Exam 4: More About Derivatives

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Let y=u1uy = \frac { u } { 1 - u } and u=2xu = 2 x By the Chain Rule, dydx\frac { d y } { d x } is

Free
(Multiple Choice)
4.7/5
(33)
Correct Answer:
Verified

B

Let f(x)=cos1(sinx)f ( x ) = \cos ^ { - 1 } ( \sin x ) Then f(x)f ^ { \prime } ( x ) is

Free
(Multiple Choice)
4.9/5
(29)
Correct Answer:
Verified

A

The linear approximation L(x)L ( x ) to f(x)=exf ( x ) = e ^ { - x } near x0=1x _ { 0 } = 1 is

Free
(Multiple Choice)
4.8/5
(36)
Correct Answer:
Verified

D

Let y=tan1(lnx)y = \tan ^ { - 1 } ( \ln x ) Then dy is

(Multiple Choice)
4.9/5
(38)

Using implicit differentiation on x33xy+y3=6,yx ^ { 3 } - 3 x y + y ^ { 3 } = 6 , y\prime is

(Multiple Choice)
4.9/5
(42)

Let f(x)=tan1(log3x)f ( x ) = \tan ^ { - 1 } \left( \log _ { 3 } x \right) Then f(x)f ^ { \prime } ( x ) is

(Multiple Choice)
4.8/5
(34)

Let f(x)=tanh1(lnx)f ( x ) = \tanh ^ { - 1 } ( \ln x ) Then f(x)f ^ { \prime } ( x ) is

(Multiple Choice)
4.8/5
(32)

Let f(x)=xsinh1xf ( x ) = x \sinh ^ { - 1 } x Then f(x)f ^ { \prime } ( x ) is

(Multiple Choice)
4.8/5
(36)

Let y=ln(xy)y = \ln \left( x ^ { y } \right) assuming y0y \neq 0 Using implicit differentiation, yy ^ { \prime } is

(Multiple Choice)
4.8/5
(40)

Using implicit differentiation on x2+y2=2y,yx ^ { 2 } + y ^ { 2 } = 2 y , y ^ { \prime } is

(Multiple Choice)
4.9/5
(40)

Let f(x)=sin(ex)f ( x ) = \sin \left( e ^ { x } \right) Then f(x)f ^ { \prime } ( x ) is

(Multiple Choice)
4.8/5
(32)

Let y=sin(cosx)y = \sin ( \cos x ) Then dy is

(Multiple Choice)
4.8/5
(32)

Let y=csc(5x).y = \csc ( 5 x ) . Then yy ^ { \prime } is

(Multiple Choice)
4.8/5
(37)

Let f(x)=cos1(x4)f ( x ) = \cos ^ { - 1 } \left( x ^ { 4 } \right) Then f(x)f ^ { \prime } ( x ) is

(Multiple Choice)
4.9/5
(33)

Let f(x)=sec1(ex)f ( x ) = \sec ^ { - 1 } \left( e ^ { x } \right) Then f(x)f ^ { \prime } ( x ) is

(Multiple Choice)
4.9/5
(33)

The linear approximation L(x)L ( x ) to f(x)=tanxf ( x ) = \tan x near x0=π4x _ { 0 } = \frac { \pi } { 4 } is

(Multiple Choice)
4.9/5
(36)

Let f(x)=ln(secx)f ( x ) = \ln ( \sec x ) Then f(x)f ^ { \prime } ( x ) is

(Multiple Choice)
4.9/5
(34)

Let f(x)=ln(cosx)f ( x ) = \ln ( \cos x ) Then f(x)f ^ { \prime } ( x ) is

(Multiple Choice)
4.7/5
(40)

Let f(x)=cot1(e2x)f ( x ) = \cot ^ { - 1 } \left( e ^ { 2 x } \right) Then f(x)f ^ { \prime } ( x ) is

(Multiple Choice)
4.9/5
(40)

Let y=xex.y = \frac { x } { e ^ { x } } . Then dy is

(Multiple Choice)
4.7/5
(29)
Showing 1 - 20 of 100
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)