Exam 9: Vectors in Two and Three Dimensions

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Let z1=2(cos5π6+isin5π6)z _ { 1 } = 2 \left( \cos \frac { 5 \pi } { 6 } + i \sin \frac { 5 \pi } { 6 } \right) and z2=5(cosπ3+isinπ3)z _ { 2 } = 5 \left( \cos \frac { \pi } { 3 } + i \sin \frac { \pi } { 3 } \right) . Find Z1Z2Z _ { 1 } Z _ { 2 }

Free
(Essay)
5.0/5
(37)
Correct Answer:
Verified

z1z2=25(cos(5π6+π3)+isin(5π6+π3))=10(cos7π6+isin7π6)z _ { 1 } z _ { 2 } = 2 \cdot 5 \left( \cos \left( \frac { 5 \pi } { 6 } + \frac { \pi } { 3 } \right) + i \sin \left( \frac { 5 \pi } { 6 } + \frac { \pi } { 3 } \right) \right) =10 \left( \cos \frac { 7 \pi } { 6 } + i \sin \frac { 7 \pi } { 6 } \right)

Find the modulus and the argument for the complex number. z=15z = - 15

Free
(Multiple Choice)
4.9/5
(31)
Correct Answer:
Verified

B

Which of the following is not a polar point representation for the point (3,π/3)( 3 , \pi / 3 ) ?

Free
(Multiple Choice)
4.9/5
(27)
Correct Answer:
Verified

C

Convert the equation to polar form. x2y2=9x ^ { 2 } - y ^ { 2 } = 9

(Multiple Choice)
4.8/5
(26)

Let z1=4(cosπ6+isinπ6)z _ { 1 } = 4 \left( \cos \frac { \pi } { 6 } + i \sin \frac { \pi } { 6 } \right) and z2=5(cosπ3+isinπ3)z _ { 2 } = 5 \left( \cos \frac { \pi } { 3 } + i \sin \frac { \pi } { 3 } \right) . Find Z1Z2Z _ { 1 } Z _ { 2 }

(Short Answer)
4.7/5
(31)

Use DeMoivre's Theorem to find the indicated power. (1+i)20( 1 + i ) ^ { 20 }

(Multiple Choice)
4.9/5
(43)

If a projectile is fired with an initial speed of v0v _ { 0 } ft/s at an angle α\alpha above the horizontal, then its position after t seconds is given by the parametric equations x=(v0cosα)t and y=(v0sinα)t16t2x = \left( v _ { 0 } \cos \alpha \right) t \text { and } y = \left( v _ { 0 } \sin \alpha \right) t - 16 t ^ { 2 } where x and y are measured in feet.Suppose a gun fires a bullet into the air with an initial speed of 1024 ft/s at an angle of 3030 ^ { \circ } to the horizontal. After how many seconds will the bullet hit the ground?

(Short Answer)
4.8/5
(23)

Test the polar equation for symmetry with respect to the polar axis, the pole, and the line θ=π/2\theta = \pi / 2 . r=3cosθcscθr = 3 \cos \theta \csc \theta

(Short Answer)
4.8/5
(39)

Let z1=2(cos5π6+isin5π6)z _ { 1 } = 2 \left( \cos \frac { 5 \pi } { 6 } + i \sin \frac { 5 \pi } { 6 } \right) and z2=5(cosπ3+isinπ3)z _ { 2 } = 5 \left( \cos\frac { \pi } { 3 } + i \sin \frac { \pi } { 3 } \right) . Find Z1Z2Z _ { 1 } Z _ { 2 }

(Essay)
4.8/5
(43)

Find the modulus and the argument for the complex number. z=iz = - i

(Multiple Choice)
4.8/5
(37)

Convert the equation to polar form. x2+y2=4x ^ { 2 } + y ^ { 2 } = 4

(Multiple Choice)
4.8/5
(29)

Convert the polar equation to rectangular coordinates. r6=secθ\frac {r } { 6 } = \sec \theta

(Short Answer)
4.8/5
(42)

Convert the equation to polar form. x2y2=4x ^ { 2 } - y ^ { 2 } = 4

(Short Answer)
4.8/5
(32)

Find the rectangular-coordinate equation for the parametric equations given. x=2cos2t,y=2sin2tx = 2 \cos ^ { 2 } t , y = 2 \sin ^ { 2 } t

(Multiple Choice)
4.8/5
(32)

Solve the equation. x2i=0x ^ { 2 } - i = 0

(Multiple Choice)
4.9/5
(33)

Test the polar equation for symmetry with respect to the polar axis, the pole, and the line θ=π/2\theta = \pi / 2 . r2=cos2θr ^ { 2 } = \cos 2 \theta

(Short Answer)
4.9/5
(41)

Convert the polar equation to rectangular coordinates. r6=secθ\frac {r } { 6 } = \sec \theta

(Multiple Choice)
4.8/5
(31)

Convert the rectangular coordinates to polar coordinates with r>0 and 0θ<2πr > 0 \text { and } 0 \leq \theta < 2 \pi (0,2)( 0 , - \sqrt { 2 } )

(Short Answer)
4.9/5
(29)

Graph the polar equation r=8cosθr = 8 \cos \theta .

(Short Answer)
4.8/5
(28)

Convert the polar equation to rectangular coordinates. r6=secθ\frac { r } { 6 } = \sec \theta

(Short Answer)
4.8/5
(36)
Showing 1 - 20 of 115
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)