C) 30
D) 23
Question
f(x)=x;g(x)=4x1f ( x ) = \sqrt { x } ; g ( x ) = 4 x - 1
Find (fg)(x)\left( \frac { f } { g } \right) ( x )

A) (fg)(x)=x14x, where x14\left( \frac { \mathrm { f } } { \mathrm { g } } \right) ( \mathrm { x } ) = \frac { \sqrt { \mathrm { x } } } { 1 - 4 \mathrm { x } } , \text { where } x \neq \frac { 1 } { 4 }
B) (fg)(x)=x4x1, where x14\left( \frac { \mathrm { f } } { \mathrm { g } } \right) ( \mathrm { x } ) = \frac { \sqrt { \mathrm { x } } } { 4 \mathrm { x } - 1 } , \text { where } x \neq \frac { 1 } { 4 }
C) (fg)(x)=x4x4, where x1\left( \frac { f } { g } \right) ( x ) = \frac { \sqrt { x } } { 4 x - 4 } , \text { where } x \neq 1
D) (fg)(x)=14xx, where x0\left( \frac { f } { g } \right) ( x ) = \frac { 1 - 4 x } { \sqrt { x } } , \text { where } x \neq 0
Question
f(x)=x;g(x)=x+9f ( x ) = \sqrt { x } ; g ( x ) = x + 9
Find (f+g)(x)( f + g ) ( x )

A) (f+g)(x)=9x+x( f + g ) ( x ) = 9 \sqrt { x } + x
B) (f+g)(x)=xx+9( f + g ) ( x ) = x \sqrt { x } + 9
C) (f+g)(x)=x+x+9( f + g ) ( x ) = \sqrt { x } + x + 9
D) (f+g)(x)=xx+x2+9x( f + g ) ( x ) = x \sqrt { x } + x ^ { 2 } + 9 x
Question
For the given functions f and g, find the composition.
f(x)=6x22x;g(x)=3xf ( x ) = 6 x ^ { 2 } - 2 x ; g ( x ) = - 3 x
Find (gf)(x)( g \circ f ) ( x ) .

A) 54x22x54 x ^ { 2 } - 2 x
B) 6x246 x ^ { 2 } - 4
C) 18x3+6x2- 18 x ^ { 3 } + 6 x ^ { 2 }
D) 18x2+6x- 18 x ^ { 2 } + 6 x
Question
f(x)=x+2;g(x)=8x2f ( x ) = x + 2 ; g ( x ) = 8 x ^ { 2 }
Find (f - g)(x)

A) (fg)(x)=8x2x2( f - g ) ( x ) = 8 x ^ { 2 } - x - 2
B) (fg)(x)=8x2+x+2( f - g ) ( x ) = 8 x ^ { 2 } + x + 2
C) (fg)(x)=8x2+x+2( f - g ) ( x ) = - 8 x ^ { 2 } + x + 2
D) (fg)(x)=8x2x+2( f - g ) ( x ) = - 8 x ^ { 2 } - x + 2
Question
f(x)=8x - 7 ; g(x)=4x - 8
Find (f-g)(x) .

A) (fg)(x)=4x+1( f - g ) ( x ) = 4 x + 1
B) (fg)(x)=4x15( f - g ) ( x ) = 4 x - 15
C) (fg)(x)=4x1( f - g ) ( x ) = - 4 x - 1
D) (fg)(x)=12x15( f - g ) ( x ) = 12 x - 15
Question
f(x) = 3x + 4; g(x)= 5x - 1
Find (fg)(x).\left( \frac { \mathrm { f } } { \mathrm { g } } \right) ( \mathrm { x } ) .

A) (fg)(x)=3x+45x+1, where x15\left( \frac { f } { g } \right) ( x ) = \frac { 3 x + 4 } { 5 x + 1 } , \text { where } x \neq - \frac { 1 } { 5 }
B) (fg)(x)=5x+13x+4, where x43\left( \frac { f } { g } \right) ( x ) = \frac { 5 x + 1 } { 3 x + 4 } , \text { where } x \neq - \frac { 4 } { 3 }
C) (fg)(x)=5x13x+4, where xz43\left( \frac { f } { g } \right) ( x ) = \frac { 5 x - 1 } { 3 x + 4 } , \text { where } x z - \frac { 4 } { 3 }
D) (fg)(x)=3x+45x1, where x15\left( \frac { f } { g } \right) ( x ) = \frac { 3 x + 4 } { 5 x - 1 } , \text { where } x \neq \frac { 1 } { 5 }
Question
f(x)=3x;g(x)=2x+7f ( x ) = \sqrt { 3 x } ; g ( x ) = - 2 x + 7
Find (fg)(x)( f \cdot g ) ( x )

A) (fg)(x)=3x+14x( f \cdot g ) ( x ) = \sqrt { 3 x } + 14 x
B) (fg)(x)=2x3x+73x( f \cdot g ) ( x ) = - 2 x \sqrt { 3 x } + 7 \sqrt { 3 x }
C) (fg)(x)=6x+73x( f \cdot g ) ( x ) = - 6 x + 7 \sqrt { 3 x }
D) (fg)(x)=6x2+21( f \cdot g ) ( x ) = - 6 x ^ { 2 } + 21
Question
For the given functions f and g, find the composition.
f(x)=x+3;g(x)=2xf ( x ) = \sqrt { x + 3 } ; g ( x ) = 2 x
Find (fg)(2)( f \circ g ) ( 2 ) .

A) 252 \sqrt { 5 }
B) 7\sqrt { 7 }
C) 10\sqrt { 10 }
D) 2102 \sqrt { 10 }
Question
f(x)=3x8;g(x)=8x7f ( x ) = 3 x ^ { 8 } ; g ( x ) = 8 x ^ { 7 }
Find (fg)(x)( f \cdot g ) ( x )

A) (fg)(x)=24x56( f \cdot g ) ( x ) = 24 x ^ { 56 }
B) (fg)(x)=24x15( f \cdot g ) ( x ) = 24 x ^{15}
C) (fg)(x)=24x15( f \cdot g ) ( x ) = - 24 x ^ { 15 }
D) (fg)(x)=24x56( f \cdot g ) ( x ) = - 24 x ^ { 56 }
Question
Solve.
Business people are concerned with cost functions, revenue functions, and profit functions. Suppose the revenue R(x)R ( x ) for xx units of a product can be described by R(x)=410xR ( x ) = 410 x , and the cost C(x)C ( x ) can be described by C(x)C ( x ) =2900+110x= 2900 + 110 x . Find the profit P(x)P ( x ) for xx units.

A) P(x)=300x2900P ( x ) = \frac { 300 } { x } - 2900
B) P(x)=300x+2900\mathrm { P } ( \mathrm { x } ) = 300 \mathrm { x } + 2900
C) P(x)=300x2900P ( x ) = 300 x - 2900
D) P(x)=520x2900P ( x ) = 520 x - 2900
Question
For the given functions f and g, find the composition.
f(x)=6x2+5x;g(x)=2xf ( x ) = 6 x ^ { 2 } + 5 x ; g ( x ) = 2 x
Find (fg)(x)( f \circ g ) ( x ) .

A) 24x2+10x24 x ^ { 2 } + 10 x
B) 6x2+76 x ^ { 2 } + 7
C) 12x2+10x12 x ^ { 2 } + 10 x
D) 12x3+10x212 x ^ { 3 } + 10 x ^ { 2 }
Question
f(x)=x3;g(x)=3x6f ( x ) = \sqrt [ 3 ] { x } ; g ( x ) = 3 x - 6
Find (fg)(x)( f - g ) ( x )

A) (fg)(x)=x33x+6( f - g ) ( x ) = \sqrt [ 3 ] { x } - 3 x + 6
B) (fg)(x)=x33x6( f - g ) ( x ) = \sqrt [ 3 ] { x } - 3 x - 6
C) (fg)(x)=x3+3x+6( f - g ) ( x ) = \sqrt [ 3 ] { x } + 3 x + 6
D) (fg)(x)=x33x+6( f - g ) ( x ) = - \sqrt [ 3 ] { x } - 3 x + 6
Question
f(x)=4 x-1 ; g(x)=6 x-2
Find (fg)(x)( f \cdot g ) ( x )

A) (fg)(x)=24x28x+2( f \cdot g ) ( x ) = 24 x ^ { 2 } - 8 x + 2
B) (fg)(x)=10x214x3( f \cdot g ) ( x ) = 10 x ^ { 2 } - 14 x - 3
C) (fg)(x)=24x2+2( f \cdot g ) ( x ) = 24 x ^ { 2 } + 2
D) (fg)(x)=24x214x+2( f \cdot g ) ( x ) = 24 x ^ { 2 } - 14 x + 2
Question
f(x)=4x4;g(x)=2x2f ( x ) = - 4 x ^ { 4 } ; g ( x ) = - 2 x ^ { 2 }
Find (fg)(x).\left( \frac { f } { g } \right) ( x ) .

A) (fg)(x)=8x6, where x0\left( \frac { \mathrm { f } } { \mathrm { g } } \right) ( \mathrm { x } ) = 8 \mathrm { x } ^ { 6 } , \text { where } \mathrm { x } \neq 0
B) (fg)(x)=2x2, where x0\left( \frac { f } { g } \right) ( x ) = 2 x ^ { 2 } , \text { where } x \neq 0
C) (fg)(x)=2x2, where x0\left( \frac { f } { g } \right) ( x ) = - 2 x ^ { 2 } , \text { where } x \neq 0
D) (fg)(x)=2x4, where x0\left( \frac { f } { g } \right) ( x ) = 2 x ^ { 4 } , \text { where } x \neq 0
Question
Write the function F(x) as a composition of f, g, or h.
f(x)=x2+6g(x)=2xh(x)=x4F(x)=2x4\begin{array} { l } f ( x ) = x ^ { 2 } + 6 \quad g ( x ) = - 2 x \quad h ( x ) = \sqrt { x - 4 } \\F ( x ) = \sqrt { - 2 x - 4 }\end{array}

A) F(x)=(hg)(x)\mathrm { F } ( \mathrm { x } ) = ( \mathrm { h } \circ \mathrm { g } ) ( \mathrm { x } )
B) F(x)=(hf)(x)\mathrm { F } ( \mathrm { x } ) = ( \mathrm { h } \circ \mathrm { f } ) ( \mathrm { x } )
C) F(x)=(gh)(x)F ( x ) = ( g \circ h ) ( x )
D) F(x)=(fh)(x)F ( x ) = ( f \circ h ) ( x )
Question
Write the function F(x) as a composition of f, g, or h.
f(x)=x23g(x)=3xh(x)=x1F(x)=x4\begin{array} { l } f ( x ) = x ^ { 2 } - 3 \quad g ( x ) = 3 x \quad h ( x ) = \sqrt { x - 1 } \\F ( x ) = x - 4\end{array}

A) F(x)=(gh)(x)F ( x ) = ( g \circ h ) ( x )
B) F(x)=(hg)(x)\mathrm { F } ( \mathrm { x } ) = ( \mathrm { h } \circ \mathrm { g } ) ( \mathrm { x } )
C) F(x)=(fg)(x)F ( x ) = ( f \circ g ) ( x )
D) F(x)=(fh)(x)F ( x ) = ( f \circ h ) ( x )
Question
Determine whether the function is a one-to-one function.
f={(3,1),(3,1),(5,1),(5,1)}f = \{ ( 3,1 ) , ( - 3 , - 1 ) , ( - 5,1 ) , ( 5 , - 1 ) \}

A) one-to-one
B) not one-to-one
Question
Write the function F(x) as a composition of f, g, or h.
f(x)=x2+6g(x)=7xh(x)=x+3F(x)=7x+3\begin{array} { l } f ( x ) = x ^ { 2 } + 6 \quad g ( x ) = 7 x \quad h ( x ) = \sqrt { x + 3 } \\F ( x ) = \sqrt { 7 x + 3 }\end{array}

A) F(x)=(hg)(x)\mathrm { F } ( \mathrm { x } ) = ( \mathrm { h } \circ \mathrm { g } ) ( \mathrm { x } )
B) F(x)=(hf(x)\mathrm { F } ( \mathrm { x } ) = ( \mathrm { h } \circ \mathrm { f } ( \mathrm { x } )
C) F(x)=(gh)(x)\mathrm { F } ( \mathrm { x } ) = ( \mathrm { g } \circ \mathrm { h } ) ( \mathrm { x } )
D) F(x)=(fh)(x)\mathrm { F } ( \mathrm { x } ) = ( \mathrm { f } \circ \mathrm { h } ) ( \mathrm { x } )
Question
Determine whether the function is a one-to-one function.
f={(3,17),(4,5),(18,19)}\mathrm { f } = \{ ( - 3,17 ) , ( - 4 , - 5 ) , ( - 18,19 ) \}

A) one-to-one
B) not one-to-one
Question
Write the function F(x) as a composition of f, g, or h.
f(x)=x22g(x)=3xh(x)=x8F(x)=3x26\begin{array} { l } f ( x ) = x ^ { 2 } - 2 \quad g ( x ) = 3 x \quad h ( x ) = \sqrt { x - 8 } \\F ( x ) = 3 x ^ { 2 } - 6\end{array}

A) F(x)=(fg)(x)F ( x ) = ( f \circ g ) ( x )
B) F(x)=(gh)(x)F ( x ) = ( g \circ h ) ( x )
C) F(x)=(hg)(x)\mathrm { F } ( \mathrm { x } ) = ( \mathrm { h } \circ \mathrm { g } ) ( \mathrm { x } )
D) F(x)=(gf)(x)F ( x ) = ( g \circ f ) ( x )
Question
Find f(x) and g(x) so that the given function h(x) = (f ° g)(x).
h(x)=x+43h ( x ) = \sqrt [ 3 ] { x + 4 }

A) f(x)=x3;g(x)=x+4f ( x ) = \sqrt [ 3 ] { x } ; g ( x ) = x + 4
B) f(x)=x3;g(x)=x+4f ( x ) = x ^ { 3 } ; g ( x ) = x + 4
C) f(x)=x;g(x)=x+4f ( x ) = \sqrt { x } ; g ( x ) = x + 4
D) f(x)=x+4;g(x)=x3f ( x ) = x + 4 ; g ( x ) = \sqrt [ 3 ] { x }
Question
For the given functions f and g, find the composition.
f(x)=x+8;g(x)=8x12f ( x ) = \sqrt { x + 8 } ; g ( x ) = 8 x - 12
Find (gf)(x)( g \circ f ) ( x ) .

A) 8x+8128 \sqrt { x + 8 } - 12
B) 22x12 \sqrt { 2 x - 1 }
C) 22x+12 \sqrt { 2 x + 1 }
D) 8x48 \sqrt { x - 4 }
Question
Find f(x) and g(x) so that the given function h(x) = (f ° g)(x).
h(x)=1x+5h ( x ) = \frac { 1 } { x + 5 }

A) f(x)=1x1;g(x)=x+5f ( x ) = \frac { 1 } { x - 1 } ; g ( x ) = x + 5
B) f(x)=x+5;g(x)=1xf ( x ) = x + 5 ; g ( x ) = \frac { 1 } { x }
C) f(x)=5x;g(x)=x1f ( x ) = \frac { 5 } { x } ; g ( x ) = x - 1
D) f(x)=1x;g(x)=x+5f ( x ) = \frac { 1 } { x } ; g ( x ) = x + 5
Question
For the given functions f and g, find the composition.
f(x)=2x+5;g(x)=5x+9f ( x ) = - 2 x + 5 ; g ( x ) = 5 x + 9
Find (gf)(x)( g \circ f ) ( x ) .

A) 10x+3410 x + 34
B) 10x+34- 10 x + 34
C) 10x+23- 10 x + 23
D) 10x16- 10 x - 16
Question
Write the function F(x) as a composition of f, g, or h.
f(x)=x24g(x)=5xh(x)=x4F(x)=25x24\begin{array} { l } f ( x ) = x ^ { 2 } - 4 \quad g ( x ) = 5 x \quad h ( x ) = \sqrt { x - 4 } \\F ( x ) = 25 x ^ { 2 } - 4\end{array}

A) F(x)=(gh)(x)F ( x ) = ( g \circ h ) ( x )
B) F(x)=(gf)(x)F ( x ) = ( g \circ f ) ( x )
C) F(x)=(hg)(x)F ( x ) = ( h \circ g ) ( x )
D) F(x)=(fg)(x)F ( x ) = ( f \circ g ) ( x )
Question
For the given functions f and g, find the composition.
f(x)=x+3;g(x)=8x7f ( x ) = \sqrt { x + 3 } ; g ( x ) = 8 x - 7
Find (fg)(x)( f \circ g ) ( x ) .

A) 8x48 \sqrt { x - 4 }
B) 22x12 \sqrt { 2 x - 1 }
C) 22x+12 \sqrt { 2 x + 1 }
D) 8x+378 \sqrt { x + 3 } - 7
Question
Determine whether the function is a one-to-one function.
f={(7,8),(8,7),(1,1),(1,1)}\mathrm { f } = \{ ( - 7 , - 8 ) , ( 8,7 ) , ( 1,1 ) , ( - 1 , - 1 ) \}

A) one-to-one
B) not one-to-one
Question
For the given functions f and g, find the composition.
f(x)=4x+5;g(x)=5x1f ( x ) = 4 x + 5 ; g ( x ) = 5 x - 1
Find (fg)(x)( f \circ g ) ( x ) .

A) 20x+2420 x + 24
B) 20x+920 x + 9
C) 20x+420 x + 4
D) 20x+120 x + 1
Question
Find f(x) and g(x) so that the given function h(x) = (f ° g)(x).
h(x)=(98x3)2h ( x ) = \left( 9 - 8 x ^ { 3 } \right) ^ { 2 }

A) f(x)=98x3;g(x)=x2f ( x ) = 9 - 8 x ^ { 3 } ; g ( x ) = x ^ { 2 }
B) f(x)=x2;g(x)=98xf ( x ) = x ^ { 2 } ; g ( x ) = 9 - 8 x
C) f(x)=x2;g(x)=98x3f ( x ) = x ^ { 2 } ; g ( x ) = 9 - 8 x ^ { 3 }
D) f(x)=98x2;g(x)=x3f ( x ) = 9 - 8 x ^ { 2 } ; g ( x ) = x ^ { 3 }
Question
Determine whether the function is a one-to-one function.
f={(6,5),(4,4),(6,3),(8,2)}f = \{ ( 6 , - 5 ) , ( - 4 , - 4 ) , ( - 6 , - 3 ) , ( - 8 , - 2 ) \}

A) one-to-one
B) not one-to-one
Question
For the given functions f and g, find the composition.
f(x)=x3+6x;g(x)=3xf ( x ) = x ^ { 3 } + 6 x ; g ( x ) = - 3 x
Find (fg)(x)( f \circ g ) ( x ) .

A) 27x318x- 27 x ^ { 3 } - 18 x
B) 27x218x- 27 x ^ { 2 } - 18 x
C) 3x3+6x- 3 x ^ { 3 } + 6 x
D) 3x318x- 3 x ^ { 3 } - 18 x
Question
For the given functions f and g, find the composition.
f(x)=x35x;g(x)=3xf ( x ) = x ^ { 3 } - 5 x ; g ( x ) = - 3 x
Find (gf)(x)( g \circ f ) ( x ) .

A) 27x2+15x- 27 x ^ { 2 } + 15 x
B) 27x3+15x- 27 x ^ { 3 } + 15 x
C) 3x3+15x- 3 x ^ { 3 } + 15 x
D) 3x35x- 3 x ^ { 3 } - 5 x
Question
Find f(x) and g(x) so that the given function h(x) = (f ° g)(x).
h(x)=67x2h ( x ) = \left| 6 - 7 x ^ { 2 } \right|

A) f(x)=x;g(x)=67xf ( x ) = | x | ; g ( x ) = 6 - 7 x
B) f(x)=67x2;g(x)=xf ( x ) = 6 - 7 x ^ { 2 } ; g ( x ) = | x |
C) f(x)=67x2;g(x)=x2f ( x ) = 6 - 7 x ^ { 2 } ; g ( x ) = \left| x ^ { 2 } \right|
D) f(x)=x;g(x)=67x2f ( x ) = | x | ; g ( x ) = 6 - 7 x ^ { 2 }
Question
Write the function F(x) as a composition of f, g, or h.
f(x)=x21g(x)=4xh(x)=x2F(x)=x23\begin{array} { l } f ( x ) = x ^ { 2 } - 1 \quad g ( x ) = - 4 x \quad h ( x ) = \sqrt { x - 2 } \\F ( x ) = \sqrt { x ^ { 2 } - 3 }\end{array}

A) F(x)=(hf)(x)\mathrm { F } ( \mathrm { x } ) = ( \mathrm { h } \circ \mathrm { f } ) ( \mathrm { x } )
B) F(x)=(hg)(x)F ( x ) = ( h \circ g ) ( x )
C) F(x)=(gh)(x)\mathrm { F } ( \mathrm { x } ) = ( \mathrm { g } \circ \mathrm { h } ) ( \mathrm { x } )
D) F(x)=(fh)(x)F ( x ) = ( f \circ h ) ( x )
Question
If the function is one-to-one, list the inverse function by switching coordinates or inputs and outputs.
f = {(-6, -9), (6, 9), (7, 11), (-7, -11)}

A) f-1 = {(-9, -6), (9, 6), (11, 6), (-11, -7)}
B) f-1 = {(-9, -6), (-6, 6), (11, 7), (-11, -7)}
C) f-1 = {(-9, -6), (9, 6), (11, 7), (-11, -7)}
D) not one-to-one
Question
Determine whether the function is a one-to-one function.
f={(3,2),(2,2),(1,1),(0,8)}f = \{ ( - 3,2 ) , ( - 2,2 ) , ( - 1,1 ) , ( 0 , - 8 ) \}

A) one-to-one
B) not one-to-one
Question
Determine whether the function is a one-to-one function.
 Month of 1999 (input)  Jan  Feb  Mar  Apr  May  Jun  Sales of Product B  (output) 341038633108371240143863\begin{array}{l|c|c|c|c|c|c}\text { Month of } 1999 \text { (input) } & \text { Jan } & \text { Feb } & \text { Mar } & \text { Apr } & \text { May } & \text { Jun } \\\hline \begin{array}{l}\text { Sales of Product B } \\\text { (output) }\end{array} & 3410 & 3863 & 3108 & 3712 & 4014 & 3863\end{array}

A) one-to-one
B) not one-to-one
Question
Determine whether the graph of the function is the graph of a one-to-one function.
<strong>Determine whether the graph of the function is the graph of a one-to-one function.  </strong> A) Yes B) No <div style=padding-top: 35px>

A) Yes
B) No
Question
If the function is one-to-one, list the inverse function by switching coordinates or inputs and outputs.
f={(5,1),(1,5),(7,7),(7,7)}\mathrm { f } = \{ ( - 5,1 ) , ( - 1,5 ) , ( - 7 , - 7 ) , ( 7,7 ) \}

A) f1={(7,7),(7,1),(1,5),(7,7)}f ^ { - 1 } = \{ ( 7 , - 7 ) , ( - 7 , - 1 ) , ( 1 , - 5 ) , ( - 7,7 ) \}
B) f1={(1,5),(5,1),(7,7),(7,7)}\mathrm { f } ^ { - 1 } = \{ ( 1 , - 5 ) , ( 5 , - 1 ) , ( - 7 , - 7 ) , ( 7,7 ) \}
C) f1={(7,7),(5,1),(1,1),(7,7)}f ^ { - 1 } = \{ ( 7 , - 7 ) , ( 5 , - 1 ) , ( 1 , - 1 ) , ( - 7,7 ) \}
D) not one-to-one
Question
Determine whether the graph of the function is the graph of a one-to-one function.
<strong>Determine whether the graph of the function is the graph of a one-to-one function.  </strong> A) Yes B) No <div style=padding-top: 35px>

A) Yes
B) No
Question
If the function is one-to-one, list the inverse function by switching coordinates or inputs and outputs.
If the function is one-to-one, list the inverse function by switching coordinates or inputs and outputs.   <div style=padding-top: 35px>
Question
If the function is one-to-one, list the inverse function by switching coordinates or inputs and outputs.
f={(9,5),(4,17),(18,11)}f = \{ ( 9 , - 5 ) , ( 4,17 ) , ( - 18,11 ) \}

A) f1={(5,9),(17,4),(11,18)}f ^ { - 1 } = \{ ( - 5,9 ) , ( 17,4 ) , ( 11 , - 18 ) \}
B) f1={(5,9),(18,4),(11,17)}\mathrm { f } ^ { - 1 } = \{ ( - 5,9 ) , ( - 18,4 ) , ( 11,17 ) \}
C) f1={(9,17),(9,4),(11,18)}\mathrm { f } ^ { - 1 } = \{ ( 9,17 ) , ( 9,4 ) , ( 11 , - 18 ) \}
D) not one-to-one
Question
Determine whether the graph of the function is the graph of a one-to-one function.
<strong>Determine whether the graph of the function is the graph of a one-to-one function.  </strong> A) Yes B) No <div style=padding-top: 35px>

A) Yes
B) No
Question
Determine whether the function is a one-to-one function.
 Weekdays (input)  Monday  Tuesday  Wednesday  Thursday  Friday  Student: Avg.  Minutes of Study(outputt) 249324410123144\begin{array}{l|c|c|c|c|c}\text { Weekdays (input) } & \text { Monday } & \text { Tuesday } & \text { Wednesday } & \text { Thursday } & \text { Friday } \\\hline \text { Student: Avg. } & & & & & \\\text { Minutes of Study(outputt) } 249 & 324 & 410 & 123 & 144\end{array}

A) one-to-one
B) not one-to-one
Question
Determine whether the graph of the function is the graph of a one-to-one function.
<strong>Determine whether the graph of the function is the graph of a one-to-one function.  </strong> A) Yes B) No <div style=padding-top: 35px>

A) Yes
B) No
Question
Determine whether the graph of the function is the graph of a one-to-one function.
<strong>Determine whether the graph of the function is the graph of a one-to-one function.  </strong> A) Yes B) No <div style=padding-top: 35px>

A) Yes
B) No
Question
For the given one-to-one function f, find the following.
f(x)=6x55f ( x ) = \sqrt { 6 x - 5 } - 5
Find f(5)f ( 5 ) and f1(0)f ^ { - 1 } ( 0 ) .

A) f(5)=25;f1(0)=5f ( 5 ) = 25 ; f ^ { - 1 } ( 0 ) = 5
B) f(5)=256;f1(0)=0\mathrm { f } ( 5 ) = \frac { 25 } { 6 } ; \mathrm { f } ^ { - 1 } ( 0 ) = 0
C) f(5)=0;f1(0)=5\mathrm { f } ( 5 ) = 0 ; \mathrm { f } ^ { - 1 } ( 0 ) = 5
D) f(5)=5;f1(0)=0f ( 5 ) = 5 ; f ^ { - 1 } ( 0 ) = 0
Question
For the given one-to-one function f, find the following.
f(x)=x3+9f ( x ) = x ^ { 3 } + 9
Find f(1)f ( - 1 ) and f1(8)f ^ { - 1 } ( 8 ) .

A) f(1)=10;f1(8)=1f ( - 1 ) = - 10 ; f ^ { - 1 } ( 8 ) = - 1
B) f(1)=8;f1(8)=18f ( - 1 ) = 8 ; f ^ { - 1 } ( 8 ) = \frac { 1 } { 8 }
C) f(1)=8;f1(8)=1f ( - 1 ) = 8 ; f ^ { - 1 } ( 8 ) = - 1
D) f(1)=1;f1(8)=8f ( - 1 ) = - 1 ; f ^ { - 1 } ( 8 ) = 8
Question
If the function is one-to-one, list the inverse function by switching coordinates or inputs and outputs.
f={(6,2),(9,1),(7,0),(5,1)}f = \{ ( 6 , - 2 ) , ( 9 , - 1 ) , ( 7,0 ) , ( 5,1 ) \}

A) f1={(1,2),(2,7),(6,9),(1,0)}\mathrm { f } ^ { - 1 } = \{ ( - 1 , - 2 ) , ( - 2,7 ) , ( 6,9 ) , ( - 1,0 ) \}
B) f1={(1,2),(1,7),(6,7),(1,0)}\mathrm { f } ^ { - 1 } = \{ ( - 1 , - 2 ) , ( 1,7 ) , ( 6,7 ) , ( - 1,0 ) \}
C) f1={(2,6),(1,9),(0,7),(1,5)}\mathrm { f } ^ { - 1 } = \{ ( - 2,6 ) , ( - 1,9 ) , ( 0,7 ) , ( 1,5 ) \}
D) not one-to-one
Question
Determine whether the graph of the function is the graph of a one-to-one function.
<strong>Determine whether the graph of the function is the graph of a one-to-one function.  </strong> A) Yes B) No <div style=padding-top: 35px>

A) Yes
B) No
Question
Determine whether the graph of the function is the graph of a one-to-one function.
<strong>Determine whether the graph of the function is the graph of a one-to-one function.  </strong> A) Yes B) No <div style=padding-top: 35px>

A) Yes
B) No
Question
Determine whether the function is a one-to-one function.
f={(8,6),(18,6),(5,8)}f = \{ ( - 8 , - 6 ) , ( - 18 , - 6 ) , ( - 5,8 ) \}

A) one-to-one
B) not one-to-one
Question
If the function is one-to-one, list the inverse function by switching coordinates or inputs and outputs.
If the function is one-to-one, list the inverse function by switching coordinates or inputs and outputs.  <div style=padding-top: 35px>
Question
Determine whether the graph of the function is the graph of a one-to-one function.
<strong>Determine whether the graph of the function is the graph of a one-to-one function.  </strong> A) Yes B) No <div style=padding-top: 35px>

A) Yes
B) No
Question
Determine whether the functions f and g are inverses of each other.
f(x)=x3+8;g(x)=x83f ( x ) = x ^ { 3 } + 8 ; g ( x ) = \sqrt [ 3 ] { x - 8 }

A) Yes
B) No\mathrm { No }
Question
Find the inverse of the one-to-one function.
f(x)=x83f ( x ) = \sqrt [ 3 ] { x - 8 }

A) f1(x)=1x3+8f ^ { - 1 } ( x ) = \frac { 1 } { x ^ { 3 } + 8 }
B) f1(x)=x3+64f ^ { - 1 } ( x ) = x ^ { 3 } + 64
C) f1(x)=x+8f ^ { - 1 } ( x ) = x + 8
D) f1(x)=x3+8\mathrm { f } ^ { - 1 } ( \mathrm { x } ) = \mathrm { x } ^ { 3 } + 8
Question
Graph the function and its inverse on the same set of axes.
f(x)=x3+2f ( x ) = x ^ { 3 } + 2
 <strong>Graph the function and its inverse on the same set of axes.  f ( x ) = x ^ { 3 } + 2   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>

A)
 <strong>Graph the function and its inverse on the same set of axes.  f ( x ) = x ^ { 3 } + 2   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
B)
 <strong>Graph the function and its inverse on the same set of axes.  f ( x ) = x ^ { 3 } + 2   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
C)
 <strong>Graph the function and its inverse on the same set of axes.  f ( x ) = x ^ { 3 } + 2   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
D)
 <strong>Graph the function and its inverse on the same set of axes.  f ( x ) = x ^ { 3 } + 2   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
Question
Determine whether the functions f and g are inverses of each other.
f(x)=3x+2;g(x)=x+23f ( x ) = 3 x + 2 ; g ( x ) = \frac { x + 2 } { 3 }

A) YesY e s
B) No\mathrm { No }
Question
Graph the inverse of the function on the same set of axes.
<strong>Graph the inverse of the function on the same set of axes.  </strong> A)   B)   C)   D)   <div style=padding-top: 35px>

A)
<strong>Graph the inverse of the function on the same set of axes.  </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
B)
<strong>Graph the inverse of the function on the same set of axes.  </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
C)
<strong>Graph the inverse of the function on the same set of axes.  </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
D)
<strong>Graph the inverse of the function on the same set of axes.  </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
Question
Find the inverse of the one-to-one function.
f(x)=(x+7)33f ( x ) = ( x + 7 ) ^ { 3 } - 3

A) f1(x)=x+337\mathrm { f } ^ { - 1 } ( \mathrm { x } ) = \sqrt [ 3 ] { \mathrm { x } + 3 } - 7
B) f1(x)=x+33+7f ^ { - 1 } ( x ) = - \sqrt [ 3 ] { x + 3 } + 7
C) f1(x)=x+33+7f ^ { - 1 } ( x ) = \sqrt [ 3 ] { x + 3 } + 7
D) f(x)=(x+3)37f ( x ) = ( x + 3 ) ^ { 3 } - 7
Question
Determine whether the functions f and g are inverses of each other.
f(x)=(x+4)3+1;g(x)=x134f ( x ) = ( x + 4 ) ^ { 3 } + 1 ; g ( x ) = \sqrt [ 3 ] { x - 1 } - 4

A) YesY e s
B) No\mathrm { No }
Question
Determine whether the functions f and g are inverses of each other.
f(x)=4x+5;g(x)=x54f ( x ) = 4 x + 5 ; g ( x ) = \frac { x - 5 } { 4 }

A) Yes
B) No\mathrm { No }
Question
Graph the function and its inverse on the same set of axes.
f(x)=12x2f ( x ) = \frac { 1 } { 2 } x - 2
 <strong>Graph the function and its inverse on the same set of axes.  f ( x ) = \frac { 1 } { 2 } x - 2   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>

A)
 <strong>Graph the function and its inverse on the same set of axes.  f ( x ) = \frac { 1 } { 2 } x - 2   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
B)
 <strong>Graph the function and its inverse on the same set of axes.  f ( x ) = \frac { 1 } { 2 } x - 2   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
C)
 <strong>Graph the function and its inverse on the same set of axes.  f ( x ) = \frac { 1 } { 2 } x - 2   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
D)
 <strong>Graph the function and its inverse on the same set of axes.  f ( x ) = \frac { 1 } { 2 } x - 2   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
Question
Graph the inverse of the function on the same set of axes.
<strong>Graph the inverse of the function on the same set of axes.  </strong> A)   B)   C)   D)   <div style=padding-top: 35px>

A)
<strong>Graph the inverse of the function on the same set of axes.  </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
B)
<strong>Graph the inverse of the function on the same set of axes.  </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
C)
<strong>Graph the inverse of the function on the same set of axes.  </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
D)
<strong>Graph the inverse of the function on the same set of axes.  </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
Question
Find the inverse of the one-to-one function.
f(x)=5x+7f ( x ) = 5 x + 7

A) f1(x)=x75f ^ { - 1 } ( x ) = - \frac { x - 7 } { 5 }
B) f1(x)=x75f ^ { - 1 } ( x ) = \frac { x - 7 } { 5 }
C) f1(x)=x+75\mathrm { f } ^ { - 1 } ( \mathrm { x } ) = \frac { \mathrm { x } + 7 } { 5 }
D) f1(x)=x+57\mathrm { f } ^ { - 1 } ( \mathrm { x } ) = - \frac { \mathrm { x } + 5 } { 7 }
Question
Graph the inverse of the function on the same set of axes.
<strong>Graph the inverse of the function on the same set of axes.  </strong> A)   B)   C)   D)   <div style=padding-top: 35px>

A)
<strong>Graph the inverse of the function on the same set of axes.  </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
B)
<strong>Graph the inverse of the function on the same set of axes.  </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
C)
<strong>Graph the inverse of the function on the same set of axes.  </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
D)
<strong>Graph the inverse of the function on the same set of axes.  </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
Question
Find the inverse of the one-to-one function.
f(x)=8x+57f ( x ) = \frac { 8 x + 5 } { 7 }

A) f1(x)=78x+5f ^ { - 1 } ( x ) = \frac { 7 } { 8 x + 5 }
B) f1(x)=7x58f ^ { - 1 } ( x ) = \frac { 7 x - 5 } { 8 }
C) f1(x)=7x+58\mathrm { f } ^ { - 1 } ( \mathrm { x } ) = \frac { 7 \mathrm { x } + 5 } { 8 }
D) f1(x)=78x5\mathrm { f } ^ { - 1 } ( \mathrm { x } ) = \frac { 7 } { 8 x - 5 }
Question
Graph the function and its inverse on the same set of axes.
f(x)=4xf(x)=4 x
 <strong>Graph the function and its inverse on the same set of axes.  f(x)=4 x   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>

A)
 <strong>Graph the function and its inverse on the same set of axes.  f(x)=4 x   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
B)
 <strong>Graph the function and its inverse on the same set of axes.  f(x)=4 x   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
C)
 <strong>Graph the function and its inverse on the same set of axes.  f(x)=4 x   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
D)
 <strong>Graph the function and its inverse on the same set of axes.  f(x)=4 x   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
Question
Graph the function and its inverse on the same set of axes.
f(x)=2x+1f ( x ) = - 2 x + 1
 <strong>Graph the function and its inverse on the same set of axes.  f ( x ) = - 2 x + 1   </strong> A)    B)   C)   D)   <div style=padding-top: 35px>

A)
 <strong>Graph the function and its inverse on the same set of axes.  f ( x ) = - 2 x + 1   </strong> A)    B)   C)   D)   <div style=padding-top: 35px>

B)
 <strong>Graph the function and its inverse on the same set of axes.  f ( x ) = - 2 x + 1   </strong> A)    B)   C)   D)   <div style=padding-top: 35px>
C)
 <strong>Graph the function and its inverse on the same set of axes.  f ( x ) = - 2 x + 1   </strong> A)    B)   C)   D)   <div style=padding-top: 35px>
D)
 <strong>Graph the function and its inverse on the same set of axes.  f ( x ) = - 2 x + 1   </strong> A)    B)   C)   D)   <div style=padding-top: 35px>
Question
Find the inverse of the one-to-one function.
f(x)=x3+2f ( x ) = x ^ { 3 } + 2

A) f1(x)=x+23\mathrm { f } ^ { - 1 } ( \mathrm { x } ) = \sqrt [ 3 ] { \mathrm { x } + 2 }
B) f1(x)=x23f ^ { - 1 } ( x ) = \sqrt [ 3 ] { x - 2 }
C) f1(x)=x32\mathrm { f } ^ { - 1 } ( \mathrm { x } ) = \sqrt [ 3 ] { \mathrm { x } } - 2
D) f1(x)=x32f ^ { - 1 } ( x ) = - x ^ { 3 } - 2
Question
Determine whether the functions f and g are inverses of each other.
f(x)=x3+8;g(x)=x38f ( x ) = x ^ { 3 } + 8 ; g ( x ) = \sqrt [ 3 ] { x } - 8

A) Yes
B) No
Question
Graph the inverse of the function on the same set of axes.
<strong>Graph the inverse of the function on the same set of axes.  </strong> A)   B)   C)   D)   <div style=padding-top: 35px>

A)
<strong>Graph the inverse of the function on the same set of axes.  </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
B)
<strong>Graph the inverse of the function on the same set of axes.  </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
C)
<strong>Graph the inverse of the function on the same set of axes.  </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
D)
<strong>Graph the inverse of the function on the same set of axes.  </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
Question
Graph the inverse of the function on the same set of axes.
<strong>Graph the inverse of the function on the same set of axes.  </strong> A)   B)   C)   D)   <div style=padding-top: 35px>

A)
<strong>Graph the inverse of the function on the same set of axes.  </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
B)
<strong>Graph the inverse of the function on the same set of axes.  </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
C)
<strong>Graph the inverse of the function on the same set of axes.  </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
D)
<strong>Graph the inverse of the function on the same set of axes.  </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
Question
Find the inverse of the one-to-one function.
f(x)=56x7f ( x ) = \frac { 5 } { 6 x - 7 }

A) f1(x)=6x75\mathrm { f } ^ { - 1 } ( \mathrm { x } ) = \frac { 6 \mathrm { x } - 7 } { 5 }
B) f1(x)=56x+76f ^ { - 1 } ( x ) = \frac { 5 } { 6 x } + \frac { 7 } { 6 }
C) f1(x)=56y+76f ^ { - 1 } ( x ) = \frac { 5 } { 6 y } + \frac { 7 } { 6 }
D) f1(x)=7656xf ^ { - 1 } ( x ) = - \frac { 7 } { 6 } - \frac { 5 } { 6 x }
Unlock Deck
Sign up to unlock the cards in this deck!
Unlock Deck
Unlock Deck
1/300
auto play flashcards
Play
simple tutorial
Full screen (f)
exit full mode
Deck 9: Exponential and Logarithmic Functions
1
For the given functions f and g, find the composition.
f(x)=x2+3x;g(x)=xf ( x ) = x ^ { 2 } + 3 x ; g ( x ) = \sqrt { x }
Find (gf)(0)( g \circ f ) ( 0 ) .

A) 0
B) 3
C) 3\sqrt { 3 }
D) 232 \sqrt { 3 }
A
2
f(x)=x+7 ; g(x)=5x - 2
Find (f+g)(x) .

A) 5x+5
B) 5x2+33x145 x ^ { 2 } + 33 x - 14
C) 11x
D) 6x+5
D
3
f(x)=3x31;g(x)=3x21f ( x ) = 3 x ^ { 3 } - 1 ; g ( x ) = 3 x ^ { 2 } - 1
Find (fg)(x)( f \cdot g ) ( x )

A) (fg)(x)=9x63x33x2+1( f \cdot g ) ( x ) = 9 x ^ { 6 } - 3 x ^ { 3 } - 3 x ^ { 2 } + 1
B) (fg)(x)=3x3+3x2+1( f \cdot g ) ( x ) = 3 x ^ { 3 } + 3 x ^ { 2 } + 1
C) (fg)(x)=9x53x33x2+1( f \cdot g ) ( x ) = - 9 x ^ { 5 } - 3 x ^ { 3 } - 3 x ^ { 2 } + 1
D) (fg)(x)=9x53x33x2+1( f \cdot g ) ( x ) = 9 x ^ { 5 } - 3 x ^ { 3 } - 3 x ^ { 2 } + 1
D
4
For the given functions f and g, find the composition.
f(x)=x2+2x;g(x)=x+4f ( x ) = x ^ { 2 } + 2 x ; g ( x ) = x + 4
Find (fg)(3)( f \circ g ) ( 3 ) .

A) 232 \sqrt { 3 }
B) 0
C) 63
D) 19
Unlock Deck
Unlock for access to all 300 flashcards in this deck.
Unlock Deck
k this deck
5
For the given functions f and g, find the composition.
f(x)=x2+6x;g(x)=x+3f ( x ) = x ^ { 2 } + 6 x ; g ( x ) = x + 3
Find (gf)(2)( g \circ f ) ( 2 ) .

A) 19
B) 21
C) 80
D) 55
Unlock Deck
Unlock for access to all 300 flashcards in this deck.
Unlock Deck
k this deck
6
For the given functions f and g, find the composition.
f(x)=x2+9x7;g(x)=xf ( x ) = x ^ { 2 } + 9 x - 7 ; g ( x ) = \sqrt { x }
Find (fg)(9)( f \circ g ) ( 9 ) .

A) 29
B) 36
C) 30
D) 23
Unlock Deck
Unlock for access to all 300 flashcards in this deck.
Unlock Deck
k this deck
7
f(x)=x;g(x)=4x1f ( x ) = \sqrt { x } ; g ( x ) = 4 x - 1
Find (fg)(x)\left( \frac { f } { g } \right) ( x )

A) (fg)(x)=x14x, where x14\left( \frac { \mathrm { f } } { \mathrm { g } } \right) ( \mathrm { x } ) = \frac { \sqrt { \mathrm { x } } } { 1 - 4 \mathrm { x } } , \text { where } x \neq \frac { 1 } { 4 }
B) (fg)(x)=x4x1, where x14\left( \frac { \mathrm { f } } { \mathrm { g } } \right) ( \mathrm { x } ) = \frac { \sqrt { \mathrm { x } } } { 4 \mathrm { x } - 1 } , \text { where } x \neq \frac { 1 } { 4 }
C) (fg)(x)=x4x4, where x1\left( \frac { f } { g } \right) ( x ) = \frac { \sqrt { x } } { 4 x - 4 } , \text { where } x \neq 1
D) (fg)(x)=14xx, where x0\left( \frac { f } { g } \right) ( x ) = \frac { 1 - 4 x } { \sqrt { x } } , \text { where } x \neq 0
Unlock Deck
Unlock for access to all 300 flashcards in this deck.
Unlock Deck
k this deck
8
f(x)=x;g(x)=x+9f ( x ) = \sqrt { x } ; g ( x ) = x + 9
Find (f+g)(x)( f + g ) ( x )

A) (f+g)(x)=9x+x( f + g ) ( x ) = 9 \sqrt { x } + x
B) (f+g)(x)=xx+9( f + g ) ( x ) = x \sqrt { x } + 9
C) (f+g)(x)=x+x+9( f + g ) ( x ) = \sqrt { x } + x + 9
D) (f+g)(x)=xx+x2+9x( f + g ) ( x ) = x \sqrt { x } + x ^ { 2 } + 9 x
Unlock Deck
Unlock for access to all 300 flashcards in this deck.
Unlock Deck
k this deck
9
For the given functions f and g, find the composition.
f(x)=6x22x;g(x)=3xf ( x ) = 6 x ^ { 2 } - 2 x ; g ( x ) = - 3 x
Find (gf)(x)( g \circ f ) ( x ) .

A) 54x22x54 x ^ { 2 } - 2 x
B) 6x246 x ^ { 2 } - 4
C) 18x3+6x2- 18 x ^ { 3 } + 6 x ^ { 2 }
D) 18x2+6x- 18 x ^ { 2 } + 6 x
Unlock Deck
Unlock for access to all 300 flashcards in this deck.
Unlock Deck
k this deck
10
f(x)=x+2;g(x)=8x2f ( x ) = x + 2 ; g ( x ) = 8 x ^ { 2 }
Find (f - g)(x)

A) (fg)(x)=8x2x2( f - g ) ( x ) = 8 x ^ { 2 } - x - 2
B) (fg)(x)=8x2+x+2( f - g ) ( x ) = 8 x ^ { 2 } + x + 2
C) (fg)(x)=8x2+x+2( f - g ) ( x ) = - 8 x ^ { 2 } + x + 2
D) (fg)(x)=8x2x+2( f - g ) ( x ) = - 8 x ^ { 2 } - x + 2
Unlock Deck
Unlock for access to all 300 flashcards in this deck.
Unlock Deck
k this deck
11
f(x)=8x - 7 ; g(x)=4x - 8
Find (f-g)(x) .

A) (fg)(x)=4x+1( f - g ) ( x ) = 4 x + 1
B) (fg)(x)=4x15( f - g ) ( x ) = 4 x - 15
C) (fg)(x)=4x1( f - g ) ( x ) = - 4 x - 1
D) (fg)(x)=12x15( f - g ) ( x ) = 12 x - 15
Unlock Deck
Unlock for access to all 300 flashcards in this deck.
Unlock Deck
k this deck
12
f(x) = 3x + 4; g(x)= 5x - 1
Find (fg)(x).\left( \frac { \mathrm { f } } { \mathrm { g } } \right) ( \mathrm { x } ) .

A) (fg)(x)=3x+45x+1, where x15\left( \frac { f } { g } \right) ( x ) = \frac { 3 x + 4 } { 5 x + 1 } , \text { where } x \neq - \frac { 1 } { 5 }
B) (fg)(x)=5x+13x+4, where x43\left( \frac { f } { g } \right) ( x ) = \frac { 5 x + 1 } { 3 x + 4 } , \text { where } x \neq - \frac { 4 } { 3 }
C) (fg)(x)=5x13x+4, where xz43\left( \frac { f } { g } \right) ( x ) = \frac { 5 x - 1 } { 3 x + 4 } , \text { where } x z - \frac { 4 } { 3 }
D) (fg)(x)=3x+45x1, where x15\left( \frac { f } { g } \right) ( x ) = \frac { 3 x + 4 } { 5 x - 1 } , \text { where } x \neq \frac { 1 } { 5 }
Unlock Deck
Unlock for access to all 300 flashcards in this deck.
Unlock Deck
k this deck
13
f(x)=3x;g(x)=2x+7f ( x ) = \sqrt { 3 x } ; g ( x ) = - 2 x + 7
Find (fg)(x)( f \cdot g ) ( x )

A) (fg)(x)=3x+14x( f \cdot g ) ( x ) = \sqrt { 3 x } + 14 x
B) (fg)(x)=2x3x+73x( f \cdot g ) ( x ) = - 2 x \sqrt { 3 x } + 7 \sqrt { 3 x }
C) (fg)(x)=6x+73x( f \cdot g ) ( x ) = - 6 x + 7 \sqrt { 3 x }
D) (fg)(x)=6x2+21( f \cdot g ) ( x ) = - 6 x ^ { 2 } + 21
Unlock Deck
Unlock for access to all 300 flashcards in this deck.
Unlock Deck
k this deck
14
For the given functions f and g, find the composition.
f(x)=x+3;g(x)=2xf ( x ) = \sqrt { x + 3 } ; g ( x ) = 2 x
Find (fg)(2)( f \circ g ) ( 2 ) .

A) 252 \sqrt { 5 }
B) 7\sqrt { 7 }
C) 10\sqrt { 10 }
D) 2102 \sqrt { 10 }
Unlock Deck
Unlock for access to all 300 flashcards in this deck.
Unlock Deck
k this deck
15
f(x)=3x8;g(x)=8x7f ( x ) = 3 x ^ { 8 } ; g ( x ) = 8 x ^ { 7 }
Find (fg)(x)( f \cdot g ) ( x )

A) (fg)(x)=24x56( f \cdot g ) ( x ) = 24 x ^ { 56 }
B) (fg)(x)=24x15( f \cdot g ) ( x ) = 24 x ^{15}
C) (fg)(x)=24x15( f \cdot g ) ( x ) = - 24 x ^ { 15 }
D) (fg)(x)=24x56( f \cdot g ) ( x ) = - 24 x ^ { 56 }
Unlock Deck
Unlock for access to all 300 flashcards in this deck.
Unlock Deck
k this deck
16
Solve.
Business people are concerned with cost functions, revenue functions, and profit functions. Suppose the revenue R(x)R ( x ) for xx units of a product can be described by R(x)=410xR ( x ) = 410 x , and the cost C(x)C ( x ) can be described by C(x)C ( x ) =2900+110x= 2900 + 110 x . Find the profit P(x)P ( x ) for xx units.

A) P(x)=300x2900P ( x ) = \frac { 300 } { x } - 2900
B) P(x)=300x+2900\mathrm { P } ( \mathrm { x } ) = 300 \mathrm { x } + 2900
C) P(x)=300x2900P ( x ) = 300 x - 2900
D) P(x)=520x2900P ( x ) = 520 x - 2900
Unlock Deck
Unlock for access to all 300 flashcards in this deck.
Unlock Deck
k this deck
17
For the given functions f and g, find the composition.
f(x)=6x2+5x;g(x)=2xf ( x ) = 6 x ^ { 2 } + 5 x ; g ( x ) = 2 x
Find (fg)(x)( f \circ g ) ( x ) .

A) 24x2+10x24 x ^ { 2 } + 10 x
B) 6x2+76 x ^ { 2 } + 7
C) 12x2+10x12 x ^ { 2 } + 10 x
D) 12x3+10x212 x ^ { 3 } + 10 x ^ { 2 }
Unlock Deck
Unlock for access to all 300 flashcards in this deck.
Unlock Deck
k this deck
18
f(x)=x3;g(x)=3x6f ( x ) = \sqrt [ 3 ] { x } ; g ( x ) = 3 x - 6
Find (fg)(x)( f - g ) ( x )

A) (fg)(x)=x33x+6( f - g ) ( x ) = \sqrt [ 3 ] { x } - 3 x + 6
B) (fg)(x)=x33x6( f - g ) ( x ) = \sqrt [ 3 ] { x } - 3 x - 6
C) (fg)(x)=x3+3x+6( f - g ) ( x ) = \sqrt [ 3 ] { x } + 3 x + 6
D) (fg)(x)=x33x+6( f - g ) ( x ) = - \sqrt [ 3 ] { x } - 3 x + 6
Unlock Deck
Unlock for access to all 300 flashcards in this deck.
Unlock Deck
k this deck
19
f(x)=4 x-1 ; g(x)=6 x-2
Find (fg)(x)( f \cdot g ) ( x )

A) (fg)(x)=24x28x+2( f \cdot g ) ( x ) = 24 x ^ { 2 } - 8 x + 2
B) (fg)(x)=10x214x3( f \cdot g ) ( x ) = 10 x ^ { 2 } - 14 x - 3
C) (fg)(x)=24x2+2( f \cdot g ) ( x ) = 24 x ^ { 2 } + 2
D) (fg)(x)=24x214x+2( f \cdot g ) ( x ) = 24 x ^ { 2 } - 14 x + 2
Unlock Deck
Unlock for access to all 300 flashcards in this deck.
Unlock Deck
k this deck
20
f(x)=4x4;g(x)=2x2f ( x ) = - 4 x ^ { 4 } ; g ( x ) = - 2 x ^ { 2 }
Find (fg)(x).\left( \frac { f } { g } \right) ( x ) .

A) (fg)(x)=8x6, where x0\left( \frac { \mathrm { f } } { \mathrm { g } } \right) ( \mathrm { x } ) = 8 \mathrm { x } ^ { 6 } , \text { where } \mathrm { x } \neq 0
B) (fg)(x)=2x2, where x0\left( \frac { f } { g } \right) ( x ) = 2 x ^ { 2 } , \text { where } x \neq 0
C) (fg)(x)=2x2, where x0\left( \frac { f } { g } \right) ( x ) = - 2 x ^ { 2 } , \text { where } x \neq 0
D) (fg)(x)=2x4, where x0\left( \frac { f } { g } \right) ( x ) = 2 x ^ { 4 } , \text { where } x \neq 0
Unlock Deck
Unlock for access to all 300 flashcards in this deck.
Unlock Deck
k this deck
21
Write the function F(x) as a composition of f, g, or h.
f(x)=x2+6g(x)=2xh(x)=x4F(x)=2x4\begin{array} { l } f ( x ) = x ^ { 2 } + 6 \quad g ( x ) = - 2 x \quad h ( x ) = \sqrt { x - 4 } \\F ( x ) = \sqrt { - 2 x - 4 }\end{array}

A) F(x)=(hg)(x)\mathrm { F } ( \mathrm { x } ) = ( \mathrm { h } \circ \mathrm { g } ) ( \mathrm { x } )
B) F(x)=(hf)(x)\mathrm { F } ( \mathrm { x } ) = ( \mathrm { h } \circ \mathrm { f } ) ( \mathrm { x } )
C) F(x)=(gh)(x)F ( x ) = ( g \circ h ) ( x )
D) F(x)=(fh)(x)F ( x ) = ( f \circ h ) ( x )
Unlock Deck
Unlock for access to all 300 flashcards in this deck.
Unlock Deck
k this deck
22
Write the function F(x) as a composition of f, g, or h.
f(x)=x23g(x)=3xh(x)=x1F(x)=x4\begin{array} { l } f ( x ) = x ^ { 2 } - 3 \quad g ( x ) = 3 x \quad h ( x ) = \sqrt { x - 1 } \\F ( x ) = x - 4\end{array}

A) F(x)=(gh)(x)F ( x ) = ( g \circ h ) ( x )
B) F(x)=(hg)(x)\mathrm { F } ( \mathrm { x } ) = ( \mathrm { h } \circ \mathrm { g } ) ( \mathrm { x } )
C) F(x)=(fg)(x)F ( x ) = ( f \circ g ) ( x )
D) F(x)=(fh)(x)F ( x ) = ( f \circ h ) ( x )
Unlock Deck
Unlock for access to all 300 flashcards in this deck.
Unlock Deck
k this deck
23
Determine whether the function is a one-to-one function.
f={(3,1),(3,1),(5,1),(5,1)}f = \{ ( 3,1 ) , ( - 3 , - 1 ) , ( - 5,1 ) , ( 5 , - 1 ) \}

A) one-to-one
B) not one-to-one
Unlock Deck
Unlock for access to all 300 flashcards in this deck.
Unlock Deck
k this deck
24
Write the function F(x) as a composition of f, g, or h.
f(x)=x2+6g(x)=7xh(x)=x+3F(x)=7x+3\begin{array} { l } f ( x ) = x ^ { 2 } + 6 \quad g ( x ) = 7 x \quad h ( x ) = \sqrt { x + 3 } \\F ( x ) = \sqrt { 7 x + 3 }\end{array}

A) F(x)=(hg)(x)\mathrm { F } ( \mathrm { x } ) = ( \mathrm { h } \circ \mathrm { g } ) ( \mathrm { x } )
B) F(x)=(hf(x)\mathrm { F } ( \mathrm { x } ) = ( \mathrm { h } \circ \mathrm { f } ( \mathrm { x } )
C) F(x)=(gh)(x)\mathrm { F } ( \mathrm { x } ) = ( \mathrm { g } \circ \mathrm { h } ) ( \mathrm { x } )
D) F(x)=(fh)(x)\mathrm { F } ( \mathrm { x } ) = ( \mathrm { f } \circ \mathrm { h } ) ( \mathrm { x } )
Unlock Deck
Unlock for access to all 300 flashcards in this deck.
Unlock Deck
k this deck
25
Determine whether the function is a one-to-one function.
f={(3,17),(4,5),(18,19)}\mathrm { f } = \{ ( - 3,17 ) , ( - 4 , - 5 ) , ( - 18,19 ) \}

A) one-to-one
B) not one-to-one
Unlock Deck
Unlock for access to all 300 flashcards in this deck.
Unlock Deck
k this deck
26
Write the function F(x) as a composition of f, g, or h.
f(x)=x22g(x)=3xh(x)=x8F(x)=3x26\begin{array} { l } f ( x ) = x ^ { 2 } - 2 \quad g ( x ) = 3 x \quad h ( x ) = \sqrt { x - 8 } \\F ( x ) = 3 x ^ { 2 } - 6\end{array}

A) F(x)=(fg)(x)F ( x ) = ( f \circ g ) ( x )
B) F(x)=(gh)(x)F ( x ) = ( g \circ h ) ( x )
C) F(x)=(hg)(x)\mathrm { F } ( \mathrm { x } ) = ( \mathrm { h } \circ \mathrm { g } ) ( \mathrm { x } )
D) F(x)=(gf)(x)F ( x ) = ( g \circ f ) ( x )
Unlock Deck
Unlock for access to all 300 flashcards in this deck.
Unlock Deck
k this deck
27
Find f(x) and g(x) so that the given function h(x) = (f ° g)(x).
h(x)=x+43h ( x ) = \sqrt [ 3 ] { x + 4 }

A) f(x)=x3;g(x)=x+4f ( x ) = \sqrt [ 3 ] { x } ; g ( x ) = x + 4
B) f(x)=x3;g(x)=x+4f ( x ) = x ^ { 3 } ; g ( x ) = x + 4
C) f(x)=x;g(x)=x+4f ( x ) = \sqrt { x } ; g ( x ) = x + 4
D) f(x)=x+4;g(x)=x3f ( x ) = x + 4 ; g ( x ) = \sqrt [ 3 ] { x }
Unlock Deck
Unlock for access to all 300 flashcards in this deck.
Unlock Deck
k this deck
28
For the given functions f and g, find the composition.
f(x)=x+8;g(x)=8x12f ( x ) = \sqrt { x + 8 } ; g ( x ) = 8 x - 12
Find (gf)(x)( g \circ f ) ( x ) .

A) 8x+8128 \sqrt { x + 8 } - 12
B) 22x12 \sqrt { 2 x - 1 }
C) 22x+12 \sqrt { 2 x + 1 }
D) 8x48 \sqrt { x - 4 }
Unlock Deck
Unlock for access to all 300 flashcards in this deck.
Unlock Deck
k this deck
29
Find f(x) and g(x) so that the given function h(x) = (f ° g)(x).
h(x)=1x+5h ( x ) = \frac { 1 } { x + 5 }

A) f(x)=1x1;g(x)=x+5f ( x ) = \frac { 1 } { x - 1 } ; g ( x ) = x + 5
B) f(x)=x+5;g(x)=1xf ( x ) = x + 5 ; g ( x ) = \frac { 1 } { x }
C) f(x)=5x;g(x)=x1f ( x ) = \frac { 5 } { x } ; g ( x ) = x - 1
D) f(x)=1x;g(x)=x+5f ( x ) = \frac { 1 } { x } ; g ( x ) = x + 5
Unlock Deck
Unlock for access to all 300 flashcards in this deck.
Unlock Deck
k this deck
30
For the given functions f and g, find the composition.
f(x)=2x+5;g(x)=5x+9f ( x ) = - 2 x + 5 ; g ( x ) = 5 x + 9
Find (gf)(x)( g \circ f ) ( x ) .

A) 10x+3410 x + 34
B) 10x+34- 10 x + 34
C) 10x+23- 10 x + 23
D) 10x16- 10 x - 16
Unlock Deck
Unlock for access to all 300 flashcards in this deck.
Unlock Deck
k this deck
31
Write the function F(x) as a composition of f, g, or h.
f(x)=x24g(x)=5xh(x)=x4F(x)=25x24\begin{array} { l } f ( x ) = x ^ { 2 } - 4 \quad g ( x ) = 5 x \quad h ( x ) = \sqrt { x - 4 } \\F ( x ) = 25 x ^ { 2 } - 4\end{array}

A) F(x)=(gh)(x)F ( x ) = ( g \circ h ) ( x )
B) F(x)=(gf)(x)F ( x ) = ( g \circ f ) ( x )
C) F(x)=(hg)(x)F ( x ) = ( h \circ g ) ( x )
D) F(x)=(fg)(x)F ( x ) = ( f \circ g ) ( x )
Unlock Deck
Unlock for access to all 300 flashcards in this deck.
Unlock Deck
k this deck
32
For the given functions f and g, find the composition.
f(x)=x+3;g(x)=8x7f ( x ) = \sqrt { x + 3 } ; g ( x ) = 8 x - 7
Find (fg)(x)( f \circ g ) ( x ) .

A) 8x48 \sqrt { x - 4 }
B) 22x12 \sqrt { 2 x - 1 }
C) 22x+12 \sqrt { 2 x + 1 }
D) 8x+378 \sqrt { x + 3 } - 7
Unlock Deck
Unlock for access to all 300 flashcards in this deck.
Unlock Deck
k this deck
33
Determine whether the function is a one-to-one function.
f={(7,8),(8,7),(1,1),(1,1)}\mathrm { f } = \{ ( - 7 , - 8 ) , ( 8,7 ) , ( 1,1 ) , ( - 1 , - 1 ) \}

A) one-to-one
B) not one-to-one
Unlock Deck
Unlock for access to all 300 flashcards in this deck.
Unlock Deck
k this deck
34
For the given functions f and g, find the composition.
f(x)=4x+5;g(x)=5x1f ( x ) = 4 x + 5 ; g ( x ) = 5 x - 1
Find (fg)(x)( f \circ g ) ( x ) .

A) 20x+2420 x + 24
B) 20x+920 x + 9
C) 20x+420 x + 4
D) 20x+120 x + 1
Unlock Deck
Unlock for access to all 300 flashcards in this deck.
Unlock Deck
k this deck
35
Find f(x) and g(x) so that the given function h(x) = (f ° g)(x).
h(x)=(98x3)2h ( x ) = \left( 9 - 8 x ^ { 3 } \right) ^ { 2 }

A) f(x)=98x3;g(x)=x2f ( x ) = 9 - 8 x ^ { 3 } ; g ( x ) = x ^ { 2 }
B) f(x)=x2;g(x)=98xf ( x ) = x ^ { 2 } ; g ( x ) = 9 - 8 x
C) f(x)=x2;g(x)=98x3f ( x ) = x ^ { 2 } ; g ( x ) = 9 - 8 x ^ { 3 }
D) f(x)=98x2;g(x)=x3f ( x ) = 9 - 8 x ^ { 2 } ; g ( x ) = x ^ { 3 }
Unlock Deck
Unlock for access to all 300 flashcards in this deck.
Unlock Deck
k this deck
36
Determine whether the function is a one-to-one function.
f={(6,5),(4,4),(6,3),(8,2)}f = \{ ( 6 , - 5 ) , ( - 4 , - 4 ) , ( - 6 , - 3 ) , ( - 8 , - 2 ) \}

A) one-to-one
B) not one-to-one
Unlock Deck
Unlock for access to all 300 flashcards in this deck.
Unlock Deck
k this deck
37
For the given functions f and g, find the composition.
f(x)=x3+6x;g(x)=3xf ( x ) = x ^ { 3 } + 6 x ; g ( x ) = - 3 x
Find (fg)(x)( f \circ g ) ( x ) .

A) 27x318x- 27 x ^ { 3 } - 18 x
B) 27x218x- 27 x ^ { 2 } - 18 x
C) 3x3+6x- 3 x ^ { 3 } + 6 x
D) 3x318x- 3 x ^ { 3 } - 18 x
Unlock Deck
Unlock for access to all 300 flashcards in this deck.
Unlock Deck
k this deck
38
For the given functions f and g, find the composition.
f(x)=x35x;g(x)=3xf ( x ) = x ^ { 3 } - 5 x ; g ( x ) = - 3 x
Find (gf)(x)( g \circ f ) ( x ) .

A) 27x2+15x- 27 x ^ { 2 } + 15 x
B) 27x3+15x- 27 x ^ { 3 } + 15 x
C) 3x3+15x- 3 x ^ { 3 } + 15 x
D) 3x35x- 3 x ^ { 3 } - 5 x
Unlock Deck
Unlock for access to all 300 flashcards in this deck.
Unlock Deck
k this deck
39
Find f(x) and g(x) so that the given function h(x) = (f ° g)(x).
h(x)=67x2h ( x ) = \left| 6 - 7 x ^ { 2 } \right|

A) f(x)=x;g(x)=67xf ( x ) = | x | ; g ( x ) = 6 - 7 x
B) f(x)=67x2;g(x)=xf ( x ) = 6 - 7 x ^ { 2 } ; g ( x ) = | x |
C) f(x)=67x2;g(x)=x2f ( x ) = 6 - 7 x ^ { 2 } ; g ( x ) = \left| x ^ { 2 } \right|
D) f(x)=x;g(x)=67x2f ( x ) = | x | ; g ( x ) = 6 - 7 x ^ { 2 }
Unlock Deck
Unlock for access to all 300 flashcards in this deck.
Unlock Deck
k this deck
40
Write the function F(x) as a composition of f, g, or h.
f(x)=x21g(x)=4xh(x)=x2F(x)=x23\begin{array} { l } f ( x ) = x ^ { 2 } - 1 \quad g ( x ) = - 4 x \quad h ( x ) = \sqrt { x - 2 } \\F ( x ) = \sqrt { x ^ { 2 } - 3 }\end{array}

A) F(x)=(hf)(x)\mathrm { F } ( \mathrm { x } ) = ( \mathrm { h } \circ \mathrm { f } ) ( \mathrm { x } )
B) F(x)=(hg)(x)F ( x ) = ( h \circ g ) ( x )
C) F(x)=(gh)(x)\mathrm { F } ( \mathrm { x } ) = ( \mathrm { g } \circ \mathrm { h } ) ( \mathrm { x } )
D) F(x)=(fh)(x)F ( x ) = ( f \circ h ) ( x )
Unlock Deck
Unlock for access to all 300 flashcards in this deck.
Unlock Deck
k this deck
41
If the function is one-to-one, list the inverse function by switching coordinates or inputs and outputs.
f = {(-6, -9), (6, 9), (7, 11), (-7, -11)}

A) f-1 = {(-9, -6), (9, 6), (11, 6), (-11, -7)}
B) f-1 = {(-9, -6), (-6, 6), (11, 7), (-11, -7)}
C) f-1 = {(-9, -6), (9, 6), (11, 7), (-11, -7)}
D) not one-to-one
Unlock Deck
Unlock for access to all 300 flashcards in this deck.
Unlock Deck
k this deck
42
Determine whether the function is a one-to-one function.
f={(3,2),(2,2),(1,1),(0,8)}f = \{ ( - 3,2 ) , ( - 2,2 ) , ( - 1,1 ) , ( 0 , - 8 ) \}

A) one-to-one
B) not one-to-one
Unlock Deck
Unlock for access to all 300 flashcards in this deck.
Unlock Deck
k this deck
43
Determine whether the function is a one-to-one function.
 Month of 1999 (input)  Jan  Feb  Mar  Apr  May  Jun  Sales of Product B  (output) 341038633108371240143863\begin{array}{l|c|c|c|c|c|c}\text { Month of } 1999 \text { (input) } & \text { Jan } & \text { Feb } & \text { Mar } & \text { Apr } & \text { May } & \text { Jun } \\\hline \begin{array}{l}\text { Sales of Product B } \\\text { (output) }\end{array} & 3410 & 3863 & 3108 & 3712 & 4014 & 3863\end{array}

A) one-to-one
B) not one-to-one
Unlock Deck
Unlock for access to all 300 flashcards in this deck.
Unlock Deck
k this deck
44
Determine whether the graph of the function is the graph of a one-to-one function.
<strong>Determine whether the graph of the function is the graph of a one-to-one function.  </strong> A) Yes B) No

A) Yes
B) No
Unlock Deck
Unlock for access to all 300 flashcards in this deck.
Unlock Deck
k this deck
45
If the function is one-to-one, list the inverse function by switching coordinates or inputs and outputs.
f={(5,1),(1,5),(7,7),(7,7)}\mathrm { f } = \{ ( - 5,1 ) , ( - 1,5 ) , ( - 7 , - 7 ) , ( 7,7 ) \}

A) f1={(7,7),(7,1),(1,5),(7,7)}f ^ { - 1 } = \{ ( 7 , - 7 ) , ( - 7 , - 1 ) , ( 1 , - 5 ) , ( - 7,7 ) \}
B) f1={(1,5),(5,1),(7,7),(7,7)}\mathrm { f } ^ { - 1 } = \{ ( 1 , - 5 ) , ( 5 , - 1 ) , ( - 7 , - 7 ) , ( 7,7 ) \}
C) f1={(7,7),(5,1),(1,1),(7,7)}f ^ { - 1 } = \{ ( 7 , - 7 ) , ( 5 , - 1 ) , ( 1 , - 1 ) , ( - 7,7 ) \}
D) not one-to-one
Unlock Deck
Unlock for access to all 300 flashcards in this deck.
Unlock Deck
k this deck
46
Determine whether the graph of the function is the graph of a one-to-one function.
<strong>Determine whether the graph of the function is the graph of a one-to-one function.  </strong> A) Yes B) No

A) Yes
B) No
Unlock Deck
Unlock for access to all 300 flashcards in this deck.
Unlock Deck
k this deck
47
If the function is one-to-one, list the inverse function by switching coordinates or inputs and outputs.
If the function is one-to-one, list the inverse function by switching coordinates or inputs and outputs.
Unlock Deck
Unlock for access to all 300 flashcards in this deck.
Unlock Deck
k this deck
48
If the function is one-to-one, list the inverse function by switching coordinates or inputs and outputs.
f={(9,5),(4,17),(18,11)}f = \{ ( 9 , - 5 ) , ( 4,17 ) , ( - 18,11 ) \}

A) f1={(5,9),(17,4),(11,18)}f ^ { - 1 } = \{ ( - 5,9 ) , ( 17,4 ) , ( 11 , - 18 ) \}
B) f1={(5,9),(18,4),(11,17)}\mathrm { f } ^ { - 1 } = \{ ( - 5,9 ) , ( - 18,4 ) , ( 11,17 ) \}
C) f1={(9,17),(9,4),(11,18)}\mathrm { f } ^ { - 1 } = \{ ( 9,17 ) , ( 9,4 ) , ( 11 , - 18 ) \}
D) not one-to-one
Unlock Deck
Unlock for access to all 300 flashcards in this deck.
Unlock Deck
k this deck
49
Determine whether the graph of the function is the graph of a one-to-one function.
<strong>Determine whether the graph of the function is the graph of a one-to-one function.  </strong> A) Yes B) No

A) Yes
B) No
Unlock Deck
Unlock for access to all 300 flashcards in this deck.
Unlock Deck
k this deck
50
Determine whether the function is a one-to-one function.
 Weekdays (input)  Monday  Tuesday  Wednesday  Thursday  Friday  Student: Avg.  Minutes of Study(outputt) 249324410123144\begin{array}{l|c|c|c|c|c}\text { Weekdays (input) } & \text { Monday } & \text { Tuesday } & \text { Wednesday } & \text { Thursday } & \text { Friday } \\\hline \text { Student: Avg. } & & & & & \\\text { Minutes of Study(outputt) } 249 & 324 & 410 & 123 & 144\end{array}

A) one-to-one
B) not one-to-one
Unlock Deck
Unlock for access to all 300 flashcards in this deck.
Unlock Deck
k this deck
51
Determine whether the graph of the function is the graph of a one-to-one function.
<strong>Determine whether the graph of the function is the graph of a one-to-one function.  </strong> A) Yes B) No

A) Yes
B) No
Unlock Deck
Unlock for access to all 300 flashcards in this deck.
Unlock Deck
k this deck
52
Determine whether the graph of the function is the graph of a one-to-one function.
<strong>Determine whether the graph of the function is the graph of a one-to-one function.  </strong> A) Yes B) No

A) Yes
B) No
Unlock Deck
Unlock for access to all 300 flashcards in this deck.
Unlock Deck
k this deck
53
For the given one-to-one function f, find the following.
f(x)=6x55f ( x ) = \sqrt { 6 x - 5 } - 5
Find f(5)f ( 5 ) and f1(0)f ^ { - 1 } ( 0 ) .

A) f(5)=25;f1(0)=5f ( 5 ) = 25 ; f ^ { - 1 } ( 0 ) = 5
B) f(5)=256;f1(0)=0\mathrm { f } ( 5 ) = \frac { 25 } { 6 } ; \mathrm { f } ^ { - 1 } ( 0 ) = 0
C) f(5)=0;f1(0)=5\mathrm { f } ( 5 ) = 0 ; \mathrm { f } ^ { - 1 } ( 0 ) = 5
D) f(5)=5;f1(0)=0f ( 5 ) = 5 ; f ^ { - 1 } ( 0 ) = 0
Unlock Deck
Unlock for access to all 300 flashcards in this deck.
Unlock Deck
k this deck
54
For the given one-to-one function f, find the following.
f(x)=x3+9f ( x ) = x ^ { 3 } + 9
Find f(1)f ( - 1 ) and f1(8)f ^ { - 1 } ( 8 ) .

A) f(1)=10;f1(8)=1f ( - 1 ) = - 10 ; f ^ { - 1 } ( 8 ) = - 1
B) f(1)=8;f1(8)=18f ( - 1 ) = 8 ; f ^ { - 1 } ( 8 ) = \frac { 1 } { 8 }
C) f(1)=8;f1(8)=1f ( - 1 ) = 8 ; f ^ { - 1 } ( 8 ) = - 1
D) f(1)=1;f1(8)=8f ( - 1 ) = - 1 ; f ^ { - 1 } ( 8 ) = 8
Unlock Deck
Unlock for access to all 300 flashcards in this deck.
Unlock Deck
k this deck
55
If the function is one-to-one, list the inverse function by switching coordinates or inputs and outputs.
f={(6,2),(9,1),(7,0),(5,1)}f = \{ ( 6 , - 2 ) , ( 9 , - 1 ) , ( 7,0 ) , ( 5,1 ) \}

A) f1={(1,2),(2,7),(6,9),(1,0)}\mathrm { f } ^ { - 1 } = \{ ( - 1 , - 2 ) , ( - 2,7 ) , ( 6,9 ) , ( - 1,0 ) \}
B) f1={(1,2),(1,7),(6,7),(1,0)}\mathrm { f } ^ { - 1 } = \{ ( - 1 , - 2 ) , ( 1,7 ) , ( 6,7 ) , ( - 1,0 ) \}
C) f1={(2,6),(1,9),(0,7),(1,5)}\mathrm { f } ^ { - 1 } = \{ ( - 2,6 ) , ( - 1,9 ) , ( 0,7 ) , ( 1,5 ) \}
D) not one-to-one
Unlock Deck
Unlock for access to all 300 flashcards in this deck.
Unlock Deck
k this deck
56
Determine whether the graph of the function is the graph of a one-to-one function.
<strong>Determine whether the graph of the function is the graph of a one-to-one function.  </strong> A) Yes B) No

A) Yes
B) No
Unlock Deck
Unlock for access to all 300 flashcards in this deck.
Unlock Deck
k this deck
57
Determine whether the graph of the function is the graph of a one-to-one function.
<strong>Determine whether the graph of the function is the graph of a one-to-one function.  </strong> A) Yes B) No

A) Yes
B) No
Unlock Deck
Unlock for access to all 300 flashcards in this deck.
Unlock Deck
k this deck
58
Determine whether the function is a one-to-one function.
f={(8,6),(18,6),(5,8)}f = \{ ( - 8 , - 6 ) , ( - 18 , - 6 ) , ( - 5,8 ) \}

A) one-to-one
B) not one-to-one
Unlock Deck
Unlock for access to all 300 flashcards in this deck.
Unlock Deck
k this deck
59
If the function is one-to-one, list the inverse function by switching coordinates or inputs and outputs.
If the function is one-to-one, list the inverse function by switching coordinates or inputs and outputs.
Unlock Deck
Unlock for access to all 300 flashcards in this deck.
Unlock Deck
k this deck
60
Determine whether the graph of the function is the graph of a one-to-one function.
<strong>Determine whether the graph of the function is the graph of a one-to-one function.  </strong> A) Yes B) No

A) Yes
B) No
Unlock Deck
Unlock for access to all 300 flashcards in this deck.
Unlock Deck
k this deck
61
Determine whether the functions f and g are inverses of each other.
f(x)=x3+8;g(x)=x83f ( x ) = x ^ { 3 } + 8 ; g ( x ) = \sqrt [ 3 ] { x - 8 }

A) Yes
B) No\mathrm { No }
Unlock Deck
Unlock for access to all 300 flashcards in this deck.
Unlock Deck
k this deck
62
Find the inverse of the one-to-one function.
f(x)=x83f ( x ) = \sqrt [ 3 ] { x - 8 }

A) f1(x)=1x3+8f ^ { - 1 } ( x ) = \frac { 1 } { x ^ { 3 } + 8 }
B) f1(x)=x3+64f ^ { - 1 } ( x ) = x ^ { 3 } + 64
C) f1(x)=x+8f ^ { - 1 } ( x ) = x + 8
D) f1(x)=x3+8\mathrm { f } ^ { - 1 } ( \mathrm { x } ) = \mathrm { x } ^ { 3 } + 8
Unlock Deck
Unlock for access to all 300 flashcards in this deck.
Unlock Deck
k this deck
63
Graph the function and its inverse on the same set of axes.
f(x)=x3+2f ( x ) = x ^ { 3 } + 2
 <strong>Graph the function and its inverse on the same set of axes.  f ( x ) = x ^ { 3 } + 2   </strong> A)   B)   C)   D)

A)
 <strong>Graph the function and its inverse on the same set of axes.  f ( x ) = x ^ { 3 } + 2   </strong> A)   B)   C)   D)
B)
 <strong>Graph the function and its inverse on the same set of axes.  f ( x ) = x ^ { 3 } + 2   </strong> A)   B)   C)   D)
C)
 <strong>Graph the function and its inverse on the same set of axes.  f ( x ) = x ^ { 3 } + 2   </strong> A)   B)   C)   D)
D)
 <strong>Graph the function and its inverse on the same set of axes.  f ( x ) = x ^ { 3 } + 2   </strong> A)   B)   C)   D)
Unlock Deck
Unlock for access to all 300 flashcards in this deck.
Unlock Deck
k this deck
64
Determine whether the functions f and g are inverses of each other.
f(x)=3x+2;g(x)=x+23f ( x ) = 3 x + 2 ; g ( x ) = \frac { x + 2 } { 3 }

A) YesY e s
B) No\mathrm { No }
Unlock Deck
Unlock for access to all 300 flashcards in this deck.
Unlock Deck
k this deck
65
Graph the inverse of the function on the same set of axes.
<strong>Graph the inverse of the function on the same set of axes.  </strong> A)   B)   C)   D)

A)
<strong>Graph the inverse of the function on the same set of axes.  </strong> A)   B)   C)   D)
B)
<strong>Graph the inverse of the function on the same set of axes.  </strong> A)   B)   C)   D)
C)
<strong>Graph the inverse of the function on the same set of axes.  </strong> A)   B)   C)   D)
D)
<strong>Graph the inverse of the function on the same set of axes.  </strong> A)   B)   C)   D)
Unlock Deck
Unlock for access to all 300 flashcards in this deck.
Unlock Deck
k this deck
66
Find the inverse of the one-to-one function.
f(x)=(x+7)33f ( x ) = ( x + 7 ) ^ { 3 } - 3

A) f1(x)=x+337\mathrm { f } ^ { - 1 } ( \mathrm { x } ) = \sqrt [ 3 ] { \mathrm { x } + 3 } - 7
B) f1(x)=x+33+7f ^ { - 1 } ( x ) = - \sqrt [ 3 ] { x + 3 } + 7
C) f1(x)=x+33+7f ^ { - 1 } ( x ) = \sqrt [ 3 ] { x + 3 } + 7
D) f(x)=(x+3)37f ( x ) = ( x + 3 ) ^ { 3 } - 7
Unlock Deck
Unlock for access to all 300 flashcards in this deck.
Unlock Deck
k this deck
67
Determine whether the functions f and g are inverses of each other.
f(x)=(x+4)3+1;g(x)=x134f ( x ) = ( x + 4 ) ^ { 3 } + 1 ; g ( x ) = \sqrt [ 3 ] { x - 1 } - 4

A) YesY e s
B) No\mathrm { No }
Unlock Deck
Unlock for access to all 300 flashcards in this deck.
Unlock Deck
k this deck
68
Determine whether the functions f and g are inverses of each other.
f(x)=4x+5;g(x)=x54f ( x ) = 4 x + 5 ; g ( x ) = \frac { x - 5 } { 4 }

A) Yes
B) No\mathrm { No }
Unlock Deck
Unlock for access to all 300 flashcards in this deck.
Unlock Deck
k this deck
69
Graph the function and its inverse on the same set of axes.
f(x)=12x2f ( x ) = \frac { 1 } { 2 } x - 2
 <strong>Graph the function and its inverse on the same set of axes.  f ( x ) = \frac { 1 } { 2 } x - 2   </strong> A)   B)   C)   D)

A)
 <strong>Graph the function and its inverse on the same set of axes.  f ( x ) = \frac { 1 } { 2 } x - 2   </strong> A)   B)   C)   D)
B)
 <strong>Graph the function and its inverse on the same set of axes.  f ( x ) = \frac { 1 } { 2 } x - 2   </strong> A)   B)   C)   D)
C)
 <strong>Graph the function and its inverse on the same set of axes.  f ( x ) = \frac { 1 } { 2 } x - 2   </strong> A)   B)   C)   D)
D)
 <strong>Graph the function and its inverse on the same set of axes.  f ( x ) = \frac { 1 } { 2 } x - 2   </strong> A)   B)   C)   D)
Unlock Deck
Unlock for access to all 300 flashcards in this deck.
Unlock Deck
k this deck
70
Graph the inverse of the function on the same set of axes.
<strong>Graph the inverse of the function on the same set of axes.  </strong> A)   B)   C)   D)

A)
<strong>Graph the inverse of the function on the same set of axes.  </strong> A)   B)   C)   D)
B)
<strong>Graph the inverse of the function on the same set of axes.  </strong> A)   B)   C)   D)
C)
<strong>Graph the inverse of the function on the same set of axes.  </strong> A)   B)   C)   D)
D)
<strong>Graph the inverse of the function on the same set of axes.  </strong> A)   B)   C)   D)
Unlock Deck
Unlock for access to all 300 flashcards in this deck.
Unlock Deck
k this deck
71
Find the inverse of the one-to-one function.
f(x)=5x+7f ( x ) = 5 x + 7

A) f1(x)=x75f ^ { - 1 } ( x ) = - \frac { x - 7 } { 5 }
B) f1(x)=x75f ^ { - 1 } ( x ) = \frac { x - 7 } { 5 }
C) f1(x)=x+75\mathrm { f } ^ { - 1 } ( \mathrm { x } ) = \frac { \mathrm { x } + 7 } { 5 }
D) f1(x)=x+57\mathrm { f } ^ { - 1 } ( \mathrm { x } ) = - \frac { \mathrm { x } + 5 } { 7 }
Unlock Deck
Unlock for access to all 300 flashcards in this deck.
Unlock Deck
k this deck
72
Graph the inverse of the function on the same set of axes.
<strong>Graph the inverse of the function on the same set of axes.  </strong> A)   B)   C)   D)

A)
<strong>Graph the inverse of the function on the same set of axes.  </strong> A)   B)   C)   D)
B)
<strong>Graph the inverse of the function on the same set of axes.  </strong> A)   B)   C)   D)
C)
<strong>Graph the inverse of the function on the same set of axes.  </strong> A)   B)   C)   D)
D)
<strong>Graph the inverse of the function on the same set of axes.  </strong> A)   B)   C)   D)
Unlock Deck
Unlock for access to all 300 flashcards in this deck.
Unlock Deck
k this deck
73
Find the inverse of the one-to-one function.
f(x)=8x+57f ( x ) = \frac { 8 x + 5 } { 7 }

A) f1(x)=78x+5f ^ { - 1 } ( x ) = \frac { 7 } { 8 x + 5 }
B) f1(x)=7x58f ^ { - 1 } ( x ) = \frac { 7 x - 5 } { 8 }
C) f1(x)=7x+58\mathrm { f } ^ { - 1 } ( \mathrm { x } ) = \frac { 7 \mathrm { x } + 5 } { 8 }
D) f1(x)=78x5\mathrm { f } ^ { - 1 } ( \mathrm { x } ) = \frac { 7 } { 8 x - 5 }
Unlock Deck
Unlock for access to all 300 flashcards in this deck.
Unlock Deck
k this deck
74
Graph the function and its inverse on the same set of axes.
f(x)=4xf(x)=4 x
 <strong>Graph the function and its inverse on the same set of axes.  f(x)=4 x   </strong> A)   B)   C)   D)

A)
 <strong>Graph the function and its inverse on the same set of axes.  f(x)=4 x   </strong> A)   B)   C)   D)
B)
 <strong>Graph the function and its inverse on the same set of axes.  f(x)=4 x   </strong> A)   B)   C)   D)
C)
 <strong>Graph the function and its inverse on the same set of axes.  f(x)=4 x   </strong> A)   B)   C)   D)
D)
 <strong>Graph the function and its inverse on the same set of axes.  f(x)=4 x   </strong> A)   B)   C)   D)
Unlock Deck
Unlock for access to all 300 flashcards in this deck.
Unlock Deck
k this deck
75
Graph the function and its inverse on the same set of axes.
f(x)=2x+1f ( x ) = - 2 x + 1
 <strong>Graph the function and its inverse on the same set of axes.  f ( x ) = - 2 x + 1   </strong> A)    B)   C)   D)

A)
 <strong>Graph the function and its inverse on the same set of axes.  f ( x ) = - 2 x + 1   </strong> A)    B)   C)   D)

B)
 <strong>Graph the function and its inverse on the same set of axes.  f ( x ) = - 2 x + 1   </strong> A)    B)   C)   D)
C)
 <strong>Graph the function and its inverse on the same set of axes.  f ( x ) = - 2 x + 1   </strong> A)    B)   C)   D)
D)
 <strong>Graph the function and its inverse on the same set of axes.  f ( x ) = - 2 x + 1   </strong> A)    B)   C)   D)
Unlock Deck
Unlock for access to all 300 flashcards in this deck.
Unlock Deck
k this deck
76
Find the inverse of the one-to-one function.
f(x)=x3+2f ( x ) = x ^ { 3 } + 2

A) f1(x)=x+23\mathrm { f } ^ { - 1 } ( \mathrm { x } ) = \sqrt [ 3 ] { \mathrm { x } + 2 }
B) f1(x)=x23f ^ { - 1 } ( x ) = \sqrt [ 3 ] { x - 2 }
C) f1(x)=x32\mathrm { f } ^ { - 1 } ( \mathrm { x } ) = \sqrt [ 3 ] { \mathrm { x } } - 2
D) f1(x)=x32f ^ { - 1 } ( x ) = - x ^ { 3 } - 2
Unlock Deck
Unlock for access to all 300 flashcards in this deck.
Unlock Deck
k this deck
77
Determine whether the functions f and g are inverses of each other.
f(x)=x3+8;g(x)=x38f ( x ) = x ^ { 3 } + 8 ; g ( x ) = \sqrt [ 3 ] { x } - 8

A) Yes
B) No
Unlock Deck
Unlock for access to all 300 flashcards in this deck.
Unlock Deck
k this deck
78
Graph the inverse of the function on the same set of axes.
<strong>Graph the inverse of the function on the same set of axes.  </strong> A)   B)   C)   D)

A)
<strong>Graph the inverse of the function on the same set of axes.  </strong> A)   B)   C)   D)
B)
<strong>Graph the inverse of the function on the same set of axes.  </strong> A)   B)   C)   D)
C)
<strong>Graph the inverse of the function on the same set of axes.  </strong> A)   B)   C)   D)
D)
<strong>Graph the inverse of the function on the same set of axes.  </strong> A)   B)   C)   D)
Unlock Deck
Unlock for access to all 300 flashcards in this deck.
Unlock Deck
k this deck
79
Graph the inverse of the function on the same set of axes.
<strong>Graph the inverse of the function on the same set of axes.  </strong> A)   B)   C)   D)

A)
<strong>Graph the inverse of the function on the same set of axes.  </strong> A)   B)   C)   D)
B)
<strong>Graph the inverse of the function on the same set of axes.  </strong> A)   B)   C)   D)
C)
<strong>Graph the inverse of the function on the same set of axes.  </strong> A)   B)   C)   D)
D)
<strong>Graph the inverse of the function on the same set of axes.  </strong> A)   B)   C)   D)
Unlock Deck
Unlock for access to all 300 flashcards in this deck.
Unlock Deck
k this deck
80
Find the inverse of the one-to-one function.
f(x)=56x7f ( x ) = \frac { 5 } { 6 x - 7 }

A) f1(x)=6x75\mathrm { f } ^ { - 1 } ( \mathrm { x } ) = \frac { 6 \mathrm { x } - 7 } { 5 }
B) f1(x)=56x+76f ^ { - 1 } ( x ) = \frac { 5 } { 6 x } + \frac { 7 } { 6 }
C) f1(x)=56y+76f ^ { - 1 } ( x ) = \frac { 5 } { 6 y } + \frac { 7 } { 6 }
D) f1(x)=7656xf ^ { - 1 } ( x ) = - \frac { 7 } { 6 } - \frac { 5 } { 6 x }
Unlock Deck
Unlock for access to all 300 flashcards in this deck.
Unlock Deck
k this deck
locked card icon
Unlock Deck
Unlock for access to all 300 flashcards in this deck.