Deck 4: More About Derivatives

Full screen (f)
exit full mode
Question
Let y=5(x2x+1)100y = 5 \left( x ^ { 2 } - x + 1 \right) ^ { 100 } Then yy ^ { \prime } is

A) 500(2x+1)99500 ( 2 x + 1 ) ^ { 99 }
B) 500(2x1)99500 ( 2 x - 1 ) ^ { 99 }
C) 1000(x2x+11)991000 \left( x ^ { 2 } - x + 11 \right) ^ { 99 }
D) 500(x2x+1)99(2x+1)500 \left( x ^ { 2 } - x + 1 \right) ^ { 99 } ( 2 x + 1 )
E) 500(x2x+1)99(2x1)500 \left( x ^ { 2 } - x + 1 \right) ^ { 99 } ( 2 x - 1 )
Use Space or
up arrow
down arrow
to flip the card.
Question
Let y=cos(x2x+1)y = \cos \left( x ^ { 2 } - x + 1 \right) . Then yy ^ { \prime } is

A) sin(2x1)- \sin ( 2 x - 1 )
B) sin(2x1)\sin ( 2 x - 1 )
C) (2x1)sin(x2x+1)( 2 x - 1 ) \sin \left( x ^ { 2 } - x + 1 \right)
D) (2x1)sin(x2x+1)- ( 2 x - 1 ) \sin \left( x ^ { 2 } - x + 1 \right)
E) 2xsin(x2x+1)- 2 x \sin \left( x ^ { 2 } - x + 1 \right)
Question
Let y=tan3xy = \tan ^ { 3 } x Then yy ^ { \prime } is

A) 3tan2x3 \tan ^ { 2 } x
B) 3tanxsec2x3 \tan x \sec ^ { 2 } x
C) 3tan2xsec2x3 \tan ^ { 2 } x \sec ^ { 2 } x
D) 3sec2x3 \sec ^ { 2 } x
E) 3tan2xsec4x3 \tan ^ { 2 } x \sec ^ { 4 } x
Question
Let y=csc(5x).y = \csc ( 5 x ) . Then yy ^ { \prime } is

A) 5csc(5x)cot(5x)5 \csc ( 5 x ) \cot ( 5 x )
B) 5csc(5x)cot(5x)- 5 \csc ( 5 x ) \cot ( 5 x )
C) 5cscxcotx5 \csc x \cot x
D) 5cscxcotx- 5 \csc x \cot x
E) 5csc2x- 5 \csc ^ { 2 } x
Question
Let y=u1uy = \frac { u } { 1 - u } and u=2xu = 2 x By the Chain Rule, dydx\frac { d y } { d x } is

A) 1(1x)2\frac { 1 } { ( 1 - x ) ^ { 2 } }
B) 2(12x)2\frac { 2 } { ( 1 - 2 x ) ^ { 2 } }
C) x(12x)2\frac { x } { ( 1 - 2 x ) ^ { 2 } }
D) 2x(12x)2\frac { 2 x } { ( 1 - 2 x ) ^ { 2 } }
E) x(12x)2- \frac { x } { ( 1 - 2 x ) ^ { 2 } }
Question
Let y=u2u+3y = \frac { u - 2 } { u + 3 } and u=2x+1u = 2 x + 1 By the Chain Rule, dydx\frac { d y } { d x } is

A) 4x+7(2x+4)2\frac { 4 x + 7 } { ( 2 x + 4 ) ^ { 2 } }
B) 4x7(2x+4)2\frac { 4 x - 7 } { ( 2 x + 4 ) ^ { 2 } }
C) 10(2x+4)2\frac { 10 } { ( 2 x + 4 ) ^ { 2 } }
D) 5(2x+4)2- \frac { 5 } { ( 2 x + 4 ) ^ { 2 } }
E) 5(2x+4)2\frac { 5 } { ( 2 x + 4 ) ^ { 2 } }
Question
Let y=u+1uy = u + \frac { 1 } { u } and u=x2+x1u = x ^ { 2 } + x - 1 By the Chain Rule, dydx\frac { d y } { d x } is

A) 1+1x2+x11 + \frac { 1 } { x ^ { 2 } + x - 1 }
B) 11x2+x11 - \frac { 1 } { x ^ { 2 } + x - 1 }
C) 11(x2+x1)21 - \frac { 1 } { \left( x ^ { 2 } + x - 1 \right) ^ { 2 } }
D) (2x+1)(11(x2+x1)2)( 2 x + 1 ) \left( 1 - \frac { 1 } { \left( x ^ { 2 } + x - 1 \right) ^ { 2 } } \right)
E) (2x+1)(1+1(x2+x1)2)( 2 x + 1 ) \left( 1 + \frac { 1 } { \left( x ^ { 2 } + x - 1 \right) ^ { 2 } } \right)
Question
Let y=sinu+cosuy = \sin u + \cos u and u=4x2+5u = 4 x ^ { 2 } + 5 By the Chain Rule, dydx\frac { d y } { d x } is

A) cos(8x)sin(8x)\cos ( 8 x ) - \sin ( 8 x )
B) cos(8x)+sin(8x)\cos ( 8 x ) + \sin ( 8 x )
C) cos(4x2+5)sin(4x2+5)\cos \left( 4 x ^ { 2 } + 5 \right) - \sin \left( 4 x ^ { 2 } + 5 \right)
D) cos(4x2+5)+sin(4x2+5)\cos \left( 4 x ^ { 2 } + 5 \right) + \sin \left( 4 x ^ { 2 } + 5 \right)
E) 8x[cos(4x2+5)sin(4x2+5)]8 x \left[ \cos \left( 4 x ^ { 2 } + 5 \right) - \sin \left( 4 x ^ { 2 } + 5 \right) \right]
Question
Let y=ueuy = \frac { u } { e ^ { u } } and u=3x.u = \frac { 3 } { x } . By the Chain Rule, dydx\frac { d y } { d x } is

A) x9x2e3x\frac { x - 9 } { x ^ { 2 } e ^ { \frac { 3 } { x } } }
B) x3x3e3x\frac { x - 3 } { x ^ { 3 } e ^ { \frac { 3 } { x } } }
C) 3(3x)x3e3x\frac { 3 ( 3 - x ) } { x ^ { 3 } e ^ { \frac { 3 } { x } } }
D) 9xx2e3x\frac { 9 - x } { x ^ { 2 } e ^ { \frac { 3 } { x } } }
E) 9xx3e3x\frac { 9 - x } { x ^ { 3 } e ^ { \frac { 3 } { x } } }
Question
Let y=3ueuy = 3 u e ^ { u } and u=2x+3u = 2 x + 3 By the Chain Rule, dydx\frac { d y } { d x } is

A) 3e2x+33 e ^ { 2 x + 3 }
B) 6e2x+3(2x+3)6 e ^ { 2 x + 3 } ( 2 x + 3 )
C) 12e(2x+3)(x+2)12 e ^ { ( 2 x + 3 ) } ( x + 2 )
D) 12e(2x+3)(2x+3)12 e ^ { ( 2 x + 3 ) } ( 2 x + 3 )
E) 6e2x+36 e ^ { 2 x + 3 }
Question
Let f(x)=sin(cosx)f ( x ) = \sin ( \cos x ) Then f(x)f ^ { \prime } ( x ) is

A) cos(sinx)\cos ( \sin x )
B) cos(cosx)\cos ( \cos x )
C) sinx[cos(cosx)]\sin x [ \cos ( \cos x ) ]
D) sinx[cos(cosx)]- \sin x [ \cos ( \cos x ) ]
E) sinx[sin(cosx)]- \sin x [ \sin ( \cos x ) ]
Question
Let f(x)=sin(ex)f ( x ) = \sin \left( e ^ { x } \right) Then f(x)f ^ { \prime } ( x ) is

A) cos(ex)\cos \left( e ^ { x } \right)
B) excos(ex)e ^ { x } \cos \left( e ^ { x } \right)
C) excos(ex)- e ^ { x } \cos \left( e ^ { x } \right)
D) exsin(ex)e ^ { x } \sin \left( e ^ { x } \right)
E) exsin(ex)- e ^ { x } \sin \left( e ^ { x } \right)
Question
Let f(x)=(ex+xe)6f ( x ) = \left( e ^ { x } + x ^ { e } \right) ^ { 6 } . Then f(x)f ^ { \prime } ( x ) is

A) 6(ex+x6)56 \left( e ^ { x } + x ^ { 6 } \right) ^ { 5 }
B) 6(xex1+x)56 \left( x e ^ { x - 1 } + x ^ { \prime } \right) ^ { 5 }
C) 6(ex+exe1)56 \left( e ^ { x } + e x ^ { e - 1 } \right) ^ { 5 }
D) 6(ex+exe1)66 \left( e ^ { x } + e x ^ { e - 1 } \right) ^ { 6 }
E) 6(ex+xe)5(ex+exe1)6 \left( e ^ { x } + x ^ { e } \right) ^ { 5 } \left( e ^ { x } + e x ^ { e - 1 } \right)
Question
Let f(x)=tan3(5x)f ( x ) = \tan ^ { 3 } ( 5 x ) Then f(x)f ^ { \prime } ( x ) is

A) 15tan2(5x)15 \tan ^ { 2 } ( 5 x )
B) 15tan2(5x)sec(5x)15 \tan ^ { 2 } ( 5 x ) \sec ( 5 x )
C) 15tan2(5x)sec2(5x)15 \tan ^ { 2 } ( 5 x ) \sec ^ { 2 } ( 5 x )
D) 5tan3(5x)sec2(5x)5 \tan ^ { 3 } ( 5 x ) \sec ^ { 2 } ( 5 x )
E) 5tan2(5x)sec(5x)5 \tan ^ { 2 } ( 5 x ) \sec ( 5 x )
Question
Let f(x)=tan(5x)f ( x ) = \tan \left( 5 ^ { x } \right) Then f(x)f ^ { \prime } ( x ) is

A) tan(5xln5)\tan \left( 5 ^ { x } \ln 5 \right)
B) sec2(5x)\sec ^ { 2 } \left( 5 ^ { x } \right)
C) sec2(5xln5)\sec ^ { 2 } \left( 5 ^ { x } \ln 5 \right)
D) sec2(5x)ln5\sec ^ { 2 } \left( 5 ^ { x } \right) \ln 5
E) 5xsec2(5x)ln55 ^ { x } \sec ^ { 2 } \left( 5 ^ { x } \right) \ln 5
Question
Let f(x)=ecos(3x)f ( x ) = \mathrm { e } ^ { \cos ( 3 x ) } Then f(x)f ^ { \prime } ( x ) is

A) 3esin(3x)3 e ^ { \sin ( 3 x ) }
B) e3xsin(3x)e ^ { 3 x } \sin ( 3 x )
C) 3e3xsin(3x)3 e ^ { 3 x } \sin ( 3 x )
D) 3sin(3x)ecos(3x)3 \sin ( 3 x ) \mathrm { e } ^ { \cos ( 3 x ) }
E) 3sin(3x)ecos(3x)- 3 \sin ( 3 x ) \mathrm { e } ^ { \cos ( 3 x ) }
Question
Let f(x)=5cot(3x)f ( x ) = 5 ^ { \cot ( 3 x ) } Then f(x)f ^ { \prime } ( x ) is

A) 15csc2(3x)15 ^ { \csc ^ { 2 } ( 3 x ) }
B) 15csc2(3x)- 15 ^ { \csc ^ { 2 } ( 3 x ) }
C) 15cot(3x)(csc2(3x))15 ^ { \cot ( 3 x ) } \left( \csc ^ { 2 } ( 3 x ) \right)
D) 5cos(3x)(3csc2(3x))5 ^ { \cos ( 3 x ) } \left( 3 \csc ^ { 2 } ( 3 x ) \right)
E) 5cos(3x)(3csc2(3x)ln5)- 5 ^ { \cos ( 3 x ) } \left( 3 \csc ^ { 2 } ( 3 x ) \ln 5 \right)
Question
Let f(x)=cot(ex)f ( x ) = \cot \left( e ^ { x } \right) Then f(x)f ^ { \prime } ( x ) is

A) csc2(ex)- \csc ^ { 2 } \left( e ^ { x } \right)
B) cot2(ex)- \cot ^ { 2 } \left( e ^ { x } \right)
C) excot2(ex)- e ^ { x } \cot ^ { 2 } \left( e ^ { x } \right)
D) excsc2(ex)- e ^ { x } \csc ^ { 2 } \left( e ^ { x } \right)
E) excsc2(ex)e ^ { x } \csc ^ { 2 } \left( e ^ { x } \right)
Question
Let h=fg.h = f \circ g . Then g(2)=3g ( 2 ) = 3 , g(2)=1g ^ { \prime } ( 2 ) = - 1 and f(3)=6f ^ { \prime } ( 3 ) = 6 Then h(2)h ^ { \prime } ( 2 ) is

A)-6
B)6
C)-3
D)18
E)16
Question
Let h=gfh = g \circ f Then and f(2)=4f ( 2 ) = 4 , f(2)=12f ^ { \prime } ( 2 ) = \frac { 1 } { 2 } and g(4)=10g ^ { \prime } ( 4 ) = 10 Then h(2)h ^ { \prime } ( 2 ) is

A)40
B)20
C)10
D)5
E)2
Question
Using implicit differentiation on eyx=x,ye ^ { y - x } = x , y ^ { \prime } is

A) 1+exy1 + e ^ { x - y }
B) 1+eyx1 + e ^ { y - x }
C) 1exy1 - e ^ { x - y }
D) exy1e ^ { x - y } - 1
E) eyx1e ^ { y - x } - 1
Question
Using implicit differentiation on 2x2xy+y2=4,y2 x ^ { 2 } - x y + y ^ { 2 } = 4 , y is

A) y4xx2y\frac { y - 4 x } { x - 2 y }
B) y4xx+2y\frac { y - 4 x } { x + 2 y }
C) 4xyx2y\frac { 4 x - y } { x - 2 y }
D) 4xyx+2y\frac { 4 x - y } { x + 2 y }
E) 4x+yx2y\frac { 4 x + y } { x - 2 y }
Question
Using implicit differentiation on sinycosx+xy=2,y\sin y - \cos x + x y = 2 , y ^ { \prime } is

A) sinx+ycosy+x- \frac { \sin x + y } { \cos y + x }
B) sinxycosy+x\frac { \sin x - y } { \cos y + x }
C) sinx+ycosy+x\frac { \sin x + y } { \cos y + x }
D) sinxycosyx\frac { \sin x - y } { \cos y - x }
E) sinx+ycosy+x\frac { - \sin x + y } { \cos y + x }
Question
Using implicit differentiation on y=cos(x+y),yy = \cos ( x + y ) , y ^ { \prime } is

A) sin(x+y)1+sin(x+y)\frac { \sin ( x + y ) } { 1 + \sin ( x + y ) }
B) sin(x+y)1sin(x+y)\frac { \sin ( x + y ) } { 1 - \sin ( x + y ) }
C) sin(x+y)sin(x+y)1\frac { \sin ( x + y ) } { \sin ( x + y ) - 1 }
D)-1
E) sin(x+y)1+sin(x+y)- \frac { \sin ( x + y ) } { 1 + \sin ( x + y ) }
Question
Using implicit differentiation on y=(x+2y)2,yy = ( x + 2 y ) ^ { 2 } , y ^ { \prime } is

A) x+2y12(x+2y)\frac { x + 2 y } { 1 - 2 ( x + 2 y ) }
B) 2(x+2y)4(x+2y)1\frac { 2 ( x + 2 y ) } { 4 ( x + 2 y ) - 1 }
C) 2(x+2y)14(x+2y)\frac { 2 ( x + 2 y ) } { 1 - 4 ( x + 2 y ) }
D) 2(x+2y)1+4(x+2y)\frac { 2 ( x + 2 y ) } { 1 + 4 ( x + 2 y ) }
E) 2(x2y)14(x+2y)\frac { 2 ( x - 2 y ) } { 1 - 4 ( x + 2 y ) }
Question
Using implicit differentiation on xy5x+y=8,yx y - 5 ^ { x + y } = 8 , y ^ { \prime } is

A) x5x+yln55x+yln5y\frac { x - 5 ^ { x + y } \ln 5 } { 5 ^ { x + y } \ln 5 - y }
B) x+5x+yln55x+yln5y\frac { x + 5 ^ { x + y } \ln 5 } { 5 ^ { x + y } \ln 5 - y }
C) x+5x+yln55x+yln5+y\frac { x + 5 ^ { x + y } \ln 5 } { 5 ^ { x + y } \ln 5 + y }
D) 5x+yln5yx5x+yln5\frac { 5 ^ { x + y } \ln 5 - y } { x - 5 ^ { x + y } \ln 5 }
E) 5x+yyx5x+yln5\frac { 5 ^ { x + y } - y } { x - 5 ^ { x + y } \ln 5 }
Question
Using implicit differentiation on y=xsiny,yy = x \sin y , y ^ { \prime } is

A) cosy1xsiny\frac { \cos y } { 1 - x \sin y }
B) cosy1+xsiny\frac { \cos y } { 1 + x \sin y }
C) siny1xcosy\frac { \sin y } { 1 - x \cos y }
D) siny1+xcosy\frac { \sin y } { 1 + x \cos y }
E) sinyxcosy1\frac { \sin y } { x \cos y - 1 }
Question
Using implicit differentiation on x2+y2=2y,yx ^ { 2 } + y ^ { 2 } = 2 y , y ^ { \prime } is

A) x1y\frac { x } { 1 - y }
B) xy1\frac { x } { y - 1 }
C) x1+y\frac { x } { 1 + y }
D) y1x\frac { y } { 1 - x }
E) yx1\frac { y } { x - 1 }
Question
Using implicit differentiation on x33xy+y3=6,yx ^ { 3 } - 3 x y + y ^ { 3 } = 6 , y\prime is

A) y2xyx2\frac { y ^ { 2 } - x } { y - x ^ { 2 } }
B) xy2yx2\frac { x - y ^ { 2 } } { y - x ^ { 2 } }
C) x2yy2x\frac { x ^ { 2 } - y } { y ^ { 2 } - x }
D) yx2y2x\frac { y - x ^ { 2 } } { y ^ { 2 } - x }
E) y+x2y2x\frac { y + x ^ { 2 } } { y ^ { 2 } - x }
Question
Using implicit differentiation on ey+sin(xy)=x2,ye ^ { y } + \sin ( x - y ) = x ^ { 2 } , y ^ { \prime } is

A) cos(xy)2xeycos(xy)\frac { \cos ( x - y ) - 2 x } { e ^ { y } - \cos ( x - y ) }
B) 12xey1\frac { 1 - 2 x } { e ^ { y } - 1 }
C) 21xey1\frac { 2 - 1 x } { e ^ { y } - 1 }
D) 2xcos(xy)eycos(xy)\frac { 2 x - \cos ( x - y ) } { e ^ { y } - \cos ( x - y ) }
E) 2x+cos(xy)eycos(xy)\frac { 2 x + \cos ( x - y ) } { e ^ { y } - \cos ( x - y ) }
Question
Let f(x)=x2sin1xf ( x ) = x ^ { 2 } \sin ^ { - 1 } x Then f(x)f ^ { \prime } ( x ) is

A) 2xsin1xx21x22 x \sin ^ { - 1 } x - \frac { x ^ { 2 } } { \sqrt { 1 - x ^ { 2 } } }
B) 2xsin1x+x21x22 x \sin ^ { - 1 } x + \frac { x ^ { 2 } } { \sqrt { 1 - x ^ { 2 } } }
C) 2xsin1x+x2x212 x \sin ^ { - 1 } x + \frac { x ^ { 2 } } { \sqrt { x ^ { 2 } - 1 } }
D) 2xsin1xx2x212 x \sin ^ { - 1 } x - \frac { x ^ { 2 } } { \sqrt { x ^ { 2 } - 1 } }
E) 2xsin1x+x21+x22 x \sin ^ { - 1 } x + \frac { x ^ { 2 } } { 1 + x ^ { 2 } }
Question
Let f(x)=tan1(cosx)f ( x ) = \tan ^ { - 1 } ( \cos x ) Then f(x)f ^ { \prime } ( x ) is

A) sinx1+cos2x\frac { \sin x } { 1 + \cos ^ { 2 } x }
B) sinx1+cos2x- \frac { \sin x } { 1 + \cos ^ { 2 } x }
C) sinxcos2x1\frac { \sin x } { \cos ^ { 2 } x - 1 }
D) sinxcos2x1\frac { \sin x } { \cos ^ { 2 } x - 1 } .
E) sinxcos2x1- \frac { \sin x } { \cos ^ { 2 } x - 1 }
Question
Let f(x)=tan1(x)f ( x ) = \tan ^ { - 1 } ( \sqrt { x } ) Then f(x)f ^ { \prime } ( x ) is

A) 12x(1+x2)\frac { 1 } { 2 \sqrt { x } \left( 1 + x ^ { 2 } \right) }
B) 2x(1+x2)\frac { 2 } { \sqrt { x } \left( 1 + x ^ { 2 } \right) }
C) 12x(1x2)\frac { 1 } { 2 \sqrt { x } \left( 1 - x ^ { 2 } \right) }
D) 12x(1+x)\frac { 1 } { 2 \sqrt { x } ( 1 + x ) }
E) 12x(1x)\frac { 1 } { 2 \sqrt { x } ( 1 - x ) }
Question
Let f(x)=sec1(ex)f ( x ) = \sec ^ { - 1 } \left( e ^ { x } \right) Then f(x)f ^ { \prime } ( x ) is

A) 1e2x1\frac { 1 } { \sqrt { e ^ { 2 x } - 1 } }
B) 1exe2x1- \frac { 1 } { e ^ { x } \sqrt { e ^ { 2 x } - 1 } }
C) 1ex(e2x+1)\frac { 1 } { e ^ { x } \left( e ^ { 2 x } + 1 \right) }
D) 1ex(e2x+1)- \frac { 1 } { e ^ { x } \left( e ^ { 2 x } + 1 \right) }
E) exe2x1\frac { e ^ { x } } { \sqrt { e ^ { 2 x } - 1 } }
Question
Let f(x)=tan1(3x)f ( x ) = \tan ^ { - 1 } \left( 3 ^ { x } \right) Then f(x)f ^ { \prime } ( x ) is

A) 3x1+32x\frac { 3 ^ { x } } { 1 + 3 ^ { 2 x } }
B) 3x1+32x\frac { 3 ^ { x } } { 1 + 3 ^ { 2 x } } .
C) 3xln31+32x\frac { 3 ^ { x } \ln 3 } { 1 + 3 ^ { 2 x } }
D) 3xln332x1\frac { 3 ^ { x } \ln 3 } { \sqrt { 3 ^ { 2 x } - 1 } }
E) 3xln3132x\frac { 3 ^ { x } \ln 3 } { \sqrt { 1 - 3 ^ { 2 x } } }
Question
Let f(x)=cos1(x4)f ( x ) = \cos ^ { - 1 } \left( x ^ { 4 } \right) Then f(x)f ^ { \prime } ( x ) is

A) 4x31x2- \frac { 4 x ^ { 3 } } { \sqrt { 1 - x ^ { 2 } } }
B) 4x31x4- \frac { 4 x ^ { 3 } } { \sqrt { 1 - x ^ { 4 } } }
C) 4x31x6- \frac { 4 x ^ { 3 } } { \sqrt { 1 - x ^ { 6 } } }
D) 4x31x8- \frac { 4 x ^ { 3 } } { \sqrt { 1 - x ^ { 8 } } }
E) 4x31x8\frac { 4 x ^ { 3 } } { \sqrt { 1 - x ^ { 8 } } }
Question
Let f(x)=cot1(e2x)f ( x ) = \cot ^ { - 1 } \left( e ^ { 2 x } \right) Then f(x)f ^ { \prime } ( x ) is

A) 2e2x1e4x- \frac { 2 e ^ { 2 x } } { \sqrt { 1 - e ^ { 4 x } } }
B) 2e2x1+e4x- \frac { 2 e ^ { 2 x } } { 1 + e ^ { 4 x } }
C) 2e2x1+e2x- \frac { 2 e ^ { 2 x } } { 1 + e ^ { 2 x } }
D) 2e2x1e2x- \frac { 2 e ^ { 2 x } } { 1 - e ^ { 2 x } }
E) 2e2xe4x1- \frac { 2 e ^ { 2 x } } { \sqrt { e ^ { 4 x } - 1 } }
Question
Let f(x)=tan1(cotx)f ( x ) = \tan ^ { - 1 } ( \cot x ) Then f(x)f ^ { \prime } ( x ) is

A)-1
B) sec2x1+cot2x\frac { \sec ^ { 2 } x } { 1 + \cot ^ { 2 } x }
C) sec2x1+cot2x- \frac { \sec ^ { 2 } x } { 1 + \cot ^ { 2 } x }
D)1
E) cos2x1+cot2x\frac { \cos ^ { 2 } x } { 1 + \cot ^ { 2 } x }
Question
Let f(x)=sin1(cosx)f ( x ) = \sin ^ { - 1 } ( \cos x ) on the interval (0,π)( 0 , \pi ) Then f(x)f ^ { \prime } ( x ) is

A)-1
B) sinx1+cos2x\frac { - \sin x } { 1 + \cos ^ { 2 } x }
C) sinx1+cos2x- \frac { \sin x } { \sqrt { 1 + \cos ^ { 2 } x } }
D)1
E) sinx1+cos2x\frac { \sin x } { \sqrt { 1 + \cos ^ { 2 } x } }
Question
Let f(x)=cos1(sinx)f ( x ) = \cos ^ { - 1 } ( \sin x ) Then f(x)f ^ { \prime } ( x ) is

A)-1
B) coxx1+sin2x- \frac { \operatorname { cox } x } { 1 + \sin ^ { 2 } x }
C) coxx1+sin2x- \frac { \operatorname { cox } x } { \sqrt { 1 + \sin ^ { 2 } x } }
D)1
E) cosx1+sin2x\frac { \cos x } { \sqrt { 1 + \sin ^ { 2 } x } }
Question
Let f(x)=ln(x+3x2)f ( x ) = \ln \left( \frac { x + 3 } { x - 2 } \right) Then f(x)f ^ { \prime } ( x ) is

A) 1(x+3)(x2)- \frac { 1 } { ( x + 3 ) ( x - 2 ) }
B) 5(x+3)(x2)- \frac { 5 } { ( x + 3 ) ( x - 2 ) }
C) 5(x+3)(x2)\frac { 5 } { ( x + 3 ) ( x - 2 ) }
D) 1(x+3)(x2)\frac { 1 } { ( x + 3 ) ( x - 2 ) }
E) x25(x+3)- \frac { x - 2 } { 5 ( x + 3 ) }
Question
Let f(x)=ln(secx)f ( x ) = \ln ( \sec x ) Then f(x)f ^ { \prime } ( x ) is

A)sec x
B)tan2 x
C)tan x
D)cot x
E)csc x
Question
Let f(x)=log2x2+5f ( x ) = \log _ { 2 } \sqrt { x ^ { 2 } + 5 } Then f(x)f ^ { \prime } ( x ) is

A) 2x(x2+5)ln2\frac { 2 x } { \left( x ^ { 2 } + 5 \right) \ln 2 }
B) 2x(x2+5)ln2- \frac { 2 x } { \left( x ^ { 2 } + 5 \right) \ln 2 }
C) x2(x2+5)\frac { x } { 2 \left( x ^ { 2 } + 5 \right) }
D) x(x2+5)ln2\frac { x } { \left( x ^ { 2 } + 5 \right) \ln 2 }
E) x(x2+5)ln2- \frac { x } { \left( x ^ { 2 } + 5 \right) \ln 2 }
Question
Let f(x)=tan1(log3x)f ( x ) = \tan ^ { - 1 } \left( \log _ { 3 } x \right) Then f(x)f ^ { \prime } ( x ) is

A) 1x(1+(log3x)2)- \frac { 1 } { x \left( 1 + \left( \log _ { 3 } x \right) ^ { 2 } \right) }
B) 1x(1+(log3x)2)\frac { 1 } { x \left( 1 + \left( \log _ { 3 } x \right) ^ { 2 } \right) }
C) ln3x(1+(log3x)2)\frac { \ln 3 } { x \left( 1 + \left( \log _ { 3 } x \right) ^ { 2 } \right) }
D) 1xln3(1+(log3x)2)- \frac { 1 } { x \ln 3 \left( 1 + \left( \log _ { 3 } x \right) ^ { 2 } \right) }
E) 1xln3(1+(log3x)2)\frac { 1 } { x \ln 3 \left( 1 + \left( \log _ { 3 } x \right) ^ { 2 } \right) }
Question
Let f(x)=lnsin(2x)f ( x ) = \ln \sqrt { \sin ( 2 x ) } Then f(x)f ^ { \prime } ( x ) is

A) sec(2x)\sec ( 2 x )
B) tan2(2x)\tan ^ { 2 } ( 2 x )
C) tan(2x)\tan ( 2 x )
D) cot(2x)\cot ( 2 x )
E) csc(2x)\csc ( 2 x )
Question
Let y=xxy = x ^ { x } Then yy ^ { \prime } is

A) xx(lnx1)x ^ { x } ( \ln x - 1 )
B) xxlnxx ^ { x } \ln x
C) xx(1+lnx)x ^ { x } ( 1 + \ln x )
D) xx(1+lnx)- x ^ { x } ( 1 + \ln x )
E) xx(1lnx)x ^ { x } ( 1 - \ln x )
Question
Let y=xx2y = x ^ { x ^ { 2 } } Then yy ^ { \prime } is

A) xx2+1(2lnx1)x ^ { x ^ { 2 } + 1 } ( 2 \ln x - 1 )
B) xx21(12lnx)x ^ { x ^ { 2 } - 1 } ( 1 - 2 \ln x )
C) xx21(1+2lnx)x ^ { x ^ { 2 } - 1 } ( 1 + 2 \ln x )
D) xx2+1(12lnx)x ^ { x ^ { 2 } + 1 } ( 1 - 2 \ln x )
E) xx2+1(1+2lnx)x ^ { x ^ { 2 } + 1 } ( 1 + 2 \ln x )
Question
Let f(x)=ln(tanx)f ( x ) = \ln ( \tan x ) Then f(x)f ^ { \prime } ( x ) is

A) sinxcosx\sin x \cos x
B) 1sinxcosx\frac { 1 } { \sin x \cos x }
C) 1sinxcosx- \frac { 1 } { \sin x \cos x }
D)cot x
E)csc x
Question
Let f(x)=ln(cosx)f ( x ) = \ln ( \cos x ) Then f(x)f ^ { \prime } ( x ) is

A) sinxcosx- \sin x \cos x
B) 1sinxcosx- \frac { 1 } { \sin x \cos x }
C)-tan x
D)-cot x
E)-csc x
Question
Let f(x)=ln(log2x)f ( x ) = \ln \left( \log _ { 2 } x \right) Then f(x)f ^ { \prime } ( x ) is

A) 1xlog2x\frac { 1 } { x \log _ { 2 } x }
B) ln2xlog2x\frac { \ln 2 } { x \log _ { 2 } x }
C) 1xlnx\frac { 1 } { x \ln x }
D) 1xln2(lnx)- \frac { 1 } { x \ln 2 ( \ln x ) }
E) ln2xlnx\frac { \ln 2 } { x \ln x }
Question
Let y=xx2y = x ^ { \ell ^ { x ^ { 2 } } } Then yy ^ { \prime } is

A) exxex(1+xlnx)e ^ { x } x ^ { e ^ { x } } ( 1 + x \ln x )
B) exxex(1xlnx)e ^ { x } x ^ { e ^ { x } } ( 1 - x \ln x )
C) exxex1(1+xlnx)e ^ { x } x ^ { e ^ { x } - 1 } ( 1 + x \ln x )
D) exxex1(1xlnx)e ^ { x } x ^ { e ^ { x } - 1 } ( 1 - x \ln x )
E) exxex1(1+lnx)e ^ { x } x ^ { e ^ { x } - 1 } ( 1 + \ln x )
Question
Let y=xexy = x ^ {e ^ { x}} Then yy ^ { \prime } is

A) x2e1x- \frac { x ^ { 2 } } { e ^ { \frac { 1 } { x } } }
B) e1xx2- \frac { e ^ { \frac { 1 } { x } } } { x ^ { 2 } }
C) e1xx2\frac { e ^ { \frac { 1 } { x } } } { x ^ { 2 } }
D) x2e1x\frac { x ^ { 2 } } { e ^ { \frac { 1 } { x } } }
E) x2ex- \frac { x ^ { 2 } } { e ^ { x } }
Question
Let xy=ex ^ { y } = e \text {. } Then yy ^ { \prime } is

A) x(lnx)2- \frac { x } { ( \ln x ) ^ { 2 } }
B) x(lnx)2\frac { x } { ( \ln x ) ^ { 2 } }
C) 1x(lnx)2\frac { 1 } { x ( \ln x ) ^ { 2 } }
D) 1x(lnx)2- \frac { 1 } { x ( \ln x ) ^ { 2 } }
E) x2(lnx)2\frac { x ^ { 2 } } { ( \ln x ) ^ { 2 } }
Question
Let y=sin(lnx)y = \sin ( \ln x ) Then yy ^ { \prime } is

A) cos(lnx)x- \frac { \cos ( \ln x ) } { x }
B) cos(lnx)x\frac { \cos ( \ln x ) } { x }
C) xcos(lnx)\frac { x } { \cos ( \ln x ) }
D) xcos(lnx)- \frac { x } { \cos ( \ln x ) }
E) xsin(lnx)\frac { x } { \sin ( \ln x ) }
Question
Let y=ln(tan1x)y = \ln \left( \tan ^ { - 1 } x \right) Then yy ^ { \prime } is

A) tan1xx2+1- \frac { \tan ^ { - 1 } x } { x ^ { 2 } + 1 }
B) tan1xx2+1\frac { \tan ^ { - 1 } x } { x ^ { 2 } + 1 }
C) x2+1tan1x\frac { x ^ { 2 } + 1 } { \tan ^ { - 1 } x }
D) 1tan1x(x2+1)\frac { 1 } { \tan ^ { - 1 } x \left( x ^ { 2 } + 1 \right) }
E) 1tan1x(x2+1)- \frac { 1 } { \tan ^ { - 1 } x \left( x ^ { 2 } + 1 \right) }
Question
Let y=log3(cotx)y = \log _ { 3 } ( \cot x ) Then yy ^ { \prime } is

A) 1sinxcosxln3\frac { 1 } { \sin x \cos x \ln 3 }
B) 1sinxcosxln3- \frac { 1 } { \sin x \cos x \ln 3 }
C) ln3sinxcosx\frac { \ln 3 } { \sin x \cos x }
D) 1sinxcosx\frac { 1 } { \sin x \cos x }
E) ln3sinxcosx- \frac { \ln 3 } { \sin x \cos x }
Question
Let y=ln(xy)y = \ln ( x y ) Using implicit differentiation, yy ^ { \prime } is

A) xy(y1)\frac { x } { y ( y - 1 ) }
B) xy(1y)\frac { x } { y ( 1 - y ) }
C) yx(y1)\frac { y } { x ( y - 1 ) }
D) yx(1y)\frac { y } { x ( 1 - y ) }
E) xy(x1)\frac { x } { y ( x - 1 ) }
Question
Let y=ln(xy)y = \ln \left( \frac { x } { y } \right) Using implicit differentiation, yy ^ { \prime } is

A) yx(1+y)\frac { y } { x ( 1 + y ) }
B) yx(1y)\frac { y } { x ( 1 - y ) }
C) yx(y1)\frac { y } { x ( y - 1 ) }
D) xy(1y)\frac { x } { y ( 1 - y ) }
E) xy(x1)\frac { x } { y ( x - 1 ) }
Question
Let y=ln(xy)y = \ln \left( x ^ { y } \right) assuming y0y \neq 0 Using implicit differentiation, yy ^ { \prime } is

A) yx(1+lnx)- \frac { y } { x ( 1 + \ln x ) }
B) yx(1+lnx)\frac { y } { x ( 1 + \ln x ) }
C) yx(1lnx)\frac { y } { x ( 1 - \ln x ) }
D) yx(1lnx)- \frac { y } { x ( 1 - \ln x ) }
E) yx(1+lny)\frac { y } { x ( 1 + \ln y ) }
Question
Let y=ln(2x+y2)y = \ln \left( 2 x + y ^ { 2 } \right) Using implicit differentiation, yy ^ { \prime } is

A) 22xy22y\frac { 2 } { 2 x - y ^ { 2 } - 2 y }
B) 22x+y2+2y\frac { 2 } { 2 x + y ^ { 2 } + 2 y }
C) 22xy2+2y\frac { 2 } { 2 x - y ^ { 2 } + 2 y }
D) 22x+y22y\frac { 2 } { 2 x + y ^ { 2 } - 2 y }
E) 22x+y22y\frac { 2 } { - 2 x + y ^ { 2 } - 2 y }
Question
Let y=xy = \sqrt { x } Then dy is

A) dx2x- \frac { d x } { 2 \sqrt { x } }
B) dx2x\frac { d x } { 2 \sqrt { x } }
C) xdx2\frac { \sqrt { x } d x } { 2 }
D) xdx2- \frac { \sqrt { x } d x } { 2 }
E) 2xdx2 \sqrt { x } d x
Question
Let y=ecosxy = e ^ { \cos x } Then dy is

A) esinxdx- e ^ { \sin x } d x
B) esinxdxe ^ { \sin x } d x
C) ecosxsinxdxe ^ { \cos x } \sin x d x
D) ecosxsinxdx- e ^ { \cos x } \sin x d x
E) ecosxsinxlnxdx- e ^ { \cos x } \sin x \ln x d x
Question
Let y=2tanxy = 2 ^ { \tan x } Then dy is

A) 2sec2xln2dx2 ^ { \sec ^ { 2 } x } \ln 2 d x
B) 2sec2xtanxdx2 ^ { \sec ^ { 2 } x } \tan x d x
C) 2tanxsec2xdx2 ^ { \tan x } \sec ^ { 2 } x d x
D) 2tanxsec2xln2dx2 ^ { \tan x } \sec ^ { 2 } x \ln 2 d x
E) 2tanxsec2xln2dx- 2 ^ { \tan x } \sec ^ { 2 } x \ln 2 d x
Question
Let y=ln(5x)y = \ln \left( 5 ^ { x } \right) Then dy is

A) 1ln5dx\frac { 1 } { \ln 5 } d x
B) 15xdx\frac { 1 } { 5 ^ { x } } d x
C) 5xln5dx5 ^ { x } \ln 5 d x
D) 5xln5dx\frac { 5 ^ { x } } { \ln 5 } d x
E) ln5dx\ln 5 d x
Question
Let y=log2(tan3x)y = \log _ { 2 } \left( \tan ^ { 3 } x \right) Then dy is

A) 3secxsinxln2dx\frac { 3 \sec x \sin x } { \ln 2 } d x
B) 3cosxcscxln2dx\frac { 3 \cos x \csc x } { \ln 2 } d x
C) 3secxcscxln2dx\frac { 3 \sec x \csc x } { \ln 2 } d x
D) 3cosxsinxln2dx\frac { 3 \cos x \sin x } { \ln 2 } d x
E) cosxsinx3ln2dx\frac { \cos x \sin x } { 3 \ln 2 } d x
Question
Let y=sin(cosx)y = \sin ( \cos x ) Then dy is

A) cos(sinx)dx\cos ( \sin x ) d x
B) cos(sinx)dx\cos ( - \sin x ) d x
C) sinx[cos(cosx)]dx\sin x [ \cos ( \cos x ) ] d x
D) sinx[cos(cosx)]dx- \sin x [ \cos ( \cos x ) ] d x
E) sinx[cos(sinx)]dx- \sin x [ \cos ( \sin x ) ] d x
Question
Let y=tan1(lnx)y = \tan ^ { - 1 } ( \ln x ) Then dy is

A) 11+(lnx)2dx\frac { 1 } { 1 + ( \ln x ) ^ { 2 } } d x
B) x1+(lnx)2dx- \frac { x } { 1 + ( \ln x ) ^ { 2 } } d x
C) x1+(lnx)2dx\frac { x } { 1 + ( \ln x ) ^ { 2 } } d x
D) 1x[1+(lnx)2]dx- \frac { 1 } { x \left[ 1 + ( \ln x ) ^ { 2 } \right] } d x
E) 1x[1+(lnx)2]dx\frac { 1 } { x \left[ 1 + ( \ln x ) ^ { 2 } \right] } d x
Question
Let y=xex.y = \frac { x } { e ^ { x } } . Then dy is

A) (1x)exdx\frac { ( 1 - x ) } { e ^ { x } d x }
B) x1exdx\frac { x - 1 } { e ^ { x } } d x
C) ex1xdx\frac { e ^ { x } } { 1 - x } d x
D) exx1dx\frac { e ^ { x } } { x - 1 } d x
E) ex1exdx\frac { e ^ { x } } { 1 - e ^ { x } } d x
Question
Let y=tan(ex)y = \tan \left( e ^ { x } \right) . Then dy is

A) sec2(ex)dx\sec ^ { 2 } \left( e ^ { x } \right) d x
B) exsec2(ex)dxe ^ { x } \sec ^ { 2 } \left( e ^ { x } \right) d x
C) sec2(ex)1+e2xdx\frac { \sec ^ { 2 } \left( e ^ { x } \right) } { 1 + e ^ { 2 x } } d x
D) sec2(ex)1e2xdx\frac { \sec ^ { 2 } \left( e ^ { x } \right) } { 1 - e ^ { 2 x } } d x
E) sec2(ex)e2x1dx\frac { \sec ^ { 2 } \left( e ^ { x } \right) } { e ^ { 2 x } - 1 } d x
Question
Let y=sin(7x)y = \sin \left( 7 ^ { x } \right) Then dy is

A) 7xcos(7x)dx7 ^ { x } \cos \left( 7 ^ { x } \right) d x
B) cos(7x)ln7dx\cos \left( 7 ^ { x } \right) \ln 7 d x
C) 7xcos(7x)ln7dx7 ^ { x } \cos \left( 7 ^ { x } \right) \ln 7 d x
D) 7xcos(7x)ln7dx- 7 ^ { x } \cos \left( 7 ^ { x } \right) \ln 7 d x
E) cos(7x)ln7dx- \cos \left( 7 ^ { x } \right) \ln 7 d x
Question
The linear approximation L(x)L ( x ) to f(x)=xf ( x ) = \sqrt { x } near x0=14x _ { 0 } = \frac { 1 } { 4 } is

A) 12+(x+14)- \frac { 1 } { 2 } + \left( x + \frac { 1 } { 4 } \right)
B) 12(x14)- \frac { 1 } { 2 } - \left( x - \frac { 1 } { 4 } \right)
C) 12(x14)\frac { 1 } { 2 } - \left( x - \frac { 1 } { 4 } \right)
D) 12+(x14)- \frac { 1 } { 2 } + \left( x - \frac { 1 } { 4 } \right)
E) 12+(x14)\frac { 1 } { 2 } + \left( x - \frac { 1 } { 4 } \right)
Question
The linear approximation L(x)L ( x ) to f(x)=lnxf ( x ) = \ln x near x0=ex _ { 0 } = e is

A) e+1e(xe)e + \frac { 1 } { e } ( x - e )
B) 1+1e(xe)1 + \frac { 1 } { e } ( x - e )
C) 1+1e(xe)- 1 + \frac { 1 } { e } ( x - e )
D) e1e(xe)e - \frac { 1 } { e } ( x - e )
E) 11e(xe)1 - \frac { 1 } { e } ( x - e )
Question
The linear approximation L(x)L ( x ) to f(x)=exf ( x ) = e ^ { - x } near x0=1x _ { 0 } = 1 is

A) 1e(x1)\frac { 1 } { e ^ { ( x - 1 ) } }
B) 1e(x2)\frac { 1 } { e } ( x - 2 )
C) 1e(x1)\frac { 1 } { e } - ( x - 1 )
D) 1e(2x)\frac { 1 } { e } ( 2 - x )
E) 1e+(x1)\frac { 1 } { e } + ( x - 1 )
Question
The linear approximation L(x)L ( x ) to f(x)=x3f ( x ) = \sqrt [ 3 ] { x } near x0=8x _ { 0 } = 8 is

A) 12+112(x8)- \frac { 1 } { 2 } + \frac { 1 } { 12 } ( x - 8 )
B) 2112(x8)- 2 - \frac { 1 } { 12 } ( x - 8 )
C) 2+112(x8)2 + \frac { 1 } { 12 } ( x - 8 )
D) 2112(x8)2 - \frac { 1 } { 12 } ( x - 8 )
E) 2+112(x8)- 2 + \frac { 1 } { 12 } ( x - 8 )
Question
The linear approximation L(x)L ( x ) to f(x)=tanxf ( x ) = \tan x near x0=π4x _ { 0 } = \frac { \pi } { 4 } is

A) 1+2(xπ4)1 + 2 \left( x - \frac { \pi } { 4 } \right)
B) 12(xπ4)1 - 2 \left( x - \frac { \pi } { 4 } \right)
C) 1+(xπ4)1 + \left( x - \frac { \pi } { 4 } \right)
D) 1(xπ4)1 - \left( x - \frac { \pi } { 4 } \right)
E) 1+2(xπ4)- 1 + 2 \left( x - \frac { \pi } { 4 } \right)
Question
The linear approximation L(x)L ( x ) to f(x)=sinxf ( x ) = \sin x near x0=π6x _ { 0 } = - \frac { \pi } { 6 } is

A) 1232(x+π6)- \frac { 1 } { 2 } - \frac { \sqrt { 3 } } { 2 } \left( x + \frac { \pi } { 6 } \right)
B) 12+32(x+π6)- \frac { 1 } { 2 } + \frac { \sqrt { 3 } } { 2 } \left( x + \frac { \pi } { 6 } \right)
C) 32+12(x+π6)- \frac { \sqrt { 3 } } { 2 } + \frac { 1 } { 2 } \left( x + \frac { \pi } { 6 } \right)
D) 3212(x+π6)- \frac { \sqrt { 3 } } { 2 } - \frac { 1 } { 2 } \left( x + \frac { \pi } { 6 } \right)
E) 12+32(xπ6)- \frac { 1 } { 2 } + \frac { \sqrt { 3 } } { 2 } \left( x - \frac { \pi } { 6 } \right)
Question
Letting f(x)=xf ( x ) = \sqrt { x } and x0=25x _ { 0 } = 25 the approximation of 24\sqrt { 24 } by differentials is

A)5.1
B)5.05
C)4.95
D)4.9
E)4.85
Question
Letting f(x)=xf ( x ) = \sqrt { x } and x0=25,x _ { 0 } = 25 , the approximation of 25.1\sqrt { 25.1 } by differentials is

A)5.1
B)5.05
C)5.01
D)4.99
E)4.95
Question
Letting f(x)=x3f ( x ) = \sqrt [ 3 ] { x } and x0=216x _ { 0 } = 216 the approximation of 215\sqrt { 215 } by differentials is

A)5.94
B)5.97
C)5.99
D)6.01
E)6.05
Question
Letting f(x)=tanxf ( x ) = \tan x and x0=π4x _ { 0 } = \frac { \pi } { 4 } the approximation of tan 44° by differentials is

A)0.962
B)0.963
C)0.964
D)0.965
E)0.966
Unlock Deck
Sign up to unlock the cards in this deck!
Unlock Deck
Unlock Deck
1/100
auto play flashcards
Play
simple tutorial
Full screen (f)
exit full mode
Deck 4: More About Derivatives
1
Let y=5(x2x+1)100y = 5 \left( x ^ { 2 } - x + 1 \right) ^ { 100 } Then yy ^ { \prime } is

A) 500(2x+1)99500 ( 2 x + 1 ) ^ { 99 }
B) 500(2x1)99500 ( 2 x - 1 ) ^ { 99 }
C) 1000(x2x+11)991000 \left( x ^ { 2 } - x + 11 \right) ^ { 99 }
D) 500(x2x+1)99(2x+1)500 \left( x ^ { 2 } - x + 1 \right) ^ { 99 } ( 2 x + 1 )
E) 500(x2x+1)99(2x1)500 \left( x ^ { 2 } - x + 1 \right) ^ { 99 } ( 2 x - 1 )
500(x2x+1)99(2x1)500 \left( x ^ { 2 } - x + 1 \right) ^ { 99 } ( 2 x - 1 )
2
Let y=cos(x2x+1)y = \cos \left( x ^ { 2 } - x + 1 \right) . Then yy ^ { \prime } is

A) sin(2x1)- \sin ( 2 x - 1 )
B) sin(2x1)\sin ( 2 x - 1 )
C) (2x1)sin(x2x+1)( 2 x - 1 ) \sin \left( x ^ { 2 } - x + 1 \right)
D) (2x1)sin(x2x+1)- ( 2 x - 1 ) \sin \left( x ^ { 2 } - x + 1 \right)
E) 2xsin(x2x+1)- 2 x \sin \left( x ^ { 2 } - x + 1 \right)
(2x1)sin(x2x+1)- ( 2 x - 1 ) \sin \left( x ^ { 2 } - x + 1 \right)
3
Let y=tan3xy = \tan ^ { 3 } x Then yy ^ { \prime } is

A) 3tan2x3 \tan ^ { 2 } x
B) 3tanxsec2x3 \tan x \sec ^ { 2 } x
C) 3tan2xsec2x3 \tan ^ { 2 } x \sec ^ { 2 } x
D) 3sec2x3 \sec ^ { 2 } x
E) 3tan2xsec4x3 \tan ^ { 2 } x \sec ^ { 4 } x
3tan2xsec2x3 \tan ^ { 2 } x \sec ^ { 2 } x
4
Let y=csc(5x).y = \csc ( 5 x ) . Then yy ^ { \prime } is

A) 5csc(5x)cot(5x)5 \csc ( 5 x ) \cot ( 5 x )
B) 5csc(5x)cot(5x)- 5 \csc ( 5 x ) \cot ( 5 x )
C) 5cscxcotx5 \csc x \cot x
D) 5cscxcotx- 5 \csc x \cot x
E) 5csc2x- 5 \csc ^ { 2 } x
Unlock Deck
Unlock for access to all 100 flashcards in this deck.
Unlock Deck
k this deck
5
Let y=u1uy = \frac { u } { 1 - u } and u=2xu = 2 x By the Chain Rule, dydx\frac { d y } { d x } is

A) 1(1x)2\frac { 1 } { ( 1 - x ) ^ { 2 } }
B) 2(12x)2\frac { 2 } { ( 1 - 2 x ) ^ { 2 } }
C) x(12x)2\frac { x } { ( 1 - 2 x ) ^ { 2 } }
D) 2x(12x)2\frac { 2 x } { ( 1 - 2 x ) ^ { 2 } }
E) x(12x)2- \frac { x } { ( 1 - 2 x ) ^ { 2 } }
Unlock Deck
Unlock for access to all 100 flashcards in this deck.
Unlock Deck
k this deck
6
Let y=u2u+3y = \frac { u - 2 } { u + 3 } and u=2x+1u = 2 x + 1 By the Chain Rule, dydx\frac { d y } { d x } is

A) 4x+7(2x+4)2\frac { 4 x + 7 } { ( 2 x + 4 ) ^ { 2 } }
B) 4x7(2x+4)2\frac { 4 x - 7 } { ( 2 x + 4 ) ^ { 2 } }
C) 10(2x+4)2\frac { 10 } { ( 2 x + 4 ) ^ { 2 } }
D) 5(2x+4)2- \frac { 5 } { ( 2 x + 4 ) ^ { 2 } }
E) 5(2x+4)2\frac { 5 } { ( 2 x + 4 ) ^ { 2 } }
Unlock Deck
Unlock for access to all 100 flashcards in this deck.
Unlock Deck
k this deck
7
Let y=u+1uy = u + \frac { 1 } { u } and u=x2+x1u = x ^ { 2 } + x - 1 By the Chain Rule, dydx\frac { d y } { d x } is

A) 1+1x2+x11 + \frac { 1 } { x ^ { 2 } + x - 1 }
B) 11x2+x11 - \frac { 1 } { x ^ { 2 } + x - 1 }
C) 11(x2+x1)21 - \frac { 1 } { \left( x ^ { 2 } + x - 1 \right) ^ { 2 } }
D) (2x+1)(11(x2+x1)2)( 2 x + 1 ) \left( 1 - \frac { 1 } { \left( x ^ { 2 } + x - 1 \right) ^ { 2 } } \right)
E) (2x+1)(1+1(x2+x1)2)( 2 x + 1 ) \left( 1 + \frac { 1 } { \left( x ^ { 2 } + x - 1 \right) ^ { 2 } } \right)
Unlock Deck
Unlock for access to all 100 flashcards in this deck.
Unlock Deck
k this deck
8
Let y=sinu+cosuy = \sin u + \cos u and u=4x2+5u = 4 x ^ { 2 } + 5 By the Chain Rule, dydx\frac { d y } { d x } is

A) cos(8x)sin(8x)\cos ( 8 x ) - \sin ( 8 x )
B) cos(8x)+sin(8x)\cos ( 8 x ) + \sin ( 8 x )
C) cos(4x2+5)sin(4x2+5)\cos \left( 4 x ^ { 2 } + 5 \right) - \sin \left( 4 x ^ { 2 } + 5 \right)
D) cos(4x2+5)+sin(4x2+5)\cos \left( 4 x ^ { 2 } + 5 \right) + \sin \left( 4 x ^ { 2 } + 5 \right)
E) 8x[cos(4x2+5)sin(4x2+5)]8 x \left[ \cos \left( 4 x ^ { 2 } + 5 \right) - \sin \left( 4 x ^ { 2 } + 5 \right) \right]
Unlock Deck
Unlock for access to all 100 flashcards in this deck.
Unlock Deck
k this deck
9
Let y=ueuy = \frac { u } { e ^ { u } } and u=3x.u = \frac { 3 } { x } . By the Chain Rule, dydx\frac { d y } { d x } is

A) x9x2e3x\frac { x - 9 } { x ^ { 2 } e ^ { \frac { 3 } { x } } }
B) x3x3e3x\frac { x - 3 } { x ^ { 3 } e ^ { \frac { 3 } { x } } }
C) 3(3x)x3e3x\frac { 3 ( 3 - x ) } { x ^ { 3 } e ^ { \frac { 3 } { x } } }
D) 9xx2e3x\frac { 9 - x } { x ^ { 2 } e ^ { \frac { 3 } { x } } }
E) 9xx3e3x\frac { 9 - x } { x ^ { 3 } e ^ { \frac { 3 } { x } } }
Unlock Deck
Unlock for access to all 100 flashcards in this deck.
Unlock Deck
k this deck
10
Let y=3ueuy = 3 u e ^ { u } and u=2x+3u = 2 x + 3 By the Chain Rule, dydx\frac { d y } { d x } is

A) 3e2x+33 e ^ { 2 x + 3 }
B) 6e2x+3(2x+3)6 e ^ { 2 x + 3 } ( 2 x + 3 )
C) 12e(2x+3)(x+2)12 e ^ { ( 2 x + 3 ) } ( x + 2 )
D) 12e(2x+3)(2x+3)12 e ^ { ( 2 x + 3 ) } ( 2 x + 3 )
E) 6e2x+36 e ^ { 2 x + 3 }
Unlock Deck
Unlock for access to all 100 flashcards in this deck.
Unlock Deck
k this deck
11
Let f(x)=sin(cosx)f ( x ) = \sin ( \cos x ) Then f(x)f ^ { \prime } ( x ) is

A) cos(sinx)\cos ( \sin x )
B) cos(cosx)\cos ( \cos x )
C) sinx[cos(cosx)]\sin x [ \cos ( \cos x ) ]
D) sinx[cos(cosx)]- \sin x [ \cos ( \cos x ) ]
E) sinx[sin(cosx)]- \sin x [ \sin ( \cos x ) ]
Unlock Deck
Unlock for access to all 100 flashcards in this deck.
Unlock Deck
k this deck
12
Let f(x)=sin(ex)f ( x ) = \sin \left( e ^ { x } \right) Then f(x)f ^ { \prime } ( x ) is

A) cos(ex)\cos \left( e ^ { x } \right)
B) excos(ex)e ^ { x } \cos \left( e ^ { x } \right)
C) excos(ex)- e ^ { x } \cos \left( e ^ { x } \right)
D) exsin(ex)e ^ { x } \sin \left( e ^ { x } \right)
E) exsin(ex)- e ^ { x } \sin \left( e ^ { x } \right)
Unlock Deck
Unlock for access to all 100 flashcards in this deck.
Unlock Deck
k this deck
13
Let f(x)=(ex+xe)6f ( x ) = \left( e ^ { x } + x ^ { e } \right) ^ { 6 } . Then f(x)f ^ { \prime } ( x ) is

A) 6(ex+x6)56 \left( e ^ { x } + x ^ { 6 } \right) ^ { 5 }
B) 6(xex1+x)56 \left( x e ^ { x - 1 } + x ^ { \prime } \right) ^ { 5 }
C) 6(ex+exe1)56 \left( e ^ { x } + e x ^ { e - 1 } \right) ^ { 5 }
D) 6(ex+exe1)66 \left( e ^ { x } + e x ^ { e - 1 } \right) ^ { 6 }
E) 6(ex+xe)5(ex+exe1)6 \left( e ^ { x } + x ^ { e } \right) ^ { 5 } \left( e ^ { x } + e x ^ { e - 1 } \right)
Unlock Deck
Unlock for access to all 100 flashcards in this deck.
Unlock Deck
k this deck
14
Let f(x)=tan3(5x)f ( x ) = \tan ^ { 3 } ( 5 x ) Then f(x)f ^ { \prime } ( x ) is

A) 15tan2(5x)15 \tan ^ { 2 } ( 5 x )
B) 15tan2(5x)sec(5x)15 \tan ^ { 2 } ( 5 x ) \sec ( 5 x )
C) 15tan2(5x)sec2(5x)15 \tan ^ { 2 } ( 5 x ) \sec ^ { 2 } ( 5 x )
D) 5tan3(5x)sec2(5x)5 \tan ^ { 3 } ( 5 x ) \sec ^ { 2 } ( 5 x )
E) 5tan2(5x)sec(5x)5 \tan ^ { 2 } ( 5 x ) \sec ( 5 x )
Unlock Deck
Unlock for access to all 100 flashcards in this deck.
Unlock Deck
k this deck
15
Let f(x)=tan(5x)f ( x ) = \tan \left( 5 ^ { x } \right) Then f(x)f ^ { \prime } ( x ) is

A) tan(5xln5)\tan \left( 5 ^ { x } \ln 5 \right)
B) sec2(5x)\sec ^ { 2 } \left( 5 ^ { x } \right)
C) sec2(5xln5)\sec ^ { 2 } \left( 5 ^ { x } \ln 5 \right)
D) sec2(5x)ln5\sec ^ { 2 } \left( 5 ^ { x } \right) \ln 5
E) 5xsec2(5x)ln55 ^ { x } \sec ^ { 2 } \left( 5 ^ { x } \right) \ln 5
Unlock Deck
Unlock for access to all 100 flashcards in this deck.
Unlock Deck
k this deck
16
Let f(x)=ecos(3x)f ( x ) = \mathrm { e } ^ { \cos ( 3 x ) } Then f(x)f ^ { \prime } ( x ) is

A) 3esin(3x)3 e ^ { \sin ( 3 x ) }
B) e3xsin(3x)e ^ { 3 x } \sin ( 3 x )
C) 3e3xsin(3x)3 e ^ { 3 x } \sin ( 3 x )
D) 3sin(3x)ecos(3x)3 \sin ( 3 x ) \mathrm { e } ^ { \cos ( 3 x ) }
E) 3sin(3x)ecos(3x)- 3 \sin ( 3 x ) \mathrm { e } ^ { \cos ( 3 x ) }
Unlock Deck
Unlock for access to all 100 flashcards in this deck.
Unlock Deck
k this deck
17
Let f(x)=5cot(3x)f ( x ) = 5 ^ { \cot ( 3 x ) } Then f(x)f ^ { \prime } ( x ) is

A) 15csc2(3x)15 ^ { \csc ^ { 2 } ( 3 x ) }
B) 15csc2(3x)- 15 ^ { \csc ^ { 2 } ( 3 x ) }
C) 15cot(3x)(csc2(3x))15 ^ { \cot ( 3 x ) } \left( \csc ^ { 2 } ( 3 x ) \right)
D) 5cos(3x)(3csc2(3x))5 ^ { \cos ( 3 x ) } \left( 3 \csc ^ { 2 } ( 3 x ) \right)
E) 5cos(3x)(3csc2(3x)ln5)- 5 ^ { \cos ( 3 x ) } \left( 3 \csc ^ { 2 } ( 3 x ) \ln 5 \right)
Unlock Deck
Unlock for access to all 100 flashcards in this deck.
Unlock Deck
k this deck
18
Let f(x)=cot(ex)f ( x ) = \cot \left( e ^ { x } \right) Then f(x)f ^ { \prime } ( x ) is

A) csc2(ex)- \csc ^ { 2 } \left( e ^ { x } \right)
B) cot2(ex)- \cot ^ { 2 } \left( e ^ { x } \right)
C) excot2(ex)- e ^ { x } \cot ^ { 2 } \left( e ^ { x } \right)
D) excsc2(ex)- e ^ { x } \csc ^ { 2 } \left( e ^ { x } \right)
E) excsc2(ex)e ^ { x } \csc ^ { 2 } \left( e ^ { x } \right)
Unlock Deck
Unlock for access to all 100 flashcards in this deck.
Unlock Deck
k this deck
19
Let h=fg.h = f \circ g . Then g(2)=3g ( 2 ) = 3 , g(2)=1g ^ { \prime } ( 2 ) = - 1 and f(3)=6f ^ { \prime } ( 3 ) = 6 Then h(2)h ^ { \prime } ( 2 ) is

A)-6
B)6
C)-3
D)18
E)16
Unlock Deck
Unlock for access to all 100 flashcards in this deck.
Unlock Deck
k this deck
20
Let h=gfh = g \circ f Then and f(2)=4f ( 2 ) = 4 , f(2)=12f ^ { \prime } ( 2 ) = \frac { 1 } { 2 } and g(4)=10g ^ { \prime } ( 4 ) = 10 Then h(2)h ^ { \prime } ( 2 ) is

A)40
B)20
C)10
D)5
E)2
Unlock Deck
Unlock for access to all 100 flashcards in this deck.
Unlock Deck
k this deck
21
Using implicit differentiation on eyx=x,ye ^ { y - x } = x , y ^ { \prime } is

A) 1+exy1 + e ^ { x - y }
B) 1+eyx1 + e ^ { y - x }
C) 1exy1 - e ^ { x - y }
D) exy1e ^ { x - y } - 1
E) eyx1e ^ { y - x } - 1
Unlock Deck
Unlock for access to all 100 flashcards in this deck.
Unlock Deck
k this deck
22
Using implicit differentiation on 2x2xy+y2=4,y2 x ^ { 2 } - x y + y ^ { 2 } = 4 , y is

A) y4xx2y\frac { y - 4 x } { x - 2 y }
B) y4xx+2y\frac { y - 4 x } { x + 2 y }
C) 4xyx2y\frac { 4 x - y } { x - 2 y }
D) 4xyx+2y\frac { 4 x - y } { x + 2 y }
E) 4x+yx2y\frac { 4 x + y } { x - 2 y }
Unlock Deck
Unlock for access to all 100 flashcards in this deck.
Unlock Deck
k this deck
23
Using implicit differentiation on sinycosx+xy=2,y\sin y - \cos x + x y = 2 , y ^ { \prime } is

A) sinx+ycosy+x- \frac { \sin x + y } { \cos y + x }
B) sinxycosy+x\frac { \sin x - y } { \cos y + x }
C) sinx+ycosy+x\frac { \sin x + y } { \cos y + x }
D) sinxycosyx\frac { \sin x - y } { \cos y - x }
E) sinx+ycosy+x\frac { - \sin x + y } { \cos y + x }
Unlock Deck
Unlock for access to all 100 flashcards in this deck.
Unlock Deck
k this deck
24
Using implicit differentiation on y=cos(x+y),yy = \cos ( x + y ) , y ^ { \prime } is

A) sin(x+y)1+sin(x+y)\frac { \sin ( x + y ) } { 1 + \sin ( x + y ) }
B) sin(x+y)1sin(x+y)\frac { \sin ( x + y ) } { 1 - \sin ( x + y ) }
C) sin(x+y)sin(x+y)1\frac { \sin ( x + y ) } { \sin ( x + y ) - 1 }
D)-1
E) sin(x+y)1+sin(x+y)- \frac { \sin ( x + y ) } { 1 + \sin ( x + y ) }
Unlock Deck
Unlock for access to all 100 flashcards in this deck.
Unlock Deck
k this deck
25
Using implicit differentiation on y=(x+2y)2,yy = ( x + 2 y ) ^ { 2 } , y ^ { \prime } is

A) x+2y12(x+2y)\frac { x + 2 y } { 1 - 2 ( x + 2 y ) }
B) 2(x+2y)4(x+2y)1\frac { 2 ( x + 2 y ) } { 4 ( x + 2 y ) - 1 }
C) 2(x+2y)14(x+2y)\frac { 2 ( x + 2 y ) } { 1 - 4 ( x + 2 y ) }
D) 2(x+2y)1+4(x+2y)\frac { 2 ( x + 2 y ) } { 1 + 4 ( x + 2 y ) }
E) 2(x2y)14(x+2y)\frac { 2 ( x - 2 y ) } { 1 - 4 ( x + 2 y ) }
Unlock Deck
Unlock for access to all 100 flashcards in this deck.
Unlock Deck
k this deck
26
Using implicit differentiation on xy5x+y=8,yx y - 5 ^ { x + y } = 8 , y ^ { \prime } is

A) x5x+yln55x+yln5y\frac { x - 5 ^ { x + y } \ln 5 } { 5 ^ { x + y } \ln 5 - y }
B) x+5x+yln55x+yln5y\frac { x + 5 ^ { x + y } \ln 5 } { 5 ^ { x + y } \ln 5 - y }
C) x+5x+yln55x+yln5+y\frac { x + 5 ^ { x + y } \ln 5 } { 5 ^ { x + y } \ln 5 + y }
D) 5x+yln5yx5x+yln5\frac { 5 ^ { x + y } \ln 5 - y } { x - 5 ^ { x + y } \ln 5 }
E) 5x+yyx5x+yln5\frac { 5 ^ { x + y } - y } { x - 5 ^ { x + y } \ln 5 }
Unlock Deck
Unlock for access to all 100 flashcards in this deck.
Unlock Deck
k this deck
27
Using implicit differentiation on y=xsiny,yy = x \sin y , y ^ { \prime } is

A) cosy1xsiny\frac { \cos y } { 1 - x \sin y }
B) cosy1+xsiny\frac { \cos y } { 1 + x \sin y }
C) siny1xcosy\frac { \sin y } { 1 - x \cos y }
D) siny1+xcosy\frac { \sin y } { 1 + x \cos y }
E) sinyxcosy1\frac { \sin y } { x \cos y - 1 }
Unlock Deck
Unlock for access to all 100 flashcards in this deck.
Unlock Deck
k this deck
28
Using implicit differentiation on x2+y2=2y,yx ^ { 2 } + y ^ { 2 } = 2 y , y ^ { \prime } is

A) x1y\frac { x } { 1 - y }
B) xy1\frac { x } { y - 1 }
C) x1+y\frac { x } { 1 + y }
D) y1x\frac { y } { 1 - x }
E) yx1\frac { y } { x - 1 }
Unlock Deck
Unlock for access to all 100 flashcards in this deck.
Unlock Deck
k this deck
29
Using implicit differentiation on x33xy+y3=6,yx ^ { 3 } - 3 x y + y ^ { 3 } = 6 , y\prime is

A) y2xyx2\frac { y ^ { 2 } - x } { y - x ^ { 2 } }
B) xy2yx2\frac { x - y ^ { 2 } } { y - x ^ { 2 } }
C) x2yy2x\frac { x ^ { 2 } - y } { y ^ { 2 } - x }
D) yx2y2x\frac { y - x ^ { 2 } } { y ^ { 2 } - x }
E) y+x2y2x\frac { y + x ^ { 2 } } { y ^ { 2 } - x }
Unlock Deck
Unlock for access to all 100 flashcards in this deck.
Unlock Deck
k this deck
30
Using implicit differentiation on ey+sin(xy)=x2,ye ^ { y } + \sin ( x - y ) = x ^ { 2 } , y ^ { \prime } is

A) cos(xy)2xeycos(xy)\frac { \cos ( x - y ) - 2 x } { e ^ { y } - \cos ( x - y ) }
B) 12xey1\frac { 1 - 2 x } { e ^ { y } - 1 }
C) 21xey1\frac { 2 - 1 x } { e ^ { y } - 1 }
D) 2xcos(xy)eycos(xy)\frac { 2 x - \cos ( x - y ) } { e ^ { y } - \cos ( x - y ) }
E) 2x+cos(xy)eycos(xy)\frac { 2 x + \cos ( x - y ) } { e ^ { y } - \cos ( x - y ) }
Unlock Deck
Unlock for access to all 100 flashcards in this deck.
Unlock Deck
k this deck
31
Let f(x)=x2sin1xf ( x ) = x ^ { 2 } \sin ^ { - 1 } x Then f(x)f ^ { \prime } ( x ) is

A) 2xsin1xx21x22 x \sin ^ { - 1 } x - \frac { x ^ { 2 } } { \sqrt { 1 - x ^ { 2 } } }
B) 2xsin1x+x21x22 x \sin ^ { - 1 } x + \frac { x ^ { 2 } } { \sqrt { 1 - x ^ { 2 } } }
C) 2xsin1x+x2x212 x \sin ^ { - 1 } x + \frac { x ^ { 2 } } { \sqrt { x ^ { 2 } - 1 } }
D) 2xsin1xx2x212 x \sin ^ { - 1 } x - \frac { x ^ { 2 } } { \sqrt { x ^ { 2 } - 1 } }
E) 2xsin1x+x21+x22 x \sin ^ { - 1 } x + \frac { x ^ { 2 } } { 1 + x ^ { 2 } }
Unlock Deck
Unlock for access to all 100 flashcards in this deck.
Unlock Deck
k this deck
32
Let f(x)=tan1(cosx)f ( x ) = \tan ^ { - 1 } ( \cos x ) Then f(x)f ^ { \prime } ( x ) is

A) sinx1+cos2x\frac { \sin x } { 1 + \cos ^ { 2 } x }
B) sinx1+cos2x- \frac { \sin x } { 1 + \cos ^ { 2 } x }
C) sinxcos2x1\frac { \sin x } { \cos ^ { 2 } x - 1 }
D) sinxcos2x1\frac { \sin x } { \cos ^ { 2 } x - 1 } .
E) sinxcos2x1- \frac { \sin x } { \cos ^ { 2 } x - 1 }
Unlock Deck
Unlock for access to all 100 flashcards in this deck.
Unlock Deck
k this deck
33
Let f(x)=tan1(x)f ( x ) = \tan ^ { - 1 } ( \sqrt { x } ) Then f(x)f ^ { \prime } ( x ) is

A) 12x(1+x2)\frac { 1 } { 2 \sqrt { x } \left( 1 + x ^ { 2 } \right) }
B) 2x(1+x2)\frac { 2 } { \sqrt { x } \left( 1 + x ^ { 2 } \right) }
C) 12x(1x2)\frac { 1 } { 2 \sqrt { x } \left( 1 - x ^ { 2 } \right) }
D) 12x(1+x)\frac { 1 } { 2 \sqrt { x } ( 1 + x ) }
E) 12x(1x)\frac { 1 } { 2 \sqrt { x } ( 1 - x ) }
Unlock Deck
Unlock for access to all 100 flashcards in this deck.
Unlock Deck
k this deck
34
Let f(x)=sec1(ex)f ( x ) = \sec ^ { - 1 } \left( e ^ { x } \right) Then f(x)f ^ { \prime } ( x ) is

A) 1e2x1\frac { 1 } { \sqrt { e ^ { 2 x } - 1 } }
B) 1exe2x1- \frac { 1 } { e ^ { x } \sqrt { e ^ { 2 x } - 1 } }
C) 1ex(e2x+1)\frac { 1 } { e ^ { x } \left( e ^ { 2 x } + 1 \right) }
D) 1ex(e2x+1)- \frac { 1 } { e ^ { x } \left( e ^ { 2 x } + 1 \right) }
E) exe2x1\frac { e ^ { x } } { \sqrt { e ^ { 2 x } - 1 } }
Unlock Deck
Unlock for access to all 100 flashcards in this deck.
Unlock Deck
k this deck
35
Let f(x)=tan1(3x)f ( x ) = \tan ^ { - 1 } \left( 3 ^ { x } \right) Then f(x)f ^ { \prime } ( x ) is

A) 3x1+32x\frac { 3 ^ { x } } { 1 + 3 ^ { 2 x } }
B) 3x1+32x\frac { 3 ^ { x } } { 1 + 3 ^ { 2 x } } .
C) 3xln31+32x\frac { 3 ^ { x } \ln 3 } { 1 + 3 ^ { 2 x } }
D) 3xln332x1\frac { 3 ^ { x } \ln 3 } { \sqrt { 3 ^ { 2 x } - 1 } }
E) 3xln3132x\frac { 3 ^ { x } \ln 3 } { \sqrt { 1 - 3 ^ { 2 x } } }
Unlock Deck
Unlock for access to all 100 flashcards in this deck.
Unlock Deck
k this deck
36
Let f(x)=cos1(x4)f ( x ) = \cos ^ { - 1 } \left( x ^ { 4 } \right) Then f(x)f ^ { \prime } ( x ) is

A) 4x31x2- \frac { 4 x ^ { 3 } } { \sqrt { 1 - x ^ { 2 } } }
B) 4x31x4- \frac { 4 x ^ { 3 } } { \sqrt { 1 - x ^ { 4 } } }
C) 4x31x6- \frac { 4 x ^ { 3 } } { \sqrt { 1 - x ^ { 6 } } }
D) 4x31x8- \frac { 4 x ^ { 3 } } { \sqrt { 1 - x ^ { 8 } } }
E) 4x31x8\frac { 4 x ^ { 3 } } { \sqrt { 1 - x ^ { 8 } } }
Unlock Deck
Unlock for access to all 100 flashcards in this deck.
Unlock Deck
k this deck
37
Let f(x)=cot1(e2x)f ( x ) = \cot ^ { - 1 } \left( e ^ { 2 x } \right) Then f(x)f ^ { \prime } ( x ) is

A) 2e2x1e4x- \frac { 2 e ^ { 2 x } } { \sqrt { 1 - e ^ { 4 x } } }
B) 2e2x1+e4x- \frac { 2 e ^ { 2 x } } { 1 + e ^ { 4 x } }
C) 2e2x1+e2x- \frac { 2 e ^ { 2 x } } { 1 + e ^ { 2 x } }
D) 2e2x1e2x- \frac { 2 e ^ { 2 x } } { 1 - e ^ { 2 x } }
E) 2e2xe4x1- \frac { 2 e ^ { 2 x } } { \sqrt { e ^ { 4 x } - 1 } }
Unlock Deck
Unlock for access to all 100 flashcards in this deck.
Unlock Deck
k this deck
38
Let f(x)=tan1(cotx)f ( x ) = \tan ^ { - 1 } ( \cot x ) Then f(x)f ^ { \prime } ( x ) is

A)-1
B) sec2x1+cot2x\frac { \sec ^ { 2 } x } { 1 + \cot ^ { 2 } x }
C) sec2x1+cot2x- \frac { \sec ^ { 2 } x } { 1 + \cot ^ { 2 } x }
D)1
E) cos2x1+cot2x\frac { \cos ^ { 2 } x } { 1 + \cot ^ { 2 } x }
Unlock Deck
Unlock for access to all 100 flashcards in this deck.
Unlock Deck
k this deck
39
Let f(x)=sin1(cosx)f ( x ) = \sin ^ { - 1 } ( \cos x ) on the interval (0,π)( 0 , \pi ) Then f(x)f ^ { \prime } ( x ) is

A)-1
B) sinx1+cos2x\frac { - \sin x } { 1 + \cos ^ { 2 } x }
C) sinx1+cos2x- \frac { \sin x } { \sqrt { 1 + \cos ^ { 2 } x } }
D)1
E) sinx1+cos2x\frac { \sin x } { \sqrt { 1 + \cos ^ { 2 } x } }
Unlock Deck
Unlock for access to all 100 flashcards in this deck.
Unlock Deck
k this deck
40
Let f(x)=cos1(sinx)f ( x ) = \cos ^ { - 1 } ( \sin x ) Then f(x)f ^ { \prime } ( x ) is

A)-1
B) coxx1+sin2x- \frac { \operatorname { cox } x } { 1 + \sin ^ { 2 } x }
C) coxx1+sin2x- \frac { \operatorname { cox } x } { \sqrt { 1 + \sin ^ { 2 } x } }
D)1
E) cosx1+sin2x\frac { \cos x } { \sqrt { 1 + \sin ^ { 2 } x } }
Unlock Deck
Unlock for access to all 100 flashcards in this deck.
Unlock Deck
k this deck
41
Let f(x)=ln(x+3x2)f ( x ) = \ln \left( \frac { x + 3 } { x - 2 } \right) Then f(x)f ^ { \prime } ( x ) is

A) 1(x+3)(x2)- \frac { 1 } { ( x + 3 ) ( x - 2 ) }
B) 5(x+3)(x2)- \frac { 5 } { ( x + 3 ) ( x - 2 ) }
C) 5(x+3)(x2)\frac { 5 } { ( x + 3 ) ( x - 2 ) }
D) 1(x+3)(x2)\frac { 1 } { ( x + 3 ) ( x - 2 ) }
E) x25(x+3)- \frac { x - 2 } { 5 ( x + 3 ) }
Unlock Deck
Unlock for access to all 100 flashcards in this deck.
Unlock Deck
k this deck
42
Let f(x)=ln(secx)f ( x ) = \ln ( \sec x ) Then f(x)f ^ { \prime } ( x ) is

A)sec x
B)tan2 x
C)tan x
D)cot x
E)csc x
Unlock Deck
Unlock for access to all 100 flashcards in this deck.
Unlock Deck
k this deck
43
Let f(x)=log2x2+5f ( x ) = \log _ { 2 } \sqrt { x ^ { 2 } + 5 } Then f(x)f ^ { \prime } ( x ) is

A) 2x(x2+5)ln2\frac { 2 x } { \left( x ^ { 2 } + 5 \right) \ln 2 }
B) 2x(x2+5)ln2- \frac { 2 x } { \left( x ^ { 2 } + 5 \right) \ln 2 }
C) x2(x2+5)\frac { x } { 2 \left( x ^ { 2 } + 5 \right) }
D) x(x2+5)ln2\frac { x } { \left( x ^ { 2 } + 5 \right) \ln 2 }
E) x(x2+5)ln2- \frac { x } { \left( x ^ { 2 } + 5 \right) \ln 2 }
Unlock Deck
Unlock for access to all 100 flashcards in this deck.
Unlock Deck
k this deck
44
Let f(x)=tan1(log3x)f ( x ) = \tan ^ { - 1 } \left( \log _ { 3 } x \right) Then f(x)f ^ { \prime } ( x ) is

A) 1x(1+(log3x)2)- \frac { 1 } { x \left( 1 + \left( \log _ { 3 } x \right) ^ { 2 } \right) }
B) 1x(1+(log3x)2)\frac { 1 } { x \left( 1 + \left( \log _ { 3 } x \right) ^ { 2 } \right) }
C) ln3x(1+(log3x)2)\frac { \ln 3 } { x \left( 1 + \left( \log _ { 3 } x \right) ^ { 2 } \right) }
D) 1xln3(1+(log3x)2)- \frac { 1 } { x \ln 3 \left( 1 + \left( \log _ { 3 } x \right) ^ { 2 } \right) }
E) 1xln3(1+(log3x)2)\frac { 1 } { x \ln 3 \left( 1 + \left( \log _ { 3 } x \right) ^ { 2 } \right) }
Unlock Deck
Unlock for access to all 100 flashcards in this deck.
Unlock Deck
k this deck
45
Let f(x)=lnsin(2x)f ( x ) = \ln \sqrt { \sin ( 2 x ) } Then f(x)f ^ { \prime } ( x ) is

A) sec(2x)\sec ( 2 x )
B) tan2(2x)\tan ^ { 2 } ( 2 x )
C) tan(2x)\tan ( 2 x )
D) cot(2x)\cot ( 2 x )
E) csc(2x)\csc ( 2 x )
Unlock Deck
Unlock for access to all 100 flashcards in this deck.
Unlock Deck
k this deck
46
Let y=xxy = x ^ { x } Then yy ^ { \prime } is

A) xx(lnx1)x ^ { x } ( \ln x - 1 )
B) xxlnxx ^ { x } \ln x
C) xx(1+lnx)x ^ { x } ( 1 + \ln x )
D) xx(1+lnx)- x ^ { x } ( 1 + \ln x )
E) xx(1lnx)x ^ { x } ( 1 - \ln x )
Unlock Deck
Unlock for access to all 100 flashcards in this deck.
Unlock Deck
k this deck
47
Let y=xx2y = x ^ { x ^ { 2 } } Then yy ^ { \prime } is

A) xx2+1(2lnx1)x ^ { x ^ { 2 } + 1 } ( 2 \ln x - 1 )
B) xx21(12lnx)x ^ { x ^ { 2 } - 1 } ( 1 - 2 \ln x )
C) xx21(1+2lnx)x ^ { x ^ { 2 } - 1 } ( 1 + 2 \ln x )
D) xx2+1(12lnx)x ^ { x ^ { 2 } + 1 } ( 1 - 2 \ln x )
E) xx2+1(1+2lnx)x ^ { x ^ { 2 } + 1 } ( 1 + 2 \ln x )
Unlock Deck
Unlock for access to all 100 flashcards in this deck.
Unlock Deck
k this deck
48
Let f(x)=ln(tanx)f ( x ) = \ln ( \tan x ) Then f(x)f ^ { \prime } ( x ) is

A) sinxcosx\sin x \cos x
B) 1sinxcosx\frac { 1 } { \sin x \cos x }
C) 1sinxcosx- \frac { 1 } { \sin x \cos x }
D)cot x
E)csc x
Unlock Deck
Unlock for access to all 100 flashcards in this deck.
Unlock Deck
k this deck
49
Let f(x)=ln(cosx)f ( x ) = \ln ( \cos x ) Then f(x)f ^ { \prime } ( x ) is

A) sinxcosx- \sin x \cos x
B) 1sinxcosx- \frac { 1 } { \sin x \cos x }
C)-tan x
D)-cot x
E)-csc x
Unlock Deck
Unlock for access to all 100 flashcards in this deck.
Unlock Deck
k this deck
50
Let f(x)=ln(log2x)f ( x ) = \ln \left( \log _ { 2 } x \right) Then f(x)f ^ { \prime } ( x ) is

A) 1xlog2x\frac { 1 } { x \log _ { 2 } x }
B) ln2xlog2x\frac { \ln 2 } { x \log _ { 2 } x }
C) 1xlnx\frac { 1 } { x \ln x }
D) 1xln2(lnx)- \frac { 1 } { x \ln 2 ( \ln x ) }
E) ln2xlnx\frac { \ln 2 } { x \ln x }
Unlock Deck
Unlock for access to all 100 flashcards in this deck.
Unlock Deck
k this deck
51
Let y=xx2y = x ^ { \ell ^ { x ^ { 2 } } } Then yy ^ { \prime } is

A) exxex(1+xlnx)e ^ { x } x ^ { e ^ { x } } ( 1 + x \ln x )
B) exxex(1xlnx)e ^ { x } x ^ { e ^ { x } } ( 1 - x \ln x )
C) exxex1(1+xlnx)e ^ { x } x ^ { e ^ { x } - 1 } ( 1 + x \ln x )
D) exxex1(1xlnx)e ^ { x } x ^ { e ^ { x } - 1 } ( 1 - x \ln x )
E) exxex1(1+lnx)e ^ { x } x ^ { e ^ { x } - 1 } ( 1 + \ln x )
Unlock Deck
Unlock for access to all 100 flashcards in this deck.
Unlock Deck
k this deck
52
Let y=xexy = x ^ {e ^ { x}} Then yy ^ { \prime } is

A) x2e1x- \frac { x ^ { 2 } } { e ^ { \frac { 1 } { x } } }
B) e1xx2- \frac { e ^ { \frac { 1 } { x } } } { x ^ { 2 } }
C) e1xx2\frac { e ^ { \frac { 1 } { x } } } { x ^ { 2 } }
D) x2e1x\frac { x ^ { 2 } } { e ^ { \frac { 1 } { x } } }
E) x2ex- \frac { x ^ { 2 } } { e ^ { x } }
Unlock Deck
Unlock for access to all 100 flashcards in this deck.
Unlock Deck
k this deck
53
Let xy=ex ^ { y } = e \text {. } Then yy ^ { \prime } is

A) x(lnx)2- \frac { x } { ( \ln x ) ^ { 2 } }
B) x(lnx)2\frac { x } { ( \ln x ) ^ { 2 } }
C) 1x(lnx)2\frac { 1 } { x ( \ln x ) ^ { 2 } }
D) 1x(lnx)2- \frac { 1 } { x ( \ln x ) ^ { 2 } }
E) x2(lnx)2\frac { x ^ { 2 } } { ( \ln x ) ^ { 2 } }
Unlock Deck
Unlock for access to all 100 flashcards in this deck.
Unlock Deck
k this deck
54
Let y=sin(lnx)y = \sin ( \ln x ) Then yy ^ { \prime } is

A) cos(lnx)x- \frac { \cos ( \ln x ) } { x }
B) cos(lnx)x\frac { \cos ( \ln x ) } { x }
C) xcos(lnx)\frac { x } { \cos ( \ln x ) }
D) xcos(lnx)- \frac { x } { \cos ( \ln x ) }
E) xsin(lnx)\frac { x } { \sin ( \ln x ) }
Unlock Deck
Unlock for access to all 100 flashcards in this deck.
Unlock Deck
k this deck
55
Let y=ln(tan1x)y = \ln \left( \tan ^ { - 1 } x \right) Then yy ^ { \prime } is

A) tan1xx2+1- \frac { \tan ^ { - 1 } x } { x ^ { 2 } + 1 }
B) tan1xx2+1\frac { \tan ^ { - 1 } x } { x ^ { 2 } + 1 }
C) x2+1tan1x\frac { x ^ { 2 } + 1 } { \tan ^ { - 1 } x }
D) 1tan1x(x2+1)\frac { 1 } { \tan ^ { - 1 } x \left( x ^ { 2 } + 1 \right) }
E) 1tan1x(x2+1)- \frac { 1 } { \tan ^ { - 1 } x \left( x ^ { 2 } + 1 \right) }
Unlock Deck
Unlock for access to all 100 flashcards in this deck.
Unlock Deck
k this deck
56
Let y=log3(cotx)y = \log _ { 3 } ( \cot x ) Then yy ^ { \prime } is

A) 1sinxcosxln3\frac { 1 } { \sin x \cos x \ln 3 }
B) 1sinxcosxln3- \frac { 1 } { \sin x \cos x \ln 3 }
C) ln3sinxcosx\frac { \ln 3 } { \sin x \cos x }
D) 1sinxcosx\frac { 1 } { \sin x \cos x }
E) ln3sinxcosx- \frac { \ln 3 } { \sin x \cos x }
Unlock Deck
Unlock for access to all 100 flashcards in this deck.
Unlock Deck
k this deck
57
Let y=ln(xy)y = \ln ( x y ) Using implicit differentiation, yy ^ { \prime } is

A) xy(y1)\frac { x } { y ( y - 1 ) }
B) xy(1y)\frac { x } { y ( 1 - y ) }
C) yx(y1)\frac { y } { x ( y - 1 ) }
D) yx(1y)\frac { y } { x ( 1 - y ) }
E) xy(x1)\frac { x } { y ( x - 1 ) }
Unlock Deck
Unlock for access to all 100 flashcards in this deck.
Unlock Deck
k this deck
58
Let y=ln(xy)y = \ln \left( \frac { x } { y } \right) Using implicit differentiation, yy ^ { \prime } is

A) yx(1+y)\frac { y } { x ( 1 + y ) }
B) yx(1y)\frac { y } { x ( 1 - y ) }
C) yx(y1)\frac { y } { x ( y - 1 ) }
D) xy(1y)\frac { x } { y ( 1 - y ) }
E) xy(x1)\frac { x } { y ( x - 1 ) }
Unlock Deck
Unlock for access to all 100 flashcards in this deck.
Unlock Deck
k this deck
59
Let y=ln(xy)y = \ln \left( x ^ { y } \right) assuming y0y \neq 0 Using implicit differentiation, yy ^ { \prime } is

A) yx(1+lnx)- \frac { y } { x ( 1 + \ln x ) }
B) yx(1+lnx)\frac { y } { x ( 1 + \ln x ) }
C) yx(1lnx)\frac { y } { x ( 1 - \ln x ) }
D) yx(1lnx)- \frac { y } { x ( 1 - \ln x ) }
E) yx(1+lny)\frac { y } { x ( 1 + \ln y ) }
Unlock Deck
Unlock for access to all 100 flashcards in this deck.
Unlock Deck
k this deck
60
Let y=ln(2x+y2)y = \ln \left( 2 x + y ^ { 2 } \right) Using implicit differentiation, yy ^ { \prime } is

A) 22xy22y\frac { 2 } { 2 x - y ^ { 2 } - 2 y }
B) 22x+y2+2y\frac { 2 } { 2 x + y ^ { 2 } + 2 y }
C) 22xy2+2y\frac { 2 } { 2 x - y ^ { 2 } + 2 y }
D) 22x+y22y\frac { 2 } { 2 x + y ^ { 2 } - 2 y }
E) 22x+y22y\frac { 2 } { - 2 x + y ^ { 2 } - 2 y }
Unlock Deck
Unlock for access to all 100 flashcards in this deck.
Unlock Deck
k this deck
61
Let y=xy = \sqrt { x } Then dy is

A) dx2x- \frac { d x } { 2 \sqrt { x } }
B) dx2x\frac { d x } { 2 \sqrt { x } }
C) xdx2\frac { \sqrt { x } d x } { 2 }
D) xdx2- \frac { \sqrt { x } d x } { 2 }
E) 2xdx2 \sqrt { x } d x
Unlock Deck
Unlock for access to all 100 flashcards in this deck.
Unlock Deck
k this deck
62
Let y=ecosxy = e ^ { \cos x } Then dy is

A) esinxdx- e ^ { \sin x } d x
B) esinxdxe ^ { \sin x } d x
C) ecosxsinxdxe ^ { \cos x } \sin x d x
D) ecosxsinxdx- e ^ { \cos x } \sin x d x
E) ecosxsinxlnxdx- e ^ { \cos x } \sin x \ln x d x
Unlock Deck
Unlock for access to all 100 flashcards in this deck.
Unlock Deck
k this deck
63
Let y=2tanxy = 2 ^ { \tan x } Then dy is

A) 2sec2xln2dx2 ^ { \sec ^ { 2 } x } \ln 2 d x
B) 2sec2xtanxdx2 ^ { \sec ^ { 2 } x } \tan x d x
C) 2tanxsec2xdx2 ^ { \tan x } \sec ^ { 2 } x d x
D) 2tanxsec2xln2dx2 ^ { \tan x } \sec ^ { 2 } x \ln 2 d x
E) 2tanxsec2xln2dx- 2 ^ { \tan x } \sec ^ { 2 } x \ln 2 d x
Unlock Deck
Unlock for access to all 100 flashcards in this deck.
Unlock Deck
k this deck
64
Let y=ln(5x)y = \ln \left( 5 ^ { x } \right) Then dy is

A) 1ln5dx\frac { 1 } { \ln 5 } d x
B) 15xdx\frac { 1 } { 5 ^ { x } } d x
C) 5xln5dx5 ^ { x } \ln 5 d x
D) 5xln5dx\frac { 5 ^ { x } } { \ln 5 } d x
E) ln5dx\ln 5 d x
Unlock Deck
Unlock for access to all 100 flashcards in this deck.
Unlock Deck
k this deck
65
Let y=log2(tan3x)y = \log _ { 2 } \left( \tan ^ { 3 } x \right) Then dy is

A) 3secxsinxln2dx\frac { 3 \sec x \sin x } { \ln 2 } d x
B) 3cosxcscxln2dx\frac { 3 \cos x \csc x } { \ln 2 } d x
C) 3secxcscxln2dx\frac { 3 \sec x \csc x } { \ln 2 } d x
D) 3cosxsinxln2dx\frac { 3 \cos x \sin x } { \ln 2 } d x
E) cosxsinx3ln2dx\frac { \cos x \sin x } { 3 \ln 2 } d x
Unlock Deck
Unlock for access to all 100 flashcards in this deck.
Unlock Deck
k this deck
66
Let y=sin(cosx)y = \sin ( \cos x ) Then dy is

A) cos(sinx)dx\cos ( \sin x ) d x
B) cos(sinx)dx\cos ( - \sin x ) d x
C) sinx[cos(cosx)]dx\sin x [ \cos ( \cos x ) ] d x
D) sinx[cos(cosx)]dx- \sin x [ \cos ( \cos x ) ] d x
E) sinx[cos(sinx)]dx- \sin x [ \cos ( \sin x ) ] d x
Unlock Deck
Unlock for access to all 100 flashcards in this deck.
Unlock Deck
k this deck
67
Let y=tan1(lnx)y = \tan ^ { - 1 } ( \ln x ) Then dy is

A) 11+(lnx)2dx\frac { 1 } { 1 + ( \ln x ) ^ { 2 } } d x
B) x1+(lnx)2dx- \frac { x } { 1 + ( \ln x ) ^ { 2 } } d x
C) x1+(lnx)2dx\frac { x } { 1 + ( \ln x ) ^ { 2 } } d x
D) 1x[1+(lnx)2]dx- \frac { 1 } { x \left[ 1 + ( \ln x ) ^ { 2 } \right] } d x
E) 1x[1+(lnx)2]dx\frac { 1 } { x \left[ 1 + ( \ln x ) ^ { 2 } \right] } d x
Unlock Deck
Unlock for access to all 100 flashcards in this deck.
Unlock Deck
k this deck
68
Let y=xex.y = \frac { x } { e ^ { x } } . Then dy is

A) (1x)exdx\frac { ( 1 - x ) } { e ^ { x } d x }
B) x1exdx\frac { x - 1 } { e ^ { x } } d x
C) ex1xdx\frac { e ^ { x } } { 1 - x } d x
D) exx1dx\frac { e ^ { x } } { x - 1 } d x
E) ex1exdx\frac { e ^ { x } } { 1 - e ^ { x } } d x
Unlock Deck
Unlock for access to all 100 flashcards in this deck.
Unlock Deck
k this deck
69
Let y=tan(ex)y = \tan \left( e ^ { x } \right) . Then dy is

A) sec2(ex)dx\sec ^ { 2 } \left( e ^ { x } \right) d x
B) exsec2(ex)dxe ^ { x } \sec ^ { 2 } \left( e ^ { x } \right) d x
C) sec2(ex)1+e2xdx\frac { \sec ^ { 2 } \left( e ^ { x } \right) } { 1 + e ^ { 2 x } } d x
D) sec2(ex)1e2xdx\frac { \sec ^ { 2 } \left( e ^ { x } \right) } { 1 - e ^ { 2 x } } d x
E) sec2(ex)e2x1dx\frac { \sec ^ { 2 } \left( e ^ { x } \right) } { e ^ { 2 x } - 1 } d x
Unlock Deck
Unlock for access to all 100 flashcards in this deck.
Unlock Deck
k this deck
70
Let y=sin(7x)y = \sin \left( 7 ^ { x } \right) Then dy is

A) 7xcos(7x)dx7 ^ { x } \cos \left( 7 ^ { x } \right) d x
B) cos(7x)ln7dx\cos \left( 7 ^ { x } \right) \ln 7 d x
C) 7xcos(7x)ln7dx7 ^ { x } \cos \left( 7 ^ { x } \right) \ln 7 d x
D) 7xcos(7x)ln7dx- 7 ^ { x } \cos \left( 7 ^ { x } \right) \ln 7 d x
E) cos(7x)ln7dx- \cos \left( 7 ^ { x } \right) \ln 7 d x
Unlock Deck
Unlock for access to all 100 flashcards in this deck.
Unlock Deck
k this deck
71
The linear approximation L(x)L ( x ) to f(x)=xf ( x ) = \sqrt { x } near x0=14x _ { 0 } = \frac { 1 } { 4 } is

A) 12+(x+14)- \frac { 1 } { 2 } + \left( x + \frac { 1 } { 4 } \right)
B) 12(x14)- \frac { 1 } { 2 } - \left( x - \frac { 1 } { 4 } \right)
C) 12(x14)\frac { 1 } { 2 } - \left( x - \frac { 1 } { 4 } \right)
D) 12+(x14)- \frac { 1 } { 2 } + \left( x - \frac { 1 } { 4 } \right)
E) 12+(x14)\frac { 1 } { 2 } + \left( x - \frac { 1 } { 4 } \right)
Unlock Deck
Unlock for access to all 100 flashcards in this deck.
Unlock Deck
k this deck
72
The linear approximation L(x)L ( x ) to f(x)=lnxf ( x ) = \ln x near x0=ex _ { 0 } = e is

A) e+1e(xe)e + \frac { 1 } { e } ( x - e )
B) 1+1e(xe)1 + \frac { 1 } { e } ( x - e )
C) 1+1e(xe)- 1 + \frac { 1 } { e } ( x - e )
D) e1e(xe)e - \frac { 1 } { e } ( x - e )
E) 11e(xe)1 - \frac { 1 } { e } ( x - e )
Unlock Deck
Unlock for access to all 100 flashcards in this deck.
Unlock Deck
k this deck
73
The linear approximation L(x)L ( x ) to f(x)=exf ( x ) = e ^ { - x } near x0=1x _ { 0 } = 1 is

A) 1e(x1)\frac { 1 } { e ^ { ( x - 1 ) } }
B) 1e(x2)\frac { 1 } { e } ( x - 2 )
C) 1e(x1)\frac { 1 } { e } - ( x - 1 )
D) 1e(2x)\frac { 1 } { e } ( 2 - x )
E) 1e+(x1)\frac { 1 } { e } + ( x - 1 )
Unlock Deck
Unlock for access to all 100 flashcards in this deck.
Unlock Deck
k this deck
74
The linear approximation L(x)L ( x ) to f(x)=x3f ( x ) = \sqrt [ 3 ] { x } near x0=8x _ { 0 } = 8 is

A) 12+112(x8)- \frac { 1 } { 2 } + \frac { 1 } { 12 } ( x - 8 )
B) 2112(x8)- 2 - \frac { 1 } { 12 } ( x - 8 )
C) 2+112(x8)2 + \frac { 1 } { 12 } ( x - 8 )
D) 2112(x8)2 - \frac { 1 } { 12 } ( x - 8 )
E) 2+112(x8)- 2 + \frac { 1 } { 12 } ( x - 8 )
Unlock Deck
Unlock for access to all 100 flashcards in this deck.
Unlock Deck
k this deck
75
The linear approximation L(x)L ( x ) to f(x)=tanxf ( x ) = \tan x near x0=π4x _ { 0 } = \frac { \pi } { 4 } is

A) 1+2(xπ4)1 + 2 \left( x - \frac { \pi } { 4 } \right)
B) 12(xπ4)1 - 2 \left( x - \frac { \pi } { 4 } \right)
C) 1+(xπ4)1 + \left( x - \frac { \pi } { 4 } \right)
D) 1(xπ4)1 - \left( x - \frac { \pi } { 4 } \right)
E) 1+2(xπ4)- 1 + 2 \left( x - \frac { \pi } { 4 } \right)
Unlock Deck
Unlock for access to all 100 flashcards in this deck.
Unlock Deck
k this deck
76
The linear approximation L(x)L ( x ) to f(x)=sinxf ( x ) = \sin x near x0=π6x _ { 0 } = - \frac { \pi } { 6 } is

A) 1232(x+π6)- \frac { 1 } { 2 } - \frac { \sqrt { 3 } } { 2 } \left( x + \frac { \pi } { 6 } \right)
B) 12+32(x+π6)- \frac { 1 } { 2 } + \frac { \sqrt { 3 } } { 2 } \left( x + \frac { \pi } { 6 } \right)
C) 32+12(x+π6)- \frac { \sqrt { 3 } } { 2 } + \frac { 1 } { 2 } \left( x + \frac { \pi } { 6 } \right)
D) 3212(x+π6)- \frac { \sqrt { 3 } } { 2 } - \frac { 1 } { 2 } \left( x + \frac { \pi } { 6 } \right)
E) 12+32(xπ6)- \frac { 1 } { 2 } + \frac { \sqrt { 3 } } { 2 } \left( x - \frac { \pi } { 6 } \right)
Unlock Deck
Unlock for access to all 100 flashcards in this deck.
Unlock Deck
k this deck
77
Letting f(x)=xf ( x ) = \sqrt { x } and x0=25x _ { 0 } = 25 the approximation of 24\sqrt { 24 } by differentials is

A)5.1
B)5.05
C)4.95
D)4.9
E)4.85
Unlock Deck
Unlock for access to all 100 flashcards in this deck.
Unlock Deck
k this deck
78
Letting f(x)=xf ( x ) = \sqrt { x } and x0=25,x _ { 0 } = 25 , the approximation of 25.1\sqrt { 25.1 } by differentials is

A)5.1
B)5.05
C)5.01
D)4.99
E)4.95
Unlock Deck
Unlock for access to all 100 flashcards in this deck.
Unlock Deck
k this deck
79
Letting f(x)=x3f ( x ) = \sqrt [ 3 ] { x } and x0=216x _ { 0 } = 216 the approximation of 215\sqrt { 215 } by differentials is

A)5.94
B)5.97
C)5.99
D)6.01
E)6.05
Unlock Deck
Unlock for access to all 100 flashcards in this deck.
Unlock Deck
k this deck
80
Letting f(x)=tanxf ( x ) = \tan x and x0=π4x _ { 0 } = \frac { \pi } { 4 } the approximation of tan 44° by differentials is

A)0.962
B)0.963
C)0.964
D)0.965
E)0.966
Unlock Deck
Unlock for access to all 100 flashcards in this deck.
Unlock Deck
k this deck
locked card icon
Unlock Deck
Unlock for access to all 100 flashcards in this deck.