Deck 6: Analytic Trigonometry

Full screen (f)
exit full mode
Question
Complete the identity.
cscxcotxsecx=?\frac { \csc x \cot x } { \sec x } = ?

A) cot2x\cot ^ { 2 } x
B) 1
C) csc2x\csc ^ { 2 } x
D) sec2x\sec ^ { 2 } x
Use Space or
up arrow
down arrow
to flip the card.
Question
Complete the identity.
sinxcosx+cosxsinx=?\frac { \sin x } { \cos x } + \frac { \cos x } { \sin x } = ?

A) secxcscx\sec x \csc x
B) 2tan2x- 2 \tan ^ { 2 } x
C) 1+cotx1 + \cot x
D) sinxtanx\sin x \tan x
Question
Complete the identity.
(cscx+1)(cscx1)cot2x=?\frac { ( \csc x + 1 ) ( \csc x - 1 ) } { \cot ^ { 2 } x } = ?

A) 1
B) 2
C) 1- 1
D) 0 )0
Question
Complete the identity.
cos2xsin2x1tan2x=?\frac { \cos ^ { 2 } x - \sin ^ { 2 } x } { 1 - \tan ^ { 2 } x } = ?

A) cos2x\cos ^ { 2 } x
B) sin2x\sin ^ { 2 } x
C) 1
D) 1- 1
Question
Complete the identity.
cot22x+cos22x+sin22x=\cot ^ { 2 } 2 x + \cos ^ { 2 } 2 x + \sin ^ { 2 } 2 x = ?

A) csc22x\csc ^ { 2 } 2 x
B) sin22x\sin ^ { 2 } 2 x
C) cos22x\cos ^ { 2 } 2 x
D) 2
Question
Complete the identity.
cosxsinxcosx+sinxcosxsinx=?\frac { \cos x - \sin x } { \cos x } + \frac { \sin x - \cos x } { \sin x } = ?

A) 2secxcscx2 - \sec x \csc x
B) 1secxcscx1 - \sec x \csc x
C) 2+secxcscx2 + \sec x \csc x
D) secxcscx\sec x \csc x
Question
Complete the identity.
1sinxcosx=?\frac { 1 - \sin x } { \cos x } = ?

A) secxtanx\sec x - \tan x
B) secx+tanx\sec x + \tan x
C) secxtanx- \sec x - \tan x
D) secxtanx+1\sec x - \tan x + 1
Question
Complete the identity.
2tanx(1+tanx)2=?2 \tan x - ( 1 + \tan x ) ^ { 2 } = ?

A) sec2x- \sec ^ { 2 } x
B) 1
C) 0
D) 1sinx1 - \sin x
Question
Complete the identity.
tanxcotx=\tan x \cdot \cot x = ?

A) 1
B) 1- 1
C) 0
D) sinx\sin x
Question
Complete the identity.
1sin2x1+cosx= ? 1 - \frac { \sin ^ { 2 } x } { 1 + \cos x } = \text { ? }

A) cosx\cos x
B) 0
C) tanx\tan x
D) cotx\cot x
Question
Complete the identity.
tanx(cotxcosx)=\tan x ( \cot x - \cos x ) = ?

A) 1sinx1 - \sin x
B) sec2x- \sec ^ { 2 } x
C) 1
D) 0
Question
Complete the identity.
sinx+cosxsinxcosxsinxcosx=?\frac { \sin x + \cos x } { \sin x } - \frac { \cos x - \sin x } { \cos x } = ?

A) secxcscx\sec x \csc x
B) 1secxcscx1 - \sec x \csc x
C) 2+secxcscx2 + \sec x \csc x
D) 2secxcscx2 - \sec x \csc x
Question
Complete the identity.
cscx(sinx+cosx)=\csc x ( \sin x + \cos x ) = ?

A) 1+cotx1 + \cot x
B) sinxtanx\sin x \tan x
C) 2tan2x- 2 \tan ^ { 2 } x
D) secxcscx\sec x \csc x
Question
Complete the identity.
sin2x+sin2xcot2x=\sin ^ { 2 } x + \sin ^ { 2 } x \cot ^ { 2 } x = ?

A) 1
B) sin2x+1\sin ^ { 2 } x + 1
C) cot2x+1\cot ^ { 2 } x + 1
D) cot2x1\cot ^ { 2 } x - 1
Question
Complete the identity.
(sinx+cosx)21+2sinxcosx=?\frac { ( \sin x + \cos x ) ^ { 2 } } { 1 + 2 \sin x \cos x } = ?

A) 1
B) 0
C)sec2xC ) - \sec ^ { 2 } x
D) 1sinx1 - \sin x
Question
Complete the identity.
(tanx+1)(tanx+1)sec2xtanx=\frac { ( \tan x + 1 ) ( \tan x + 1 ) - \sec ^ { 2 } x } { \tan x } = ?

A) 2
B) 1
C) 0
D) tanx\tan x
Question
Complete the identity.
sec4x+sec2xtan2x2tan4x=\sec ^ { 4 } x + \sec ^ { 2 } x \tan ^ { 2 } x - 2 \tan ^ { 4 } x = ?

A) 3sec4x23 \sec ^ { 4 } x - 2
B) 4sec4x4 \sec ^ { 4 } x
C) sec4x+2\sec ^ { 4 } x + 2
D) tan2x1\tan ^ { 2 } x - 1
Question
Complete the identity.
secx1secx=?\sec x - \frac { 1 } { \sec x } = ?

A) sinxtanx\sin x \tan x
B) 1+cotx1 + \cot x
C) 2tan2x- 2 \tan ^ { 2 } x
D) secxcscx\sec x \csc x
Question
Complete the identity.
sin4xcos4x=\sin ^ { 4 } x - \cos ^ { 4 } x = ?

A) 12cos2x1 - 2 \cos ^ { 2 } x
B) 1+2cos2x1 + 2 \cos ^ { 2 } x
C) 1+2sin2x1 + 2 \sin ^ { 2 } x
D) 12sin2x1 - 2 \sin ^ { 2 } x
Question
Complete the identity.
sin2x+tan2x+cos2x=?\sin ^ { 2 } x + \tan ^ { 2 } x + \cos ^ { 2 } x = ?

A) sec2x\sec ^ { 2 } x
B) tan2x\tan ^ { 2 } x
C) cot3x\cot ^ { 3 } x
D) sinx\sin x
Question
Verify the identity.
cscusinu=cosucotu\csc u - \sin u = \cos u \cot u
Question
Verify the identity.
csc2ucosusecu=cot2u\csc ^ { 2 } u - \cos u \sec u = \cot ^ { 2 } u
Question
Verify the identity.
(1+tan2u)(1sin2u)=1\left( 1 + \tan ^ { 2 } u \right) \left( 1 - \sin ^ { 2 } u \right) = 1
Question
Verify the identity.
cot2x+csc2x=2csc2x1\cot ^ { 2 } x + \csc ^ { 2 } x = 2 \csc ^ { 2 } x - 1
Question
Use the graph to complete the identity.
cos2x+cosx1+sin2x;cosx\cos ^ { 2 } x + \cos x - 1 + \sin ^ { 2 } x ; \cos x

A) cosx\cos x
B) cosx- \cos x
C) 2+cosx2 + \cos x
D) 2cosx2 \cos x
Question
Verify the identity.
tanθcscθ=secθ\tan \theta \cdot \csc \theta = \sec \theta
Question
Use the graph to complete the identity.
cscx+tan2xcscx;cosx\csc x + \tan ^ { 2 } x \csc x ; \cos x and sinx\sin x

A)
1sinxcos2x\frac { 1 } { \sin x \cos ^ { 2 } x }
B) sinx+cosxsinxcosx\frac { \sin x + \cos x } { \sin x \cos x }
C) 1sinxcosx\frac { 1 } { \sin x \cos x }
D) cosxsinx\cos x - \sin x
Question
Complete the identity.
csc2xsecx=\csc ^ { 2 } x \sec x = ?

A) secx+cscxcotx\sec x + \csc x \cot x
B) secxcscxcotx\sec x - \csc x \cot x
C) cscxcotxsecx\csc x \cot x - \sec x
D) secx+cscx\sec x + \csc x
Question
Verify the identity.
1+sec2xsin2x=sec2x1 + \sec ^ { 2 } x \sin ^ { 2 } x = \sec ^ { 2 } x
Question
Use the graph to complete the identity.
sec2xcscxsec2x+csc2x=?\frac { \sec ^ { 2 } x \csc x } { \sec ^ { 2 } x + \csc ^ { 2 } x } = ?
 <strong>Use the graph to complete the identity.  \frac { \sec ^ { 2 } x \csc x } { \sec ^ { 2 } x + \csc ^ { 2 } x } = ?    </strong> A)  \sin x  B)  \cos x  C)  \csc x  D)  \sec x  <div style=padding-top: 35px>

A) sinx\sin x
B) cosx\cos x
C) cscx\csc x
D) secx\sec x
Question
Show that the equation is not an identity by finding a value of x for which both sides are defined but not equal.
cosxcosxsinx=cos3x\cos x - \cos x \sin x = \cos ^ { 3 } x

A) π4\frac { \pi } { 4 }
B) π2\frac { \pi } { 2 }
C) π\pi
D) 0
Question
Use the Formula for the Cosine of the Difference of Two Angles
cos(25515)\cos \left( 255 ^ { \circ } - 15 ^ { \circ } \right)

A) 12- \frac { 1 } { 2 }
B) 32- \frac { \sqrt { 3 } } { 2 }
C) 174\frac { 17 } { 4 }
D) 32\frac { \sqrt { 3 } } { 2 }
Question
Show that the equation is not an identity by finding a value of x for which both sides are defined but not equal.
sin(x+π)=sinx\sin ( x + \pi ) = \sin x

A) π2\frac { \pi } { 2 }
B) 0
C) 2π2 \pi
D) π\pi
Question
Use the Formula for the Cosine of the Difference of Two Angles
cos(5π18π9)\cos \left( \frac { 5 \pi } { 18 } - \frac { \pi } { 9 } \right)

A) 32\frac { \sqrt { 3 } } { 2 }
B) 12\frac { 1 } { 2 }
C) 14\frac { 1 } { 4 }
D) 1 Identify α and β in the following expression which is the right side of the formula for cos (α - β).
Question
Use the graph to complete the identity.
(secx+tanx)(secxtanx)secx=\frac { ( \sec x + \tan x ) ( \sec x - \tan x ) } { \sec x } = ?
 <strong>Use the graph to complete the identity.  \frac { ( \sec x + \tan x ) ( \sec x - \tan x ) } { \sec x } =  ?   </strong> A)  \cos x  B)  \sin x  C)  \csc x  D)  \sec x  <div style=padding-top: 35px>

A) cosx\cos x
B) sinx\sin x
C) cscx\csc x
D) secx\sec x
Question
Show that the equation is not an identity by finding a value of x for which both sides are defined but not equal.
cos(x+π)=cosx\cos ( x + \pi ) = \cos x

A) 0
B) π2\frac { \pi } { 2 }
C) π2- \frac { \pi } { 2 }
D) 3π2\frac { 3 \pi } { 2 }
Question
Verify the identity.
cotθsecθ=cscθ\cot \theta \cdot \sec \theta = \csc \theta
Question
Use the graph to complete the identity.
cosxtanx4tanx+5cosx20tanx+5=\frac { \cos x \tan x - 4 \tan x + 5 \cos x - 20 } { \tan x + 5 } = ?
 <strong>Use the graph to complete the identity.  \frac { \cos x \tan x - 4 \tan x + 5 \cos x - 20 } { \tan x + 5 } =  ?   </strong> A)  \cos x - 4  B)  \cos x + 4  C)  \sin x - 5  D)  \sin x + 5 \cos x  <div style=padding-top: 35px>

A) cosx4\cos x - 4
B) cosx+4\cos x + 4
C) sinx5\sin x - 5
D) sinx+5cosx\sin x + 5 \cos x
Question
Use the graph to complete the identity.
1+cosxsinx+sinx1+cosx=?\frac { 1 + \cos x } { \sin x } + \frac { \sin x } { 1 + \cos x } = ?
 <strong>Use the graph to complete the identity.  \frac { 1 + \cos x } { \sin x } + \frac { \sin x } { 1 + \cos x } = ?    </strong> A)  2 \csc x  B)  2 \sec x  C)  2 \sin x  D)  2 \cos x  Rewrite the expression in terms of the given function or functions. <div style=padding-top: 35px>

A) 2cscx2 \csc x
B) 2secx2 \sec x
C) 2sinx2 \sin x
D) 2cosx2 \cos x Rewrite the expression in terms of the given function or functions.
Question
Use the graph to complete the identity.
(secx+cscx)(sinx+cosx)2cotx;tanx( \sec x + \csc x ) ( \sin x + \cos x ) - 2 - \cot x ; \tan x

A) tanx\tan x
B) 2+tanx2 + \tan x
C) 2tanx2 \tan x
D) 0
Question
Use Sum and Difference Formulas for Cosines and Sines
sin255\sin 255 ^ { \circ }

A) 2(3+1)4- \frac { \sqrt { 2 } ( \sqrt { 3 } + 1 ) } { 4 }
B) 2(31)4- \frac { \sqrt { 2 } ( \sqrt { 3 } - 1 ) } { 4 }
C) 2(3+1)4\frac { \sqrt { 2 } ( \sqrt { 3 } + 1 ) } { 4 }
D) 2(31)4\frac { \sqrt { 2 } ( \sqrt { 3 } - 1 ) } { 4 }
Question
Use the given information to find the exact value of the expression.
sinα=2425,α\sin \alpha = \frac { 24 } { 25 } , \alpha lies in quadrant II, and cosβ=25,β\cos \beta = \frac { 2 } { 5 } , \beta lies in quadrant I\mathrm { I } \quad Find cos(αβ)\cos ( \alpha - \beta ) .

A) 14+2421125\frac { - 14 + 24 \sqrt { 21 } } { 125 }
B) 48+721125\frac { 48 + 7 \sqrt { 21 } } { 125 }
C) 48721125\frac { 48 - 7 \sqrt { 21 } } { 125 }
D) 142421125\frac { 14 - 24 \sqrt { 21 } } { 125 }
Question
Use Sum and Difference Formulas for Cosines and Sines
sin25cos35+cos25sin35\sin 25 ^ { \circ } \cos 35 ^ { \circ } + \cos 25 ^ { \circ } \sin 35 ^ { \circ }

A) 32\frac { \sqrt { 3 } } { 2 }
B) 12\frac { 1 } { 2 }
C) 512\frac { 5 } { 12 }
D) 33\frac { \sqrt { 3 } } { 3 }
Question
Use Sum and Difference Formulas for Cosines and Sines
cos7π12sin5π12cos5π12sin7π12\cos \frac { 7 \pi } { 12 } \sin \frac { 5 \pi } { 12 } - \cos \frac { 5 \pi } { 12 } \sin \frac { 7 \pi } { 12 }

A) 12\frac { 1 } { 2 }
B) 32\frac { \sqrt { 3 } } { 2 }
C) 14\frac { 1 } { 4 }
D) 1
Question
Complete the identity.
cos(x+π2)=\cos \left( x + \frac { \pi } { 2 } \right) = ?

A) sinx- \sin x
B) sinx\sin x
C) cosx\cos x
D) cosx- \cos x
Question
Use the Formula for the Cosine of the Difference of Two Angles
cos(160)cos(40)+sin(160)sin(40)\cos \left( 160 ^ { \circ } \right) \cos \left( 40 ^ { \circ } \right) + \sin \left( 160 ^ { \circ } \right) \sin \left( 40 ^ { \circ } \right)

A) cos(120)\cos \left( 120 ^ { \circ } \right)
B) cos(210)\cos \left( 210 ^ { \circ } \right)
C) cos(190)\cos \left( 190 ^ { \circ } \right)
D) cos(220)\cos \left( 220 ^ { \circ } \right)
Question
Complete the identity.
cos(α+β)+cos(αβ)=\cos ( \alpha + \beta ) + \cos ( \alpha - \beta ) = ?

A) 2cosαcosβ2 \cos \alpha \cos \beta
B) cosαcosβ\cos \alpha \cos \beta
C) 2sinαcosβ2 \sin \alpha \cos \beta
D) sinβcosα\sin \beta \cos \alpha
Question
Complete the identity.
cos(αβ)cosαsinβ=\frac { \cos ( \alpha - \beta ) } { \cos \alpha \sin \beta } = ?

A) tanα+cotβ\tan \alpha + \cot \beta
B) tanα+cotα\tan \alpha + \cot \alpha
C) tanα+tanβ\tan \alpha + \tan \beta
D) cotβ+tanαtanβ\cot \beta + \tan \alpha \tan \beta
Question
Use the Formula for the Cosine of the Difference of Two Angles
cos(7π18)cos(2π9)+sin(7π18)sin(2π9)\cos \left( \frac { 7 \pi } { 18 } \right) \cos \left( \frac { 2 \pi } { 9 } \right) + \sin \left( \frac { 7 \pi } { 18 } \right) \sin \left( \frac { 2 \pi } { 9 } \right)

A) α=7π18,β=2π9\alpha = \frac { 7 \pi } { 18 } , \beta = \frac { 2 \pi } { 9 }
B) α=7π18,β=2π9\alpha = \frac { 7 \pi } { 18 } , \beta = - \frac { 2 \pi } { 9 }
C) α=2π9,β=7π18\alpha = - \frac { 2 \pi } { 9 } , \beta = \frac { 7 \pi } { 18 }
D) α=2π9,β=7π18\alpha = \frac { 2 \pi } { 9 } , \beta = \frac { 7 \pi } { 18 } Write the expression as the cosine of an angle, knowing that the expression is the right side of the formula for cos(αβ) with particular values for α and β.\cos ( \alpha - \beta ) \text { with particular values for } \alpha \text { and } \beta .
Question
Use the Formula for the Cosine of the Difference of Two Angles
cos(155)cos(35)+sin(155)sin(35)\cos \left( 155 ^ { \circ } \right) \cos \left( 35 ^ { \circ } \right) + \sin \left( 155 ^ { \circ } \right) \sin \left( 35 ^ { \circ } \right)

A) 12- \frac { 1 } { 2 }
B) 32- \frac { \sqrt { 3 } } { 2 }
C) 3- \sqrt { 3 }
D) 2- 2
Question
Use Sum and Difference Formulas for Cosines and Sines
sin195cos75cos195sin75\sin 195 ^ { \circ } \cos 75 ^ { \circ } - \cos 195 ^ { \circ } \sin 75 ^ { \circ }

A) 32\frac { \sqrt { 3 } } { 2 }
B) 12- \frac { 1 } { 2 }
C) 134\frac { 13 } { 4 }
D) 32- \frac { \sqrt { 3 } } { 2 }
Question
Use Sum and Difference Formulas for Cosines and Sines
cos(30+45)\cos \left( 30 ^ { \circ } + 45 ^ { \circ } \right)

A) 2(31)4\frac { \sqrt { 2 } ( \sqrt { 3 } - 1 ) } { 4 }
B) 2(3+1)4\frac { \sqrt { 2 } ( \sqrt { 3 } + 1 ) } { 4 }
C) 2(31)4- \frac { \sqrt { 2 } ( \sqrt { 3 } - 1 ) } { 4 }
D) 2(3+1)4- \frac { \sqrt { 2 } ( \sqrt { 3 } + 1 ) } { 4 }
Question
Complete the identity.
cos(x11π6)=\cos \left( x - \frac { 11 \pi } { 6 } \right) = ?

A) 12(3cosxsinx)\frac { 1 } { 2 } ( \sqrt { 3 } \cos x - \sin x )
B) 32(cosxsinx)\frac { \sqrt { 3 } } { 2 } ( \cos x - \sin x )
C) 32(cosx+sinx)- \frac { \sqrt { 3 } } { 2 } ( \cos x + \sin x )
D) 32(cosxsinx)- \frac { \sqrt { 3 } } { 2 } ( \cos x - \sin x )
Question
Use Sum and Difference Formulas for Cosines and Sines
cos285\cos 285 ^ { \circ }

A) 2(31)4\frac { \sqrt { 2 } ( \sqrt { 3 } - 1 ) } { 4 }
B) 2(31)4- \frac { \sqrt { 2 } ( \sqrt { 3 } - 1 ) } { 4 }
C) 2(3+1)- \sqrt { 2 } ( \sqrt { 3 } + 1 )
D) 2(31)- \sqrt { 2 } ( \sqrt { 3 } - 1 ) Find the exact value of the expression.
Question
Use Sum and Difference Formulas for Cosines and Sines
sin260cos20cos260sin20\sin 260 ^ { \circ } \cos 20 ^ { \circ } - \cos 260 ^ { \circ } \sin 20 ^ { \circ }

A) 32- \frac { \sqrt { 3 } } { 2 }
B) 12- \frac { 1 } { 2 }
C) 133\frac { 13 } { 3 }
D) 32\frac { \sqrt { 3 } } { 2 }
Question
Use the Formula for the Cosine of the Difference of Two Angles
cos(5π12)cos(π4)+sin(5π12)sin(π4)\cos \left( \frac { 5 \pi } { 12 } \right) \cos \left( \frac { \pi } { 4 } \right) + \sin \left( \frac { 5 \pi } { 12 } \right) \sin \left( \frac { \pi } { 4 } \right)

A) cos(π6)\cos \left( \frac { \pi } { 6 } \right)
B) cos(π3)\cos \left( \frac { \pi } { 3 } \right)
C) cos(2π3)\cos \left( \frac { 2 \pi } { 3 } \right)
D) cos(5π6)\cos \left( \frac { 5 \pi } { 6 } \right) Find the exact value of the expression.
Question
Complete the identity.
cos(3π2x)=\cos \left( \frac { 3 \pi } { 2 } - x \right) = ?

A) sinx- \sin x
B) sinx\sin x
C) cosx- \cos x
D) cosx\cos x
Question
Use the Formula for the Cosine of the Difference of Two Angles
cos(165)cos(45)+sin(165)sin(45)\cos \left( 165 ^ { \circ } \right) \cos \left( 45 ^ { \circ } \right) + \sin \left( 165 ^ { \circ } \right) \sin \left( 45 ^ { \circ } \right)

A) α=165,β=45\alpha = 165 ^ { \circ } , \beta = 45 ^ { \circ }
B) α=165,β=45\alpha = - 165 ^ { \circ } , \beta = 45 ^ { \circ }
C) α=45,β=165\alpha = - 45 ^ { \circ } , \beta = 165 ^ { \circ }
D) α=45,β=165\alpha = 45 ^ { \circ } , \beta = 165 ^ { \circ }
Question
Use Sum and Difference Formulas for Cosines and Sines
cos15cos45sin15sin45\cos 15 ^ { \circ } \cos 45 ^ { \circ } - \sin 15 ^ { \circ } \sin 45 ^ { \circ }

A) 12\frac { 1 } { 2 }
B) 32\frac { \sqrt { 3 } } { 2 }
C) 14\frac { 1 } { 4 }
D) 3\sqrt { 3 }
Question
Use Sum and Difference Formulas for Cosines and Sines
sin(19070)\sin \left( 190 ^ { \circ } - 70 ^ { \circ } \right)

A) 32\frac { \sqrt { 3 } } { 2 }
B) 12- \frac { 1 } { 2 }
C) 196\frac { 19 } { 6 }
D) 32- \frac { \sqrt { 3 } } { 2 }
Question
Verify the identity.
cos(αβ)cos(α+β)=2sinαsinβ\cos ( \alpha - \beta ) - \cos ( \alpha + \beta ) = 2 \sin \alpha \sin \beta
Question
Use the given information to find the exact value of the expression.
sinα=2425,α\sin \alpha = - \frac { 24 } { 25 } , \alpha lies in quadrant IV, and cosβ=215,β\cos \beta = - \frac { \sqrt { 21 } } { 5 } , \beta lies in quadrant III Find sin(αβ)\sin ( \alpha - \beta ) .

A) 14+2421125\frac { 14 + 24 \sqrt { 21 } } { 125 }
B) 14+2421125\frac { - 14 + 24 \sqrt { 21 } } { 125 }
C) 48+721125\frac { - 48 + 7 \sqrt { 21 } } { 125 }
D) 48721125\frac { - 48 - 7 \sqrt { 21 } } { 125 }
Question
Verify the identity.
sin(3π2θ)=cosθ\sin \left( \frac { 3 \pi } { 2 } - \theta \right) = - \cos \theta
Question
Verify the identity.
cos(x+π2)=sinx\cos \left( x + \frac { \pi } { 2 } \right) = - \sin x
Question
Use Sum and Difference Formulas for Tangents
Find the exact value by using a difference identity.
tan255\tan 255 ^ { \circ }

A) 3+2\sqrt { 3 } + 2
B) 3+2- \sqrt { 3 } + 2
C) 32- \sqrt { 3 } - 2
D) 32\sqrt { 3 } - 2
Question
Use Sum and Difference Formulas for Tangents
Find the exact value by using a difference identity.
tan285\tan 285 ^ { \circ }

A) 23- 2 - \sqrt { 3 }
B) 2+32 + \sqrt { 3 }
C) 234\frac { 2 - \sqrt { 3 } } { 4 }
D) 2+34\frac { 2 + \sqrt { 3 } } { 4 }
Question
Describe the graph using another equation.
y=sin(πx)y=\sin (\pi-x)
 <strong>Describe the graph using another equation.  y=\sin (\pi-x)    </strong> A)  \sin x  B)  \cos x  C)  - \sin x  D)  - \cos x  <div style=padding-top: 35px>

A) sinx\sin x
B) cosx\cos x
C) sinx- \sin x
D) cosx- \cos x
Question
Use the given information to find the exact value of the expression.
tanα=34,α\tan \alpha = \frac { 3 } { 4 } , \alpha lies in quadrant III, and cosβ=1213,β\cos \beta = - \frac { 12 } { 13 } , \beta lies in quadrant II \quad Find sin(α+β)\sin ( \alpha + \beta ) .

A) 1665\frac { 16 } { 65 }
B) 6365\frac { 63 } { 65 }
C) 3365\frac { 33 } { 65 }
D) 5665\frac { 56 } { 65 }
Question
Complete the identity.
sin(α+β)cosαcosβ=?\frac { \sin ( \alpha + \beta ) } { \cos \alpha \cos \beta } = ?

A) tanα+tanβ\tan \alpha + \tan \beta
B) tanβ+tanα\tan \beta + \tan \alpha
C) cotα+cotβ\cot \alpha + \cot \beta
D) tanα+cotβ- \tan \alpha + \cot \beta
Question
Complete the identity.
sin(α+β)sin(αβ)=\sin ( \alpha + \beta ) \sin ( \alpha - \beta ) = ?

A) cos2βcos2α\cos ^ { 2 } \beta - \cos ^ { 2 } \alpha
B) sin2αcos2β\sin ^ { 2 } \alpha - \cos ^ { 2 } \beta
C) cos2β+cos2α\cos ^ { 2 } \beta + \cos ^ { 2 } \alpha
D) sin2βsin2α\sin ^ { 2 } \beta - \sin ^ { 2 } \alpha
Question
Verify the identity.
sin(α+β)sin(αβ)=2cosαsinβ\sin ( \alpha + \beta ) - \sin ( \alpha - \beta ) = 2 \cos \alpha \sin \beta
Question
Use the given information to find the exact value of the expression.
cosα=45,α\cos \alpha = - \frac { 4 } { 5 } , \alpha lies in quadrant III, and sinβ=215,β\sin \beta = \frac { \sqrt { 21 } } { 5 } , \beta lies in quadrant II \quad Find cos(α+β)\cos ( \alpha + \beta )

A) 8+32125\frac { 8 + 3 \sqrt { 21 } } { 25 }
B) 832125\frac { - 8 - 3 \sqrt { 21 } } { 25 }
C) 642125\frac { 6 - 4 \sqrt { 21 } } { 25 }
D) 6+42125\frac { - 6 + 4 \sqrt { 21 } } { 25 }
Question
Use the given information to find the exact value of the expression.
sinα=35,α\sin \alpha = \frac { 3 } { 5 } , \alpha lies in quadrant II, and cosβ=25,β\cos \beta = \frac { 2 } { 5 } , \beta lies in quadrant I \quad Find cos(αβ)\cos ( \alpha - \beta ) .

A) 8+32125\frac { - 8 + 3 \sqrt { 21 } } { 25 }
B) 6+42125\frac { 6 + 4 \sqrt { 21 } } { 25 }
C) 642125\frac { 6 - 4 \sqrt { 21 } } { 25 }
D) 832125\frac { 8 - 3 \sqrt { 21 } } { 25 }
Question
Complete the identity.
sin(α+β)sin(αβ)=\frac { \sin ( \alpha + \beta ) } { \sin ( \alpha - \beta ) } = ?

A) tanα+tanβtanαtanβ\frac { \tan \alpha + \tan \beta } { \tan \alpha - \tan \beta }
B) tanαtanβtanα+tanβ\frac { \tan \alpha - \tan \beta } { \tan \alpha + \tan \beta }
C) tan(α+β)tanαtanβ\frac { \tan ( \alpha + \beta ) } { \tan \alpha - \tan \beta }
D) tanαtanβtan(α+β)\frac { \tan \alpha - \tan \beta } { \tan ( \alpha + \beta ) }
Question
Describe the graph using another equation.
y=cos(x+π2)cos(xπ2)y=\cos \left(x+\frac{\pi}{2}\right)-\cos \left(x-\frac{\pi}{2}\right)
 <strong>Describe the graph using another equation.  y=\cos \left(x+\frac{\pi}{2}\right)-\cos \left(x-\frac{\pi}{2}\right)    </strong> A)  - 2 \sin x  B)  - 2 \cos x  C)  - \sin x  D)  - \cos x  <div style=padding-top: 35px>

A) 2sinx- 2 \sin x
B) 2cosx- 2 \cos x
C) sinx- \sin x
D) cosx- \cos x
Question
Use the given information to find the exact value of the expression.
sinα=817,α\sin \alpha = \frac { 8 } { 17 } , \alpha lies in quadrant II, and cosβ=1213,β\cos \beta = \frac { 12 } { 13 } , \beta lies in quadrant I \quad Find sin(αβ)\sin ( \alpha - \beta ) .

A) 171221\frac { 171 } { 221 }
B) 220221\frac { 220 } { 221 }
C) 140221\frac { 140 } { 221 }
D) 21221\frac { 21 } { 221 }
Question
Verify the identity.
sin(αβ)cos(α+β)=sinαcosαsinβcosβ\sin ( \alpha - \beta ) \cos ( \alpha + \beta ) = \sin \alpha \cos \alpha - \sin \beta \cos \beta
Question
Verify the identity.
cos(3π2θ)=sinθ\cos \left( \frac { 3 \pi } { 2 } - \theta \right) = - \sin \theta
Question
Use the given information to find the exact value of the expression.
sinα=2029,α\sin \alpha = \frac { 20 } { 29 } , \alpha lies in quadrant I\mathrm { I } , and cosβ=45,β\cos \beta = \frac { 4 } { 5 } , \beta lies in quadrant I \quad Find cos(α+β)\cos ( \alpha + \beta )

A) 24145\frac { 24 } { 145 }
B) 144145\frac { 144 } { 145 }
C) 17145\frac { 17 } { 145 }
D) 143145\frac { 143 } { 145 }
Question
Verify the identity.
cos(α+β)cosαsinβ=cotβtanα\frac { \cos ( \alpha + \beta ) } { \cos \alpha \sin \beta } = \cot \beta - \tan \alpha
Unlock Deck
Sign up to unlock the cards in this deck!
Unlock Deck
Unlock Deck
1/226
auto play flashcards
Play
simple tutorial
Full screen (f)
exit full mode
Deck 6: Analytic Trigonometry
1
Complete the identity.
cscxcotxsecx=?\frac { \csc x \cot x } { \sec x } = ?

A) cot2x\cot ^ { 2 } x
B) 1
C) csc2x\csc ^ { 2 } x
D) sec2x\sec ^ { 2 } x
A
2
Complete the identity.
sinxcosx+cosxsinx=?\frac { \sin x } { \cos x } + \frac { \cos x } { \sin x } = ?

A) secxcscx\sec x \csc x
B) 2tan2x- 2 \tan ^ { 2 } x
C) 1+cotx1 + \cot x
D) sinxtanx\sin x \tan x
A
3
Complete the identity.
(cscx+1)(cscx1)cot2x=?\frac { ( \csc x + 1 ) ( \csc x - 1 ) } { \cot ^ { 2 } x } = ?

A) 1
B) 2
C) 1- 1
D) 0 )0
A
4
Complete the identity.
cos2xsin2x1tan2x=?\frac { \cos ^ { 2 } x - \sin ^ { 2 } x } { 1 - \tan ^ { 2 } x } = ?

A) cos2x\cos ^ { 2 } x
B) sin2x\sin ^ { 2 } x
C) 1
D) 1- 1
Unlock Deck
Unlock for access to all 226 flashcards in this deck.
Unlock Deck
k this deck
5
Complete the identity.
cot22x+cos22x+sin22x=\cot ^ { 2 } 2 x + \cos ^ { 2 } 2 x + \sin ^ { 2 } 2 x = ?

A) csc22x\csc ^ { 2 } 2 x
B) sin22x\sin ^ { 2 } 2 x
C) cos22x\cos ^ { 2 } 2 x
D) 2
Unlock Deck
Unlock for access to all 226 flashcards in this deck.
Unlock Deck
k this deck
6
Complete the identity.
cosxsinxcosx+sinxcosxsinx=?\frac { \cos x - \sin x } { \cos x } + \frac { \sin x - \cos x } { \sin x } = ?

A) 2secxcscx2 - \sec x \csc x
B) 1secxcscx1 - \sec x \csc x
C) 2+secxcscx2 + \sec x \csc x
D) secxcscx\sec x \csc x
Unlock Deck
Unlock for access to all 226 flashcards in this deck.
Unlock Deck
k this deck
7
Complete the identity.
1sinxcosx=?\frac { 1 - \sin x } { \cos x } = ?

A) secxtanx\sec x - \tan x
B) secx+tanx\sec x + \tan x
C) secxtanx- \sec x - \tan x
D) secxtanx+1\sec x - \tan x + 1
Unlock Deck
Unlock for access to all 226 flashcards in this deck.
Unlock Deck
k this deck
8
Complete the identity.
2tanx(1+tanx)2=?2 \tan x - ( 1 + \tan x ) ^ { 2 } = ?

A) sec2x- \sec ^ { 2 } x
B) 1
C) 0
D) 1sinx1 - \sin x
Unlock Deck
Unlock for access to all 226 flashcards in this deck.
Unlock Deck
k this deck
9
Complete the identity.
tanxcotx=\tan x \cdot \cot x = ?

A) 1
B) 1- 1
C) 0
D) sinx\sin x
Unlock Deck
Unlock for access to all 226 flashcards in this deck.
Unlock Deck
k this deck
10
Complete the identity.
1sin2x1+cosx= ? 1 - \frac { \sin ^ { 2 } x } { 1 + \cos x } = \text { ? }

A) cosx\cos x
B) 0
C) tanx\tan x
D) cotx\cot x
Unlock Deck
Unlock for access to all 226 flashcards in this deck.
Unlock Deck
k this deck
11
Complete the identity.
tanx(cotxcosx)=\tan x ( \cot x - \cos x ) = ?

A) 1sinx1 - \sin x
B) sec2x- \sec ^ { 2 } x
C) 1
D) 0
Unlock Deck
Unlock for access to all 226 flashcards in this deck.
Unlock Deck
k this deck
12
Complete the identity.
sinx+cosxsinxcosxsinxcosx=?\frac { \sin x + \cos x } { \sin x } - \frac { \cos x - \sin x } { \cos x } = ?

A) secxcscx\sec x \csc x
B) 1secxcscx1 - \sec x \csc x
C) 2+secxcscx2 + \sec x \csc x
D) 2secxcscx2 - \sec x \csc x
Unlock Deck
Unlock for access to all 226 flashcards in this deck.
Unlock Deck
k this deck
13
Complete the identity.
cscx(sinx+cosx)=\csc x ( \sin x + \cos x ) = ?

A) 1+cotx1 + \cot x
B) sinxtanx\sin x \tan x
C) 2tan2x- 2 \tan ^ { 2 } x
D) secxcscx\sec x \csc x
Unlock Deck
Unlock for access to all 226 flashcards in this deck.
Unlock Deck
k this deck
14
Complete the identity.
sin2x+sin2xcot2x=\sin ^ { 2 } x + \sin ^ { 2 } x \cot ^ { 2 } x = ?

A) 1
B) sin2x+1\sin ^ { 2 } x + 1
C) cot2x+1\cot ^ { 2 } x + 1
D) cot2x1\cot ^ { 2 } x - 1
Unlock Deck
Unlock for access to all 226 flashcards in this deck.
Unlock Deck
k this deck
15
Complete the identity.
(sinx+cosx)21+2sinxcosx=?\frac { ( \sin x + \cos x ) ^ { 2 } } { 1 + 2 \sin x \cos x } = ?

A) 1
B) 0
C)sec2xC ) - \sec ^ { 2 } x
D) 1sinx1 - \sin x
Unlock Deck
Unlock for access to all 226 flashcards in this deck.
Unlock Deck
k this deck
16
Complete the identity.
(tanx+1)(tanx+1)sec2xtanx=\frac { ( \tan x + 1 ) ( \tan x + 1 ) - \sec ^ { 2 } x } { \tan x } = ?

A) 2
B) 1
C) 0
D) tanx\tan x
Unlock Deck
Unlock for access to all 226 flashcards in this deck.
Unlock Deck
k this deck
17
Complete the identity.
sec4x+sec2xtan2x2tan4x=\sec ^ { 4 } x + \sec ^ { 2 } x \tan ^ { 2 } x - 2 \tan ^ { 4 } x = ?

A) 3sec4x23 \sec ^ { 4 } x - 2
B) 4sec4x4 \sec ^ { 4 } x
C) sec4x+2\sec ^ { 4 } x + 2
D) tan2x1\tan ^ { 2 } x - 1
Unlock Deck
Unlock for access to all 226 flashcards in this deck.
Unlock Deck
k this deck
18
Complete the identity.
secx1secx=?\sec x - \frac { 1 } { \sec x } = ?

A) sinxtanx\sin x \tan x
B) 1+cotx1 + \cot x
C) 2tan2x- 2 \tan ^ { 2 } x
D) secxcscx\sec x \csc x
Unlock Deck
Unlock for access to all 226 flashcards in this deck.
Unlock Deck
k this deck
19
Complete the identity.
sin4xcos4x=\sin ^ { 4 } x - \cos ^ { 4 } x = ?

A) 12cos2x1 - 2 \cos ^ { 2 } x
B) 1+2cos2x1 + 2 \cos ^ { 2 } x
C) 1+2sin2x1 + 2 \sin ^ { 2 } x
D) 12sin2x1 - 2 \sin ^ { 2 } x
Unlock Deck
Unlock for access to all 226 flashcards in this deck.
Unlock Deck
k this deck
20
Complete the identity.
sin2x+tan2x+cos2x=?\sin ^ { 2 } x + \tan ^ { 2 } x + \cos ^ { 2 } x = ?

A) sec2x\sec ^ { 2 } x
B) tan2x\tan ^ { 2 } x
C) cot3x\cot ^ { 3 } x
D) sinx\sin x
Unlock Deck
Unlock for access to all 226 flashcards in this deck.
Unlock Deck
k this deck
21
Verify the identity.
cscusinu=cosucotu\csc u - \sin u = \cos u \cot u
Unlock Deck
Unlock for access to all 226 flashcards in this deck.
Unlock Deck
k this deck
22
Verify the identity.
csc2ucosusecu=cot2u\csc ^ { 2 } u - \cos u \sec u = \cot ^ { 2 } u
Unlock Deck
Unlock for access to all 226 flashcards in this deck.
Unlock Deck
k this deck
23
Verify the identity.
(1+tan2u)(1sin2u)=1\left( 1 + \tan ^ { 2 } u \right) \left( 1 - \sin ^ { 2 } u \right) = 1
Unlock Deck
Unlock for access to all 226 flashcards in this deck.
Unlock Deck
k this deck
24
Verify the identity.
cot2x+csc2x=2csc2x1\cot ^ { 2 } x + \csc ^ { 2 } x = 2 \csc ^ { 2 } x - 1
Unlock Deck
Unlock for access to all 226 flashcards in this deck.
Unlock Deck
k this deck
25
Use the graph to complete the identity.
cos2x+cosx1+sin2x;cosx\cos ^ { 2 } x + \cos x - 1 + \sin ^ { 2 } x ; \cos x

A) cosx\cos x
B) cosx- \cos x
C) 2+cosx2 + \cos x
D) 2cosx2 \cos x
Unlock Deck
Unlock for access to all 226 flashcards in this deck.
Unlock Deck
k this deck
26
Verify the identity.
tanθcscθ=secθ\tan \theta \cdot \csc \theta = \sec \theta
Unlock Deck
Unlock for access to all 226 flashcards in this deck.
Unlock Deck
k this deck
27
Use the graph to complete the identity.
cscx+tan2xcscx;cosx\csc x + \tan ^ { 2 } x \csc x ; \cos x and sinx\sin x

A)
1sinxcos2x\frac { 1 } { \sin x \cos ^ { 2 } x }
B) sinx+cosxsinxcosx\frac { \sin x + \cos x } { \sin x \cos x }
C) 1sinxcosx\frac { 1 } { \sin x \cos x }
D) cosxsinx\cos x - \sin x
Unlock Deck
Unlock for access to all 226 flashcards in this deck.
Unlock Deck
k this deck
28
Complete the identity.
csc2xsecx=\csc ^ { 2 } x \sec x = ?

A) secx+cscxcotx\sec x + \csc x \cot x
B) secxcscxcotx\sec x - \csc x \cot x
C) cscxcotxsecx\csc x \cot x - \sec x
D) secx+cscx\sec x + \csc x
Unlock Deck
Unlock for access to all 226 flashcards in this deck.
Unlock Deck
k this deck
29
Verify the identity.
1+sec2xsin2x=sec2x1 + \sec ^ { 2 } x \sin ^ { 2 } x = \sec ^ { 2 } x
Unlock Deck
Unlock for access to all 226 flashcards in this deck.
Unlock Deck
k this deck
30
Use the graph to complete the identity.
sec2xcscxsec2x+csc2x=?\frac { \sec ^ { 2 } x \csc x } { \sec ^ { 2 } x + \csc ^ { 2 } x } = ?
 <strong>Use the graph to complete the identity.  \frac { \sec ^ { 2 } x \csc x } { \sec ^ { 2 } x + \csc ^ { 2 } x } = ?    </strong> A)  \sin x  B)  \cos x  C)  \csc x  D)  \sec x

A) sinx\sin x
B) cosx\cos x
C) cscx\csc x
D) secx\sec x
Unlock Deck
Unlock for access to all 226 flashcards in this deck.
Unlock Deck
k this deck
31
Show that the equation is not an identity by finding a value of x for which both sides are defined but not equal.
cosxcosxsinx=cos3x\cos x - \cos x \sin x = \cos ^ { 3 } x

A) π4\frac { \pi } { 4 }
B) π2\frac { \pi } { 2 }
C) π\pi
D) 0
Unlock Deck
Unlock for access to all 226 flashcards in this deck.
Unlock Deck
k this deck
32
Use the Formula for the Cosine of the Difference of Two Angles
cos(25515)\cos \left( 255 ^ { \circ } - 15 ^ { \circ } \right)

A) 12- \frac { 1 } { 2 }
B) 32- \frac { \sqrt { 3 } } { 2 }
C) 174\frac { 17 } { 4 }
D) 32\frac { \sqrt { 3 } } { 2 }
Unlock Deck
Unlock for access to all 226 flashcards in this deck.
Unlock Deck
k this deck
33
Show that the equation is not an identity by finding a value of x for which both sides are defined but not equal.
sin(x+π)=sinx\sin ( x + \pi ) = \sin x

A) π2\frac { \pi } { 2 }
B) 0
C) 2π2 \pi
D) π\pi
Unlock Deck
Unlock for access to all 226 flashcards in this deck.
Unlock Deck
k this deck
34
Use the Formula for the Cosine of the Difference of Two Angles
cos(5π18π9)\cos \left( \frac { 5 \pi } { 18 } - \frac { \pi } { 9 } \right)

A) 32\frac { \sqrt { 3 } } { 2 }
B) 12\frac { 1 } { 2 }
C) 14\frac { 1 } { 4 }
D) 1 Identify α and β in the following expression which is the right side of the formula for cos (α - β).
Unlock Deck
Unlock for access to all 226 flashcards in this deck.
Unlock Deck
k this deck
35
Use the graph to complete the identity.
(secx+tanx)(secxtanx)secx=\frac { ( \sec x + \tan x ) ( \sec x - \tan x ) } { \sec x } = ?
 <strong>Use the graph to complete the identity.  \frac { ( \sec x + \tan x ) ( \sec x - \tan x ) } { \sec x } =  ?   </strong> A)  \cos x  B)  \sin x  C)  \csc x  D)  \sec x

A) cosx\cos x
B) sinx\sin x
C) cscx\csc x
D) secx\sec x
Unlock Deck
Unlock for access to all 226 flashcards in this deck.
Unlock Deck
k this deck
36
Show that the equation is not an identity by finding a value of x for which both sides are defined but not equal.
cos(x+π)=cosx\cos ( x + \pi ) = \cos x

A) 0
B) π2\frac { \pi } { 2 }
C) π2- \frac { \pi } { 2 }
D) 3π2\frac { 3 \pi } { 2 }
Unlock Deck
Unlock for access to all 226 flashcards in this deck.
Unlock Deck
k this deck
37
Verify the identity.
cotθsecθ=cscθ\cot \theta \cdot \sec \theta = \csc \theta
Unlock Deck
Unlock for access to all 226 flashcards in this deck.
Unlock Deck
k this deck
38
Use the graph to complete the identity.
cosxtanx4tanx+5cosx20tanx+5=\frac { \cos x \tan x - 4 \tan x + 5 \cos x - 20 } { \tan x + 5 } = ?
 <strong>Use the graph to complete the identity.  \frac { \cos x \tan x - 4 \tan x + 5 \cos x - 20 } { \tan x + 5 } =  ?   </strong> A)  \cos x - 4  B)  \cos x + 4  C)  \sin x - 5  D)  \sin x + 5 \cos x

A) cosx4\cos x - 4
B) cosx+4\cos x + 4
C) sinx5\sin x - 5
D) sinx+5cosx\sin x + 5 \cos x
Unlock Deck
Unlock for access to all 226 flashcards in this deck.
Unlock Deck
k this deck
39
Use the graph to complete the identity.
1+cosxsinx+sinx1+cosx=?\frac { 1 + \cos x } { \sin x } + \frac { \sin x } { 1 + \cos x } = ?
 <strong>Use the graph to complete the identity.  \frac { 1 + \cos x } { \sin x } + \frac { \sin x } { 1 + \cos x } = ?    </strong> A)  2 \csc x  B)  2 \sec x  C)  2 \sin x  D)  2 \cos x  Rewrite the expression in terms of the given function or functions.

A) 2cscx2 \csc x
B) 2secx2 \sec x
C) 2sinx2 \sin x
D) 2cosx2 \cos x Rewrite the expression in terms of the given function or functions.
Unlock Deck
Unlock for access to all 226 flashcards in this deck.
Unlock Deck
k this deck
40
Use the graph to complete the identity.
(secx+cscx)(sinx+cosx)2cotx;tanx( \sec x + \csc x ) ( \sin x + \cos x ) - 2 - \cot x ; \tan x

A) tanx\tan x
B) 2+tanx2 + \tan x
C) 2tanx2 \tan x
D) 0
Unlock Deck
Unlock for access to all 226 flashcards in this deck.
Unlock Deck
k this deck
41
Use Sum and Difference Formulas for Cosines and Sines
sin255\sin 255 ^ { \circ }

A) 2(3+1)4- \frac { \sqrt { 2 } ( \sqrt { 3 } + 1 ) } { 4 }
B) 2(31)4- \frac { \sqrt { 2 } ( \sqrt { 3 } - 1 ) } { 4 }
C) 2(3+1)4\frac { \sqrt { 2 } ( \sqrt { 3 } + 1 ) } { 4 }
D) 2(31)4\frac { \sqrt { 2 } ( \sqrt { 3 } - 1 ) } { 4 }
Unlock Deck
Unlock for access to all 226 flashcards in this deck.
Unlock Deck
k this deck
42
Use the given information to find the exact value of the expression.
sinα=2425,α\sin \alpha = \frac { 24 } { 25 } , \alpha lies in quadrant II, and cosβ=25,β\cos \beta = \frac { 2 } { 5 } , \beta lies in quadrant I\mathrm { I } \quad Find cos(αβ)\cos ( \alpha - \beta ) .

A) 14+2421125\frac { - 14 + 24 \sqrt { 21 } } { 125 }
B) 48+721125\frac { 48 + 7 \sqrt { 21 } } { 125 }
C) 48721125\frac { 48 - 7 \sqrt { 21 } } { 125 }
D) 142421125\frac { 14 - 24 \sqrt { 21 } } { 125 }
Unlock Deck
Unlock for access to all 226 flashcards in this deck.
Unlock Deck
k this deck
43
Use Sum and Difference Formulas for Cosines and Sines
sin25cos35+cos25sin35\sin 25 ^ { \circ } \cos 35 ^ { \circ } + \cos 25 ^ { \circ } \sin 35 ^ { \circ }

A) 32\frac { \sqrt { 3 } } { 2 }
B) 12\frac { 1 } { 2 }
C) 512\frac { 5 } { 12 }
D) 33\frac { \sqrt { 3 } } { 3 }
Unlock Deck
Unlock for access to all 226 flashcards in this deck.
Unlock Deck
k this deck
44
Use Sum and Difference Formulas for Cosines and Sines
cos7π12sin5π12cos5π12sin7π12\cos \frac { 7 \pi } { 12 } \sin \frac { 5 \pi } { 12 } - \cos \frac { 5 \pi } { 12 } \sin \frac { 7 \pi } { 12 }

A) 12\frac { 1 } { 2 }
B) 32\frac { \sqrt { 3 } } { 2 }
C) 14\frac { 1 } { 4 }
D) 1
Unlock Deck
Unlock for access to all 226 flashcards in this deck.
Unlock Deck
k this deck
45
Complete the identity.
cos(x+π2)=\cos \left( x + \frac { \pi } { 2 } \right) = ?

A) sinx- \sin x
B) sinx\sin x
C) cosx\cos x
D) cosx- \cos x
Unlock Deck
Unlock for access to all 226 flashcards in this deck.
Unlock Deck
k this deck
46
Use the Formula for the Cosine of the Difference of Two Angles
cos(160)cos(40)+sin(160)sin(40)\cos \left( 160 ^ { \circ } \right) \cos \left( 40 ^ { \circ } \right) + \sin \left( 160 ^ { \circ } \right) \sin \left( 40 ^ { \circ } \right)

A) cos(120)\cos \left( 120 ^ { \circ } \right)
B) cos(210)\cos \left( 210 ^ { \circ } \right)
C) cos(190)\cos \left( 190 ^ { \circ } \right)
D) cos(220)\cos \left( 220 ^ { \circ } \right)
Unlock Deck
Unlock for access to all 226 flashcards in this deck.
Unlock Deck
k this deck
47
Complete the identity.
cos(α+β)+cos(αβ)=\cos ( \alpha + \beta ) + \cos ( \alpha - \beta ) = ?

A) 2cosαcosβ2 \cos \alpha \cos \beta
B) cosαcosβ\cos \alpha \cos \beta
C) 2sinαcosβ2 \sin \alpha \cos \beta
D) sinβcosα\sin \beta \cos \alpha
Unlock Deck
Unlock for access to all 226 flashcards in this deck.
Unlock Deck
k this deck
48
Complete the identity.
cos(αβ)cosαsinβ=\frac { \cos ( \alpha - \beta ) } { \cos \alpha \sin \beta } = ?

A) tanα+cotβ\tan \alpha + \cot \beta
B) tanα+cotα\tan \alpha + \cot \alpha
C) tanα+tanβ\tan \alpha + \tan \beta
D) cotβ+tanαtanβ\cot \beta + \tan \alpha \tan \beta
Unlock Deck
Unlock for access to all 226 flashcards in this deck.
Unlock Deck
k this deck
49
Use the Formula for the Cosine of the Difference of Two Angles
cos(7π18)cos(2π9)+sin(7π18)sin(2π9)\cos \left( \frac { 7 \pi } { 18 } \right) \cos \left( \frac { 2 \pi } { 9 } \right) + \sin \left( \frac { 7 \pi } { 18 } \right) \sin \left( \frac { 2 \pi } { 9 } \right)

A) α=7π18,β=2π9\alpha = \frac { 7 \pi } { 18 } , \beta = \frac { 2 \pi } { 9 }
B) α=7π18,β=2π9\alpha = \frac { 7 \pi } { 18 } , \beta = - \frac { 2 \pi } { 9 }
C) α=2π9,β=7π18\alpha = - \frac { 2 \pi } { 9 } , \beta = \frac { 7 \pi } { 18 }
D) α=2π9,β=7π18\alpha = \frac { 2 \pi } { 9 } , \beta = \frac { 7 \pi } { 18 } Write the expression as the cosine of an angle, knowing that the expression is the right side of the formula for cos(αβ) with particular values for α and β.\cos ( \alpha - \beta ) \text { with particular values for } \alpha \text { and } \beta .
Unlock Deck
Unlock for access to all 226 flashcards in this deck.
Unlock Deck
k this deck
50
Use the Formula for the Cosine of the Difference of Two Angles
cos(155)cos(35)+sin(155)sin(35)\cos \left( 155 ^ { \circ } \right) \cos \left( 35 ^ { \circ } \right) + \sin \left( 155 ^ { \circ } \right) \sin \left( 35 ^ { \circ } \right)

A) 12- \frac { 1 } { 2 }
B) 32- \frac { \sqrt { 3 } } { 2 }
C) 3- \sqrt { 3 }
D) 2- 2
Unlock Deck
Unlock for access to all 226 flashcards in this deck.
Unlock Deck
k this deck
51
Use Sum and Difference Formulas for Cosines and Sines
sin195cos75cos195sin75\sin 195 ^ { \circ } \cos 75 ^ { \circ } - \cos 195 ^ { \circ } \sin 75 ^ { \circ }

A) 32\frac { \sqrt { 3 } } { 2 }
B) 12- \frac { 1 } { 2 }
C) 134\frac { 13 } { 4 }
D) 32- \frac { \sqrt { 3 } } { 2 }
Unlock Deck
Unlock for access to all 226 flashcards in this deck.
Unlock Deck
k this deck
52
Use Sum and Difference Formulas for Cosines and Sines
cos(30+45)\cos \left( 30 ^ { \circ } + 45 ^ { \circ } \right)

A) 2(31)4\frac { \sqrt { 2 } ( \sqrt { 3 } - 1 ) } { 4 }
B) 2(3+1)4\frac { \sqrt { 2 } ( \sqrt { 3 } + 1 ) } { 4 }
C) 2(31)4- \frac { \sqrt { 2 } ( \sqrt { 3 } - 1 ) } { 4 }
D) 2(3+1)4- \frac { \sqrt { 2 } ( \sqrt { 3 } + 1 ) } { 4 }
Unlock Deck
Unlock for access to all 226 flashcards in this deck.
Unlock Deck
k this deck
53
Complete the identity.
cos(x11π6)=\cos \left( x - \frac { 11 \pi } { 6 } \right) = ?

A) 12(3cosxsinx)\frac { 1 } { 2 } ( \sqrt { 3 } \cos x - \sin x )
B) 32(cosxsinx)\frac { \sqrt { 3 } } { 2 } ( \cos x - \sin x )
C) 32(cosx+sinx)- \frac { \sqrt { 3 } } { 2 } ( \cos x + \sin x )
D) 32(cosxsinx)- \frac { \sqrt { 3 } } { 2 } ( \cos x - \sin x )
Unlock Deck
Unlock for access to all 226 flashcards in this deck.
Unlock Deck
k this deck
54
Use Sum and Difference Formulas for Cosines and Sines
cos285\cos 285 ^ { \circ }

A) 2(31)4\frac { \sqrt { 2 } ( \sqrt { 3 } - 1 ) } { 4 }
B) 2(31)4- \frac { \sqrt { 2 } ( \sqrt { 3 } - 1 ) } { 4 }
C) 2(3+1)- \sqrt { 2 } ( \sqrt { 3 } + 1 )
D) 2(31)- \sqrt { 2 } ( \sqrt { 3 } - 1 ) Find the exact value of the expression.
Unlock Deck
Unlock for access to all 226 flashcards in this deck.
Unlock Deck
k this deck
55
Use Sum and Difference Formulas for Cosines and Sines
sin260cos20cos260sin20\sin 260 ^ { \circ } \cos 20 ^ { \circ } - \cos 260 ^ { \circ } \sin 20 ^ { \circ }

A) 32- \frac { \sqrt { 3 } } { 2 }
B) 12- \frac { 1 } { 2 }
C) 133\frac { 13 } { 3 }
D) 32\frac { \sqrt { 3 } } { 2 }
Unlock Deck
Unlock for access to all 226 flashcards in this deck.
Unlock Deck
k this deck
56
Use the Formula for the Cosine of the Difference of Two Angles
cos(5π12)cos(π4)+sin(5π12)sin(π4)\cos \left( \frac { 5 \pi } { 12 } \right) \cos \left( \frac { \pi } { 4 } \right) + \sin \left( \frac { 5 \pi } { 12 } \right) \sin \left( \frac { \pi } { 4 } \right)

A) cos(π6)\cos \left( \frac { \pi } { 6 } \right)
B) cos(π3)\cos \left( \frac { \pi } { 3 } \right)
C) cos(2π3)\cos \left( \frac { 2 \pi } { 3 } \right)
D) cos(5π6)\cos \left( \frac { 5 \pi } { 6 } \right) Find the exact value of the expression.
Unlock Deck
Unlock for access to all 226 flashcards in this deck.
Unlock Deck
k this deck
57
Complete the identity.
cos(3π2x)=\cos \left( \frac { 3 \pi } { 2 } - x \right) = ?

A) sinx- \sin x
B) sinx\sin x
C) cosx- \cos x
D) cosx\cos x
Unlock Deck
Unlock for access to all 226 flashcards in this deck.
Unlock Deck
k this deck
58
Use the Formula for the Cosine of the Difference of Two Angles
cos(165)cos(45)+sin(165)sin(45)\cos \left( 165 ^ { \circ } \right) \cos \left( 45 ^ { \circ } \right) + \sin \left( 165 ^ { \circ } \right) \sin \left( 45 ^ { \circ } \right)

A) α=165,β=45\alpha = 165 ^ { \circ } , \beta = 45 ^ { \circ }
B) α=165,β=45\alpha = - 165 ^ { \circ } , \beta = 45 ^ { \circ }
C) α=45,β=165\alpha = - 45 ^ { \circ } , \beta = 165 ^ { \circ }
D) α=45,β=165\alpha = 45 ^ { \circ } , \beta = 165 ^ { \circ }
Unlock Deck
Unlock for access to all 226 flashcards in this deck.
Unlock Deck
k this deck
59
Use Sum and Difference Formulas for Cosines and Sines
cos15cos45sin15sin45\cos 15 ^ { \circ } \cos 45 ^ { \circ } - \sin 15 ^ { \circ } \sin 45 ^ { \circ }

A) 12\frac { 1 } { 2 }
B) 32\frac { \sqrt { 3 } } { 2 }
C) 14\frac { 1 } { 4 }
D) 3\sqrt { 3 }
Unlock Deck
Unlock for access to all 226 flashcards in this deck.
Unlock Deck
k this deck
60
Use Sum and Difference Formulas for Cosines and Sines
sin(19070)\sin \left( 190 ^ { \circ } - 70 ^ { \circ } \right)

A) 32\frac { \sqrt { 3 } } { 2 }
B) 12- \frac { 1 } { 2 }
C) 196\frac { 19 } { 6 }
D) 32- \frac { \sqrt { 3 } } { 2 }
Unlock Deck
Unlock for access to all 226 flashcards in this deck.
Unlock Deck
k this deck
61
Verify the identity.
cos(αβ)cos(α+β)=2sinαsinβ\cos ( \alpha - \beta ) - \cos ( \alpha + \beta ) = 2 \sin \alpha \sin \beta
Unlock Deck
Unlock for access to all 226 flashcards in this deck.
Unlock Deck
k this deck
62
Use the given information to find the exact value of the expression.
sinα=2425,α\sin \alpha = - \frac { 24 } { 25 } , \alpha lies in quadrant IV, and cosβ=215,β\cos \beta = - \frac { \sqrt { 21 } } { 5 } , \beta lies in quadrant III Find sin(αβ)\sin ( \alpha - \beta ) .

A) 14+2421125\frac { 14 + 24 \sqrt { 21 } } { 125 }
B) 14+2421125\frac { - 14 + 24 \sqrt { 21 } } { 125 }
C) 48+721125\frac { - 48 + 7 \sqrt { 21 } } { 125 }
D) 48721125\frac { - 48 - 7 \sqrt { 21 } } { 125 }
Unlock Deck
Unlock for access to all 226 flashcards in this deck.
Unlock Deck
k this deck
63
Verify the identity.
sin(3π2θ)=cosθ\sin \left( \frac { 3 \pi } { 2 } - \theta \right) = - \cos \theta
Unlock Deck
Unlock for access to all 226 flashcards in this deck.
Unlock Deck
k this deck
64
Verify the identity.
cos(x+π2)=sinx\cos \left( x + \frac { \pi } { 2 } \right) = - \sin x
Unlock Deck
Unlock for access to all 226 flashcards in this deck.
Unlock Deck
k this deck
65
Use Sum and Difference Formulas for Tangents
Find the exact value by using a difference identity.
tan255\tan 255 ^ { \circ }

A) 3+2\sqrt { 3 } + 2
B) 3+2- \sqrt { 3 } + 2
C) 32- \sqrt { 3 } - 2
D) 32\sqrt { 3 } - 2
Unlock Deck
Unlock for access to all 226 flashcards in this deck.
Unlock Deck
k this deck
66
Use Sum and Difference Formulas for Tangents
Find the exact value by using a difference identity.
tan285\tan 285 ^ { \circ }

A) 23- 2 - \sqrt { 3 }
B) 2+32 + \sqrt { 3 }
C) 234\frac { 2 - \sqrt { 3 } } { 4 }
D) 2+34\frac { 2 + \sqrt { 3 } } { 4 }
Unlock Deck
Unlock for access to all 226 flashcards in this deck.
Unlock Deck
k this deck
67
Describe the graph using another equation.
y=sin(πx)y=\sin (\pi-x)
 <strong>Describe the graph using another equation.  y=\sin (\pi-x)    </strong> A)  \sin x  B)  \cos x  C)  - \sin x  D)  - \cos x

A) sinx\sin x
B) cosx\cos x
C) sinx- \sin x
D) cosx- \cos x
Unlock Deck
Unlock for access to all 226 flashcards in this deck.
Unlock Deck
k this deck
68
Use the given information to find the exact value of the expression.
tanα=34,α\tan \alpha = \frac { 3 } { 4 } , \alpha lies in quadrant III, and cosβ=1213,β\cos \beta = - \frac { 12 } { 13 } , \beta lies in quadrant II \quad Find sin(α+β)\sin ( \alpha + \beta ) .

A) 1665\frac { 16 } { 65 }
B) 6365\frac { 63 } { 65 }
C) 3365\frac { 33 } { 65 }
D) 5665\frac { 56 } { 65 }
Unlock Deck
Unlock for access to all 226 flashcards in this deck.
Unlock Deck
k this deck
69
Complete the identity.
sin(α+β)cosαcosβ=?\frac { \sin ( \alpha + \beta ) } { \cos \alpha \cos \beta } = ?

A) tanα+tanβ\tan \alpha + \tan \beta
B) tanβ+tanα\tan \beta + \tan \alpha
C) cotα+cotβ\cot \alpha + \cot \beta
D) tanα+cotβ- \tan \alpha + \cot \beta
Unlock Deck
Unlock for access to all 226 flashcards in this deck.
Unlock Deck
k this deck
70
Complete the identity.
sin(α+β)sin(αβ)=\sin ( \alpha + \beta ) \sin ( \alpha - \beta ) = ?

A) cos2βcos2α\cos ^ { 2 } \beta - \cos ^ { 2 } \alpha
B) sin2αcos2β\sin ^ { 2 } \alpha - \cos ^ { 2 } \beta
C) cos2β+cos2α\cos ^ { 2 } \beta + \cos ^ { 2 } \alpha
D) sin2βsin2α\sin ^ { 2 } \beta - \sin ^ { 2 } \alpha
Unlock Deck
Unlock for access to all 226 flashcards in this deck.
Unlock Deck
k this deck
71
Verify the identity.
sin(α+β)sin(αβ)=2cosαsinβ\sin ( \alpha + \beta ) - \sin ( \alpha - \beta ) = 2 \cos \alpha \sin \beta
Unlock Deck
Unlock for access to all 226 flashcards in this deck.
Unlock Deck
k this deck
72
Use the given information to find the exact value of the expression.
cosα=45,α\cos \alpha = - \frac { 4 } { 5 } , \alpha lies in quadrant III, and sinβ=215,β\sin \beta = \frac { \sqrt { 21 } } { 5 } , \beta lies in quadrant II \quad Find cos(α+β)\cos ( \alpha + \beta )

A) 8+32125\frac { 8 + 3 \sqrt { 21 } } { 25 }
B) 832125\frac { - 8 - 3 \sqrt { 21 } } { 25 }
C) 642125\frac { 6 - 4 \sqrt { 21 } } { 25 }
D) 6+42125\frac { - 6 + 4 \sqrt { 21 } } { 25 }
Unlock Deck
Unlock for access to all 226 flashcards in this deck.
Unlock Deck
k this deck
73
Use the given information to find the exact value of the expression.
sinα=35,α\sin \alpha = \frac { 3 } { 5 } , \alpha lies in quadrant II, and cosβ=25,β\cos \beta = \frac { 2 } { 5 } , \beta lies in quadrant I \quad Find cos(αβ)\cos ( \alpha - \beta ) .

A) 8+32125\frac { - 8 + 3 \sqrt { 21 } } { 25 }
B) 6+42125\frac { 6 + 4 \sqrt { 21 } } { 25 }
C) 642125\frac { 6 - 4 \sqrt { 21 } } { 25 }
D) 832125\frac { 8 - 3 \sqrt { 21 } } { 25 }
Unlock Deck
Unlock for access to all 226 flashcards in this deck.
Unlock Deck
k this deck
74
Complete the identity.
sin(α+β)sin(αβ)=\frac { \sin ( \alpha + \beta ) } { \sin ( \alpha - \beta ) } = ?

A) tanα+tanβtanαtanβ\frac { \tan \alpha + \tan \beta } { \tan \alpha - \tan \beta }
B) tanαtanβtanα+tanβ\frac { \tan \alpha - \tan \beta } { \tan \alpha + \tan \beta }
C) tan(α+β)tanαtanβ\frac { \tan ( \alpha + \beta ) } { \tan \alpha - \tan \beta }
D) tanαtanβtan(α+β)\frac { \tan \alpha - \tan \beta } { \tan ( \alpha + \beta ) }
Unlock Deck
Unlock for access to all 226 flashcards in this deck.
Unlock Deck
k this deck
75
Describe the graph using another equation.
y=cos(x+π2)cos(xπ2)y=\cos \left(x+\frac{\pi}{2}\right)-\cos \left(x-\frac{\pi}{2}\right)
 <strong>Describe the graph using another equation.  y=\cos \left(x+\frac{\pi}{2}\right)-\cos \left(x-\frac{\pi}{2}\right)    </strong> A)  - 2 \sin x  B)  - 2 \cos x  C)  - \sin x  D)  - \cos x

A) 2sinx- 2 \sin x
B) 2cosx- 2 \cos x
C) sinx- \sin x
D) cosx- \cos x
Unlock Deck
Unlock for access to all 226 flashcards in this deck.
Unlock Deck
k this deck
76
Use the given information to find the exact value of the expression.
sinα=817,α\sin \alpha = \frac { 8 } { 17 } , \alpha lies in quadrant II, and cosβ=1213,β\cos \beta = \frac { 12 } { 13 } , \beta lies in quadrant I \quad Find sin(αβ)\sin ( \alpha - \beta ) .

A) 171221\frac { 171 } { 221 }
B) 220221\frac { 220 } { 221 }
C) 140221\frac { 140 } { 221 }
D) 21221\frac { 21 } { 221 }
Unlock Deck
Unlock for access to all 226 flashcards in this deck.
Unlock Deck
k this deck
77
Verify the identity.
sin(αβ)cos(α+β)=sinαcosαsinβcosβ\sin ( \alpha - \beta ) \cos ( \alpha + \beta ) = \sin \alpha \cos \alpha - \sin \beta \cos \beta
Unlock Deck
Unlock for access to all 226 flashcards in this deck.
Unlock Deck
k this deck
78
Verify the identity.
cos(3π2θ)=sinθ\cos \left( \frac { 3 \pi } { 2 } - \theta \right) = - \sin \theta
Unlock Deck
Unlock for access to all 226 flashcards in this deck.
Unlock Deck
k this deck
79
Use the given information to find the exact value of the expression.
sinα=2029,α\sin \alpha = \frac { 20 } { 29 } , \alpha lies in quadrant I\mathrm { I } , and cosβ=45,β\cos \beta = \frac { 4 } { 5 } , \beta lies in quadrant I \quad Find cos(α+β)\cos ( \alpha + \beta )

A) 24145\frac { 24 } { 145 }
B) 144145\frac { 144 } { 145 }
C) 17145\frac { 17 } { 145 }
D) 143145\frac { 143 } { 145 }
Unlock Deck
Unlock for access to all 226 flashcards in this deck.
Unlock Deck
k this deck
80
Verify the identity.
cos(α+β)cosαsinβ=cotβtanα\frac { \cos ( \alpha + \beta ) } { \cos \alpha \sin \beta } = \cot \beta - \tan \alpha
Unlock Deck
Unlock for access to all 226 flashcards in this deck.
Unlock Deck
k this deck
locked card icon
Unlock Deck
Unlock for access to all 226 flashcards in this deck.