Deck 10: Characteristics of Functions and Their Graphs

Full screen (f)
exit full mode
Question
Classify the function as continuous or discontinuous.
<strong>Classify the function as continuous or discontinuous.  </strong> A)continuous B)discontinuous <div style=padding-top: 35px>

A)continuous
B)discontinuous
Use Space or
up arrow
down arrow
to flip the card.
Question
Classify the function as continuous or discontinuous.
<strong>Classify the function as continuous or discontinuous.  </strong> A)discontinuous B)continuous <div style=padding-top: 35px>

A)discontinuous
B)continuous
Question
Classify the function as continuous or discontinuous.
<strong>Classify the function as continuous or discontinuous.  </strong> A)discontinuous B)continuous <div style=padding-top: 35px>

A)discontinuous
B)continuous
Question
Graph the piecewise function.

- f(x)={1 if x1x+3 if x<1f ( x ) = \left\{ \begin{array} { l l } 1 & \text { if } x \geq 1 \\x + 3 & \text { if } x < 1\end{array} \right.

 <strong>Graph the piecewise function.  - f ( x ) = \left\{ \begin{array} { l l } 1 & \text { if } x \geq 1 \\ x + 3 & \text { if } x < 1 \end{array} \right.    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>

A)  <strong>Graph the piecewise function.  - f ( x ) = \left\{ \begin{array} { l l } 1 & \text { if } x \geq 1 \\ x + 3 & \text { if } x < 1 \end{array} \right.    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
B)  <strong>Graph the piecewise function.  - f ( x ) = \left\{ \begin{array} { l l } 1 & \text { if } x \geq 1 \\ x + 3 & \text { if } x < 1 \end{array} \right.    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
C)  <strong>Graph the piecewise function.  - f ( x ) = \left\{ \begin{array} { l l } 1 & \text { if } x \geq 1 \\ x + 3 & \text { if } x < 1 \end{array} \right.    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
D)  <strong>Graph the piecewise function.  - f ( x ) = \left\{ \begin{array} { l l } 1 & \text { if } x \geq 1 \\ x + 3 & \text { if } x < 1 \end{array} \right.    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
Question
Classify the function as continuous or discontinuous. If the function is not continuous, identify the point(s)of
discontinuity.

- f(x)=3x2f ( x ) = 3 ^ { x } - 2

A)discontinuous at x = 0
B)continuous
C)discontinuous at x = -2
D)discontinuous at x = 2
Question
Classify the function as continuous or discontinuous.
<strong>Classify the function as continuous or discontinuous.  </strong> A)continuous B)discontinuous <div style=padding-top: 35px>

A)continuous
B)discontinuous
Question
Classify the function as continuous or discontinuous.
<strong>Classify the function as continuous or discontinuous.  </strong> A)discontinuous B)continuous <div style=padding-top: 35px>

A)discontinuous
B)continuous
Question
Classify the function as continuous or discontinuous. If the function is not continuous, identify the point(s)of
discontinuity.

- f(x)=6(x+3)2f ( x ) = 6 ( x + 3 ) ^ { 2 }

A)continuous
B)discontinuous at x = -3
C)  discontinuous at x=12\text { discontinuous at } x = \frac { 1 } { 2 }
D)discontinuous at x = 3
Question
Identify the local maximum and minimum of the graphed function.
<strong>Identify the local maximum and minimum of the graphed function.  </strong> A)local maximum: (-1, 1) B)local minimum: (-1, 1)local minimum: (-3, 5)local maximum: (-3, 5) C)local minimum: (1, -1) D)local maximum: (1, -1)local maximum: (5, -3)local minimum: (5, -3) <div style=padding-top: 35px>

A)local maximum: (-1, 1)
B)local minimum: (-1, 1)local minimum: (-3, 5)local maximum: (-3, 5)
C)local minimum: (1, -1)
D)local maximum: (1, -1)local maximum: (5, -3)local minimum: (5, -3)
Question
Classify the function as continuous or discontinuous. If the function is not continuous, identify the point(s)of
discontinuity.

- f(x)=5x+2x2+4f ( x ) = \frac { 5 x + 2 } { x ^ { 2 } + 4 }

A)continuous
B)discontinuous at x = -2 and x = 2
C)  discontinuous at x=2,x=2 and x=25\text { discontinuous at } x = - 2 , x = 2 \text { and } x = \frac { 2 } { 5 }
D)discontinuous at x = 4
Question
Graph the piecewise function.

- f(x)={x+5 if x>4(x+5) if x4f ( x ) = \left\{ \begin{array} { l l } x + 5 & \text { if } x > 4 \\- ( x + 5 ) & \text { if } x \leq 4\end{array} \right.

 <strong>Graph the piecewise function.  - f ( x ) = \left\{ \begin{array} { l l } x + 5 & \text { if } x > 4 \\ - ( x + 5 ) & \text { if } x \leq 4 \end{array} \right.    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>

A)  <strong>Graph the piecewise function.  - f ( x ) = \left\{ \begin{array} { l l } x + 5 & \text { if } x > 4 \\ - ( x + 5 ) & \text { if } x \leq 4 \end{array} \right.    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
B)  <strong>Graph the piecewise function.  - f ( x ) = \left\{ \begin{array} { l l } x + 5 & \text { if } x > 4 \\ - ( x + 5 ) & \text { if } x \leq 4 \end{array} \right.    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
C)  <strong>Graph the piecewise function.  - f ( x ) = \left\{ \begin{array} { l l } x + 5 & \text { if } x > 4 \\ - ( x + 5 ) & \text { if } x \leq 4 \end{array} \right.    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
D)  <strong>Graph the piecewise function.  - f ( x ) = \left\{ \begin{array} { l l } x + 5 & \text { if } x > 4 \\ - ( x + 5 ) & \text { if } x \leq 4 \end{array} \right.    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
Question
Classify the function as continuous or discontinuous. If the function is not continuous, identify the point(s)of
discontinuity.

-f(x)= 4x + 3

A)discontinuous at x = -3
B)  discontinuous at x=34\text { discontinuous at } x = - \frac { 3 } { 4 }
C)  discontinuous at x=34\text { discontinuous at } x = \frac { 3 } { 4 }
D)continuous
Question
Classify the function as continuous or discontinuous. If the function is not continuous, identify the point(s)of
discontinuity.

- f(x)=x3f ( x ) = \llbracket \frac { x } { 3 } \rrbracket

A)discontinuous at x = . . . -3, -2, -1, 0, 1, 2, 3, . . .
B)continuous
C)  discontinuous at x=1,23,13,0,13,23,1,\text { discontinuous at } x = \ldots - 1 , - \frac { 2 } { 3 } , - \frac { 1 } { 3 } , 0 , \frac { 1 } { 3 } , \frac { 2 } { 3 } , 1 , \ldots
D)discontinuous at x = . . . -9, -6, -3, 0, 3, 6, 9, . . .
Question
Classify the function as continuous or discontinuous. If the function is not continuous, identify the point(s)of
discontinuity.

- f(x)=5x+5f ( x ) = \frac { 5 } { x + 5 }

A)discontinuous at x = -5
B)discontinuous at x = - 1
C)continuous
D)discontinuous at x = 5
Question
Classify the function as continuous or discontinuous.
<strong>Classify the function as continuous or discontinuous.  </strong> A)continuous B)discontinuous <div style=padding-top: 35px>

A)continuous
B)discontinuous
Question
Classify the function as continuous or discontinuous. If the function is not continuous, identify the point(s)of
discontinuity.

- f(x)=log4(x+2)f ( x ) = \log _ { 4 } ( x + 2 )

A)discontinuous at x = 2
B)discontinuous at x = -2
C)continuous
D)discontinuous at x = 0
Question
Classify the function as continuous or discontinuous.
<strong>Classify the function as continuous or discontinuous.  </strong> A)discontinuous B)continuous <div style=padding-top: 35px>

A)discontinuous
B)continuous
Question
Classify the function as continuous or discontinuous. If the function is not continuous, identify the point(s)of
discontinuity.

- f(x)=7(x6)2f ( x ) = 7 ( x - 6 ) ^ { 2 }

A)continuous
B)discontinuous at x = 6
C)  discontinuous at x=67\text { discontinuous at } x = \frac { 6 } { 7 }
D)discontinuous at x = -6
Question
Classify the function as continuous or discontinuous. If the function is not continuous, identify the point(s)of
discontinuity.

- f(x)=x2+8x+12f ( x ) = x ^ { 2 } + 8 x + 12

A)discontinuous at x = 2 and x = 6
B)discontinuous at x = -2 and x = -6
C)continuous
D)  discontinuous at x=23\text { discontinuous at } x = - \frac { 2 } { 3 }
Question
Graph the piecewise function.

- g(x)={x1 if x<22x2 if x>2g ( x ) = \left\{ \begin{array} { l l } - x - 1 & \text { if } x < - 2 \\- 2 x - 2 & \text { if } x > - 2\end{array} \right.

 <strong>Graph the piecewise function.  - g ( x ) = \left\{ \begin{array} { l l } - x - 1 & \text { if } x < - 2 \\ - 2 x - 2 & \text { if } x > - 2 \end{array} \right.    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>

A)  <strong>Graph the piecewise function.  - g ( x ) = \left\{ \begin{array} { l l } - x - 1 & \text { if } x < - 2 \\ - 2 x - 2 & \text { if } x > - 2 \end{array} \right.    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
B)  <strong>Graph the piecewise function.  - g ( x ) = \left\{ \begin{array} { l l } - x - 1 & \text { if } x < - 2 \\ - 2 x - 2 & \text { if } x > - 2 \end{array} \right.    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
C)  <strong>Graph the piecewise function.  - g ( x ) = \left\{ \begin{array} { l l } - x - 1 & \text { if } x < - 2 \\ - 2 x - 2 & \text { if } x > - 2 \end{array} \right.    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
D)  <strong>Graph the piecewise function.  - g ( x ) = \left\{ \begin{array} { l l } - x - 1 & \text { if } x < - 2 \\ - 2 x - 2 & \text { if } x > - 2 \end{array} \right.    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
Question
Graph the greatest integer function.

- f(x)=13xf ( x ) = \llbracket \frac { 1 } { 3 } x \rrbracket

 <strong>Graph the greatest integer function.  - f ( x ) = \llbracket \frac { 1 } { 3 } x \rrbracket    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>

A)  <strong>Graph the greatest integer function.  - f ( x ) = \llbracket \frac { 1 } { 3 } x \rrbracket    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
B)  <strong>Graph the greatest integer function.  - f ( x ) = \llbracket \frac { 1 } { 3 } x \rrbracket    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
C)  <strong>Graph the greatest integer function.  - f ( x ) = \llbracket \frac { 1 } { 3 } x \rrbracket    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
D)  <strong>Graph the greatest integer function.  - f ( x ) = \llbracket \frac { 1 } { 3 } x \rrbracket    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
Question
Graph the piecewise function.

- f(x)={2x if x22x+2 if 2<x2x+1 if x>2f ( x ) = \left\{ \begin{array} { l l } - 2 x & \text { if } x \leq - 2 \\- 2 x + 2 & \text { if } - 2 < x \leq 2 \\x + 1 & \text { if } x > 2\end{array} \right.

 <strong>Graph the piecewise function.  - f ( x ) = \left\{ \begin{array} { l l } - 2 x & \text { if } x \leq - 2 \\ - 2 x + 2 & \text { if } - 2 < x \leq 2 \\ x + 1 & \text { if } x > 2 \end{array} \right.    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>

A)  <strong>Graph the piecewise function.  - f ( x ) = \left\{ \begin{array} { l l } - 2 x & \text { if } x \leq - 2 \\ - 2 x + 2 & \text { if } - 2 < x \leq 2 \\ x + 1 & \text { if } x > 2 \end{array} \right.    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
B)  <strong>Graph the piecewise function.  - f ( x ) = \left\{ \begin{array} { l l } - 2 x & \text { if } x \leq - 2 \\ - 2 x + 2 & \text { if } - 2 < x \leq 2 \\ x + 1 & \text { if } x > 2 \end{array} \right.    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
C)  <strong>Graph the piecewise function.  - f ( x ) = \left\{ \begin{array} { l l } - 2 x & \text { if } x \leq - 2 \\ - 2 x + 2 & \text { if } - 2 < x \leq 2 \\ x + 1 & \text { if } x > 2 \end{array} \right.    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
D)  <strong>Graph the piecewise function.  - f ( x ) = \left\{ \begin{array} { l l } - 2 x & \text { if } x \leq - 2 \\ - 2 x + 2 & \text { if } - 2 < x \leq 2 \\ x + 1 & \text { if } x > 2 \end{array} \right.    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
Question
Find the real zeros of the function, state their multiplicities if it is a number other than 1.

- f(x)=x225f ( x ) = x ^ { 2 } - 25

A)x = 5, multiplicity: 2
B) x=5,x=5x = \sqrt { 5 } , x = - \sqrt { 5 }
C)x = -5, multiplicity: 2
D)x = 5, x = -5
Question
Find the real zeros of the function, state their multiplicities if it is a number other than 1.

- f(x)=x216x+64f ( x ) = x ^ { 2 } - 16 x + 64

A)x = -8, multiplicity: 2
B)x = 8, multiplicity: 2
C)x = 16, multiplicity: 2
D)x = 8, x = -8
Question
Determine whether the function is an even function, an odd function, or neither.

- f(x)=x5x4f ( x ) = x ^ { 5 } - x ^ { 4 }

A)Odd
B)Even
C)Neither
Question
Find the real zeros of the function, state their multiplicities if it is a number other than 1.

- f(x)=x3+x220xf ( x ) = x ^ { 3 } + x ^ { 2 } - 20 x

A)x = 3, x = 4
B)x = 0, x = 3, x = 4
C)x = 0, x = - 5, x = 4
D)x = - 5, x = 4
Question
Determine whether the function is an even function, an odd function, or neither.

- f(x)=x3+x24f ( x ) = x ^ { 3 } + x ^ { 2 } - 4

A)Odd
B)Neither
C)Even
Question
Determine whether the function is an even function, an odd function, or neither.

- f(x)=x34xf ( x ) = x ^ { 3 } - 4 x

A)Odd
B)Neither
C)Even
Question
Determine whether the function is an even function, an odd function, or neither.

- g(x)=e3x+5g ( x ) = e ^ { 3 x } + 5

A)Odd
B)Neither
C)Even
Question
Graph the greatest integer function.

- f(x)=x+43f ( x ) = \llbracket \frac { x + 4 } { 3 } \rrbracket

 <strong>Graph the greatest integer function.  - f ( x ) = \llbracket \frac { x + 4 } { 3 } \rrbracket    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>

A)  <strong>Graph the greatest integer function.  - f ( x ) = \llbracket \frac { x + 4 } { 3 } \rrbracket    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
B)  <strong>Graph the greatest integer function.  - f ( x ) = \llbracket \frac { x + 4 } { 3 } \rrbracket    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
C)  <strong>Graph the greatest integer function.  - f ( x ) = \llbracket \frac { x + 4 } { 3 } \rrbracket    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
D)  <strong>Graph the greatest integer function.  - f ( x ) = \llbracket \frac { x + 4 } { 3 } \rrbracket    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
Question
Solve the problem.

-Sam Wright wants to stock up on cans of cat food which are selling for $0.95 per can. Write a greatest integer function that represents the number of cans he can purchase with x dollars.

A) f(x)=0.95xf ( x ) = 0.95 \llbracket x \rrbracket
B) f(x)=0.95xf ( x ) = \llbracket 0.95 x \rrbracket
C) f(x)=x0.95f ( x ) = \llbracket \frac { x } { 0.95 } \rrbracket
D) f(x)=x0.95f ( x ) = \frac { \llbracket x \rrbracket } { 0.95 }
Question
Find the real zeros of the function, state their multiplicities if it is a number other than 1.

- f(x)=5(x+3)(x+7)4f ( x ) = 5 ( x + 3 ) ( x + 7 ) ^ { 4 }

A)x = 3, x = 4
B)x = -3, x = 4
C) x=3x=7, multiplicity: 4x=4\begin{array} { l } x = 3 \\x = 7 , \text { multiplicity: } 4 \\x = 4\end{array}
D) x=3x=7, multiplicity: 4\begin{array} { l } x = - 3 \\x = - 7 , \text { multiplicity: } 4\end{array}
Question
Find the real zeros of the function, state their multiplicities if it is a number other than 1.

- f(x)=2x226f ( x ) = 2 x ^ { 2 } - 26

A) x=13, mutiplicity: 2x = \sqrt { 13 } , \text { mutiplicity: } 2
B)x = -13, x = 13
C) x=13,x=13x = - \sqrt { 13 } , x = \sqrt { 13 }
D)x = 13, mutiplicity: 2
Question
Graph the greatest integer function.

- f(x)=x2f ( x ) = \llbracket x - 2 \rrbracket

 <strong>Graph the greatest integer function.  - f ( x ) = \llbracket x - 2 \rrbracket    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>

A)  <strong>Graph the greatest integer function.  - f ( x ) = \llbracket x - 2 \rrbracket    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
B)  <strong>Graph the greatest integer function.  - f ( x ) = \llbracket x - 2 \rrbracket    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
C)  <strong>Graph the greatest integer function.  - f ( x ) = \llbracket x - 2 \rrbracket    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
D)  <strong>Graph the greatest integer function.  - f ( x ) = \llbracket x - 2 \rrbracket    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
Question
Find the real zeros of the function, state their multiplicities if it is a number other than 1.

- f(x)=x2+10x+21f ( x ) = x ^ { 2 } + 10 x + 21

A) x=21,x=21x = - \sqrt { 21 } , x = \sqrt { 21 }
B) x=7,x=3x = - 7 , x = - 3
C) x=7,x=28x = - 7 , x = 28
D) x=3,x=7x = 3 , x = 7
Question
Solve the problem.

-A paddle boat rental company rents paddle boats by the hour. They charge $7.00 per hour for the first 3 rental hours and $5.00 per hour for each additional hour. Write a piecewise function to represent the cost of renting a
Paddle boat as a function of hours it is rented.

A) f(x)={7x if 0<x321x+5x3 if x>3f ( x ) = \left\{ \begin{array} { l l } 7 \llbracket x \rrbracket & \text { if } 0 < x \leq 3 \\21 \llbracket x \rrbracket + 5 \llbracket x - 3 \rrbracket & \text { if } x > 3\end{array} \right.
B) f(x)={7x if 0<x37x+5x3 if x>3f ( x ) = \left\{ \begin{array} { l l } 7 \llbracket x \rrbracket & \text { if } 0 < x \leq 3 \\7 \llbracket x \rrbracket + 5 \llbracket x - 3 \rrbracket & \text { if } x > 3\end{array} \right.
C) f(x)={7x if 0<x321+5x3 if x>3f ( x ) = \left\{ \begin{array} { l l } 7 \llbracket x \rrbracket & \text { if } 0 < x \leq 3 \\21 + 5 \llbracket x - 3 \rrbracket & \text { if } x > 3\end{array} \right.
D) f(x)={7x if 0<x35x3 if x>3f ( x ) = \left\{ \begin{array} { l l } 7 \llbracket x \rrbracket & \text { if } 0 < x \leq 3 \\5 \llbracket x - 3 \rrbracket & \text { if } x > 3\end{array} \right.
Question
Determine whether the function is an even function, an odd function, or neither.

- f(x)=2x2+x4f ( x ) = 2 x ^ { 2 } + x ^ { 4 }

A)Odd
B)Even
C)Neither
Question
Determine whether the function is an even function, an odd function, or neither.

- f(x)=3x5+x3f ( x ) = - 3 x ^ { 5 } + x ^ { 3 }

A)Even
B)Neither
C)Odd
Question
Graph the piecewise function.

- g(x)={5x+5 if x115x+65 if x>1g ( x ) = \left\{ \begin{array} { l l } 5 x + 5 & \text { if } x \leq 1 \\- \frac { 1 } { 5 } x + \frac { 6 } { 5 } & \text { if } x > 1\end{array} \right.

 <strong>Graph the piecewise function.  - g ( x ) = \left\{ \begin{array} { l l } 5 x + 5 & \text { if } x \leq 1 \\ - \frac { 1 } { 5 } x + \frac { 6 } { 5 } & \text { if } x > 1 \end{array} \right.    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>

A)  <strong>Graph the piecewise function.  - g ( x ) = \left\{ \begin{array} { l l } 5 x + 5 & \text { if } x \leq 1 \\ - \frac { 1 } { 5 } x + \frac { 6 } { 5 } & \text { if } x > 1 \end{array} \right.    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
B)  <strong>Graph the piecewise function.  - g ( x ) = \left\{ \begin{array} { l l } 5 x + 5 & \text { if } x \leq 1 \\ - \frac { 1 } { 5 } x + \frac { 6 } { 5 } & \text { if } x > 1 \end{array} \right.    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
C)  <strong>Graph the piecewise function.  - g ( x ) = \left\{ \begin{array} { l l } 5 x + 5 & \text { if } x \leq 1 \\ - \frac { 1 } { 5 } x + \frac { 6 } { 5 } & \text { if } x > 1 \end{array} \right.    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
D)  <strong>Graph the piecewise function.  - g ( x ) = \left\{ \begin{array} { l l } 5 x + 5 & \text { if } x \leq 1 \\ - \frac { 1 } { 5 } x + \frac { 6 } { 5 } & \text { if } x > 1 \end{array} \right.    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
Question
Determine whether the function is an even function, an odd function, or neither.

- g(x)=ex34g ( x ) = e ^ { x ^ { 3 } } - 4

A)Even
B)Neither
C)Odd
Question
Find the real zeros of the function, state their multiplicities if it is a number other than 1.

- f(x)=(x+1)(x4)(x24)f ( x ) = ( x + 1 ) ( x - 4 ) \left( x ^ { 2 } - 4 \right)

A) x=1,x=4x=2, multiplicity: 2\begin{array} { l } x = - 1 , x = 4 \\x = 2 , \text { multiplicity: } 2\end{array}
B) x=1,x=4x=2,x=2\begin{array} { l } x = - 1 , x = 4 \\x = 2 , x = - 2\end{array}
C) x=1,x=4x=2,x=2\begin{array} { l } x = 1 , x = - 4 \\x = 2 , x = - 2\end{array}
D) x=0\mathrm { x } = 0 , multiplicity: 2
x=2\mathrm { x } = 2 , multiplicity: 2
Question
Determine the maximum possible number of turning points for the graph of the function.

- f(x)=x2(x23)(4x+1)f ( x ) = x ^ { 2 } \left( x ^ { 2 } - 3 \right) ( 4 x + 1 )

A)4
B)16
C)5
D)2
Question
Find the x-intercepts of the function.

- f(x)=(x+15)2(x+9)5f ( x ) = \left( x + \frac { 1 } { 5 } \right) ^ { 2 } ( x + 9 ) ^ { 5 }

A) x-intercept: (15,0),x-intercept: (9,0)x \text {-intercept: } \left( - \frac { 1 } { 5 } , 0 \right) , x \text {-intercept: } ( 9,0 )
B) x-intercept: (15,0),x-intercept: (9,0)x \text {-intercept: } \left( \frac { 1 } { 5 } , 0 \right) , x \text {-intercept: } ( - 9,0 )
C) x-intercept: (15,0),x-intercept: (9,0)x \text {-intercept: } \left( \frac { 1 } { 5 } , 0 \right) , x \text {-intercept: } ( 9,0 )
D) x-intercept: (15,0),x-intercept: (9,0)\mathrm { x } \text {-intercept: } \left( - \frac { 1 } { 5 } , 0 \right) , \mathrm { x } \text {-intercept: } ( - 9,0 )
Question
Determine the maximum possible number of turning points for the graph of the function.

- f(x)=x24x21f ( x ) = - x ^ { 2 } - 4 x - 21

A)0
B)1
C)3
D)2
Question
Find the real zeros of the function, state their multiplicities if it is a number other than 1.

- f(x)=(x+13)2(x2)3f ( x ) = \left( x + \frac { 1 } { 3 } \right) ^ { 2 } ( x - 2 ) ^ { 3 }

A) x=13x = - \frac { 1 } { 3 } , multiplicity: 2
x=2x = 2 , multiplicity: 3
B) x=13x = \frac { 1 } { 3 } , multiplicity: 2
x=2x = - 2 , multiplicity: 3
C) x=13x = - \frac { 1 } { 3 } , multiplicity: 2
x=2x = 2 , multiplicity: 2
D) x=13x = \frac { 1 } { 3 } , multiplicity: 2
x=2x = 2 , multiplicity: 3
Question
Find the x-intercepts of the function.

- f(x)=x5(x225)(x2+16)f ( x ) = x ^ { 5 } \left( x ^ { 2 } - 25 \right) \left( x ^ { 2 } + 16 \right)

A)x-intercept: (0, 0), x-intercept: (-5, 0)
B)x-intercept: (0, 0), x-intercept: (5, 0), x-intercept: (-5, 0)x-intercept: (4, 0), x-intercept: (-4, 0)
C)x-intercept: (0, 0), x-intercept: (5, 0)
D)x-intercept: (0, 0), x-intercept: (5, 0), x-intercept: (-5, 0)
Question
Determine the maximum possible number of turning points for the graph of the function.

- g(x)=52x+1g ( x ) = \frac { 5 } { 2 } x + 1

A)2
B)1
C)0
D)3
Question
Find the x-intercepts of the function.

- f(x)=(x+1)(x2)(x29)f ( x ) = ( x + 1 ) ( x - 2 ) \left( x ^ { 2 } - 9 \right)

A)x-intercept: (1, 0), x-intercept: (-2, 0)x-intercept: (3, 0), x-intercept: (-3, 0)
B)x-intercept: (-1, 0), x-intercept: (2, 0)x-intercept: (3, 0), x-intercept: (-3, 0)
C)x-intercept: (-1, 0), x-intercept: (2, 0), x-intercept: (3, 0)
D)x-intercept: (-1, 0), x-intercept: (2, 0), x-intercept: (-3, 0)
Question
Find the x-intercepts of the function.

- f(x)=x218x+81f ( x ) = x ^ { 2 } - 18 x + 81

A)x-intercept: (9, 0)
B)x-intercept: (-9, 0)
C)x-intercept: (18, 0)
D)x-intercept: (9, 0), x-intercept: (-9, 0)
Question
Find the x-intercepts of the function.

- f(x)=4x244f ( x ) = 4 x ^ { 2 } - 44

A)x-intercept: (12, 0)
B) x-intercept: (11,0)x \text {-intercept: } ( \sqrt { 11 } , 0 )
C)x-intercept: (-11, 0), x-intercept: (11, 0)
D) x-intercept: (11,0),x-intercept: (11,0)x \text {-intercept: } ( - \sqrt { 11 } , 0 ) , x \text {-intercept: } ( \sqrt { 11 } , 0 )
Question
Find the x-intercepts of the function.

- f(x)=x264f ( x ) = x ^ { 2 } - 64

A)x-intercept: (8, 0)
B) x-intercept: (22,0),x-intercept: (22,0)x \text {-intercept: } ( 2 \sqrt { 2 } , 0 ) , x \text {-intercept: } ( - 2 \sqrt { 2 } , 0 )
C)x-intercept: (8, 0), x-intercept: (-8, 0)
D)x-intercept: (-8, 0)
Question
Find the x-intercepts of the function.

- f(x)=x24x+3f ( x ) = x ^ { 2 } - 4 x + 3

A)x-intercept: (-3, 0), x-intercept: (-1, 0)
B) x-intercept: (3,0),x-intercept: (3,0)\mathrm { x } \text {-intercept: } ( - \sqrt { 3 } , 0 ) , \mathrm { x } \text {-intercept: } ( \sqrt { 3 } , 0 )
C)x-intercept: (1, 0), x-intercept: (2, 0)
D)x-intercept: (1, 0), x-intercept: (3, 0)
Question
Determine the maximum possible number of turning points for the graph of the function.

- f(x)=x2+6x3f ( x ) = x ^ { 2 } + 6 x ^ { 3 }

A)2
B)3
C)1
D)6
Question
Determine the maximum possible number of turning points for the graph of the function.

- f(x)=(x2)(x+3)(x5)(x1)f ( x ) = ( x - 2 ) ( x + 3 ) ( x - 5 ) ( x - 1 )

A)3
B)1
C)4
D)0
Question
Find the x-intercepts of the function.

- f(x)=x3+x230xf ( x ) = x ^ { 3 } + x ^ { 2 } - 30 x

A)x-intercept: (0, 0), x-intercept: (- 6, 0), x-intercept: (5, 0)
B)x-intercept: (4, 0), x-intercept: (5, 0)
C)x-intercept: (- 6, 0), x-intercept: (5, 0)
D)x-intercept: (0, 0), x-intercept: (4, 0), x-intercept: (5, 0)
Question
Find the real zeros of the function, state their multiplicities if it is a number other than 1.

- f(x)=x2(x24)(x2+36)f ( x ) = x ^ { 2 } \left( x ^ { 2 } - 4 \right) \left( x ^ { 2 } + 36 \right)

A) x=0x = 0 , multiplicity: 2
x=2,x=2x = 2 , x = - 2
B) x=0x = 0 , multiplicity: 2
x=2,x=2x=6,x=6\begin{array} { l } x = 2 , x = - 2 \\x = 6 , x = - 6\end{array}
C) x=0x = 0 , multiplicity: 2
x=2x = - 2 , multiplicity: 2
D) x=0\mathrm { x } = 0 , multiplicity: 2
x=2x = 2 , multiplicity: 2
Question
Determine the maximum possible number of turning points for the graph of the function.

- f(x)=(7x2)2(x21)(x+1)f ( x ) = ( 7 x - 2 ) ^ { 2 } \left( x ^ { 2 } - 1 \right) ( x + 1 )

A)4
B)2
C)5
D)35
Question
Determine the maximum possible number of turning points for the graph of the function.

- f(x)=(x+2)(x4)(4x6)f ( x ) = ( x + 2 ) ( x - 4 ) ( 4 x - 6 )

A)3
B)4
C)0
D)2
Question
Find the x-intercepts of the function.

- f(x)=2(x+4)(x5)3f ( x ) = 2 ( x + 4 ) ( x - 5 ) ^ { 3 }

A)x-intercept: (4, 0), x-intercept: (3, 0)
B)x-intercept: (4, 0), x-intercept: (-5, 0), x-intercept: (3, 0)
C)x-intercept: (-4, 0), x-intercept: (3, 0)
D)x-intercept: (-4, 0), x-intercept: (5, 0)
Question
Determine the maximum possible number of turning points for the graph of the function.

- f(x)=5x74x66x14f ( x ) = 5 x ^ { 7 } - 4 x ^ { 6 } - 6 x - 14

A)5
B)7
C)0
D)6
Question
Determine which of the given graphs could be the graph of the given polynomial function.

- P(x)=6x33x2+3x2P ( x ) = - 6 x ^ { 3 } - 3 x ^ { 2 } + 3 x - 2

A)  <strong>Determine which of the given graphs could be the graph of the given polynomial function.  - P ( x ) = - 6 x ^ { 3 } - 3 x ^ { 2 } + 3 x - 2 </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
B)  <strong>Determine which of the given graphs could be the graph of the given polynomial function.  - P ( x ) = - 6 x ^ { 3 } - 3 x ^ { 2 } + 3 x - 2 </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
C)  <strong>Determine which of the given graphs could be the graph of the given polynomial function.  - P ( x ) = - 6 x ^ { 3 } - 3 x ^ { 2 } + 3 x - 2 </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
D)  <strong>Determine which of the given graphs could be the graph of the given polynomial function.  - P ( x ) = - 6 x ^ { 3 } - 3 x ^ { 2 } + 3 x - 2 </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
Question
Determine the minimum degree of the polynomial function graphed.

- f(x)=x2(x5)(x1)f ( x ) = x ^ { 2 } ( x - 5 ) ( x - 1 )

 <strong>Determine the minimum degree of the polynomial function graphed.  - f ( x ) = x ^ { 2 } ( x - 5 ) ( x - 1 )    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>

A)  <strong>Determine the minimum degree of the polynomial function graphed.  - f ( x ) = x ^ { 2 } ( x - 5 ) ( x - 1 )    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
B)  <strong>Determine the minimum degree of the polynomial function graphed.  - f ( x ) = x ^ { 2 } ( x - 5 ) ( x - 1 )    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
C)  <strong>Determine the minimum degree of the polynomial function graphed.  - f ( x ) = x ^ { 2 } ( x - 5 ) ( x - 1 )    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
D)  <strong>Determine the minimum degree of the polynomial function graphed.  - f ( x ) = x ^ { 2 } ( x - 5 ) ( x - 1 )    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
Question
Determine the minimum degree of the polynomial function graphed.

- f(x)=x45x3+4x2f ( x ) = x ^ { 4 } - 5 x ^ { 3 } + 4 x ^ { 2 }

 <strong>Determine the minimum degree of the polynomial function graphed.  - f ( x ) = x ^ { 4 } - 5 x ^ { 3 } + 4 x ^ { 2 }    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>

A)  <strong>Determine the minimum degree of the polynomial function graphed.  - f ( x ) = x ^ { 4 } - 5 x ^ { 3 } + 4 x ^ { 2 }    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
B)  <strong>Determine the minimum degree of the polynomial function graphed.  - f ( x ) = x ^ { 4 } - 5 x ^ { 3 } + 4 x ^ { 2 }    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
C)  <strong>Determine the minimum degree of the polynomial function graphed.  - f ( x ) = x ^ { 4 } - 5 x ^ { 3 } + 4 x ^ { 2 }    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
D)  <strong>Determine the minimum degree of the polynomial function graphed.  - f ( x ) = x ^ { 4 } - 5 x ^ { 3 } + 4 x ^ { 2 }    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
Question
Determine the minimum degree of the polynomial function graphed.
<strong>Determine the minimum degree of the polynomial function graphed.  </strong> A)4 B)2 C)-3 D)3 <div style=padding-top: 35px>

A)4
B)2
C)-3
D)3
Question
Describe the location, either above the x-axis or below the x-axis, of the graph of the function for large positive values of
x and for large negative values of x.

- f(x)=9x5+x44x+6f ( x ) = - 9 x ^ { 5 } + x ^ { 4 } - 4 x + 6

A)large positive values of x: below x-axis
B)large positive values of x: below x-axis large negative values of x: below x-axis large negative values of x: above x-axis
C)large positive values of x: above x-axis
D)large positive values of x: above x-axis large negative values of x: above x-axis large negative values of x: below x-axis
Question
Determine the minimum degree of the polynomial function graphed.
<strong>Determine the minimum degree of the polynomial function graphed.  </strong> A)2 B)3 C)4 D)-4 <div style=padding-top: 35px>

A)2
B)3
C)4
D)-4
Question
Describe the location, either above the x-axis or below the x-axis, of the graph of the function for large positive values of
x and for large negative values of x.

- f(x)=9x3f ( x ) = - 9 x ^ { 3 }

A) large positive values of x: above x-axis , large negative values of x: above x-axis
B)llarge positive values of x: below x-axis , large negative values of x: above x-axis
C)large positive values of x: above x-axis , large negative values of x: below x-axis
D)large positive values of x: below x-axis , large negative values of x: below x-axis
Question
Determine the minimum degree of the polynomial function graphed.

- f(x)=(x2)(x1)(x+1)f ( x ) = ( x - 2 ) ( x - 1 ) ( x + 1 )

 <strong>Determine the minimum degree of the polynomial function graphed.  - f ( x ) = ( x - 2 ) ( x - 1 ) ( x + 1 )    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>

A)  <strong>Determine the minimum degree of the polynomial function graphed.  - f ( x ) = ( x - 2 ) ( x - 1 ) ( x + 1 )    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
B)  <strong>Determine the minimum degree of the polynomial function graphed.  - f ( x ) = ( x - 2 ) ( x - 1 ) ( x + 1 )    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
C)  <strong>Determine the minimum degree of the polynomial function graphed.  - f ( x ) = ( x - 2 ) ( x - 1 ) ( x + 1 )    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
D)  <strong>Determine the minimum degree of the polynomial function graphed.  - f ( x ) = ( x - 2 ) ( x - 1 ) ( x + 1 )    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
Question
Determine which of the given graphs could be the graph of the given polynomial function.

- P(x)=4x5+5x316x2+8P ( x ) = 4 x ^ { 5 } + 5 x ^ { 3 } - 16 x ^ { 2 } + 8

A)  <strong>Determine which of the given graphs could be the graph of the given polynomial function.  - P ( x ) = 4 x ^ { 5 } + 5 x ^ { 3 } - 16 x ^ { 2 } + 8 </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
B)  <strong>Determine which of the given graphs could be the graph of the given polynomial function.  - P ( x ) = 4 x ^ { 5 } + 5 x ^ { 3 } - 16 x ^ { 2 } + 8 </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
C)  <strong>Determine which of the given graphs could be the graph of the given polynomial function.  - P ( x ) = 4 x ^ { 5 } + 5 x ^ { 3 } - 16 x ^ { 2 } + 8 </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
D)  <strong>Determine which of the given graphs could be the graph of the given polynomial function.  - P ( x ) = 4 x ^ { 5 } + 5 x ^ { 3 } - 16 x ^ { 2 } + 8 </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
Question
Determine the minimum degree of the polynomial function graphed.
<strong>Determine the minimum degree of the polynomial function graphed.  </strong> A)2 B)4 C)3 D)-2 <div style=padding-top: 35px>

A)2
B)4
C)3
D)-2
Question
Determine the maximum and minimum number of x-intercepts for the graph of the polynomial function. Do not graph
the function.

- f(x)=5x94x8+x7+2.5x+15f ( x ) = 5 x ^ { 9 } - 4 x ^ { 8 } + x ^ { 7 } + 2.5 x + 15

A)maximum number of x-intercepts: 9; minimum number of x-intercepts: 3
B)maximum number of x-intercepts: 9; minimum number of x-intercepts: 2
C)maximum number of x-intercepts: 9; minimum number of x-intercepts: 0
D)maximum number of x-intercepts: 9; minimum number of x-intercepts: 1
Question
Determine the maximum and minimum number of x-intercepts for the graph of the polynomial function. Do not graph
the function.

- f(x)=x23x3f ( x ) = x ^ { 2 } - 3 x - 3

A)maximum number of x-intercepts: 2; minimum number of x-intercepts: 1
B)maximum number of x-intercepts: 3; minimum number of x-intercepts: 3
C)maximum number of x-intercepts: 2; minimum number of x-intercepts: 2
D)maximum number of x-intercepts: 3; minimum number of x-intercepts: 2
Question
Determine the minimum degree of the polynomial function graphed.

- f(x)=x(x+1)(x+2)f ( x ) = x ( x + 1 ) ( x + 2 )

 <strong>Determine the minimum degree of the polynomial function graphed.  - f ( x ) = x ( x + 1 ) ( x + 2 )    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>

A)  <strong>Determine the minimum degree of the polynomial function graphed.  - f ( x ) = x ( x + 1 ) ( x + 2 )    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
B)  <strong>Determine the minimum degree of the polynomial function graphed.  - f ( x ) = x ( x + 1 ) ( x + 2 )    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
C)  <strong>Determine the minimum degree of the polynomial function graphed.  - f ( x ) = x ( x + 1 ) ( x + 2 )    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
D)  <strong>Determine the minimum degree of the polynomial function graphed.  - f ( x ) = x ( x + 1 ) ( x + 2 )    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
Question
Determine the minimum degree of the polynomial function graphed.

- f(x)=3x(x2)2f ( x ) = - 3 x ( x - 2 ) ^ { 2 }

 <strong>Determine the minimum degree of the polynomial function graphed.  - f ( x ) = - 3 x ( x - 2 ) ^ { 2 }    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>

A)  <strong>Determine the minimum degree of the polynomial function graphed.  - f ( x ) = - 3 x ( x - 2 ) ^ { 2 }    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
B)  <strong>Determine the minimum degree of the polynomial function graphed.  - f ( x ) = - 3 x ( x - 2 ) ^ { 2 }    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
C)  <strong>Determine the minimum degree of the polynomial function graphed.  - f ( x ) = - 3 x ( x - 2 ) ^ { 2 }    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
D)  <strong>Determine the minimum degree of the polynomial function graphed.  - f ( x ) = - 3 x ( x - 2 ) ^ { 2 }    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
Question
Determine the maximum and minimum number of x-intercepts for the graph of the polynomial function. Do not graph
the function.

- f(x)=5x3+x25x2f ( x ) = 5 x ^ { 3 } + x ^ { 2 } - 5 x - 2

A)maximum number of x-intercepts: 3; minimum number of x-intercepts: 0
B)maximum number of x-intercepts: 3; minimum number of x-intercepts: 1
C)maximum number of x-intercepts: 3; minimum number of x-intercepts: 2
D)maximum number of x-intercepts: 2; minimum number of x-intercepts: 1
Question
Determine the minimum degree of the polynomial function graphed.

- f(x)=(x5)2(x3)f ( x ) = ( x - 5 ) ^ { 2 } ( x - 3 )

 <strong>Determine the minimum degree of the polynomial function graphed.  - f ( x ) = ( x - 5 ) ^ { 2 } ( x - 3 )    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>

A)  <strong>Determine the minimum degree of the polynomial function graphed.  - f ( x ) = ( x - 5 ) ^ { 2 } ( x - 3 )    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
B)  <strong>Determine the minimum degree of the polynomial function graphed.  - f ( x ) = ( x - 5 ) ^ { 2 } ( x - 3 )    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
C)  <strong>Determine the minimum degree of the polynomial function graphed.  - f ( x ) = ( x - 5 ) ^ { 2 } ( x - 3 )    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
D)  <strong>Determine the minimum degree of the polynomial function graphed.  - f ( x ) = ( x - 5 ) ^ { 2 } ( x - 3 )    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
Question
Determine the maximum and minimum number of x-intercepts for the graph of the polynomial function. Do not graph
the function.

- f(x)=7x66x5+x4+3.5x5f ( x ) = 7 x ^ { 6 } - 6 x ^ { 5 } + x ^ { 4 } + 3.5 x - 5

A)maximum number of x-intercepts: 5; minimum number of x-intercepts: 2
B)maximum number of x-intercepts: 5; minimum number of x-intercepts: 0
C)maximum number of x-intercepts: 6; minimum number of x-intercepts: 0
D)maximum number of x-intercepts: 6; minimum number of x-intercepts: 2
Question
Determine the minimum degree of the polynomial function graphed.

- f(x)=x3+5x2+6xf ( x ) = x ^ { 3 } + 5 x ^ { 2 } + 6 x

 <strong>Determine the minimum degree of the polynomial function graphed.  - f ( x ) = x ^ { 3 } + 5 x ^ { 2 } + 6 x    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>

A)  <strong>Determine the minimum degree of the polynomial function graphed.  - f ( x ) = x ^ { 3 } + 5 x ^ { 2 } + 6 x    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
B)  <strong>Determine the minimum degree of the polynomial function graphed.  - f ( x ) = x ^ { 3 } + 5 x ^ { 2 } + 6 x    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
C)  <strong>Determine the minimum degree of the polynomial function graphed.  - f ( x ) = x ^ { 3 } + 5 x ^ { 2 } + 6 x    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
D)  <strong>Determine the minimum degree of the polynomial function graphed.  - f ( x ) = x ^ { 3 } + 5 x ^ { 2 } + 6 x    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
Question
Determine the minimum degree of the polynomial function graphed.

- f(x)=(x4)(x2)(x+1)(x+2)f ( x ) = ( x - 4 ) ( x - 2 ) ( x + 1 ) ( x + 2 )

 <strong>Determine the minimum degree of the polynomial function graphed.  - f ( x ) = ( x - 4 ) ( x - 2 ) ( x + 1 ) ( x + 2 )    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>

A)  <strong>Determine the minimum degree of the polynomial function graphed.  - f ( x ) = ( x - 4 ) ( x - 2 ) ( x + 1 ) ( x + 2 )    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
B)  <strong>Determine the minimum degree of the polynomial function graphed.  - f ( x ) = ( x - 4 ) ( x - 2 ) ( x + 1 ) ( x + 2 )    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
C)  <strong>Determine the minimum degree of the polynomial function graphed.  - f ( x ) = ( x - 4 ) ( x - 2 ) ( x + 1 ) ( x + 2 )    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
D)  <strong>Determine the minimum degree of the polynomial function graphed.  - f ( x ) = ( x - 4 ) ( x - 2 ) ( x + 1 ) ( x + 2 )    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
Question
Describe the location, either above the x-axis or below the x-axis, of the graph of the function for large positive values of
x and for large negative values of x.

- f(x)=x5+x4+x3+x2+x3f ( x ) = x ^ { 5 } + x ^ { 4 } + x ^ { 3 } + x ^ { 2 } + x - 3

A)large positive values of x: above x-axis
B)large positive values of x: below x-axis large negative values of x: below x-axis large negative values of x: below x-axis
C)large positive values of x: below x-axis
D)large positive values of x: above x-axis large negative values of x: above x-axis large negative values of x: above x-axis
Unlock Deck
Sign up to unlock the cards in this deck!
Unlock Deck
Unlock Deck
1/142
auto play flashcards
Play
simple tutorial
Full screen (f)
exit full mode
Deck 10: Characteristics of Functions and Their Graphs
1
Classify the function as continuous or discontinuous.
<strong>Classify the function as continuous or discontinuous.  </strong> A)continuous B)discontinuous

A)continuous
B)discontinuous
discontinuous
2
Classify the function as continuous or discontinuous.
<strong>Classify the function as continuous or discontinuous.  </strong> A)discontinuous B)continuous

A)discontinuous
B)continuous
continuous
3
Classify the function as continuous or discontinuous.
<strong>Classify the function as continuous or discontinuous.  </strong> A)discontinuous B)continuous

A)discontinuous
B)continuous
continuous
4
Graph the piecewise function.

- f(x)={1 if x1x+3 if x<1f ( x ) = \left\{ \begin{array} { l l } 1 & \text { if } x \geq 1 \\x + 3 & \text { if } x < 1\end{array} \right.

 <strong>Graph the piecewise function.  - f ( x ) = \left\{ \begin{array} { l l } 1 & \text { if } x \geq 1 \\ x + 3 & \text { if } x < 1 \end{array} \right.    </strong> A)   B)   C)   D)

A)  <strong>Graph the piecewise function.  - f ( x ) = \left\{ \begin{array} { l l } 1 & \text { if } x \geq 1 \\ x + 3 & \text { if } x < 1 \end{array} \right.    </strong> A)   B)   C)   D)
B)  <strong>Graph the piecewise function.  - f ( x ) = \left\{ \begin{array} { l l } 1 & \text { if } x \geq 1 \\ x + 3 & \text { if } x < 1 \end{array} \right.    </strong> A)   B)   C)   D)
C)  <strong>Graph the piecewise function.  - f ( x ) = \left\{ \begin{array} { l l } 1 & \text { if } x \geq 1 \\ x + 3 & \text { if } x < 1 \end{array} \right.    </strong> A)   B)   C)   D)
D)  <strong>Graph the piecewise function.  - f ( x ) = \left\{ \begin{array} { l l } 1 & \text { if } x \geq 1 \\ x + 3 & \text { if } x < 1 \end{array} \right.    </strong> A)   B)   C)   D)
Unlock Deck
Unlock for access to all 142 flashcards in this deck.
Unlock Deck
k this deck
5
Classify the function as continuous or discontinuous. If the function is not continuous, identify the point(s)of
discontinuity.

- f(x)=3x2f ( x ) = 3 ^ { x } - 2

A)discontinuous at x = 0
B)continuous
C)discontinuous at x = -2
D)discontinuous at x = 2
Unlock Deck
Unlock for access to all 142 flashcards in this deck.
Unlock Deck
k this deck
6
Classify the function as continuous or discontinuous.
<strong>Classify the function as continuous or discontinuous.  </strong> A)continuous B)discontinuous

A)continuous
B)discontinuous
Unlock Deck
Unlock for access to all 142 flashcards in this deck.
Unlock Deck
k this deck
7
Classify the function as continuous or discontinuous.
<strong>Classify the function as continuous or discontinuous.  </strong> A)discontinuous B)continuous

A)discontinuous
B)continuous
Unlock Deck
Unlock for access to all 142 flashcards in this deck.
Unlock Deck
k this deck
8
Classify the function as continuous or discontinuous. If the function is not continuous, identify the point(s)of
discontinuity.

- f(x)=6(x+3)2f ( x ) = 6 ( x + 3 ) ^ { 2 }

A)continuous
B)discontinuous at x = -3
C)  discontinuous at x=12\text { discontinuous at } x = \frac { 1 } { 2 }
D)discontinuous at x = 3
Unlock Deck
Unlock for access to all 142 flashcards in this deck.
Unlock Deck
k this deck
9
Identify the local maximum and minimum of the graphed function.
<strong>Identify the local maximum and minimum of the graphed function.  </strong> A)local maximum: (-1, 1) B)local minimum: (-1, 1)local minimum: (-3, 5)local maximum: (-3, 5) C)local minimum: (1, -1) D)local maximum: (1, -1)local maximum: (5, -3)local minimum: (5, -3)

A)local maximum: (-1, 1)
B)local minimum: (-1, 1)local minimum: (-3, 5)local maximum: (-3, 5)
C)local minimum: (1, -1)
D)local maximum: (1, -1)local maximum: (5, -3)local minimum: (5, -3)
Unlock Deck
Unlock for access to all 142 flashcards in this deck.
Unlock Deck
k this deck
10
Classify the function as continuous or discontinuous. If the function is not continuous, identify the point(s)of
discontinuity.

- f(x)=5x+2x2+4f ( x ) = \frac { 5 x + 2 } { x ^ { 2 } + 4 }

A)continuous
B)discontinuous at x = -2 and x = 2
C)  discontinuous at x=2,x=2 and x=25\text { discontinuous at } x = - 2 , x = 2 \text { and } x = \frac { 2 } { 5 }
D)discontinuous at x = 4
Unlock Deck
Unlock for access to all 142 flashcards in this deck.
Unlock Deck
k this deck
11
Graph the piecewise function.

- f(x)={x+5 if x>4(x+5) if x4f ( x ) = \left\{ \begin{array} { l l } x + 5 & \text { if } x > 4 \\- ( x + 5 ) & \text { if } x \leq 4\end{array} \right.

 <strong>Graph the piecewise function.  - f ( x ) = \left\{ \begin{array} { l l } x + 5 & \text { if } x > 4 \\ - ( x + 5 ) & \text { if } x \leq 4 \end{array} \right.    </strong> A)   B)   C)   D)

A)  <strong>Graph the piecewise function.  - f ( x ) = \left\{ \begin{array} { l l } x + 5 & \text { if } x > 4 \\ - ( x + 5 ) & \text { if } x \leq 4 \end{array} \right.    </strong> A)   B)   C)   D)
B)  <strong>Graph the piecewise function.  - f ( x ) = \left\{ \begin{array} { l l } x + 5 & \text { if } x > 4 \\ - ( x + 5 ) & \text { if } x \leq 4 \end{array} \right.    </strong> A)   B)   C)   D)
C)  <strong>Graph the piecewise function.  - f ( x ) = \left\{ \begin{array} { l l } x + 5 & \text { if } x > 4 \\ - ( x + 5 ) & \text { if } x \leq 4 \end{array} \right.    </strong> A)   B)   C)   D)
D)  <strong>Graph the piecewise function.  - f ( x ) = \left\{ \begin{array} { l l } x + 5 & \text { if } x > 4 \\ - ( x + 5 ) & \text { if } x \leq 4 \end{array} \right.    </strong> A)   B)   C)   D)
Unlock Deck
Unlock for access to all 142 flashcards in this deck.
Unlock Deck
k this deck
12
Classify the function as continuous or discontinuous. If the function is not continuous, identify the point(s)of
discontinuity.

-f(x)= 4x + 3

A)discontinuous at x = -3
B)  discontinuous at x=34\text { discontinuous at } x = - \frac { 3 } { 4 }
C)  discontinuous at x=34\text { discontinuous at } x = \frac { 3 } { 4 }
D)continuous
Unlock Deck
Unlock for access to all 142 flashcards in this deck.
Unlock Deck
k this deck
13
Classify the function as continuous or discontinuous. If the function is not continuous, identify the point(s)of
discontinuity.

- f(x)=x3f ( x ) = \llbracket \frac { x } { 3 } \rrbracket

A)discontinuous at x = . . . -3, -2, -1, 0, 1, 2, 3, . . .
B)continuous
C)  discontinuous at x=1,23,13,0,13,23,1,\text { discontinuous at } x = \ldots - 1 , - \frac { 2 } { 3 } , - \frac { 1 } { 3 } , 0 , \frac { 1 } { 3 } , \frac { 2 } { 3 } , 1 , \ldots
D)discontinuous at x = . . . -9, -6, -3, 0, 3, 6, 9, . . .
Unlock Deck
Unlock for access to all 142 flashcards in this deck.
Unlock Deck
k this deck
14
Classify the function as continuous or discontinuous. If the function is not continuous, identify the point(s)of
discontinuity.

- f(x)=5x+5f ( x ) = \frac { 5 } { x + 5 }

A)discontinuous at x = -5
B)discontinuous at x = - 1
C)continuous
D)discontinuous at x = 5
Unlock Deck
Unlock for access to all 142 flashcards in this deck.
Unlock Deck
k this deck
15
Classify the function as continuous or discontinuous.
<strong>Classify the function as continuous or discontinuous.  </strong> A)continuous B)discontinuous

A)continuous
B)discontinuous
Unlock Deck
Unlock for access to all 142 flashcards in this deck.
Unlock Deck
k this deck
16
Classify the function as continuous or discontinuous. If the function is not continuous, identify the point(s)of
discontinuity.

- f(x)=log4(x+2)f ( x ) = \log _ { 4 } ( x + 2 )

A)discontinuous at x = 2
B)discontinuous at x = -2
C)continuous
D)discontinuous at x = 0
Unlock Deck
Unlock for access to all 142 flashcards in this deck.
Unlock Deck
k this deck
17
Classify the function as continuous or discontinuous.
<strong>Classify the function as continuous or discontinuous.  </strong> A)discontinuous B)continuous

A)discontinuous
B)continuous
Unlock Deck
Unlock for access to all 142 flashcards in this deck.
Unlock Deck
k this deck
18
Classify the function as continuous or discontinuous. If the function is not continuous, identify the point(s)of
discontinuity.

- f(x)=7(x6)2f ( x ) = 7 ( x - 6 ) ^ { 2 }

A)continuous
B)discontinuous at x = 6
C)  discontinuous at x=67\text { discontinuous at } x = \frac { 6 } { 7 }
D)discontinuous at x = -6
Unlock Deck
Unlock for access to all 142 flashcards in this deck.
Unlock Deck
k this deck
19
Classify the function as continuous or discontinuous. If the function is not continuous, identify the point(s)of
discontinuity.

- f(x)=x2+8x+12f ( x ) = x ^ { 2 } + 8 x + 12

A)discontinuous at x = 2 and x = 6
B)discontinuous at x = -2 and x = -6
C)continuous
D)  discontinuous at x=23\text { discontinuous at } x = - \frac { 2 } { 3 }
Unlock Deck
Unlock for access to all 142 flashcards in this deck.
Unlock Deck
k this deck
20
Graph the piecewise function.

- g(x)={x1 if x<22x2 if x>2g ( x ) = \left\{ \begin{array} { l l } - x - 1 & \text { if } x < - 2 \\- 2 x - 2 & \text { if } x > - 2\end{array} \right.

 <strong>Graph the piecewise function.  - g ( x ) = \left\{ \begin{array} { l l } - x - 1 & \text { if } x < - 2 \\ - 2 x - 2 & \text { if } x > - 2 \end{array} \right.    </strong> A)   B)   C)   D)

A)  <strong>Graph the piecewise function.  - g ( x ) = \left\{ \begin{array} { l l } - x - 1 & \text { if } x < - 2 \\ - 2 x - 2 & \text { if } x > - 2 \end{array} \right.    </strong> A)   B)   C)   D)
B)  <strong>Graph the piecewise function.  - g ( x ) = \left\{ \begin{array} { l l } - x - 1 & \text { if } x < - 2 \\ - 2 x - 2 & \text { if } x > - 2 \end{array} \right.    </strong> A)   B)   C)   D)
C)  <strong>Graph the piecewise function.  - g ( x ) = \left\{ \begin{array} { l l } - x - 1 & \text { if } x < - 2 \\ - 2 x - 2 & \text { if } x > - 2 \end{array} \right.    </strong> A)   B)   C)   D)
D)  <strong>Graph the piecewise function.  - g ( x ) = \left\{ \begin{array} { l l } - x - 1 & \text { if } x < - 2 \\ - 2 x - 2 & \text { if } x > - 2 \end{array} \right.    </strong> A)   B)   C)   D)
Unlock Deck
Unlock for access to all 142 flashcards in this deck.
Unlock Deck
k this deck
21
Graph the greatest integer function.

- f(x)=13xf ( x ) = \llbracket \frac { 1 } { 3 } x \rrbracket

 <strong>Graph the greatest integer function.  - f ( x ) = \llbracket \frac { 1 } { 3 } x \rrbracket    </strong> A)   B)   C)   D)

A)  <strong>Graph the greatest integer function.  - f ( x ) = \llbracket \frac { 1 } { 3 } x \rrbracket    </strong> A)   B)   C)   D)
B)  <strong>Graph the greatest integer function.  - f ( x ) = \llbracket \frac { 1 } { 3 } x \rrbracket    </strong> A)   B)   C)   D)
C)  <strong>Graph the greatest integer function.  - f ( x ) = \llbracket \frac { 1 } { 3 } x \rrbracket    </strong> A)   B)   C)   D)
D)  <strong>Graph the greatest integer function.  - f ( x ) = \llbracket \frac { 1 } { 3 } x \rrbracket    </strong> A)   B)   C)   D)
Unlock Deck
Unlock for access to all 142 flashcards in this deck.
Unlock Deck
k this deck
22
Graph the piecewise function.

- f(x)={2x if x22x+2 if 2<x2x+1 if x>2f ( x ) = \left\{ \begin{array} { l l } - 2 x & \text { if } x \leq - 2 \\- 2 x + 2 & \text { if } - 2 < x \leq 2 \\x + 1 & \text { if } x > 2\end{array} \right.

 <strong>Graph the piecewise function.  - f ( x ) = \left\{ \begin{array} { l l } - 2 x & \text { if } x \leq - 2 \\ - 2 x + 2 & \text { if } - 2 < x \leq 2 \\ x + 1 & \text { if } x > 2 \end{array} \right.    </strong> A)   B)   C)   D)

A)  <strong>Graph the piecewise function.  - f ( x ) = \left\{ \begin{array} { l l } - 2 x & \text { if } x \leq - 2 \\ - 2 x + 2 & \text { if } - 2 < x \leq 2 \\ x + 1 & \text { if } x > 2 \end{array} \right.    </strong> A)   B)   C)   D)
B)  <strong>Graph the piecewise function.  - f ( x ) = \left\{ \begin{array} { l l } - 2 x & \text { if } x \leq - 2 \\ - 2 x + 2 & \text { if } - 2 < x \leq 2 \\ x + 1 & \text { if } x > 2 \end{array} \right.    </strong> A)   B)   C)   D)
C)  <strong>Graph the piecewise function.  - f ( x ) = \left\{ \begin{array} { l l } - 2 x & \text { if } x \leq - 2 \\ - 2 x + 2 & \text { if } - 2 < x \leq 2 \\ x + 1 & \text { if } x > 2 \end{array} \right.    </strong> A)   B)   C)   D)
D)  <strong>Graph the piecewise function.  - f ( x ) = \left\{ \begin{array} { l l } - 2 x & \text { if } x \leq - 2 \\ - 2 x + 2 & \text { if } - 2 < x \leq 2 \\ x + 1 & \text { if } x > 2 \end{array} \right.    </strong> A)   B)   C)   D)
Unlock Deck
Unlock for access to all 142 flashcards in this deck.
Unlock Deck
k this deck
23
Find the real zeros of the function, state their multiplicities if it is a number other than 1.

- f(x)=x225f ( x ) = x ^ { 2 } - 25

A)x = 5, multiplicity: 2
B) x=5,x=5x = \sqrt { 5 } , x = - \sqrt { 5 }
C)x = -5, multiplicity: 2
D)x = 5, x = -5
Unlock Deck
Unlock for access to all 142 flashcards in this deck.
Unlock Deck
k this deck
24
Find the real zeros of the function, state their multiplicities if it is a number other than 1.

- f(x)=x216x+64f ( x ) = x ^ { 2 } - 16 x + 64

A)x = -8, multiplicity: 2
B)x = 8, multiplicity: 2
C)x = 16, multiplicity: 2
D)x = 8, x = -8
Unlock Deck
Unlock for access to all 142 flashcards in this deck.
Unlock Deck
k this deck
25
Determine whether the function is an even function, an odd function, or neither.

- f(x)=x5x4f ( x ) = x ^ { 5 } - x ^ { 4 }

A)Odd
B)Even
C)Neither
Unlock Deck
Unlock for access to all 142 flashcards in this deck.
Unlock Deck
k this deck
26
Find the real zeros of the function, state their multiplicities if it is a number other than 1.

- f(x)=x3+x220xf ( x ) = x ^ { 3 } + x ^ { 2 } - 20 x

A)x = 3, x = 4
B)x = 0, x = 3, x = 4
C)x = 0, x = - 5, x = 4
D)x = - 5, x = 4
Unlock Deck
Unlock for access to all 142 flashcards in this deck.
Unlock Deck
k this deck
27
Determine whether the function is an even function, an odd function, or neither.

- f(x)=x3+x24f ( x ) = x ^ { 3 } + x ^ { 2 } - 4

A)Odd
B)Neither
C)Even
Unlock Deck
Unlock for access to all 142 flashcards in this deck.
Unlock Deck
k this deck
28
Determine whether the function is an even function, an odd function, or neither.

- f(x)=x34xf ( x ) = x ^ { 3 } - 4 x

A)Odd
B)Neither
C)Even
Unlock Deck
Unlock for access to all 142 flashcards in this deck.
Unlock Deck
k this deck
29
Determine whether the function is an even function, an odd function, or neither.

- g(x)=e3x+5g ( x ) = e ^ { 3 x } + 5

A)Odd
B)Neither
C)Even
Unlock Deck
Unlock for access to all 142 flashcards in this deck.
Unlock Deck
k this deck
30
Graph the greatest integer function.

- f(x)=x+43f ( x ) = \llbracket \frac { x + 4 } { 3 } \rrbracket

 <strong>Graph the greatest integer function.  - f ( x ) = \llbracket \frac { x + 4 } { 3 } \rrbracket    </strong> A)   B)   C)   D)

A)  <strong>Graph the greatest integer function.  - f ( x ) = \llbracket \frac { x + 4 } { 3 } \rrbracket    </strong> A)   B)   C)   D)
B)  <strong>Graph the greatest integer function.  - f ( x ) = \llbracket \frac { x + 4 } { 3 } \rrbracket    </strong> A)   B)   C)   D)
C)  <strong>Graph the greatest integer function.  - f ( x ) = \llbracket \frac { x + 4 } { 3 } \rrbracket    </strong> A)   B)   C)   D)
D)  <strong>Graph the greatest integer function.  - f ( x ) = \llbracket \frac { x + 4 } { 3 } \rrbracket    </strong> A)   B)   C)   D)
Unlock Deck
Unlock for access to all 142 flashcards in this deck.
Unlock Deck
k this deck
31
Solve the problem.

-Sam Wright wants to stock up on cans of cat food which are selling for $0.95 per can. Write a greatest integer function that represents the number of cans he can purchase with x dollars.

A) f(x)=0.95xf ( x ) = 0.95 \llbracket x \rrbracket
B) f(x)=0.95xf ( x ) = \llbracket 0.95 x \rrbracket
C) f(x)=x0.95f ( x ) = \llbracket \frac { x } { 0.95 } \rrbracket
D) f(x)=x0.95f ( x ) = \frac { \llbracket x \rrbracket } { 0.95 }
Unlock Deck
Unlock for access to all 142 flashcards in this deck.
Unlock Deck
k this deck
32
Find the real zeros of the function, state their multiplicities if it is a number other than 1.

- f(x)=5(x+3)(x+7)4f ( x ) = 5 ( x + 3 ) ( x + 7 ) ^ { 4 }

A)x = 3, x = 4
B)x = -3, x = 4
C) x=3x=7, multiplicity: 4x=4\begin{array} { l } x = 3 \\x = 7 , \text { multiplicity: } 4 \\x = 4\end{array}
D) x=3x=7, multiplicity: 4\begin{array} { l } x = - 3 \\x = - 7 , \text { multiplicity: } 4\end{array}
Unlock Deck
Unlock for access to all 142 flashcards in this deck.
Unlock Deck
k this deck
33
Find the real zeros of the function, state their multiplicities if it is a number other than 1.

- f(x)=2x226f ( x ) = 2 x ^ { 2 } - 26

A) x=13, mutiplicity: 2x = \sqrt { 13 } , \text { mutiplicity: } 2
B)x = -13, x = 13
C) x=13,x=13x = - \sqrt { 13 } , x = \sqrt { 13 }
D)x = 13, mutiplicity: 2
Unlock Deck
Unlock for access to all 142 flashcards in this deck.
Unlock Deck
k this deck
34
Graph the greatest integer function.

- f(x)=x2f ( x ) = \llbracket x - 2 \rrbracket

 <strong>Graph the greatest integer function.  - f ( x ) = \llbracket x - 2 \rrbracket    </strong> A)   B)   C)   D)

A)  <strong>Graph the greatest integer function.  - f ( x ) = \llbracket x - 2 \rrbracket    </strong> A)   B)   C)   D)
B)  <strong>Graph the greatest integer function.  - f ( x ) = \llbracket x - 2 \rrbracket    </strong> A)   B)   C)   D)
C)  <strong>Graph the greatest integer function.  - f ( x ) = \llbracket x - 2 \rrbracket    </strong> A)   B)   C)   D)
D)  <strong>Graph the greatest integer function.  - f ( x ) = \llbracket x - 2 \rrbracket    </strong> A)   B)   C)   D)
Unlock Deck
Unlock for access to all 142 flashcards in this deck.
Unlock Deck
k this deck
35
Find the real zeros of the function, state their multiplicities if it is a number other than 1.

- f(x)=x2+10x+21f ( x ) = x ^ { 2 } + 10 x + 21

A) x=21,x=21x = - \sqrt { 21 } , x = \sqrt { 21 }
B) x=7,x=3x = - 7 , x = - 3
C) x=7,x=28x = - 7 , x = 28
D) x=3,x=7x = 3 , x = 7
Unlock Deck
Unlock for access to all 142 flashcards in this deck.
Unlock Deck
k this deck
36
Solve the problem.

-A paddle boat rental company rents paddle boats by the hour. They charge $7.00 per hour for the first 3 rental hours and $5.00 per hour for each additional hour. Write a piecewise function to represent the cost of renting a
Paddle boat as a function of hours it is rented.

A) f(x)={7x if 0<x321x+5x3 if x>3f ( x ) = \left\{ \begin{array} { l l } 7 \llbracket x \rrbracket & \text { if } 0 < x \leq 3 \\21 \llbracket x \rrbracket + 5 \llbracket x - 3 \rrbracket & \text { if } x > 3\end{array} \right.
B) f(x)={7x if 0<x37x+5x3 if x>3f ( x ) = \left\{ \begin{array} { l l } 7 \llbracket x \rrbracket & \text { if } 0 < x \leq 3 \\7 \llbracket x \rrbracket + 5 \llbracket x - 3 \rrbracket & \text { if } x > 3\end{array} \right.
C) f(x)={7x if 0<x321+5x3 if x>3f ( x ) = \left\{ \begin{array} { l l } 7 \llbracket x \rrbracket & \text { if } 0 < x \leq 3 \\21 + 5 \llbracket x - 3 \rrbracket & \text { if } x > 3\end{array} \right.
D) f(x)={7x if 0<x35x3 if x>3f ( x ) = \left\{ \begin{array} { l l } 7 \llbracket x \rrbracket & \text { if } 0 < x \leq 3 \\5 \llbracket x - 3 \rrbracket & \text { if } x > 3\end{array} \right.
Unlock Deck
Unlock for access to all 142 flashcards in this deck.
Unlock Deck
k this deck
37
Determine whether the function is an even function, an odd function, or neither.

- f(x)=2x2+x4f ( x ) = 2 x ^ { 2 } + x ^ { 4 }

A)Odd
B)Even
C)Neither
Unlock Deck
Unlock for access to all 142 flashcards in this deck.
Unlock Deck
k this deck
38
Determine whether the function is an even function, an odd function, or neither.

- f(x)=3x5+x3f ( x ) = - 3 x ^ { 5 } + x ^ { 3 }

A)Even
B)Neither
C)Odd
Unlock Deck
Unlock for access to all 142 flashcards in this deck.
Unlock Deck
k this deck
39
Graph the piecewise function.

- g(x)={5x+5 if x115x+65 if x>1g ( x ) = \left\{ \begin{array} { l l } 5 x + 5 & \text { if } x \leq 1 \\- \frac { 1 } { 5 } x + \frac { 6 } { 5 } & \text { if } x > 1\end{array} \right.

 <strong>Graph the piecewise function.  - g ( x ) = \left\{ \begin{array} { l l } 5 x + 5 & \text { if } x \leq 1 \\ - \frac { 1 } { 5 } x + \frac { 6 } { 5 } & \text { if } x > 1 \end{array} \right.    </strong> A)   B)   C)   D)

A)  <strong>Graph the piecewise function.  - g ( x ) = \left\{ \begin{array} { l l } 5 x + 5 & \text { if } x \leq 1 \\ - \frac { 1 } { 5 } x + \frac { 6 } { 5 } & \text { if } x > 1 \end{array} \right.    </strong> A)   B)   C)   D)
B)  <strong>Graph the piecewise function.  - g ( x ) = \left\{ \begin{array} { l l } 5 x + 5 & \text { if } x \leq 1 \\ - \frac { 1 } { 5 } x + \frac { 6 } { 5 } & \text { if } x > 1 \end{array} \right.    </strong> A)   B)   C)   D)
C)  <strong>Graph the piecewise function.  - g ( x ) = \left\{ \begin{array} { l l } 5 x + 5 & \text { if } x \leq 1 \\ - \frac { 1 } { 5 } x + \frac { 6 } { 5 } & \text { if } x > 1 \end{array} \right.    </strong> A)   B)   C)   D)
D)  <strong>Graph the piecewise function.  - g ( x ) = \left\{ \begin{array} { l l } 5 x + 5 & \text { if } x \leq 1 \\ - \frac { 1 } { 5 } x + \frac { 6 } { 5 } & \text { if } x > 1 \end{array} \right.    </strong> A)   B)   C)   D)
Unlock Deck
Unlock for access to all 142 flashcards in this deck.
Unlock Deck
k this deck
40
Determine whether the function is an even function, an odd function, or neither.

- g(x)=ex34g ( x ) = e ^ { x ^ { 3 } } - 4

A)Even
B)Neither
C)Odd
Unlock Deck
Unlock for access to all 142 flashcards in this deck.
Unlock Deck
k this deck
41
Find the real zeros of the function, state their multiplicities if it is a number other than 1.

- f(x)=(x+1)(x4)(x24)f ( x ) = ( x + 1 ) ( x - 4 ) \left( x ^ { 2 } - 4 \right)

A) x=1,x=4x=2, multiplicity: 2\begin{array} { l } x = - 1 , x = 4 \\x = 2 , \text { multiplicity: } 2\end{array}
B) x=1,x=4x=2,x=2\begin{array} { l } x = - 1 , x = 4 \\x = 2 , x = - 2\end{array}
C) x=1,x=4x=2,x=2\begin{array} { l } x = 1 , x = - 4 \\x = 2 , x = - 2\end{array}
D) x=0\mathrm { x } = 0 , multiplicity: 2
x=2\mathrm { x } = 2 , multiplicity: 2
Unlock Deck
Unlock for access to all 142 flashcards in this deck.
Unlock Deck
k this deck
42
Determine the maximum possible number of turning points for the graph of the function.

- f(x)=x2(x23)(4x+1)f ( x ) = x ^ { 2 } \left( x ^ { 2 } - 3 \right) ( 4 x + 1 )

A)4
B)16
C)5
D)2
Unlock Deck
Unlock for access to all 142 flashcards in this deck.
Unlock Deck
k this deck
43
Find the x-intercepts of the function.

- f(x)=(x+15)2(x+9)5f ( x ) = \left( x + \frac { 1 } { 5 } \right) ^ { 2 } ( x + 9 ) ^ { 5 }

A) x-intercept: (15,0),x-intercept: (9,0)x \text {-intercept: } \left( - \frac { 1 } { 5 } , 0 \right) , x \text {-intercept: } ( 9,0 )
B) x-intercept: (15,0),x-intercept: (9,0)x \text {-intercept: } \left( \frac { 1 } { 5 } , 0 \right) , x \text {-intercept: } ( - 9,0 )
C) x-intercept: (15,0),x-intercept: (9,0)x \text {-intercept: } \left( \frac { 1 } { 5 } , 0 \right) , x \text {-intercept: } ( 9,0 )
D) x-intercept: (15,0),x-intercept: (9,0)\mathrm { x } \text {-intercept: } \left( - \frac { 1 } { 5 } , 0 \right) , \mathrm { x } \text {-intercept: } ( - 9,0 )
Unlock Deck
Unlock for access to all 142 flashcards in this deck.
Unlock Deck
k this deck
44
Determine the maximum possible number of turning points for the graph of the function.

- f(x)=x24x21f ( x ) = - x ^ { 2 } - 4 x - 21

A)0
B)1
C)3
D)2
Unlock Deck
Unlock for access to all 142 flashcards in this deck.
Unlock Deck
k this deck
45
Find the real zeros of the function, state their multiplicities if it is a number other than 1.

- f(x)=(x+13)2(x2)3f ( x ) = \left( x + \frac { 1 } { 3 } \right) ^ { 2 } ( x - 2 ) ^ { 3 }

A) x=13x = - \frac { 1 } { 3 } , multiplicity: 2
x=2x = 2 , multiplicity: 3
B) x=13x = \frac { 1 } { 3 } , multiplicity: 2
x=2x = - 2 , multiplicity: 3
C) x=13x = - \frac { 1 } { 3 } , multiplicity: 2
x=2x = 2 , multiplicity: 2
D) x=13x = \frac { 1 } { 3 } , multiplicity: 2
x=2x = 2 , multiplicity: 3
Unlock Deck
Unlock for access to all 142 flashcards in this deck.
Unlock Deck
k this deck
46
Find the x-intercepts of the function.

- f(x)=x5(x225)(x2+16)f ( x ) = x ^ { 5 } \left( x ^ { 2 } - 25 \right) \left( x ^ { 2 } + 16 \right)

A)x-intercept: (0, 0), x-intercept: (-5, 0)
B)x-intercept: (0, 0), x-intercept: (5, 0), x-intercept: (-5, 0)x-intercept: (4, 0), x-intercept: (-4, 0)
C)x-intercept: (0, 0), x-intercept: (5, 0)
D)x-intercept: (0, 0), x-intercept: (5, 0), x-intercept: (-5, 0)
Unlock Deck
Unlock for access to all 142 flashcards in this deck.
Unlock Deck
k this deck
47
Determine the maximum possible number of turning points for the graph of the function.

- g(x)=52x+1g ( x ) = \frac { 5 } { 2 } x + 1

A)2
B)1
C)0
D)3
Unlock Deck
Unlock for access to all 142 flashcards in this deck.
Unlock Deck
k this deck
48
Find the x-intercepts of the function.

- f(x)=(x+1)(x2)(x29)f ( x ) = ( x + 1 ) ( x - 2 ) \left( x ^ { 2 } - 9 \right)

A)x-intercept: (1, 0), x-intercept: (-2, 0)x-intercept: (3, 0), x-intercept: (-3, 0)
B)x-intercept: (-1, 0), x-intercept: (2, 0)x-intercept: (3, 0), x-intercept: (-3, 0)
C)x-intercept: (-1, 0), x-intercept: (2, 0), x-intercept: (3, 0)
D)x-intercept: (-1, 0), x-intercept: (2, 0), x-intercept: (-3, 0)
Unlock Deck
Unlock for access to all 142 flashcards in this deck.
Unlock Deck
k this deck
49
Find the x-intercepts of the function.

- f(x)=x218x+81f ( x ) = x ^ { 2 } - 18 x + 81

A)x-intercept: (9, 0)
B)x-intercept: (-9, 0)
C)x-intercept: (18, 0)
D)x-intercept: (9, 0), x-intercept: (-9, 0)
Unlock Deck
Unlock for access to all 142 flashcards in this deck.
Unlock Deck
k this deck
50
Find the x-intercepts of the function.

- f(x)=4x244f ( x ) = 4 x ^ { 2 } - 44

A)x-intercept: (12, 0)
B) x-intercept: (11,0)x \text {-intercept: } ( \sqrt { 11 } , 0 )
C)x-intercept: (-11, 0), x-intercept: (11, 0)
D) x-intercept: (11,0),x-intercept: (11,0)x \text {-intercept: } ( - \sqrt { 11 } , 0 ) , x \text {-intercept: } ( \sqrt { 11 } , 0 )
Unlock Deck
Unlock for access to all 142 flashcards in this deck.
Unlock Deck
k this deck
51
Find the x-intercepts of the function.

- f(x)=x264f ( x ) = x ^ { 2 } - 64

A)x-intercept: (8, 0)
B) x-intercept: (22,0),x-intercept: (22,0)x \text {-intercept: } ( 2 \sqrt { 2 } , 0 ) , x \text {-intercept: } ( - 2 \sqrt { 2 } , 0 )
C)x-intercept: (8, 0), x-intercept: (-8, 0)
D)x-intercept: (-8, 0)
Unlock Deck
Unlock for access to all 142 flashcards in this deck.
Unlock Deck
k this deck
52
Find the x-intercepts of the function.

- f(x)=x24x+3f ( x ) = x ^ { 2 } - 4 x + 3

A)x-intercept: (-3, 0), x-intercept: (-1, 0)
B) x-intercept: (3,0),x-intercept: (3,0)\mathrm { x } \text {-intercept: } ( - \sqrt { 3 } , 0 ) , \mathrm { x } \text {-intercept: } ( \sqrt { 3 } , 0 )
C)x-intercept: (1, 0), x-intercept: (2, 0)
D)x-intercept: (1, 0), x-intercept: (3, 0)
Unlock Deck
Unlock for access to all 142 flashcards in this deck.
Unlock Deck
k this deck
53
Determine the maximum possible number of turning points for the graph of the function.

- f(x)=x2+6x3f ( x ) = x ^ { 2 } + 6 x ^ { 3 }

A)2
B)3
C)1
D)6
Unlock Deck
Unlock for access to all 142 flashcards in this deck.
Unlock Deck
k this deck
54
Determine the maximum possible number of turning points for the graph of the function.

- f(x)=(x2)(x+3)(x5)(x1)f ( x ) = ( x - 2 ) ( x + 3 ) ( x - 5 ) ( x - 1 )

A)3
B)1
C)4
D)0
Unlock Deck
Unlock for access to all 142 flashcards in this deck.
Unlock Deck
k this deck
55
Find the x-intercepts of the function.

- f(x)=x3+x230xf ( x ) = x ^ { 3 } + x ^ { 2 } - 30 x

A)x-intercept: (0, 0), x-intercept: (- 6, 0), x-intercept: (5, 0)
B)x-intercept: (4, 0), x-intercept: (5, 0)
C)x-intercept: (- 6, 0), x-intercept: (5, 0)
D)x-intercept: (0, 0), x-intercept: (4, 0), x-intercept: (5, 0)
Unlock Deck
Unlock for access to all 142 flashcards in this deck.
Unlock Deck
k this deck
56
Find the real zeros of the function, state their multiplicities if it is a number other than 1.

- f(x)=x2(x24)(x2+36)f ( x ) = x ^ { 2 } \left( x ^ { 2 } - 4 \right) \left( x ^ { 2 } + 36 \right)

A) x=0x = 0 , multiplicity: 2
x=2,x=2x = 2 , x = - 2
B) x=0x = 0 , multiplicity: 2
x=2,x=2x=6,x=6\begin{array} { l } x = 2 , x = - 2 \\x = 6 , x = - 6\end{array}
C) x=0x = 0 , multiplicity: 2
x=2x = - 2 , multiplicity: 2
D) x=0\mathrm { x } = 0 , multiplicity: 2
x=2x = 2 , multiplicity: 2
Unlock Deck
Unlock for access to all 142 flashcards in this deck.
Unlock Deck
k this deck
57
Determine the maximum possible number of turning points for the graph of the function.

- f(x)=(7x2)2(x21)(x+1)f ( x ) = ( 7 x - 2 ) ^ { 2 } \left( x ^ { 2 } - 1 \right) ( x + 1 )

A)4
B)2
C)5
D)35
Unlock Deck
Unlock for access to all 142 flashcards in this deck.
Unlock Deck
k this deck
58
Determine the maximum possible number of turning points for the graph of the function.

- f(x)=(x+2)(x4)(4x6)f ( x ) = ( x + 2 ) ( x - 4 ) ( 4 x - 6 )

A)3
B)4
C)0
D)2
Unlock Deck
Unlock for access to all 142 flashcards in this deck.
Unlock Deck
k this deck
59
Find the x-intercepts of the function.

- f(x)=2(x+4)(x5)3f ( x ) = 2 ( x + 4 ) ( x - 5 ) ^ { 3 }

A)x-intercept: (4, 0), x-intercept: (3, 0)
B)x-intercept: (4, 0), x-intercept: (-5, 0), x-intercept: (3, 0)
C)x-intercept: (-4, 0), x-intercept: (3, 0)
D)x-intercept: (-4, 0), x-intercept: (5, 0)
Unlock Deck
Unlock for access to all 142 flashcards in this deck.
Unlock Deck
k this deck
60
Determine the maximum possible number of turning points for the graph of the function.

- f(x)=5x74x66x14f ( x ) = 5 x ^ { 7 } - 4 x ^ { 6 } - 6 x - 14

A)5
B)7
C)0
D)6
Unlock Deck
Unlock for access to all 142 flashcards in this deck.
Unlock Deck
k this deck
61
Determine which of the given graphs could be the graph of the given polynomial function.

- P(x)=6x33x2+3x2P ( x ) = - 6 x ^ { 3 } - 3 x ^ { 2 } + 3 x - 2

A)  <strong>Determine which of the given graphs could be the graph of the given polynomial function.  - P ( x ) = - 6 x ^ { 3 } - 3 x ^ { 2 } + 3 x - 2 </strong> A)   B)   C)   D)
B)  <strong>Determine which of the given graphs could be the graph of the given polynomial function.  - P ( x ) = - 6 x ^ { 3 } - 3 x ^ { 2 } + 3 x - 2 </strong> A)   B)   C)   D)
C)  <strong>Determine which of the given graphs could be the graph of the given polynomial function.  - P ( x ) = - 6 x ^ { 3 } - 3 x ^ { 2 } + 3 x - 2 </strong> A)   B)   C)   D)
D)  <strong>Determine which of the given graphs could be the graph of the given polynomial function.  - P ( x ) = - 6 x ^ { 3 } - 3 x ^ { 2 } + 3 x - 2 </strong> A)   B)   C)   D)
Unlock Deck
Unlock for access to all 142 flashcards in this deck.
Unlock Deck
k this deck
62
Determine the minimum degree of the polynomial function graphed.

- f(x)=x2(x5)(x1)f ( x ) = x ^ { 2 } ( x - 5 ) ( x - 1 )

 <strong>Determine the minimum degree of the polynomial function graphed.  - f ( x ) = x ^ { 2 } ( x - 5 ) ( x - 1 )    </strong> A)   B)   C)   D)

A)  <strong>Determine the minimum degree of the polynomial function graphed.  - f ( x ) = x ^ { 2 } ( x - 5 ) ( x - 1 )    </strong> A)   B)   C)   D)
B)  <strong>Determine the minimum degree of the polynomial function graphed.  - f ( x ) = x ^ { 2 } ( x - 5 ) ( x - 1 )    </strong> A)   B)   C)   D)
C)  <strong>Determine the minimum degree of the polynomial function graphed.  - f ( x ) = x ^ { 2 } ( x - 5 ) ( x - 1 )    </strong> A)   B)   C)   D)
D)  <strong>Determine the minimum degree of the polynomial function graphed.  - f ( x ) = x ^ { 2 } ( x - 5 ) ( x - 1 )    </strong> A)   B)   C)   D)
Unlock Deck
Unlock for access to all 142 flashcards in this deck.
Unlock Deck
k this deck
63
Determine the minimum degree of the polynomial function graphed.

- f(x)=x45x3+4x2f ( x ) = x ^ { 4 } - 5 x ^ { 3 } + 4 x ^ { 2 }

 <strong>Determine the minimum degree of the polynomial function graphed.  - f ( x ) = x ^ { 4 } - 5 x ^ { 3 } + 4 x ^ { 2 }    </strong> A)   B)   C)   D)

A)  <strong>Determine the minimum degree of the polynomial function graphed.  - f ( x ) = x ^ { 4 } - 5 x ^ { 3 } + 4 x ^ { 2 }    </strong> A)   B)   C)   D)
B)  <strong>Determine the minimum degree of the polynomial function graphed.  - f ( x ) = x ^ { 4 } - 5 x ^ { 3 } + 4 x ^ { 2 }    </strong> A)   B)   C)   D)
C)  <strong>Determine the minimum degree of the polynomial function graphed.  - f ( x ) = x ^ { 4 } - 5 x ^ { 3 } + 4 x ^ { 2 }    </strong> A)   B)   C)   D)
D)  <strong>Determine the minimum degree of the polynomial function graphed.  - f ( x ) = x ^ { 4 } - 5 x ^ { 3 } + 4 x ^ { 2 }    </strong> A)   B)   C)   D)
Unlock Deck
Unlock for access to all 142 flashcards in this deck.
Unlock Deck
k this deck
64
Determine the minimum degree of the polynomial function graphed.
<strong>Determine the minimum degree of the polynomial function graphed.  </strong> A)4 B)2 C)-3 D)3

A)4
B)2
C)-3
D)3
Unlock Deck
Unlock for access to all 142 flashcards in this deck.
Unlock Deck
k this deck
65
Describe the location, either above the x-axis or below the x-axis, of the graph of the function for large positive values of
x and for large negative values of x.

- f(x)=9x5+x44x+6f ( x ) = - 9 x ^ { 5 } + x ^ { 4 } - 4 x + 6

A)large positive values of x: below x-axis
B)large positive values of x: below x-axis large negative values of x: below x-axis large negative values of x: above x-axis
C)large positive values of x: above x-axis
D)large positive values of x: above x-axis large negative values of x: above x-axis large negative values of x: below x-axis
Unlock Deck
Unlock for access to all 142 flashcards in this deck.
Unlock Deck
k this deck
66
Determine the minimum degree of the polynomial function graphed.
<strong>Determine the minimum degree of the polynomial function graphed.  </strong> A)2 B)3 C)4 D)-4

A)2
B)3
C)4
D)-4
Unlock Deck
Unlock for access to all 142 flashcards in this deck.
Unlock Deck
k this deck
67
Describe the location, either above the x-axis or below the x-axis, of the graph of the function for large positive values of
x and for large negative values of x.

- f(x)=9x3f ( x ) = - 9 x ^ { 3 }

A) large positive values of x: above x-axis , large negative values of x: above x-axis
B)llarge positive values of x: below x-axis , large negative values of x: above x-axis
C)large positive values of x: above x-axis , large negative values of x: below x-axis
D)large positive values of x: below x-axis , large negative values of x: below x-axis
Unlock Deck
Unlock for access to all 142 flashcards in this deck.
Unlock Deck
k this deck
68
Determine the minimum degree of the polynomial function graphed.

- f(x)=(x2)(x1)(x+1)f ( x ) = ( x - 2 ) ( x - 1 ) ( x + 1 )

 <strong>Determine the minimum degree of the polynomial function graphed.  - f ( x ) = ( x - 2 ) ( x - 1 ) ( x + 1 )    </strong> A)   B)   C)   D)

A)  <strong>Determine the minimum degree of the polynomial function graphed.  - f ( x ) = ( x - 2 ) ( x - 1 ) ( x + 1 )    </strong> A)   B)   C)   D)
B)  <strong>Determine the minimum degree of the polynomial function graphed.  - f ( x ) = ( x - 2 ) ( x - 1 ) ( x + 1 )    </strong> A)   B)   C)   D)
C)  <strong>Determine the minimum degree of the polynomial function graphed.  - f ( x ) = ( x - 2 ) ( x - 1 ) ( x + 1 )    </strong> A)   B)   C)   D)
D)  <strong>Determine the minimum degree of the polynomial function graphed.  - f ( x ) = ( x - 2 ) ( x - 1 ) ( x + 1 )    </strong> A)   B)   C)   D)
Unlock Deck
Unlock for access to all 142 flashcards in this deck.
Unlock Deck
k this deck
69
Determine which of the given graphs could be the graph of the given polynomial function.

- P(x)=4x5+5x316x2+8P ( x ) = 4 x ^ { 5 } + 5 x ^ { 3 } - 16 x ^ { 2 } + 8

A)  <strong>Determine which of the given graphs could be the graph of the given polynomial function.  - P ( x ) = 4 x ^ { 5 } + 5 x ^ { 3 } - 16 x ^ { 2 } + 8 </strong> A)   B)   C)   D)
B)  <strong>Determine which of the given graphs could be the graph of the given polynomial function.  - P ( x ) = 4 x ^ { 5 } + 5 x ^ { 3 } - 16 x ^ { 2 } + 8 </strong> A)   B)   C)   D)
C)  <strong>Determine which of the given graphs could be the graph of the given polynomial function.  - P ( x ) = 4 x ^ { 5 } + 5 x ^ { 3 } - 16 x ^ { 2 } + 8 </strong> A)   B)   C)   D)
D)  <strong>Determine which of the given graphs could be the graph of the given polynomial function.  - P ( x ) = 4 x ^ { 5 } + 5 x ^ { 3 } - 16 x ^ { 2 } + 8 </strong> A)   B)   C)   D)
Unlock Deck
Unlock for access to all 142 flashcards in this deck.
Unlock Deck
k this deck
70
Determine the minimum degree of the polynomial function graphed.
<strong>Determine the minimum degree of the polynomial function graphed.  </strong> A)2 B)4 C)3 D)-2

A)2
B)4
C)3
D)-2
Unlock Deck
Unlock for access to all 142 flashcards in this deck.
Unlock Deck
k this deck
71
Determine the maximum and minimum number of x-intercepts for the graph of the polynomial function. Do not graph
the function.

- f(x)=5x94x8+x7+2.5x+15f ( x ) = 5 x ^ { 9 } - 4 x ^ { 8 } + x ^ { 7 } + 2.5 x + 15

A)maximum number of x-intercepts: 9; minimum number of x-intercepts: 3
B)maximum number of x-intercepts: 9; minimum number of x-intercepts: 2
C)maximum number of x-intercepts: 9; minimum number of x-intercepts: 0
D)maximum number of x-intercepts: 9; minimum number of x-intercepts: 1
Unlock Deck
Unlock for access to all 142 flashcards in this deck.
Unlock Deck
k this deck
72
Determine the maximum and minimum number of x-intercepts for the graph of the polynomial function. Do not graph
the function.

- f(x)=x23x3f ( x ) = x ^ { 2 } - 3 x - 3

A)maximum number of x-intercepts: 2; minimum number of x-intercepts: 1
B)maximum number of x-intercepts: 3; minimum number of x-intercepts: 3
C)maximum number of x-intercepts: 2; minimum number of x-intercepts: 2
D)maximum number of x-intercepts: 3; minimum number of x-intercepts: 2
Unlock Deck
Unlock for access to all 142 flashcards in this deck.
Unlock Deck
k this deck
73
Determine the minimum degree of the polynomial function graphed.

- f(x)=x(x+1)(x+2)f ( x ) = x ( x + 1 ) ( x + 2 )

 <strong>Determine the minimum degree of the polynomial function graphed.  - f ( x ) = x ( x + 1 ) ( x + 2 )    </strong> A)   B)   C)   D)

A)  <strong>Determine the minimum degree of the polynomial function graphed.  - f ( x ) = x ( x + 1 ) ( x + 2 )    </strong> A)   B)   C)   D)
B)  <strong>Determine the minimum degree of the polynomial function graphed.  - f ( x ) = x ( x + 1 ) ( x + 2 )    </strong> A)   B)   C)   D)
C)  <strong>Determine the minimum degree of the polynomial function graphed.  - f ( x ) = x ( x + 1 ) ( x + 2 )    </strong> A)   B)   C)   D)
D)  <strong>Determine the minimum degree of the polynomial function graphed.  - f ( x ) = x ( x + 1 ) ( x + 2 )    </strong> A)   B)   C)   D)
Unlock Deck
Unlock for access to all 142 flashcards in this deck.
Unlock Deck
k this deck
74
Determine the minimum degree of the polynomial function graphed.

- f(x)=3x(x2)2f ( x ) = - 3 x ( x - 2 ) ^ { 2 }

 <strong>Determine the minimum degree of the polynomial function graphed.  - f ( x ) = - 3 x ( x - 2 ) ^ { 2 }    </strong> A)   B)   C)   D)

A)  <strong>Determine the minimum degree of the polynomial function graphed.  - f ( x ) = - 3 x ( x - 2 ) ^ { 2 }    </strong> A)   B)   C)   D)
B)  <strong>Determine the minimum degree of the polynomial function graphed.  - f ( x ) = - 3 x ( x - 2 ) ^ { 2 }    </strong> A)   B)   C)   D)
C)  <strong>Determine the minimum degree of the polynomial function graphed.  - f ( x ) = - 3 x ( x - 2 ) ^ { 2 }    </strong> A)   B)   C)   D)
D)  <strong>Determine the minimum degree of the polynomial function graphed.  - f ( x ) = - 3 x ( x - 2 ) ^ { 2 }    </strong> A)   B)   C)   D)
Unlock Deck
Unlock for access to all 142 flashcards in this deck.
Unlock Deck
k this deck
75
Determine the maximum and minimum number of x-intercepts for the graph of the polynomial function. Do not graph
the function.

- f(x)=5x3+x25x2f ( x ) = 5 x ^ { 3 } + x ^ { 2 } - 5 x - 2

A)maximum number of x-intercepts: 3; minimum number of x-intercepts: 0
B)maximum number of x-intercepts: 3; minimum number of x-intercepts: 1
C)maximum number of x-intercepts: 3; minimum number of x-intercepts: 2
D)maximum number of x-intercepts: 2; minimum number of x-intercepts: 1
Unlock Deck
Unlock for access to all 142 flashcards in this deck.
Unlock Deck
k this deck
76
Determine the minimum degree of the polynomial function graphed.

- f(x)=(x5)2(x3)f ( x ) = ( x - 5 ) ^ { 2 } ( x - 3 )

 <strong>Determine the minimum degree of the polynomial function graphed.  - f ( x ) = ( x - 5 ) ^ { 2 } ( x - 3 )    </strong> A)   B)   C)   D)

A)  <strong>Determine the minimum degree of the polynomial function graphed.  - f ( x ) = ( x - 5 ) ^ { 2 } ( x - 3 )    </strong> A)   B)   C)   D)
B)  <strong>Determine the minimum degree of the polynomial function graphed.  - f ( x ) = ( x - 5 ) ^ { 2 } ( x - 3 )    </strong> A)   B)   C)   D)
C)  <strong>Determine the minimum degree of the polynomial function graphed.  - f ( x ) = ( x - 5 ) ^ { 2 } ( x - 3 )    </strong> A)   B)   C)   D)
D)  <strong>Determine the minimum degree of the polynomial function graphed.  - f ( x ) = ( x - 5 ) ^ { 2 } ( x - 3 )    </strong> A)   B)   C)   D)
Unlock Deck
Unlock for access to all 142 flashcards in this deck.
Unlock Deck
k this deck
77
Determine the maximum and minimum number of x-intercepts for the graph of the polynomial function. Do not graph
the function.

- f(x)=7x66x5+x4+3.5x5f ( x ) = 7 x ^ { 6 } - 6 x ^ { 5 } + x ^ { 4 } + 3.5 x - 5

A)maximum number of x-intercepts: 5; minimum number of x-intercepts: 2
B)maximum number of x-intercepts: 5; minimum number of x-intercepts: 0
C)maximum number of x-intercepts: 6; minimum number of x-intercepts: 0
D)maximum number of x-intercepts: 6; minimum number of x-intercepts: 2
Unlock Deck
Unlock for access to all 142 flashcards in this deck.
Unlock Deck
k this deck
78
Determine the minimum degree of the polynomial function graphed.

- f(x)=x3+5x2+6xf ( x ) = x ^ { 3 } + 5 x ^ { 2 } + 6 x

 <strong>Determine the minimum degree of the polynomial function graphed.  - f ( x ) = x ^ { 3 } + 5 x ^ { 2 } + 6 x    </strong> A)   B)   C)   D)

A)  <strong>Determine the minimum degree of the polynomial function graphed.  - f ( x ) = x ^ { 3 } + 5 x ^ { 2 } + 6 x    </strong> A)   B)   C)   D)
B)  <strong>Determine the minimum degree of the polynomial function graphed.  - f ( x ) = x ^ { 3 } + 5 x ^ { 2 } + 6 x    </strong> A)   B)   C)   D)
C)  <strong>Determine the minimum degree of the polynomial function graphed.  - f ( x ) = x ^ { 3 } + 5 x ^ { 2 } + 6 x    </strong> A)   B)   C)   D)
D)  <strong>Determine the minimum degree of the polynomial function graphed.  - f ( x ) = x ^ { 3 } + 5 x ^ { 2 } + 6 x    </strong> A)   B)   C)   D)
Unlock Deck
Unlock for access to all 142 flashcards in this deck.
Unlock Deck
k this deck
79
Determine the minimum degree of the polynomial function graphed.

- f(x)=(x4)(x2)(x+1)(x+2)f ( x ) = ( x - 4 ) ( x - 2 ) ( x + 1 ) ( x + 2 )

 <strong>Determine the minimum degree of the polynomial function graphed.  - f ( x ) = ( x - 4 ) ( x - 2 ) ( x + 1 ) ( x + 2 )    </strong> A)   B)   C)   D)

A)  <strong>Determine the minimum degree of the polynomial function graphed.  - f ( x ) = ( x - 4 ) ( x - 2 ) ( x + 1 ) ( x + 2 )    </strong> A)   B)   C)   D)
B)  <strong>Determine the minimum degree of the polynomial function graphed.  - f ( x ) = ( x - 4 ) ( x - 2 ) ( x + 1 ) ( x + 2 )    </strong> A)   B)   C)   D)
C)  <strong>Determine the minimum degree of the polynomial function graphed.  - f ( x ) = ( x - 4 ) ( x - 2 ) ( x + 1 ) ( x + 2 )    </strong> A)   B)   C)   D)
D)  <strong>Determine the minimum degree of the polynomial function graphed.  - f ( x ) = ( x - 4 ) ( x - 2 ) ( x + 1 ) ( x + 2 )    </strong> A)   B)   C)   D)
Unlock Deck
Unlock for access to all 142 flashcards in this deck.
Unlock Deck
k this deck
80
Describe the location, either above the x-axis or below the x-axis, of the graph of the function for large positive values of
x and for large negative values of x.

- f(x)=x5+x4+x3+x2+x3f ( x ) = x ^ { 5 } + x ^ { 4 } + x ^ { 3 } + x ^ { 2 } + x - 3

A)large positive values of x: above x-axis
B)large positive values of x: below x-axis large negative values of x: below x-axis large negative values of x: below x-axis
C)large positive values of x: below x-axis
D)large positive values of x: above x-axis large negative values of x: above x-axis large negative values of x: above x-axis
Unlock Deck
Unlock for access to all 142 flashcards in this deck.
Unlock Deck
k this deck
locked card icon
Unlock Deck
Unlock for access to all 142 flashcards in this deck.