Deck 9: Vectors in Two and Three Dimensions

Full screen (f)
exit full mode
Question
Use DeMoivre's Theorem to find the indicated power. Use DeMoivre's Theorem to find the indicated power.  <div style=padding-top: 35px>
Use Space or
up arrow
down arrow
to flip the card.
Question
Convert the equation to polar form. x2+y2=16x ^ { 2 } + y ^ { 2 } = 16
Question
Convert the polar equation to rectangular coordinates. r+cosθ=3r + \cos \theta = 3
Question
Graph the polar equation r=8cosθr = 8 \cos \theta .
Question
Test the polar equation for symmetry with respect to the polar axis, the pole, and the line θ=π/2\theta = \pi / 2 . r=5secθr = 5 \sec \theta
Question
Convert the point whose polar coordinates are (8,5π/4)( 8,5 \pi / 4 ) to rectangular coordinates.
Question
Sketch a graph of the rectangular equation. [Hint: First convert the equation to polar coordinates.] Sketch a graph of the rectangular equation. [Hint: First convert the equation to polar coordinates.]  <div style=padding-top: 35px>
Question
Convert the equation to polar form. Convert the equation to polar form.  <div style=padding-top: 35px>
Question
Convert the rectangular coordinates to polar coordinates with r>0 and 0θ<2πr > 0 \text { and } 0 \leq \theta < 2 \pi (23,2)( - 2 \sqrt { 3 } , - 2 )
Question
Test the polar equation for symmetry with respect to the polar axis, the pole, and the line θ=π/2\theta = \pi / 2 . r2=cos2θr ^ { 2 } = \cos 2 \theta
Question
Write z1=1iz _ { 1 } = 1 - i in polar form then find 1/z11 / z _ { 1 }
Question
Find two polar coordinate representations for the point (3,π/3)( 3 , \pi / 3 ) , one with r>0r > 0 , and the other with r<0r < 0
Question
Convert the polar equation to rectangular coordinates. r6=secθ\frac {r } { 6 } = \sec \theta
Question
Convert the rectangular coordinates to polar coordinates with r>0 and 0θ<2πr > 0 \text { and } 0 \leq \theta < 2 \pi (0,5)( 0 , - \sqrt { 5 } )
Question
Write the complex conjugate of z in polar form with argument θ\theta between 0 and 2π2 \pi z=535iz = - 5 \sqrt { 3 } - 5 i
Question
Let z1=2(cos5π6+isin5π6)z _ { 1 } = 2 \left( \cos \frac { 5 \pi } { 6 } + i \sin \frac { 5 \pi } { 6 } \right) and z2=5(cosπ3+isinπ3)z _ { 2 } = 5 \left( \cos \frac { \pi } { 3 } + i \sin \frac { \pi } { 3 } \right) . Find Z1Z2Z _ { 1 } Z _ { 2 }
Question
Write the complex number in polar form. Write the complex number in polar form.  <div style=padding-top: 35px>
Question
Sketch a graph of the polar equation. r=3cos3θr = - 3 \cos 3 \theta
Question
Let z1=2(cos7π4+isin7π4)z _ { 1 } = \sqrt { 2 } \left( \cos \frac { 7 \pi } { 4 } + i \sin \frac { 7 \pi } { 4 } \right) and z2=2(cos5π3+isin5π3)z _ { 2 } = 2 \left( \cos \frac { 5 \pi } { 3 } + i \sin \frac { 5 \pi } { 3 } \right) . Find z1/z2z _ { 1 } / z _ { 2 }
Question
Find the modulus and the argument for the complex number. z=10iz = - 10 i
Question
Convert the equation to polar form. x2+y2=25x ^ { 2 } + y ^ { 2 } = 25
Question
Find the cube roots of ii
Question
If a projectile is fired with an initial speed of v0v _ { 0 } ft/s at an angle α\alpha
above the horizontal, then its position after t seconds is given by the parametric equations x=(v0cosα)t and y=(v0sinα)t16t2x = \left( v _ { 0 } \cos \alpha \right) t \text { and } y = \left( v _ { 0 } \sin \alpha \right) t - 16 t ^ { 2 }
where x and y are measured in feet.Suppose a gun fires a bullet into the air with an initial speed of 1024 ft/s at an angle of 3030 ^ { \circ } to the horizontal. What is the maximum height attained by the bullet?
Question
Convert the rectangular coordinates to polar coordinates with r>0 and 0θ<2πr > 0 \text { and } 0 \leq \theta < 2 \pi (3,1)( - \sqrt { 3 } , - 1 )
Question
Test the polar equation for symmetry with respect to the polar axis, the pole, and the line θ=π/2\theta = \pi / 2 . r=3cosθcscθr = 3 \cos \theta \csc \theta
Question
Convert the point whose polar coordinates are Convert the point whose polar coordinates are   to rectangular coordinates.<div style=padding-top: 35px>
to rectangular coordinates.
Question
Find the modulus and the argument for the complex number. z=iz = - i
Question
Graph the polar equation r=4sinθr= 4 \sin \theta
Question
Sketch a graph of the rectangular equation. [Hint: First convert the equation to polar coordinates.] Sketch a graph of the rectangular equation. [Hint: First convert the equation to polar coordinates.]  <div style=padding-top: 35px>
Question
Convert the equation to polar form. x2y2=4x ^ { 2 } - y ^ { 2 } = 4
Question
Convert the polar equation to rectangular coordinates. r+cosθ=4r + \cos \theta = 4
Question
Sketch the curve represented by the parametric equations and find its rectangular-coordinate equation. Sketch the curve represented by the parametric equations and find its rectangular-coordinate equation.  <div style=padding-top: 35px>
Question
Convert the polar equation to rectangular coordinates. Convert the polar equation to rectangular coordinates.  <div style=padding-top: 35px>
Question
Sketch a graph of the polar equation. r=2sin3θr = - 2 \sin 3 \theta
Question
Find parametric equations for the line with the given properties.Passing through Find parametric equations for the line with the given properties.Passing through   and the origin<div style=padding-top: 35px>
and the origin
Question
Test the polar equation for symmetry with respect to the polar axis, the pole, and the line θ=π/2\theta = \pi / 2 . r2=9cos2θr ^ { 2 } = 9 \cos 2 \theta
Question
Find two polar coordinate representations for the point (3,π/3)( 3 , \pi / 3 ) , one with r>0r > 0 , and both with 0θ<2π0 \leq \theta < 2 \pi
Question
Find a rectangular-coordinate equation for the curve by eliminating the parameter. Find a rectangular-coordinate equation for the curve by eliminating the parameter.  <div style=padding-top: 35px>
Question
Convert the rectangular coordinates to polar coordinates with r>0 and 0θ<2πr > 0 \text { and } 0 \leq \theta < 2 \pi (0,2)( 0 , - \sqrt { 2 } )
Question
Test the polar equation for symmetry with respect to the polar axis, the pole, and the line θ=π/2\theta = \pi / 2 . r=3cosθcscθr = 3 \cos \theta \csc \theta
I  symmetric about the polar axis \text { symmetric about the polar axis }
II  symmetric about the pole \text { symmetric about the pole }
III  symmetric about the line θ=π/2\text { symmetric about the line } \theta = \pi / 2

A)I only
B)I and II
C) I and III
D)II and III
E) none of these
Question
Which of the following is not a polar point representation for the point <strong>Which of the following is not a polar point representation for the point   ?</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px> ?

A) <strong>Which of the following is not a polar point representation for the point   ?</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
B) <strong>Which of the following is not a polar point representation for the point   ?</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
C) <strong>Which of the following is not a polar point representation for the point   ?</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
D) <strong>Which of the following is not a polar point representation for the point   ?</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
E) <strong>Which of the following is not a polar point representation for the point   ?</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
Question
Sketch the curve represented by the parametric equations and find its rectangular-coordinate equation. Sketch the curve represented by the parametric equations and find its rectangular-coordinate equation.  <div style=padding-top: 35px>
Question
Write the complex conjugate of z in polar form with argument θ\theta between 0 and 2π2 \pi z=53+5iz = - 5 \sqrt { 3 } + 5 i
Question
Convert the polar equation to rectangular coordinates. r+cosθ=4r + \cos \theta = 4

A) (x2+y2+x)2=16(x2+y2)\left( x ^ { 2 } + y ^ { 2 } + x \right) ^ { 2 } = 16 \left( x ^ { 2 } + y ^ { 2 } \right)
B) x2+y2=16(x+y)x ^ { 2 } + y ^ { 2 } = 16 ( x + y )
C) (x2+y2x)2=16(x2y2)\left( x ^ { 2 } + y ^ { 2 } - x \right) ^ { 2 } = 16 \left( x ^ { 2 } - y ^ { 2 } \right)
D) (x2+y2+2x)2=4(x+y)\left( x ^ { 2 } + y ^ { 2 } + 2 x \right) ^ { 2 } = 4 ( x + y )
E) (x2+y2+x)2=4(x2+y2)\left( x ^ { 2 } + y ^ { 2 } + x \right) ^ { 2 } = 4 \left( x ^ { 2 } + y ^ { 2 } \right)
Question
Find a rectangular-coordinate equation for the curve by eliminating the parameter. Find a rectangular-coordinate equation for the curve by eliminating the parameter.  <div style=padding-top: 35px>
Question
Solve the equation. Solve the equation.  <div style=padding-top: 35px>
Question
Write z1=12jz _ { 1 } = 1 - \sqrt { 2 j } in polar form then find 1/z11 / z _ { 1 }
Question
Let z1=4(cosπ6+isinπ6)z _ { 1 } = 4 \left( \cos \frac { \pi } { 6 } + i \sin \frac { \pi } { 6 } \right) and z2=5(cosπ3+isinπ3)z _ { 2 } = 5 \left( \cos \frac { \pi } { 3 } + i \sin \frac { \pi } { 3 } \right) . Find Z1Z2Z _ { 1 } Z _ { 2 }
Question
Convert the equation to polar form. x2y2=9x ^ { 2 } - y ^ { 2 } = 9

A) r2=9csc2θr ^ { 2 } = 9 \csc 2 \theta
B) r=3sec2θr = 3 \sec 2 \theta
C) r2=9sec2θr ^ { 2 } = 9 \sec 2 \theta
D) r2=9cscθr ^ { 2 } = 9 \csc \theta
E)none of these
Question
Convert the rectangular coordinates to polar coordinates with <strong>Convert the rectangular coordinates to polar coordinates with    </strong> A)   B)   C)   D)   E)none of these <div style=padding-top: 35px> <strong>Convert the rectangular coordinates to polar coordinates with    </strong> A)   B)   C)   D)   E)none of these <div style=padding-top: 35px>

A) <strong>Convert the rectangular coordinates to polar coordinates with    </strong> A)   B)   C)   D)   E)none of these <div style=padding-top: 35px>
B) <strong>Convert the rectangular coordinates to polar coordinates with    </strong> A)   B)   C)   D)   E)none of these <div style=padding-top: 35px>
C) <strong>Convert the rectangular coordinates to polar coordinates with    </strong> A)   B)   C)   D)   E)none of these <div style=padding-top: 35px>
D) <strong>Convert the rectangular coordinates to polar coordinates with    </strong> A)   B)   C)   D)   E)none of these <div style=padding-top: 35px>
E)none of these
Question
Convert the polar equation to rectangular coordinates. r6=secθ\frac {r } { 6 } = \sec \theta

A) y=6y = 6
B) y=6xy = 6 x
C) x=6x = 6
D) xy=6x y = 6
E)none of these
Question
Graph the polar equation r=8cosθr = 8 \cos \theta

A)
 <strong>Graph the polar equation  r = 8 \cos \theta </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
B)
 <strong>Graph the polar equation  r = 8 \cos \theta </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
C)
 <strong>Graph the polar equation  r = 8 \cos \theta </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
D)
 <strong>Graph the polar equation  r = 8 \cos \theta </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
Question
Convert the point whose polar coordinates are (3,π/6)( \sqrt { 3 } , \pi / 6 ) to rectangular coordinates

A) (32,32)\left( \frac { 3 } { 2 } , \frac { \sqrt { 3 } } { 2 } \right)

B) (32,12)\left( \frac { 3 } { 2 } , \frac { 1 } { 2 } \right)

C) (3,3)( 3 , \sqrt { 3 } )

D) (3,π/6)( \sqrt { 3 } , \pi / 6 )

E) (23,22)\left( \frac { 2 } { 3 } , \frac { \sqrt { 2 } } { 2 } \right)
Question
Convert the rectangular coordinates to polar coordinates with <strong>Convert the rectangular coordinates to polar coordinates with    </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px> <strong>Convert the rectangular coordinates to polar coordinates with    </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>

A) <strong>Convert the rectangular coordinates to polar coordinates with    </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
B) <strong>Convert the rectangular coordinates to polar coordinates with    </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
C) <strong>Convert the rectangular coordinates to polar coordinates with    </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
D) <strong>Convert the rectangular coordinates to polar coordinates with    </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
E) <strong>Convert the rectangular coordinates to polar coordinates with    </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
Question
Convert the equation to polar form. x2+y2=16x ^ { 2 } + y ^ { 2 } = 16

A) r2=4r^ { 2 } = 4
B) 4r=cosθ+sinθ4 r= \cos \theta + \sin \theta
C) y=4cosθ+4sinθy = 4 \cos \theta + 4 \sin \theta
D) r=4r = 4
E)none of these
Question
Find parametric equations for the line with the given properties.Passing through Find parametric equations for the line with the given properties.Passing through   and the origin<div style=padding-top: 35px>
and the origin
Question
Use DeMoivre's Theorem to find the indicated power. (13i)5( 1 - \sqrt { 3 } i ) ^ { 5 }
Question
Let z1=8(cos11π6+isin11π6)z _ { 1 } = 8 \left( \cos \frac { 11 \pi } { 6 } + i \sin \frac { 11 \pi } { 6 } \right) and z2=23(cosπ3+isinπ3)z _ { 2 } = 2 \sqrt { 3 } \left( \cos \frac { \pi } { 3 } + i \sin \frac { \pi } { 3 } \right) ) Find z1/z2z _ { 1 } / z _ { 2 }

A) 34i3 - 4 i
B) 43i4 - \sqrt { 3 } i
C) 4+3i4 + \sqrt { 3 } i
D) 43\frac { 4 } { 3 }
E) 433i- \frac { 4 \sqrt { 3 } } { 3 } i
Question
Which of the following is not a polar point representation for the point <strong>Which of the following is not a polar point representation for the point   ?</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px> ?

A) <strong>Which of the following is not a polar point representation for the point   ?</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
B) <strong>Which of the following is not a polar point representation for the point   ?</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
C) <strong>Which of the following is not a polar point representation for the point   ?</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
D) <strong>Which of the following is not a polar point representation for the point   ?</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
E) <strong>Which of the following is not a polar point representation for the point   ?</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
Question
Write the complex conjugate of z in polar form with argument θ\theta between 0 and 2π2 \piz=55i3z = 5 - 5 i \sqrt { 3 }

A) 10(cos(π/3)+isin(π/3))10 ( \cos ( \pi / 3 ) + i \sin ( \pi / 3 ) )

B) 5(cos(5π/3)+isin(5π/3))5 ( \cos ( 5 \pi / 3 ) + i \sin ( 5 \pi / 3 ) )

C) 10(cos(π/6)+isin(π/6))10 ( \cos ( \pi / 6 ) + i \sin ( \pi / 6 ) )

D) 5(cos(7π/6)+isin(7π/6))5 ( \cos ( 7 \pi / 6 ) + i \sin ( 7 \pi / 6 ) )

E) none
Question
Sketch a graph of the polar equation. r=3cosθr = \sqrt { 3 } - \cos \theta

A)
 <strong>Sketch a graph of the polar equation.  r = \sqrt { 3 } - \cos \theta </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
B)
 <strong>Sketch a graph of the polar equation.  r = \sqrt { 3 } - \cos \theta </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
C)
 <strong>Sketch a graph of the polar equation.  r = \sqrt { 3 } - \cos \theta </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
D)
 <strong>Sketch a graph of the polar equation.  r = \sqrt { 3 } - \cos \theta </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
Question
Find the modulus and the argument for the complex number. z=iz = - i

A) r=1,θ=π2r = - 1 , \theta = \frac { \pi } { 2 }
B) r=1,θ=πr = 1 , \theta = \pi
C) r=i,θ=0r = i , \theta = 0
D) r=2,θ=3π2r = \sqrt { 2 } , \theta = \frac { 3 \pi } { 2 }
E) r=1,θ=3π2r = 1 , \theta = \frac { 3 \pi } { 2 }
Question
Let z1=4(cosπ6+isinπ6)z _ { 1 } = 4 \left( \cos \frac { \pi } { 6 } + i \sin \frac { \pi } { 6 } \right) and z2=5(cosπ3+isinπ3)z _ { 2 } = 5 \left( \cos \frac { \pi } { 3 } + i \sin \frac { \pi } { 3 } \right) ) Find Z1Z2Z _ { 1 } Z _ { 2 }

A) 20+i20 + i
B) 2020i20 - 20 i
C) 2020
D) 020i0 - 20 i
E)none
Question
Find the rectangular-coordinate equation for the parametric equations given. Find the rectangular-coordinate equation for the parametric equations given.  <div style=padding-top: 35px>
Question
Convert the point whose polar coordinates are <strong>Convert the point whose polar coordinates are   to rectangular coordinates</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px> to rectangular coordinates

A) <strong>Convert the point whose polar coordinates are   to rectangular coordinates</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
B) <strong>Convert the point whose polar coordinates are   to rectangular coordinates</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
C) <strong>Convert the point whose polar coordinates are   to rectangular coordinates</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
D) <strong>Convert the point whose polar coordinates are   to rectangular coordinates</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
E) <strong>Convert the point whose polar coordinates are   to rectangular coordinates</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
Question
Write the complex number in polar form. z=13iz = - 1 - \sqrt { 3 } i

A) z=2(cosπ3+isinπ3)z = 2 \left( \cos \frac { \pi } { 3 } + i \sin \frac { \pi } { 3 } \right)

B) z=2(cos4π3+isin4π3)z = 2 \left( \cos \frac { 4 \pi } { 3 } + i \sin \frac { 4 \pi } { 3 } \right)

C) z=2(cos5π6+isin5π6)z = 2 \left( \cos \frac { 5 \pi } { 6 } + i \sin \frac { 5 \pi } { 6 } \right)

D) z=2(cos11π6+isin11π6)z = 2 \left( \cos \frac { 11 \pi } { 6 } + i \sin \frac { 11 \pi } { 6 } \right)

E) z=2(cos5π3+isin5π3)z = 2 \left( \cos \frac { 5 \pi } { 3 } + i \sin \frac { 5 \pi } { 3 } \right)
Question
Solve the equation. <strong>Solve the equation.  </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>

A) <strong>Solve the equation.  </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
B) <strong>Solve the equation.  </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
C) <strong>Solve the equation.  </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
D) <strong>Solve the equation.  </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
E) <strong>Solve the equation.  </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
Question
Test the polar equation for symmetry with respect to the polar axis, the pole, and the line θ=π/2\theta = \pi / 2 . r2=cos2θr ^ { 2 } = \cos 2 \theta
I  symmetric about the polar axis \text { symmetric about the polar axis }
II  symmetric about the pole \text { symmetric about the pole }
III  symmetric about the line θ=π/2\text { symmetric about the line } \theta = \pi / 2

A)I only
B)I and II
C) I and III
D)II and III
E) I, II, III
Question
Graph the polar equation r=8cosθr = 8 \cos \theta

A)
 <strong>Graph the polar equation  r = 8 \cos \theta </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
B)
 <strong>Graph the polar equation  r = 8 \cos \theta </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
C)
 <strong>Graph the polar equation  r = 8 \cos \theta </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
D)
 <strong>Graph the polar equation  r = 8 \cos \theta </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
Question
Use DeMoivre's Theorem to find the indicated power. <strong>Use DeMoivre's Theorem to find the indicated power.  </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>

A) <strong>Use DeMoivre's Theorem to find the indicated power.  </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
B) <strong>Use DeMoivre's Theorem to find the indicated power.  </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
C) <strong>Use DeMoivre's Theorem to find the indicated power.  </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
D) <strong>Use DeMoivre's Theorem to find the indicated power.  </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
E) <strong>Use DeMoivre's Theorem to find the indicated power.  </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
Question
Find parametric equations for the line with the given properties.Passing through <strong>Find parametric equations for the line with the given properties.Passing through   and the origin</strong> A)   B)   C)   D)   E)none of these <div style=padding-top: 35px> and the origin

A) <strong>Find parametric equations for the line with the given properties.Passing through   and the origin</strong> A)   B)   C)   D)   E)none of these <div style=padding-top: 35px>
B) <strong>Find parametric equations for the line with the given properties.Passing through   and the origin</strong> A)   B)   C)   D)   E)none of these <div style=padding-top: 35px>
C) <strong>Find parametric equations for the line with the given properties.Passing through   and the origin</strong> A)   B)   C)   D)   E)none of these <div style=padding-top: 35px>
D) <strong>Find parametric equations for the line with the given properties.Passing through   and the origin</strong> A)   B)   C)   D)   E)none of these <div style=padding-top: 35px>
E)none of these
Question
Write <strong>Write   in polar form then find  </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px> in polar form then find <strong>Write   in polar form then find  </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>

A) <strong>Write   in polar form then find  </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
B) <strong>Write   in polar form then find  </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
C) <strong>Write   in polar form then find  </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
D) <strong>Write   in polar form then find  </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
E) <strong>Write   in polar form then find  </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
Question
Sketch a graph of the rectangular equation. [Hint: First convert the equation to polar coordinates.] (x2+y2+3y)2=9(x2+y2)\left( x ^ { 2 } + y ^ { 2 } + 3 y \right) ^ { 2 } = 9 \left( x ^ { 2 } + y ^ { 2 } \right)

A)
 <strong>Sketch a graph of the rectangular equation. [Hint: First convert the equation to polar coordinates.]  \left( x ^ { 2 } + y ^ { 2 } + 3 y \right) ^ { 2 } = 9 \left( x ^ { 2 } + y ^ { 2 } \right) </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
B)
 <strong>Sketch a graph of the rectangular equation. [Hint: First convert the equation to polar coordinates.]  \left( x ^ { 2 } + y ^ { 2 } + 3 y \right) ^ { 2 } = 9 \left( x ^ { 2 } + y ^ { 2 } \right) </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
C)
 <strong>Sketch a graph of the rectangular equation. [Hint: First convert the equation to polar coordinates.]  \left( x ^ { 2 } + y ^ { 2 } + 3 y \right) ^ { 2 } = 9 \left( x ^ { 2 } + y ^ { 2 } \right) </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
D)
 <strong>Sketch a graph of the rectangular equation. [Hint: First convert the equation to polar coordinates.]  \left( x ^ { 2 } + y ^ { 2 } + 3 y \right) ^ { 2 } = 9 \left( x ^ { 2 } + y ^ { 2 } \right) </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
Question
Find a rectangular-coordinate equation for the curve by eliminating the parameter. <strong>Find a rectangular-coordinate equation for the curve by eliminating the parameter.  </strong> A)   B)   C)   D)   E) none of these <div style=padding-top: 35px>

A) <strong>Find a rectangular-coordinate equation for the curve by eliminating the parameter.  </strong> A)   B)   C)   D)   E) none of these <div style=padding-top: 35px>
B) <strong>Find a rectangular-coordinate equation for the curve by eliminating the parameter.  </strong> A)   B)   C)   D)   E) none of these <div style=padding-top: 35px>
C) <strong>Find a rectangular-coordinate equation for the curve by eliminating the parameter.  </strong> A)   B)   C)   D)   E) none of these <div style=padding-top: 35px>
D) <strong>Find a rectangular-coordinate equation for the curve by eliminating the parameter.  </strong> A)   B)   C)   D)   E) none of these <div style=padding-top: 35px>
E) none of these
Question
If a projectile is fired with an initial speed of <strong>If a projectile is fired with an initial speed of   ft/s at an angle   Above the horizontal, then its position after t seconds is given by the parametric equations   Where x and y are measured in feet. Suppose a gun fires a bullet into the air with an initial speed of 1024 ft/s at an angle of   To the horizontal. How far from the gun will the bullet hit the ground?</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px> ft/s at an angle <strong>If a projectile is fired with an initial speed of   ft/s at an angle   Above the horizontal, then its position after t seconds is given by the parametric equations   Where x and y are measured in feet. Suppose a gun fires a bullet into the air with an initial speed of 1024 ft/s at an angle of   To the horizontal. How far from the gun will the bullet hit the ground?</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
Above the horizontal, then its position after t seconds is given by the parametric equations <strong>If a projectile is fired with an initial speed of   ft/s at an angle   Above the horizontal, then its position after t seconds is given by the parametric equations   Where x and y are measured in feet. Suppose a gun fires a bullet into the air with an initial speed of 1024 ft/s at an angle of   To the horizontal. How far from the gun will the bullet hit the ground?</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
Where x and y are measured in feet. Suppose a gun fires a bullet into the air with an initial speed of 1024 ft/s at an angle of <strong>If a projectile is fired with an initial speed of   ft/s at an angle   Above the horizontal, then its position after t seconds is given by the parametric equations   Where x and y are measured in feet. Suppose a gun fires a bullet into the air with an initial speed of 1024 ft/s at an angle of   To the horizontal. How far from the gun will the bullet hit the ground?</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
To the horizontal. How far from the gun will the bullet hit the ground?

A) <strong>If a projectile is fired with an initial speed of   ft/s at an angle   Above the horizontal, then its position after t seconds is given by the parametric equations   Where x and y are measured in feet. Suppose a gun fires a bullet into the air with an initial speed of 1024 ft/s at an angle of   To the horizontal. How far from the gun will the bullet hit the ground?</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
B) <strong>If a projectile is fired with an initial speed of   ft/s at an angle   Above the horizontal, then its position after t seconds is given by the parametric equations   Where x and y are measured in feet. Suppose a gun fires a bullet into the air with an initial speed of 1024 ft/s at an angle of   To the horizontal. How far from the gun will the bullet hit the ground?</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
C) <strong>If a projectile is fired with an initial speed of   ft/s at an angle   Above the horizontal, then its position after t seconds is given by the parametric equations   Where x and y are measured in feet. Suppose a gun fires a bullet into the air with an initial speed of 1024 ft/s at an angle of   To the horizontal. How far from the gun will the bullet hit the ground?</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
D) <strong>If a projectile is fired with an initial speed of   ft/s at an angle   Above the horizontal, then its position after t seconds is given by the parametric equations   Where x and y are measured in feet. Suppose a gun fires a bullet into the air with an initial speed of 1024 ft/s at an angle of   To the horizontal. How far from the gun will the bullet hit the ground?</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
E) <strong>If a projectile is fired with an initial speed of   ft/s at an angle   Above the horizontal, then its position after t seconds is given by the parametric equations   Where x and y are measured in feet. Suppose a gun fires a bullet into the air with an initial speed of 1024 ft/s at an angle of   To the horizontal. How far from the gun will the bullet hit the ground?</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
Question
Convert the rectangular coordinates to polar coordinates with <strong>Convert the rectangular coordinates to polar coordinates with    </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px> <strong>Convert the rectangular coordinates to polar coordinates with    </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>

A) <strong>Convert the rectangular coordinates to polar coordinates with    </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
B) <strong>Convert the rectangular coordinates to polar coordinates with    </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
C) <strong>Convert the rectangular coordinates to polar coordinates with    </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
D) <strong>Convert the rectangular coordinates to polar coordinates with    </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
E) <strong>Convert the rectangular coordinates to polar coordinates with    </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
Question
Sketch a graph of the polar equation. r=3cosθr=\sqrt{3}-\cos \theta

A)
 <strong>Sketch a graph of the polar equation.  r=\sqrt{3}-\cos \theta </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
B)
 <strong>Sketch a graph of the polar equation.  r=\sqrt{3}-\cos \theta </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
C)
 <strong>Sketch a graph of the polar equation.  r=\sqrt{3}-\cos \theta </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
D)
 <strong>Sketch a graph of the polar equation.  r=\sqrt{3}-\cos \theta </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
Question
Let z1=2(cosπ6+isinπ6)z _ { 1 } = \sqrt { 2 } \left( \cos \frac { \pi } { 6 } + i \sin \frac { \pi } { 6 } \right) and z2=2(cosπ3+isinπ3)z _ { 2 } = \sqrt { 2 } \left( \cos \frac { \pi } { 3 } + i \sin \frac { \pi } { 3 } \right) ) Find Z1Z2Z _ { 1 } Z _ { 2 }

A) 2+i\sqrt { 2 } + i
B) 22i2 - 2 i
C) 22\frac { \sqrt { 2 } } { 2 }
D) 2j2 j
E)none
Question
Convert the polar equation to rectangular coordinates. <strong>Convert the polar equation to rectangular coordinates.  </strong> A)   B)   C)   D)   E)none <div style=padding-top: 35px>

A) <strong>Convert the polar equation to rectangular coordinates.  </strong> A)   B)   C)   D)   E)none <div style=padding-top: 35px>
B) <strong>Convert the polar equation to rectangular coordinates.  </strong> A)   B)   C)   D)   E)none <div style=padding-top: 35px>
C) <strong>Convert the polar equation to rectangular coordinates.  </strong> A)   B)   C)   D)   E)none <div style=padding-top: 35px>
D) <strong>Convert the polar equation to rectangular coordinates.  </strong> A)   B)   C)   D)   E)none <div style=padding-top: 35px>
E)none
Question
Find a rectangular-coordinate equation for the curve by eliminating the parameter. x=t+2,y=tt+2x = t + 2 , y = \frac { t } { t + 2 }

A) y=x4xy = \frac { x - 4 } { x }

B) y=x2xy = \frac { x - 2 } { x }

C) y=x24xy = \frac { x - 2 } { 4 x }

D) y=2x12xy = \frac { 2 x - 1 } { 2 x }

E) none of these
Unlock Deck
Sign up to unlock the cards in this deck!
Unlock Deck
Unlock Deck
1/150
auto play flashcards
Play
simple tutorial
Full screen (f)
exit full mode
Deck 9: Vectors in Two and Three Dimensions
1
Use DeMoivre's Theorem to find the indicated power. Use DeMoivre's Theorem to find the indicated power.
2
Convert the equation to polar form. x2+y2=16x ^ { 2 } + y ^ { 2 } = 16
r=4r = 4
3
Convert the polar equation to rectangular coordinates. r+cosθ=3r + \cos \theta = 3
(x2+y2+x)2=9(x2+y2)\left( x ^ { 2 } + y ^ { 2 } + x \right) ^ { 2 } = 9 \left( x ^ { 2 } + y ^ { 2 } \right)
4
Graph the polar equation r=8cosθr = 8 \cos \theta .
Unlock Deck
Unlock for access to all 150 flashcards in this deck.
Unlock Deck
k this deck
5
Test the polar equation for symmetry with respect to the polar axis, the pole, and the line θ=π/2\theta = \pi / 2 . r=5secθr = 5 \sec \theta
Unlock Deck
Unlock for access to all 150 flashcards in this deck.
Unlock Deck
k this deck
6
Convert the point whose polar coordinates are (8,5π/4)( 8,5 \pi / 4 ) to rectangular coordinates.
Unlock Deck
Unlock for access to all 150 flashcards in this deck.
Unlock Deck
k this deck
7
Sketch a graph of the rectangular equation. [Hint: First convert the equation to polar coordinates.] Sketch a graph of the rectangular equation. [Hint: First convert the equation to polar coordinates.]
Unlock Deck
Unlock for access to all 150 flashcards in this deck.
Unlock Deck
k this deck
8
Convert the equation to polar form. Convert the equation to polar form.
Unlock Deck
Unlock for access to all 150 flashcards in this deck.
Unlock Deck
k this deck
9
Convert the rectangular coordinates to polar coordinates with r>0 and 0θ<2πr > 0 \text { and } 0 \leq \theta < 2 \pi (23,2)( - 2 \sqrt { 3 } , - 2 )
Unlock Deck
Unlock for access to all 150 flashcards in this deck.
Unlock Deck
k this deck
10
Test the polar equation for symmetry with respect to the polar axis, the pole, and the line θ=π/2\theta = \pi / 2 . r2=cos2θr ^ { 2 } = \cos 2 \theta
Unlock Deck
Unlock for access to all 150 flashcards in this deck.
Unlock Deck
k this deck
11
Write z1=1iz _ { 1 } = 1 - i in polar form then find 1/z11 / z _ { 1 }
Unlock Deck
Unlock for access to all 150 flashcards in this deck.
Unlock Deck
k this deck
12
Find two polar coordinate representations for the point (3,π/3)( 3 , \pi / 3 ) , one with r>0r > 0 , and the other with r<0r < 0
Unlock Deck
Unlock for access to all 150 flashcards in this deck.
Unlock Deck
k this deck
13
Convert the polar equation to rectangular coordinates. r6=secθ\frac {r } { 6 } = \sec \theta
Unlock Deck
Unlock for access to all 150 flashcards in this deck.
Unlock Deck
k this deck
14
Convert the rectangular coordinates to polar coordinates with r>0 and 0θ<2πr > 0 \text { and } 0 \leq \theta < 2 \pi (0,5)( 0 , - \sqrt { 5 } )
Unlock Deck
Unlock for access to all 150 flashcards in this deck.
Unlock Deck
k this deck
15
Write the complex conjugate of z in polar form with argument θ\theta between 0 and 2π2 \pi z=535iz = - 5 \sqrt { 3 } - 5 i
Unlock Deck
Unlock for access to all 150 flashcards in this deck.
Unlock Deck
k this deck
16
Let z1=2(cos5π6+isin5π6)z _ { 1 } = 2 \left( \cos \frac { 5 \pi } { 6 } + i \sin \frac { 5 \pi } { 6 } \right) and z2=5(cosπ3+isinπ3)z _ { 2 } = 5 \left( \cos \frac { \pi } { 3 } + i \sin \frac { \pi } { 3 } \right) . Find Z1Z2Z _ { 1 } Z _ { 2 }
Unlock Deck
Unlock for access to all 150 flashcards in this deck.
Unlock Deck
k this deck
17
Write the complex number in polar form. Write the complex number in polar form.
Unlock Deck
Unlock for access to all 150 flashcards in this deck.
Unlock Deck
k this deck
18
Sketch a graph of the polar equation. r=3cos3θr = - 3 \cos 3 \theta
Unlock Deck
Unlock for access to all 150 flashcards in this deck.
Unlock Deck
k this deck
19
Let z1=2(cos7π4+isin7π4)z _ { 1 } = \sqrt { 2 } \left( \cos \frac { 7 \pi } { 4 } + i \sin \frac { 7 \pi } { 4 } \right) and z2=2(cos5π3+isin5π3)z _ { 2 } = 2 \left( \cos \frac { 5 \pi } { 3 } + i \sin \frac { 5 \pi } { 3 } \right) . Find z1/z2z _ { 1 } / z _ { 2 }
Unlock Deck
Unlock for access to all 150 flashcards in this deck.
Unlock Deck
k this deck
20
Find the modulus and the argument for the complex number. z=10iz = - 10 i
Unlock Deck
Unlock for access to all 150 flashcards in this deck.
Unlock Deck
k this deck
21
Convert the equation to polar form. x2+y2=25x ^ { 2 } + y ^ { 2 } = 25
Unlock Deck
Unlock for access to all 150 flashcards in this deck.
Unlock Deck
k this deck
22
Find the cube roots of ii
Unlock Deck
Unlock for access to all 150 flashcards in this deck.
Unlock Deck
k this deck
23
If a projectile is fired with an initial speed of v0v _ { 0 } ft/s at an angle α\alpha
above the horizontal, then its position after t seconds is given by the parametric equations x=(v0cosα)t and y=(v0sinα)t16t2x = \left( v _ { 0 } \cos \alpha \right) t \text { and } y = \left( v _ { 0 } \sin \alpha \right) t - 16 t ^ { 2 }
where x and y are measured in feet.Suppose a gun fires a bullet into the air with an initial speed of 1024 ft/s at an angle of 3030 ^ { \circ } to the horizontal. What is the maximum height attained by the bullet?
Unlock Deck
Unlock for access to all 150 flashcards in this deck.
Unlock Deck
k this deck
24
Convert the rectangular coordinates to polar coordinates with r>0 and 0θ<2πr > 0 \text { and } 0 \leq \theta < 2 \pi (3,1)( - \sqrt { 3 } , - 1 )
Unlock Deck
Unlock for access to all 150 flashcards in this deck.
Unlock Deck
k this deck
25
Test the polar equation for symmetry with respect to the polar axis, the pole, and the line θ=π/2\theta = \pi / 2 . r=3cosθcscθr = 3 \cos \theta \csc \theta
Unlock Deck
Unlock for access to all 150 flashcards in this deck.
Unlock Deck
k this deck
27
Convert the point whose polar coordinates are Convert the point whose polar coordinates are   to rectangular coordinates.
to rectangular coordinates.
Unlock Deck
Unlock for access to all 150 flashcards in this deck.
Unlock Deck
k this deck
28
Find the modulus and the argument for the complex number. z=iz = - i
Unlock Deck
Unlock for access to all 150 flashcards in this deck.
Unlock Deck
k this deck
29
Graph the polar equation r=4sinθr= 4 \sin \theta
Unlock Deck
Unlock for access to all 150 flashcards in this deck.
Unlock Deck
k this deck
30
Sketch a graph of the rectangular equation. [Hint: First convert the equation to polar coordinates.] Sketch a graph of the rectangular equation. [Hint: First convert the equation to polar coordinates.]
Unlock Deck
Unlock for access to all 150 flashcards in this deck.
Unlock Deck
k this deck
31
Convert the equation to polar form. x2y2=4x ^ { 2 } - y ^ { 2 } = 4
Unlock Deck
Unlock for access to all 150 flashcards in this deck.
Unlock Deck
k this deck
32
Convert the polar equation to rectangular coordinates. r+cosθ=4r + \cos \theta = 4
Unlock Deck
Unlock for access to all 150 flashcards in this deck.
Unlock Deck
k this deck
33
Sketch the curve represented by the parametric equations and find its rectangular-coordinate equation. Sketch the curve represented by the parametric equations and find its rectangular-coordinate equation.
Unlock Deck
Unlock for access to all 150 flashcards in this deck.
Unlock Deck
k this deck
34
Convert the polar equation to rectangular coordinates. Convert the polar equation to rectangular coordinates.
Unlock Deck
Unlock for access to all 150 flashcards in this deck.
Unlock Deck
k this deck
35
Sketch a graph of the polar equation. r=2sin3θr = - 2 \sin 3 \theta
Unlock Deck
Unlock for access to all 150 flashcards in this deck.
Unlock Deck
k this deck
36
Find parametric equations for the line with the given properties.Passing through Find parametric equations for the line with the given properties.Passing through   and the origin
and the origin
Unlock Deck
Unlock for access to all 150 flashcards in this deck.
Unlock Deck
k this deck
37
Test the polar equation for symmetry with respect to the polar axis, the pole, and the line θ=π/2\theta = \pi / 2 . r2=9cos2θr ^ { 2 } = 9 \cos 2 \theta
Unlock Deck
Unlock for access to all 150 flashcards in this deck.
Unlock Deck
k this deck
38
Find two polar coordinate representations for the point (3,π/3)( 3 , \pi / 3 ) , one with r>0r > 0 , and both with 0θ<2π0 \leq \theta < 2 \pi
Unlock Deck
Unlock for access to all 150 flashcards in this deck.
Unlock Deck
k this deck
39
Find a rectangular-coordinate equation for the curve by eliminating the parameter. Find a rectangular-coordinate equation for the curve by eliminating the parameter.
Unlock Deck
Unlock for access to all 150 flashcards in this deck.
Unlock Deck
k this deck
40
Convert the rectangular coordinates to polar coordinates with r>0 and 0θ<2πr > 0 \text { and } 0 \leq \theta < 2 \pi (0,2)( 0 , - \sqrt { 2 } )
Unlock Deck
Unlock for access to all 150 flashcards in this deck.
Unlock Deck
k this deck
41
Test the polar equation for symmetry with respect to the polar axis, the pole, and the line θ=π/2\theta = \pi / 2 . r=3cosθcscθr = 3 \cos \theta \csc \theta
I  symmetric about the polar axis \text { symmetric about the polar axis }
II  symmetric about the pole \text { symmetric about the pole }
III  symmetric about the line θ=π/2\text { symmetric about the line } \theta = \pi / 2

A)I only
B)I and II
C) I and III
D)II and III
E) none of these
Unlock Deck
Unlock for access to all 150 flashcards in this deck.
Unlock Deck
k this deck
42
Which of the following is not a polar point representation for the point <strong>Which of the following is not a polar point representation for the point   ?</strong> A)   B)   C)   D)   E)   ?

A) <strong>Which of the following is not a polar point representation for the point   ?</strong> A)   B)   C)   D)   E)
B) <strong>Which of the following is not a polar point representation for the point   ?</strong> A)   B)   C)   D)   E)
C) <strong>Which of the following is not a polar point representation for the point   ?</strong> A)   B)   C)   D)   E)
D) <strong>Which of the following is not a polar point representation for the point   ?</strong> A)   B)   C)   D)   E)
E) <strong>Which of the following is not a polar point representation for the point   ?</strong> A)   B)   C)   D)   E)
Unlock Deck
Unlock for access to all 150 flashcards in this deck.
Unlock Deck
k this deck
43
Sketch the curve represented by the parametric equations and find its rectangular-coordinate equation. Sketch the curve represented by the parametric equations and find its rectangular-coordinate equation.
Unlock Deck
Unlock for access to all 150 flashcards in this deck.
Unlock Deck
k this deck
44
Write the complex conjugate of z in polar form with argument θ\theta between 0 and 2π2 \pi z=53+5iz = - 5 \sqrt { 3 } + 5 i
Unlock Deck
Unlock for access to all 150 flashcards in this deck.
Unlock Deck
k this deck
45
Convert the polar equation to rectangular coordinates. r+cosθ=4r + \cos \theta = 4

A) (x2+y2+x)2=16(x2+y2)\left( x ^ { 2 } + y ^ { 2 } + x \right) ^ { 2 } = 16 \left( x ^ { 2 } + y ^ { 2 } \right)
B) x2+y2=16(x+y)x ^ { 2 } + y ^ { 2 } = 16 ( x + y )
C) (x2+y2x)2=16(x2y2)\left( x ^ { 2 } + y ^ { 2 } - x \right) ^ { 2 } = 16 \left( x ^ { 2 } - y ^ { 2 } \right)
D) (x2+y2+2x)2=4(x+y)\left( x ^ { 2 } + y ^ { 2 } + 2 x \right) ^ { 2 } = 4 ( x + y )
E) (x2+y2+x)2=4(x2+y2)\left( x ^ { 2 } + y ^ { 2 } + x \right) ^ { 2 } = 4 \left( x ^ { 2 } + y ^ { 2 } \right)
Unlock Deck
Unlock for access to all 150 flashcards in this deck.
Unlock Deck
k this deck
46
Find a rectangular-coordinate equation for the curve by eliminating the parameter. Find a rectangular-coordinate equation for the curve by eliminating the parameter.
Unlock Deck
Unlock for access to all 150 flashcards in this deck.
Unlock Deck
k this deck
47
Solve the equation. Solve the equation.
Unlock Deck
Unlock for access to all 150 flashcards in this deck.
Unlock Deck
k this deck
48
Write z1=12jz _ { 1 } = 1 - \sqrt { 2 j } in polar form then find 1/z11 / z _ { 1 }
Unlock Deck
Unlock for access to all 150 flashcards in this deck.
Unlock Deck
k this deck
49
Let z1=4(cosπ6+isinπ6)z _ { 1 } = 4 \left( \cos \frac { \pi } { 6 } + i \sin \frac { \pi } { 6 } \right) and z2=5(cosπ3+isinπ3)z _ { 2 } = 5 \left( \cos \frac { \pi } { 3 } + i \sin \frac { \pi } { 3 } \right) . Find Z1Z2Z _ { 1 } Z _ { 2 }
Unlock Deck
Unlock for access to all 150 flashcards in this deck.
Unlock Deck
k this deck
50
Convert the equation to polar form. x2y2=9x ^ { 2 } - y ^ { 2 } = 9

A) r2=9csc2θr ^ { 2 } = 9 \csc 2 \theta
B) r=3sec2θr = 3 \sec 2 \theta
C) r2=9sec2θr ^ { 2 } = 9 \sec 2 \theta
D) r2=9cscθr ^ { 2 } = 9 \csc \theta
E)none of these
Unlock Deck
Unlock for access to all 150 flashcards in this deck.
Unlock Deck
k this deck
51
Convert the rectangular coordinates to polar coordinates with <strong>Convert the rectangular coordinates to polar coordinates with    </strong> A)   B)   C)   D)   E)none of these <strong>Convert the rectangular coordinates to polar coordinates with    </strong> A)   B)   C)   D)   E)none of these

A) <strong>Convert the rectangular coordinates to polar coordinates with    </strong> A)   B)   C)   D)   E)none of these
B) <strong>Convert the rectangular coordinates to polar coordinates with    </strong> A)   B)   C)   D)   E)none of these
C) <strong>Convert the rectangular coordinates to polar coordinates with    </strong> A)   B)   C)   D)   E)none of these
D) <strong>Convert the rectangular coordinates to polar coordinates with    </strong> A)   B)   C)   D)   E)none of these
E)none of these
Unlock Deck
Unlock for access to all 150 flashcards in this deck.
Unlock Deck
k this deck
53
Convert the polar equation to rectangular coordinates. r6=secθ\frac {r } { 6 } = \sec \theta

A) y=6y = 6
B) y=6xy = 6 x
C) x=6x = 6
D) xy=6x y = 6
E)none of these
Unlock Deck
Unlock for access to all 150 flashcards in this deck.
Unlock Deck
k this deck
54
Graph the polar equation r=8cosθr = 8 \cos \theta

A)
 <strong>Graph the polar equation  r = 8 \cos \theta </strong> A)   B)   C)   D)
B)
 <strong>Graph the polar equation  r = 8 \cos \theta </strong> A)   B)   C)   D)
C)
 <strong>Graph the polar equation  r = 8 \cos \theta </strong> A)   B)   C)   D)
D)
 <strong>Graph the polar equation  r = 8 \cos \theta </strong> A)   B)   C)   D)
Unlock Deck
Unlock for access to all 150 flashcards in this deck.
Unlock Deck
k this deck
56
Convert the point whose polar coordinates are (3,π/6)( \sqrt { 3 } , \pi / 6 ) to rectangular coordinates

A) (32,32)\left( \frac { 3 } { 2 } , \frac { \sqrt { 3 } } { 2 } \right)

B) (32,12)\left( \frac { 3 } { 2 } , \frac { 1 } { 2 } \right)

C) (3,3)( 3 , \sqrt { 3 } )

D) (3,π/6)( \sqrt { 3 } , \pi / 6 )

E) (23,22)\left( \frac { 2 } { 3 } , \frac { \sqrt { 2 } } { 2 } \right)
Unlock Deck
Unlock for access to all 150 flashcards in this deck.
Unlock Deck
k this deck
57
Convert the rectangular coordinates to polar coordinates with <strong>Convert the rectangular coordinates to polar coordinates with    </strong> A)   B)   C)   D)   E)   <strong>Convert the rectangular coordinates to polar coordinates with    </strong> A)   B)   C)   D)   E)

A) <strong>Convert the rectangular coordinates to polar coordinates with    </strong> A)   B)   C)   D)   E)
B) <strong>Convert the rectangular coordinates to polar coordinates with    </strong> A)   B)   C)   D)   E)
C) <strong>Convert the rectangular coordinates to polar coordinates with    </strong> A)   B)   C)   D)   E)
D) <strong>Convert the rectangular coordinates to polar coordinates with    </strong> A)   B)   C)   D)   E)
E) <strong>Convert the rectangular coordinates to polar coordinates with    </strong> A)   B)   C)   D)   E)
Unlock Deck
Unlock for access to all 150 flashcards in this deck.
Unlock Deck
k this deck
58
Convert the equation to polar form. x2+y2=16x ^ { 2 } + y ^ { 2 } = 16

A) r2=4r^ { 2 } = 4
B) 4r=cosθ+sinθ4 r= \cos \theta + \sin \theta
C) y=4cosθ+4sinθy = 4 \cos \theta + 4 \sin \theta
D) r=4r = 4
E)none of these
Unlock Deck
Unlock for access to all 150 flashcards in this deck.
Unlock Deck
k this deck
59
Find parametric equations for the line with the given properties.Passing through Find parametric equations for the line with the given properties.Passing through   and the origin
and the origin
Unlock Deck
Unlock for access to all 150 flashcards in this deck.
Unlock Deck
k this deck
60
Use DeMoivre's Theorem to find the indicated power. (13i)5( 1 - \sqrt { 3 } i ) ^ { 5 }
Unlock Deck
Unlock for access to all 150 flashcards in this deck.
Unlock Deck
k this deck
61
Let z1=8(cos11π6+isin11π6)z _ { 1 } = 8 \left( \cos \frac { 11 \pi } { 6 } + i \sin \frac { 11 \pi } { 6 } \right) and z2=23(cosπ3+isinπ3)z _ { 2 } = 2 \sqrt { 3 } \left( \cos \frac { \pi } { 3 } + i \sin \frac { \pi } { 3 } \right) ) Find z1/z2z _ { 1 } / z _ { 2 }

A) 34i3 - 4 i
B) 43i4 - \sqrt { 3 } i
C) 4+3i4 + \sqrt { 3 } i
D) 43\frac { 4 } { 3 }
E) 433i- \frac { 4 \sqrt { 3 } } { 3 } i
Unlock Deck
Unlock for access to all 150 flashcards in this deck.
Unlock Deck
k this deck
62
Which of the following is not a polar point representation for the point <strong>Which of the following is not a polar point representation for the point   ?</strong> A)   B)   C)   D)   E)   ?

A) <strong>Which of the following is not a polar point representation for the point   ?</strong> A)   B)   C)   D)   E)
B) <strong>Which of the following is not a polar point representation for the point   ?</strong> A)   B)   C)   D)   E)
C) <strong>Which of the following is not a polar point representation for the point   ?</strong> A)   B)   C)   D)   E)
D) <strong>Which of the following is not a polar point representation for the point   ?</strong> A)   B)   C)   D)   E)
E) <strong>Which of the following is not a polar point representation for the point   ?</strong> A)   B)   C)   D)   E)
Unlock Deck
Unlock for access to all 150 flashcards in this deck.
Unlock Deck
k this deck
63
Write the complex conjugate of z in polar form with argument θ\theta between 0 and 2π2 \piz=55i3z = 5 - 5 i \sqrt { 3 }

A) 10(cos(π/3)+isin(π/3))10 ( \cos ( \pi / 3 ) + i \sin ( \pi / 3 ) )

B) 5(cos(5π/3)+isin(5π/3))5 ( \cos ( 5 \pi / 3 ) + i \sin ( 5 \pi / 3 ) )

C) 10(cos(π/6)+isin(π/6))10 ( \cos ( \pi / 6 ) + i \sin ( \pi / 6 ) )

D) 5(cos(7π/6)+isin(7π/6))5 ( \cos ( 7 \pi / 6 ) + i \sin ( 7 \pi / 6 ) )

E) none
Unlock Deck
Unlock for access to all 150 flashcards in this deck.
Unlock Deck
k this deck
64
Sketch a graph of the polar equation. r=3cosθr = \sqrt { 3 } - \cos \theta

A)
 <strong>Sketch a graph of the polar equation.  r = \sqrt { 3 } - \cos \theta </strong> A)   B)   C)   D)
B)
 <strong>Sketch a graph of the polar equation.  r = \sqrt { 3 } - \cos \theta </strong> A)   B)   C)   D)
C)
 <strong>Sketch a graph of the polar equation.  r = \sqrt { 3 } - \cos \theta </strong> A)   B)   C)   D)
D)
 <strong>Sketch a graph of the polar equation.  r = \sqrt { 3 } - \cos \theta </strong> A)   B)   C)   D)
Unlock Deck
Unlock for access to all 150 flashcards in this deck.
Unlock Deck
k this deck
65
Find the modulus and the argument for the complex number. z=iz = - i

A) r=1,θ=π2r = - 1 , \theta = \frac { \pi } { 2 }
B) r=1,θ=πr = 1 , \theta = \pi
C) r=i,θ=0r = i , \theta = 0
D) r=2,θ=3π2r = \sqrt { 2 } , \theta = \frac { 3 \pi } { 2 }
E) r=1,θ=3π2r = 1 , \theta = \frac { 3 \pi } { 2 }
Unlock Deck
Unlock for access to all 150 flashcards in this deck.
Unlock Deck
k this deck
66
Let z1=4(cosπ6+isinπ6)z _ { 1 } = 4 \left( \cos \frac { \pi } { 6 } + i \sin \frac { \pi } { 6 } \right) and z2=5(cosπ3+isinπ3)z _ { 2 } = 5 \left( \cos \frac { \pi } { 3 } + i \sin \frac { \pi } { 3 } \right) ) Find Z1Z2Z _ { 1 } Z _ { 2 }

A) 20+i20 + i
B) 2020i20 - 20 i
C) 2020
D) 020i0 - 20 i
E)none
Unlock Deck
Unlock for access to all 150 flashcards in this deck.
Unlock Deck
k this deck
67
Find the rectangular-coordinate equation for the parametric equations given. Find the rectangular-coordinate equation for the parametric equations given.
Unlock Deck
Unlock for access to all 150 flashcards in this deck.
Unlock Deck
k this deck
68
Convert the point whose polar coordinates are <strong>Convert the point whose polar coordinates are   to rectangular coordinates</strong> A)   B)   C)   D)   E)   to rectangular coordinates

A) <strong>Convert the point whose polar coordinates are   to rectangular coordinates</strong> A)   B)   C)   D)   E)
B) <strong>Convert the point whose polar coordinates are   to rectangular coordinates</strong> A)   B)   C)   D)   E)
C) <strong>Convert the point whose polar coordinates are   to rectangular coordinates</strong> A)   B)   C)   D)   E)
D) <strong>Convert the point whose polar coordinates are   to rectangular coordinates</strong> A)   B)   C)   D)   E)
E) <strong>Convert the point whose polar coordinates are   to rectangular coordinates</strong> A)   B)   C)   D)   E)
Unlock Deck
Unlock for access to all 150 flashcards in this deck.
Unlock Deck
k this deck
69
Write the complex number in polar form. z=13iz = - 1 - \sqrt { 3 } i

A) z=2(cosπ3+isinπ3)z = 2 \left( \cos \frac { \pi } { 3 } + i \sin \frac { \pi } { 3 } \right)

B) z=2(cos4π3+isin4π3)z = 2 \left( \cos \frac { 4 \pi } { 3 } + i \sin \frac { 4 \pi } { 3 } \right)

C) z=2(cos5π6+isin5π6)z = 2 \left( \cos \frac { 5 \pi } { 6 } + i \sin \frac { 5 \pi } { 6 } \right)

D) z=2(cos11π6+isin11π6)z = 2 \left( \cos \frac { 11 \pi } { 6 } + i \sin \frac { 11 \pi } { 6 } \right)

E) z=2(cos5π3+isin5π3)z = 2 \left( \cos \frac { 5 \pi } { 3 } + i \sin \frac { 5 \pi } { 3 } \right)
Unlock Deck
Unlock for access to all 150 flashcards in this deck.
Unlock Deck
k this deck
70
Solve the equation. <strong>Solve the equation.  </strong> A)   B)   C)   D)   E)

A) <strong>Solve the equation.  </strong> A)   B)   C)   D)   E)
B) <strong>Solve the equation.  </strong> A)   B)   C)   D)   E)
C) <strong>Solve the equation.  </strong> A)   B)   C)   D)   E)
D) <strong>Solve the equation.  </strong> A)   B)   C)   D)   E)
E) <strong>Solve the equation.  </strong> A)   B)   C)   D)   E)
Unlock Deck
Unlock for access to all 150 flashcards in this deck.
Unlock Deck
k this deck
71
Test the polar equation for symmetry with respect to the polar axis, the pole, and the line θ=π/2\theta = \pi / 2 . r2=cos2θr ^ { 2 } = \cos 2 \theta
I  symmetric about the polar axis \text { symmetric about the polar axis }
II  symmetric about the pole \text { symmetric about the pole }
III  symmetric about the line θ=π/2\text { symmetric about the line } \theta = \pi / 2

A)I only
B)I and II
C) I and III
D)II and III
E) I, II, III
Unlock Deck
Unlock for access to all 150 flashcards in this deck.
Unlock Deck
k this deck
72
Graph the polar equation r=8cosθr = 8 \cos \theta

A)
 <strong>Graph the polar equation  r = 8 \cos \theta </strong> A)   B)   C)   D)
B)
 <strong>Graph the polar equation  r = 8 \cos \theta </strong> A)   B)   C)   D)
C)
 <strong>Graph the polar equation  r = 8 \cos \theta </strong> A)   B)   C)   D)
D)
 <strong>Graph the polar equation  r = 8 \cos \theta </strong> A)   B)   C)   D)
Unlock Deck
Unlock for access to all 150 flashcards in this deck.
Unlock Deck
k this deck
73
Use DeMoivre's Theorem to find the indicated power. <strong>Use DeMoivre's Theorem to find the indicated power.  </strong> A)   B)   C)   D)   E)

A) <strong>Use DeMoivre's Theorem to find the indicated power.  </strong> A)   B)   C)   D)   E)
B) <strong>Use DeMoivre's Theorem to find the indicated power.  </strong> A)   B)   C)   D)   E)
C) <strong>Use DeMoivre's Theorem to find the indicated power.  </strong> A)   B)   C)   D)   E)
D) <strong>Use DeMoivre's Theorem to find the indicated power.  </strong> A)   B)   C)   D)   E)
E) <strong>Use DeMoivre's Theorem to find the indicated power.  </strong> A)   B)   C)   D)   E)
Unlock Deck
Unlock for access to all 150 flashcards in this deck.
Unlock Deck
k this deck
74
Find parametric equations for the line with the given properties.Passing through <strong>Find parametric equations for the line with the given properties.Passing through   and the origin</strong> A)   B)   C)   D)   E)none of these and the origin

A) <strong>Find parametric equations for the line with the given properties.Passing through   and the origin</strong> A)   B)   C)   D)   E)none of these
B) <strong>Find parametric equations for the line with the given properties.Passing through   and the origin</strong> A)   B)   C)   D)   E)none of these
C) <strong>Find parametric equations for the line with the given properties.Passing through   and the origin</strong> A)   B)   C)   D)   E)none of these
D) <strong>Find parametric equations for the line with the given properties.Passing through   and the origin</strong> A)   B)   C)   D)   E)none of these
E)none of these
Unlock Deck
Unlock for access to all 150 flashcards in this deck.
Unlock Deck
k this deck
75
Write <strong>Write   in polar form then find  </strong> A)   B)   C)   D)   E)   in polar form then find <strong>Write   in polar form then find  </strong> A)   B)   C)   D)   E)

A) <strong>Write   in polar form then find  </strong> A)   B)   C)   D)   E)
B) <strong>Write   in polar form then find  </strong> A)   B)   C)   D)   E)
C) <strong>Write   in polar form then find  </strong> A)   B)   C)   D)   E)
D) <strong>Write   in polar form then find  </strong> A)   B)   C)   D)   E)
E) <strong>Write   in polar form then find  </strong> A)   B)   C)   D)   E)
Unlock Deck
Unlock for access to all 150 flashcards in this deck.
Unlock Deck
k this deck
76
Sketch a graph of the rectangular equation. [Hint: First convert the equation to polar coordinates.] (x2+y2+3y)2=9(x2+y2)\left( x ^ { 2 } + y ^ { 2 } + 3 y \right) ^ { 2 } = 9 \left( x ^ { 2 } + y ^ { 2 } \right)

A)
 <strong>Sketch a graph of the rectangular equation. [Hint: First convert the equation to polar coordinates.]  \left( x ^ { 2 } + y ^ { 2 } + 3 y \right) ^ { 2 } = 9 \left( x ^ { 2 } + y ^ { 2 } \right) </strong> A)   B)   C)   D)
B)
 <strong>Sketch a graph of the rectangular equation. [Hint: First convert the equation to polar coordinates.]  \left( x ^ { 2 } + y ^ { 2 } + 3 y \right) ^ { 2 } = 9 \left( x ^ { 2 } + y ^ { 2 } \right) </strong> A)   B)   C)   D)
C)
 <strong>Sketch a graph of the rectangular equation. [Hint: First convert the equation to polar coordinates.]  \left( x ^ { 2 } + y ^ { 2 } + 3 y \right) ^ { 2 } = 9 \left( x ^ { 2 } + y ^ { 2 } \right) </strong> A)   B)   C)   D)
D)
 <strong>Sketch a graph of the rectangular equation. [Hint: First convert the equation to polar coordinates.]  \left( x ^ { 2 } + y ^ { 2 } + 3 y \right) ^ { 2 } = 9 \left( x ^ { 2 } + y ^ { 2 } \right) </strong> A)   B)   C)   D)
Unlock Deck
Unlock for access to all 150 flashcards in this deck.
Unlock Deck
k this deck
77
Find a rectangular-coordinate equation for the curve by eliminating the parameter. <strong>Find a rectangular-coordinate equation for the curve by eliminating the parameter.  </strong> A)   B)   C)   D)   E) none of these

A) <strong>Find a rectangular-coordinate equation for the curve by eliminating the parameter.  </strong> A)   B)   C)   D)   E) none of these
B) <strong>Find a rectangular-coordinate equation for the curve by eliminating the parameter.  </strong> A)   B)   C)   D)   E) none of these
C) <strong>Find a rectangular-coordinate equation for the curve by eliminating the parameter.  </strong> A)   B)   C)   D)   E) none of these
D) <strong>Find a rectangular-coordinate equation for the curve by eliminating the parameter.  </strong> A)   B)   C)   D)   E) none of these
E) none of these
Unlock Deck
Unlock for access to all 150 flashcards in this deck.
Unlock Deck
k this deck
79
If a projectile is fired with an initial speed of <strong>If a projectile is fired with an initial speed of   ft/s at an angle   Above the horizontal, then its position after t seconds is given by the parametric equations   Where x and y are measured in feet. Suppose a gun fires a bullet into the air with an initial speed of 1024 ft/s at an angle of   To the horizontal. How far from the gun will the bullet hit the ground?</strong> A)   B)   C)   D)   E)   ft/s at an angle <strong>If a projectile is fired with an initial speed of   ft/s at an angle   Above the horizontal, then its position after t seconds is given by the parametric equations   Where x and y are measured in feet. Suppose a gun fires a bullet into the air with an initial speed of 1024 ft/s at an angle of   To the horizontal. How far from the gun will the bullet hit the ground?</strong> A)   B)   C)   D)   E)
Above the horizontal, then its position after t seconds is given by the parametric equations <strong>If a projectile is fired with an initial speed of   ft/s at an angle   Above the horizontal, then its position after t seconds is given by the parametric equations   Where x and y are measured in feet. Suppose a gun fires a bullet into the air with an initial speed of 1024 ft/s at an angle of   To the horizontal. How far from the gun will the bullet hit the ground?</strong> A)   B)   C)   D)   E)
Where x and y are measured in feet. Suppose a gun fires a bullet into the air with an initial speed of 1024 ft/s at an angle of <strong>If a projectile is fired with an initial speed of   ft/s at an angle   Above the horizontal, then its position after t seconds is given by the parametric equations   Where x and y are measured in feet. Suppose a gun fires a bullet into the air with an initial speed of 1024 ft/s at an angle of   To the horizontal. How far from the gun will the bullet hit the ground?</strong> A)   B)   C)   D)   E)
To the horizontal. How far from the gun will the bullet hit the ground?

A) <strong>If a projectile is fired with an initial speed of   ft/s at an angle   Above the horizontal, then its position after t seconds is given by the parametric equations   Where x and y are measured in feet. Suppose a gun fires a bullet into the air with an initial speed of 1024 ft/s at an angle of   To the horizontal. How far from the gun will the bullet hit the ground?</strong> A)   B)   C)   D)   E)
B) <strong>If a projectile is fired with an initial speed of   ft/s at an angle   Above the horizontal, then its position after t seconds is given by the parametric equations   Where x and y are measured in feet. Suppose a gun fires a bullet into the air with an initial speed of 1024 ft/s at an angle of   To the horizontal. How far from the gun will the bullet hit the ground?</strong> A)   B)   C)   D)   E)
C) <strong>If a projectile is fired with an initial speed of   ft/s at an angle   Above the horizontal, then its position after t seconds is given by the parametric equations   Where x and y are measured in feet. Suppose a gun fires a bullet into the air with an initial speed of 1024 ft/s at an angle of   To the horizontal. How far from the gun will the bullet hit the ground?</strong> A)   B)   C)   D)   E)
D) <strong>If a projectile is fired with an initial speed of   ft/s at an angle   Above the horizontal, then its position after t seconds is given by the parametric equations   Where x and y are measured in feet. Suppose a gun fires a bullet into the air with an initial speed of 1024 ft/s at an angle of   To the horizontal. How far from the gun will the bullet hit the ground?</strong> A)   B)   C)   D)   E)
E) <strong>If a projectile is fired with an initial speed of   ft/s at an angle   Above the horizontal, then its position after t seconds is given by the parametric equations   Where x and y are measured in feet. Suppose a gun fires a bullet into the air with an initial speed of 1024 ft/s at an angle of   To the horizontal. How far from the gun will the bullet hit the ground?</strong> A)   B)   C)   D)   E)
Unlock Deck
Unlock for access to all 150 flashcards in this deck.
Unlock Deck
k this deck
80
Convert the rectangular coordinates to polar coordinates with <strong>Convert the rectangular coordinates to polar coordinates with    </strong> A)   B)   C)   D)   E)   <strong>Convert the rectangular coordinates to polar coordinates with    </strong> A)   B)   C)   D)   E)

A) <strong>Convert the rectangular coordinates to polar coordinates with    </strong> A)   B)   C)   D)   E)
B) <strong>Convert the rectangular coordinates to polar coordinates with    </strong> A)   B)   C)   D)   E)
C) <strong>Convert the rectangular coordinates to polar coordinates with    </strong> A)   B)   C)   D)   E)
D) <strong>Convert the rectangular coordinates to polar coordinates with    </strong> A)   B)   C)   D)   E)
E) <strong>Convert the rectangular coordinates to polar coordinates with    </strong> A)   B)   C)   D)   E)
Unlock Deck
Unlock for access to all 150 flashcards in this deck.
Unlock Deck
k this deck
81
Sketch a graph of the polar equation. r=3cosθr=\sqrt{3}-\cos \theta

A)
 <strong>Sketch a graph of the polar equation.  r=\sqrt{3}-\cos \theta </strong> A)   B)   C)   D)
B)
 <strong>Sketch a graph of the polar equation.  r=\sqrt{3}-\cos \theta </strong> A)   B)   C)   D)
C)
 <strong>Sketch a graph of the polar equation.  r=\sqrt{3}-\cos \theta </strong> A)   B)   C)   D)
D)
 <strong>Sketch a graph of the polar equation.  r=\sqrt{3}-\cos \theta </strong> A)   B)   C)   D)
Unlock Deck
Unlock for access to all 150 flashcards in this deck.
Unlock Deck
k this deck
82
Let z1=2(cosπ6+isinπ6)z _ { 1 } = \sqrt { 2 } \left( \cos \frac { \pi } { 6 } + i \sin \frac { \pi } { 6 } \right) and z2=2(cosπ3+isinπ3)z _ { 2 } = \sqrt { 2 } \left( \cos \frac { \pi } { 3 } + i \sin \frac { \pi } { 3 } \right) ) Find Z1Z2Z _ { 1 } Z _ { 2 }

A) 2+i\sqrt { 2 } + i
B) 22i2 - 2 i
C) 22\frac { \sqrt { 2 } } { 2 }
D) 2j2 j
E)none
Unlock Deck
Unlock for access to all 150 flashcards in this deck.
Unlock Deck
k this deck
83
Convert the polar equation to rectangular coordinates. <strong>Convert the polar equation to rectangular coordinates.  </strong> A)   B)   C)   D)   E)none

A) <strong>Convert the polar equation to rectangular coordinates.  </strong> A)   B)   C)   D)   E)none
B) <strong>Convert the polar equation to rectangular coordinates.  </strong> A)   B)   C)   D)   E)none
C) <strong>Convert the polar equation to rectangular coordinates.  </strong> A)   B)   C)   D)   E)none
D) <strong>Convert the polar equation to rectangular coordinates.  </strong> A)   B)   C)   D)   E)none
E)none
Unlock Deck
Unlock for access to all 150 flashcards in this deck.
Unlock Deck
k this deck
86
Find a rectangular-coordinate equation for the curve by eliminating the parameter. x=t+2,y=tt+2x = t + 2 , y = \frac { t } { t + 2 }

A) y=x4xy = \frac { x - 4 } { x }

B) y=x2xy = \frac { x - 2 } { x }

C) y=x24xy = \frac { x - 2 } { 4 x }

D) y=2x12xy = \frac { 2 x - 1 } { 2 x }

E) none of these
Unlock Deck
Unlock for access to all 150 flashcards in this deck.
Unlock Deck
k this deck
locked card icon
Unlock Deck
Unlock for access to all 150 flashcards in this deck.