Exam 6: Analytic Trigonometry

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Use substitution to determine whether the given x-value is a solution of the equation. Find All Solutions of a Trigonometric Equation - tanx=33,x=7π6\tan x = \frac { \sqrt { 3 } } { 3 } , x = \frac { 7 \pi } { 6 }

Free
(Multiple Choice)
4.9/5
(39)
Correct Answer:
Verified

A

Use the given information to find the exact value of the trigonometric function. - cosθ=14,cscθ>0\cos \theta = \frac { 1 } { 4 } , \csc \theta > 0 \quad Find sinθ2\sin \frac { \theta } { 2 } .

Free
(Multiple Choice)
4.9/5
(41)
Correct Answer:
Verified

A

Solve the equation on the interval [0, 2π). - 2sin2x=sinx2 \sin ^ { 2 } x = \sin x

Free
(Multiple Choice)
4.8/5
(37)
Correct Answer:
Verified

A

Use substitution to determine whether the given x-value is a solution of the equation. Find All Solutions of a Trigonometric Equation - 7cosx+82=5cosx+727 \cos x + 8 \sqrt { 2 } = 5 \cos x + 7 \sqrt { 2 }

(Multiple Choice)
4.7/5
(39)

Use the graph to complete the identity. - sin6xcos3xcos6xsin3x=?\sin 6 x \cos 3 x - \cos 6 x \sin 3 x = ?  Use the graph to complete the identity. - \sin 6 x \cos 3 x - \cos 6 x \sin 3 x = ?

(Multiple Choice)
4.9/5
(33)

Use the figure to find the exact value of the trigonometric function. -Find sin2θ\sin 2 \theta .  Use the figure to find the exact value of the trigonometric function. -Find  \sin 2 \theta .

(Multiple Choice)
4.9/5
(31)

Use the Formula for the Cosine of the Difference of Two Angles - cos(155)cos(35)+sin(155)sin(35)\cos \left( 155 ^ { \circ } \right) \cos \left( 35 ^ { \circ } \right) + \sin \left( 155 ^ { \circ } \right) \sin \left( 35 ^ { \circ } \right)

(Multiple Choice)
4.9/5
(37)

Find the exact value under the given conditions. - cosα=2425,π2<α<π;sinβ=215,π<β<3π2\cos \alpha = - \frac { 24 } { 25 } , \frac { \pi } { 2 } < \alpha < \pi ; \quad \sin \beta = - \frac { \sqrt { 21 } } { 5 } , \pi < \beta < \frac { 3 \pi } { 2 } \quad Find tan(α+β)\tan ( \alpha + \beta )

(Multiple Choice)
4.9/5
(32)

Use Sum and Difference Formulas for Cosines and Sines - cos285\cos 285 ^ { \circ }

(Multiple Choice)
4.8/5
(31)

Express the sum or difference as a product. - cos2xcos4x\cos 2 x - \cos 4 x

(Multiple Choice)
4.8/5
(32)

Solve the problem. -If a projectile is fired at an angle θ\theta and initial velocity vv , then the horizontal distance traveled by the projectile is given by D=116v2sinθcosθD = \frac { 1 } { 16 } \mathrm { v } ^ { 2 } \sin \theta \cos \theta . Express DD as a function of 2θ2 \theta .

(Multiple Choice)
4.8/5
(34)

Express the sum or difference as a product. - sin4xsin6x\sin 4 x - \sin 6 x

(Multiple Choice)
4.9/5
(35)

Solve the equation on the interval [0, 2π). - cosx=sinx\cos x = \sin x

(Multiple Choice)
4.9/5
(38)

Use the given information to find the exact value of the expression. - sinα=35,α\sin \alpha = \frac { 3 } { 5 } , \alpha lies in quadrant II, and cosβ=25,β\cos \beta = \frac { 2 } { 5 } , \beta lies in quadrant I \quad Find cos(αβ)\cos ( \alpha - \beta ) .

(Multiple Choice)
4.9/5
(40)

Use the given information to find the exact value of the trigonometric function. - sinθ=14,θ\sin \theta = \frac { 1 } { 4 } , \theta lies in quadrant I \quad Find sinθ2\sin \frac { \theta } { 2 }

(Multiple Choice)
4.9/5
(30)

Use Sum and Difference Formulas for Cosines and Sines - sin260cos20cos260sin20\sin 260 ^ { \circ } \cos 20 ^ { \circ } - \cos 260 ^ { \circ } \sin 20 ^ { \circ }

(Multiple Choice)
4.8/5
(44)

Describe the graph using another equation. - y=sin(πx)y=\sin (\pi-x)  Describe the graph using another equation. - y=\sin (\pi-x)

(Multiple Choice)
4.8/5
(33)

Complete the identity. - cosxsinxcosx+sinxcosxsinx=?\frac { \cos x - \sin x } { \cos x } + \frac { \sin x - \cos x } { \sin x } = ?

(Multiple Choice)
4.9/5
(30)

Use the Formula for the Cosine of the Difference of Two Angles - cos(25515)\cos \left( 255 ^ { \circ } - 15 ^ { \circ } \right)

(Multiple Choice)
4.8/5
(37)

Show that the equation is not an identity by finding a value of x for which both sides are defined but not equal. - sin2x+sin4x=sin5x\sin 2 x + \sin 4 x = \sin 5 x

(Multiple Choice)
4.7/5
(31)
Showing 1 - 20 of 226
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)