Deck 16: Vector Calculus

Full screen (f)
exit full mode
Question
The domain of the vector field F(x,y)=1xi+1yj\mathbf { F } ( x , y ) = \frac { 1 } { x } \mathbf { i } + \frac { 1 } { y } \mathbf { j } is

A) {(x,y):xy0}\{ ( x , y ) : x y \neq 0 \}
B) {(x,y):(x,y)(0,0)}\{ ( x , y ) : ( x , y ) \neq ( 0,0 ) \}
C) {(x,y):x0}\{ ( x , y ) : x \neq 0 \}
D) {(x,y):y0}\{ ( x , y ) : y \neq 0 \}
E) {(x,y):xy>0}\{ ( x , y ) : x y > 0 \}
Use Space or
up arrow
down arrow
to flip the card.
Question
The domain of the vector field F(x,y)=1xi+lnyj\mathbf { F } ( x , y ) = \sqrt { 1 - x } \mathbf { i } + \ln y \mathbf { j } is

A) {(x,y):xy0}\{ ( x , y ) : x y \neq 0 \}
B) {(x,y):x1,y0}\{ ( x , y ) : x \langle 1 , y \rangle 0 \}
C) {(x,y):x1,y>0}\{ ( x , y ) : x \leq 1 , y > 0 \}
D) {(x,y):x>1,y>0}\{ ( x , y ) : x > 1 , y > 0 \}
E) {(x,y):x<1,y0}\{ ( x , y ) : x < 1 , y \geq 0 \}
Question
The domain of the vector field F(x,y)=xyi+5xyj\mathbf { F } ( x , y ) = \sqrt { x y } \mathbf { i } + \frac { 5 } { x y } \mathbf { j } is

A) {(x,y):xy0}\{ ( x , y ) : x y \neq 0 \}
B) {(x,y):xy>0}\{ ( x , y ) : x y > 0 \}
C) {(x,y):xy0}\{ ( x , y ) : x y \geq 0 \}
D) {(x,y):x>0,y>0}\{ ( x , y ) : x > 0 , y > 0 \}
E) {(x,y):x<0,y<0}\{ ( x , y ) : x < 0 , y < 0 \}
Question
The domain of the vector field F(x,y)=xyx2+y2i+5x2y2j\mathbf { F } ( x , y ) = \frac { x y } { x ^ { 2 } + y ^ { 2 } } \mathbf { i } + \frac { 5 } { x ^ { 2 } - y ^ { 2 } } \mathbf { j } is

A) {(x,y):(x,y)(0,0)}\{ ( x , y ) : ( x , y ) \neq ( 0,0 ) \}
B) {(x,y):x>y}\{ ( x , y ) : x > | y | \}
C) {(x,y):xy}\{ ( x , y ) : x \neq - y \}
D) {(x,y):xy}\{ ( x , y ) : x \neq y \}
E) {(x,y):xy}\{ ( x , y ) : x \neq | y | \}
Question
The domain of the vector field F(x,y)=1x2i+lnyj\mathbf { F } ( x , y ) = \sqrt { 1 - x ^ { 2 } } \mathbf { i } + \ln y \mathbf { j } is

A) {(x,y):x1,y0}\{ ( x , y ) : x \langle 1 , y \rangle 0 \}
B) {(x,y):xy>0}\{ ( x , y ) : x y > 0 \}
C) {(x,y):1x1,y>0}\{ ( x , y ) : - 1 \leq x \leq 1 , y > 0 \}
D) {(x,y):x1,y0}\{ ( x , y ) : x \leq 1 , y \geq 0 \}
E) {(x,y):1x1,y0}\{ ( x , y ) : - 1 \leq x \langle 1 , y \rangle 0 \}
Question
The domain of the vector field F(x,y)=sin(x+y)i5x22xy+y2j\mathbf { F } ( x , y ) = \sin ( x + y ) \mathbf { i } - \frac { 5 } { x ^ { 2 } - 2 x y + y ^ { 2 } } \mathbf { j } is

A) {(x,y):xy}\{ ( x , y ) : x \neq y \}
B) {(x,y):xy>0}\{ ( x , y ) : x y > 0 \}
C) {(x,y):xy}\{ ( x , y ) : x \neq | y | \}
D) {(x,y):x>1,y>0}\{ ( x , y ) : x > 1 , y > 0 \}
E) {(x,y):xy}\{ ( x , y ) : x \geq | y | \}
Question
The domain of the vector field F(x,y,z)=yzeyzi+xzexzj+xyezyk\mathbf { F } ( x , y , z ) = \frac { y z } { e ^ { y z } } \mathbf { i } + \frac { x z } { e ^ { x z } } \mathbf { j } + \frac { x y } { e ^ { z y } } \mathbf { k } is

A) {(x,y,z):xy}\{ ( x , y , z ) : x \neq y \}
B) {(x,y,z):xy0}\{ ( x , y , z ) : x y \neq 0 \}
C) {(x,y,z):<x<,<y<,<z<}\{ ( x , y , z ) : - \infty < x < \infty , - \infty < y < \infty , - \infty < z < \infty \}
D) {(x,y,z):xz>0}\{ ( x , y , z ) : x z > 0 \}
E) {(x,y,z):yz0}\{ ( x , y , z ) : y z \neq 0 \}
Question
The domain of the vector field F(x,y,z)=lnxi+lnyj+lnzk\mathbf { F } ( x , y , z ) = \ln x \mathbf { i } + \ln y \mathbf { j } + \ln z \mathbf { k } is

A) {(x,y,z):x>y>z>0}\{ ( x , y , z ) : x > y > z > 0 \}
B) {(x,y,z):xy>0}\{ ( x , y , z ) : x y > 0 \}
C) {(x,y,z):xz>0}\{ ( x , y , z ) : x z > 0 \}
D) {(x,y,z):yz>0}\{ ( x , y , z ) : y z > 0 \}
E) {(x,y,z):x>0,y>0,z>0}\{ ( x , y , z ) : x > 0 , y > 0 , z > 0 \}
Question
Let f(x,y)=sinx+xy+cosy.f ( x , y ) = \sin x + x y + \cos y . Its gradient vector field is

A) f(x,y)=(cosx+y)i(x+siny)j\nabla f ( x , y ) = ( \cos x + y ) \mathbf { i } - ( x + \sin y ) \mathbf { j }
B) f(x,y)=(cosx+y)i+(x+siny)j\nabla f ( x , y ) = ( \cos x + y ) \mathbf { i } + ( x + \sin y ) \mathbf { j }
C) f(x,y)=(cosxy)i+(xsiny)j\nabla f ( x , y ) = ( \cos x - y ) \mathbf { i } + ( x - \sin y ) \mathbf { j }
D) f(x,y)=(cosx+y)i+(xsiny)j\nabla f ( x , y ) = ( \cos x + y ) \mathbf { i } + ( x - \sin y ) \mathbf { j }
E) f(x,y)=(cosx+y)i(xsiny)j\nabla f ( x , y ) = ( \cos x + y ) \mathbf { i } - ( x - \sin y ) \mathbf { j }
Question
Let f(x,y)=exsiny+eycosxf ( x , y ) = e ^ { x } \sin y + e ^ { y } \cos x Its gradient vector field is

A) f(x,y)=(exsinyeysinx)i+(excosy+eycosx)j\nabla f ( x , y ) = \left( e ^ { x } \sin y - e ^ { y } \sin x \right) \mathbf { i } + \left( e ^ { x } \cos y + e ^ { y } \cos x \right) \mathbf { j }
B) f(x,y)=(exsinyeysinx)i(excosy+eycosx)j\nabla f ( x , y ) = \left( e ^ { x } \sin y - e ^ { y } \sin x \right) \mathbf { i } - \left( e ^ { x } \cos y + e ^ { y } \cos x \right) \mathbf { j }
C) f(x,y)=(exsinyeysinx)i+(excosyeycosx)j\nabla f ( x , y ) = \left( e ^ { x } \sin y - e ^ { y } \sin x \right) \mathbf { i } + \left( e ^ { x } \cos y - e ^ { y } \cos x \right) \mathbf { j }
D) f(x,y)=(exsiny+eysinx)i+(excosy+eycosx)j\nabla f ( x , y ) = \left( e ^ { x } \sin y + e ^ { y } \sin x \right) \mathbf { i } + \left( e ^ { x } \cos y + e ^ { y } \cos x \right) \mathbf { j }
E) f(x,y)=(exsiny+eysinx)i+(excosyeycosx)j\nabla f ( x , y ) = \left( e ^ { x } \sin y + e ^ { y } \sin x \right) \mathbf { i } + \left( e ^ { x } \cos y - e ^ { y } \cos x \right) \mathbf { j }
Question
Let f(x,y)=xsiny+ycosxf ( x , y ) = x \sin y + y \cos x Its gradient vector field is

A) f(x,y)=(sinyycosx)i+(xcosycosx)j\nabla f ( x , y ) = ( \sin y - y \cos x ) \mathbf { i } + ( x \cos y - \cos x ) \mathbf { j }
B) f(x,y)=(sinyycosx)i+(xcosy+cosx)j\nabla f ( x , y ) = ( \sin y - y \cos x ) \mathbf { i } + ( x \cos y + \cos x ) \mathbf { j }
C) f(x,y)=(siny+ycosx)i+(xcosycosx)j\nabla f ( x , y ) = ( \sin y + y \cos x ) \mathbf { i } + ( x \cos y - \cos x ) \mathbf { j }
D) f(x,y)=(siny+ycosx)i(xcosy+cosx)j\nabla f ( x , y ) = ( \sin y + y \cos x ) \mathbf { i } - ( x \cos y + \cos x ) \mathbf { j }
E) f(x,y)=(siny±ysinx)i+(xcosy+cosx)j\nabla f ( x , y ) = ( \sin y \pm y \sin x ) \mathbf { i } + ( x \cos y + \cos x ) \mathbf { j }
Question
Let f(x,y)=tan1(yx)f ( x , y ) = \tan ^ { - 1 } \left( \frac { y } { x } \right) . Its gradient vector field is

A) f(x,y)=yx2+y2i+xx2+y2j\nabla f ( x , y ) = \frac { y } { x ^ { 2 } + y ^ { 2 } } \mathbf { i } + \frac { x } { x ^ { 2 } + y ^ { 2 } } \mathbf { j }
B) f(x,y)=yx2+y2ixx2+y2j\nabla f ( x , y ) = - \frac { y } { x ^ { 2 } + y ^ { 2 } } \mathbf { i } - \frac { x } { x ^ { 2 } + y ^ { 2 } } \mathbf { j }
C) f(x,y)=yx2+y2i+xx2+y2j\nabla f ( x , y ) = - \frac { y } { x ^ { 2 } + y ^ { 2 } } \mathbf { i } + \frac { x } { x ^ { 2 } + y ^ { 2 } } \mathbf { j }
D) f(x,y)=yx2y2i+xx2y2j\nabla f ( x , y ) = - \frac { y } { x ^ { 2 } - y ^ { 2 } } \mathbf { i } + \frac { x } { x ^ { 2 } - y ^ { 2 } } \mathbf { j }
E) f(x,y)=yx2y2i+xx2y2j\nabla f ( x , y ) = \frac { y } { x ^ { 2 } - y ^ { 2 } } \mathbf { i } + \frac { x } { x ^ { 2 } - y ^ { 2 } } \mathbf { j }
Question
Let f(x,y)=2x33x2y+xy2f ( x , y ) = 2 x ^ { 3 } - 3 x ^ { 2 } y + x y ^ { 2 } . Its gradient vector field is

A) f(x,y)=(6x26xy+y2)i+(2xy3x2)j\nabla f ( x , y ) = \left( 6 x ^ { 2 } - 6 x y + y ^ { 2 } \right) \mathbf { i } + \left( 2 x y - 3 x ^ { 2 } \right) \mathbf { j }
B) f(x,y)=(6x26xy+y2)i(2xy3x2)j\nabla f ( x , y ) = \left( 6 x ^ { 2 } - 6 x y + y ^ { 2 } \right) \mathbf { i } - \left( 2 x y - 3 x ^ { 2 } \right) \mathbf { j }
C) f(x,y)=(6x26xyy2)i+(2xy3x2)j\nabla f ( x , y ) = \left( 6 x ^ { 2 } - 6 x y - y ^ { 2 } \right) \mathbf { i } + \left( 2 x y - 3 x ^ { 2 } \right) \mathbf { j }
D) f(x,y)=(6x26xy+y2)i+(2xy+3x2)\nabla f ( x , y ) = \left( 6 x ^ { 2 } - 6 x y + y ^ { 2 } \right) \mathbf { i } + \left( 2 x y + 3 x ^ { 2 } \right)
E) f(x,y)=(6x26xyy2)i+(2xy+3x2)j\nabla f ( x , y ) = \left( 6 x ^ { 2 } - 6 x y - y ^ { 2 } \right) \mathbf { i } + \left( 2 x y + 3 x ^ { 2 } \right) \mathbf { j }
Question
Let f(x,y)=ln(yx)+eyxf ( x , y ) = \ln \left( \frac { y } { x } \right) + e ^ { \frac { y } { x } } . Its gradient vector field is

A) f(x,y)=x+yeyxx2i+x+yeyxxyj\nabla f ( x , y ) = \frac { x + y e ^ { \frac { y } { x } } } { x ^ { 2 } } \mathbf { i } + \frac { x + y e ^ { \frac { y } { x } } } { x y } \mathbf { j }
B) f(x,y)=x+yeyxx2i+x+yeyxxyj\nabla f ( x , y ) = - \frac { x + y e ^ { \frac { y } { x } } } { x ^ { 2 } } \mathbf { i } + \frac { x + y e ^ { \frac { y } { x } } } { x y } \mathbf { j }
C) f(x,y)=x+yeyxx2ix+yeyxxyj\nabla f ( x , y ) = \frac { x + y e ^ { \frac { y } { x } } } { x ^ { 2 } } \mathbf { i } - \frac { x + y e ^ { \frac { y } { x } } } { x y } \mathbf { j }
D) f(x,y)=x+yeyxx2ix+yeyxxyj\nabla f ( x , y ) = - \frac { x + y e ^ { \frac { y } { x } } } { x ^ { 2 } } \mathbf { i } - \frac { x + y e ^ { \frac { y } { x } } } { x y } \mathbf { j }
E) f(x,y)=x+yeyxx2i+xyeyxxyj\nabla f ( x , y ) = - \frac { x + y e ^ { \frac { y } { x } } } { x ^ { 2 } } \mathbf { i } + \frac { x - y e ^ { \frac { y } { x } } } { x y } \mathbf { j }
Question
Let f(x,y)=2x3y+7x2y25xy3f ( x , y ) = 2 x ^ { 3 } y + 7 x ^ { 2 } y ^ { 2 } - 5 x y ^ { 3 } . Its gradient vector field is

A) f(x,y)=(6x2y14xy2+5y3)i+(2x3+14x2y15xy2)j\nabla f ( x , y ) = \left( 6 x ^ { 2 } y - 14 x y ^ { 2 } + 5 y ^ { 3 } \right) \mathbf { i } + \left( 2 x ^ { 3 } + 14 x ^ { 2 } y - 15 x y ^ { 2 } \right) \mathbf { j }
B) f(x,y)=(6x2y+14xy25y3)i+(2x314x2y15xy2)j\nabla f ( x , y ) = \left( 6 x ^ { 2 } y + 14 x y ^ { 2 } - 5 y ^ { 3 } \right) \mathbf { i } + \left( 2 x ^ { 3 } - 14 x ^ { 2 } y - 15 x y ^ { 2 } \right) \mathbf { j }
C) f(x,y)=(6x2y14xy25y3)i+(2x3+14x2y15xy2)j\nabla f ( x , y ) = \left( 6 x ^ { 2 } y - 14 x y ^ { 2 } - 5 y ^ { 3 } \right) \mathbf { i } + \left( 2 x ^ { 3 } + 14 x ^ { 2 } y - 15 x y ^ { 2 } \right) \mathbf { j }
D) f(x,y)=(6x2y+14xy25y3)i+(2x3+14x2y15xy2)j\nabla f ( x , y ) = \left( 6 x ^ { 2 } y + 14 x y ^ { 2 } - 5 y ^ { 3 } \right) \mathbf { i } + \left( 2 x ^ { 3 } + 14 x ^ { 2 } y - 15 x y ^ { 2 } \right) \mathbf { j }
E) f(x,y)=(6x2y+14xy25y3)i(2x3+14x2y15xy2)j\nabla f ( x , y ) = \left( 6 x ^ { 2 } y + 14 x y ^ { 2 } - 5 y ^ { 3 } \right) \mathbf { i } - \left( 2 x ^ { 3 } + 14 x ^ { 2 } y - 15 x y ^ { 2 } \right) \mathbf { j }
Question
Let f(x,y,z)=ln(xyz)f ( x , y , z ) = \ln ( x y z ) . Its gradient vector field is

A) f(x,y)=1xi1yj+1zk\nabla f ( x , y ) = \frac { 1 } { x } \mathbf { i } - \frac { 1 } { y } \mathbf { j } + \frac { 1 } { z } \mathbf { k }
B) f(x,y)=1xi+1yj+1zk\nabla f ( x , y ) = \frac { 1 } { x } \mathbf { i } + \frac { 1 } { y } \mathbf { j } + \frac { 1 } { z } \mathbf { k }
C) f(x,y)=1xi+1yj1zk\nabla f ( x , y ) = \frac { 1 } { x } \mathbf { i } + \frac { 1 } { y } \mathbf { j } - \frac { 1 } { z } \mathbf { k }
D) f(x,y)=1xi1yj1zk\nabla f ( x , y ) = \frac { 1 } { x } \mathbf { i } - \frac { 1 } { y } \mathbf { j } - \frac { 1 } { z } \mathbf { k }
E) f(x,y)=1xi+1yj+1zk\nabla f ( x , y ) = - \frac { 1 } { x } \mathbf { i } + \frac { 1 } { y } \mathbf { j } + \frac { 1 } { z } \mathbf { k }
Question
Let f(x,y,z)=ln(x2+y2+z2)f ( x , y , z ) = \ln \left( x ^ { 2 } + y ^ { 2 } + z ^ { 2 } \right) . Its gradient vector field is

A) f(x,y,z)=2xx2+y2+z2i+2yx2+y2+z2j+2zx2+y2+z2k\nabla f ( x , y , z ) = - \frac { 2 x } { x ^ { 2 } + y ^ { 2 } + z ^ { 2 } } \mathbf { i } + \frac { 2 y } { x ^ { 2 } + y ^ { 2 } + z ^ { 2 } } \mathbf { j } + \frac { 2 z } { x ^ { 2 } + y ^ { 2 } + z ^ { 2 } } \mathbf { k }
B) f(x,y,z)=2xx2+y2+z2i2yx2+y2+z2j2zx2+y2+z2k\nabla f ( x , y , z ) = \frac { 2 x } { x ^ { 2 } + y ^ { 2 } + z ^ { 2 } } \mathbf { i } - \frac { 2 y } { x ^ { 2 } + y ^ { 2 } + z ^ { 2 } } \mathbf { j } - \frac { 2 z } { x ^ { 2 } + y ^ { 2 } + z ^ { 2 } } \mathbf { k }
C) f(x,y,z)=2xx2+y2+z2i+2yx2+y2+z2j2zx2+y2+z2k\nabla f ( x , y , z ) = \frac { 2 x } { x ^ { 2 } + y ^ { 2 } + z ^ { 2 } } \mathbf { i } + \frac { 2 y } { x ^ { 2 } + y ^ { 2 } + z ^ { 2 } } \mathbf { j } - \frac { 2 z } { x ^ { 2 } + y ^ { 2 } + z ^ { 2 } } \mathbf { k }
D) f(x,y,z)=2xx2+y2+z2i2yx2+y2+z2j+2zx2+y2+z2k\nabla f ( x , y , z ) = \frac { 2 x } { x ^ { 2 } + y ^ { 2 } + z ^ { 2 } } \mathbf { i } - \frac { 2 y } { x ^ { 2 } + y ^ { 2 } + z ^ { 2 } } \mathbf { j } + \frac { 2 z } { x ^ { 2 } + y ^ { 2 } + z ^ { 2 } } \mathbf { k }
E) f(x,y,z)=2xx2+y2+z2i+2yx2+y2+z2j+2zx2+y2+z2k\nabla f ( x , y , z ) = \frac { 2 x } { x ^ { 2 } + y ^ { 2 } + z ^ { 2 } } \mathbf { i } + \frac { 2 y } { x ^ { 2 } + y ^ { 2 } + z ^ { 2 } } \mathbf { j } + \frac { 2 z } { x ^ { 2 } + y ^ { 2 } + z ^ { 2 } } \mathbf { k }
Question
Let f(x,y,z)=x2+3yzz2f ( x , y , z ) = \sqrt { x ^ { 2 } + 3 y z - z ^ { 2 } } . Its gradient vector field is

A) f(x,y)=2xi+3zj+(3y2z)k2x2+3yzz2\nabla f ( x , y ) = \frac { 2 x \mathbf { i } + 3 z \mathbf { j } + ( 3 y - 2 z ) \mathbf { k } } { 2 \sqrt { x ^ { 2 } + 3 y z - z ^ { 2 } } }
B) f(x,y)=2xi+3zj(3y2z)k2x2+3yzz2\nabla f ( x , y ) = \frac { 2 x \mathbf { i } + 3 z \mathbf { j } - ( 3 y - 2 z ) \mathbf { k } } { 2 \sqrt { x ^ { 2 } + 3 y z - z ^ { 2 } } }
C) f(x,y)=2xi3zj+(3y2z)k2x2+3yzz2\nabla f ( x , y ) = \frac { 2 x \mathbf { i } - 3 z \mathbf { j } + ( 3 y - 2 z ) \mathbf { k } } { 2 \sqrt { x ^ { 2 } + 3 y z - z ^ { 2 } } }
D) f(x,y)=2xi3zj(3y2z)k2x2+3yzz2\nabla f ( x , y ) = \frac { 2 \boldsymbol { x } \mathbf { i } - 3 z \mathbf { j } - ( 3 y - 2 z ) \mathbf { k } } { 2 \sqrt { x ^ { 2 } + 3 y z - z ^ { 2 } } }
E) f(x,y)=2xi+3zj+(3y+2z)k2x2+3yzz2\nabla f ( x , y ) = \frac { 2 x \mathbf { i } + 3 z \mathbf { j } + ( 3 y + 2 z ) \mathbf { k } } { 2 \sqrt { x ^ { 2 } + 3 y z - z ^ { 2 } } }
Question
Let f(x,y,z)=(x2+y2+z2)12f ( x , y , z ) = \left( x ^ { 2 } + y ^ { 2 } + z ^ { 2 } \right) ^ { - \frac { 1 } { 2 } } .Its gradient vector field is

A) f(x,y,z)=xiyj+zk(x2+y2+z2)32\nabla f ( x , y , z ) = - \frac { x \mathbf { i } - y \mathbf { j } + z \mathbf { k } } { \left( x ^ { 2 } + y ^ { 2 } + z ^ { 2 } \right) ^ { \frac { 3 } { 2 } } }
B) f(x,y,z)=xi+yj+zk(x2+y2+z2)32\nabla f ( x , y , z ) = \frac { x \mathbf { i } + y \mathbf { j } + z \mathbf { k } } { \left( x ^ { 2 } + y ^ { 2 } + z ^ { 2 } \right) ^ { \frac { 3 } { 2 } } }
C) f(x,y,z)=xi+yj+zk(x2+y2+z2)32\nabla f ( x , y , z ) = - \frac { x \mathbf { i } + y \mathbf { j } + z \mathbf { k } } { \left( x ^ { 2 } + y ^ { 2 } + z ^ { 2 } \right) ^ { \frac { 3 } { 2 } } }
D) f(x,y,z)=xiyj+zk(x2+y2+z2)32\nabla f ( x , y , z ) = \frac { x \mathbf { i } - y \mathbf { j } + z \mathbf { k } } { \left( x ^ { 2 } + y ^ { 2 } + z ^ { 2 } \right) ^ { \frac { 3 } { 2 } } }
E) f(x,y,z)=xiyjzk(x2+y2+z2)32\nabla f ( x , y , z ) = - \frac { x \mathbf { i } - y \mathbf { j } - z \mathbf { k } } { \left( x ^ { 2 } + y ^ { 2 } + z ^ { 2 } \right) ^ { \frac { 3 } { 2 } } }
Question
Let f(x,y)=2x3+xy2+xz2f ( x , y ) = 2 x ^ { 3 } + x y ^ { 2 } + x z ^ { 2 } . Its gradient vector field is

A) f(x,y)=(6x2+y2+z2)i+2xyj+2xzk\nabla f ( x , y ) = - \left( 6 x ^ { 2 } + y ^ { 2 } + z ^ { 2 } \right) \mathbf { i } + 2 x y \mathbf { j } + 2 x z \mathbf { k }
B) f(x,y)=(6x2+y2+z2)i2xyj2xzk\nabla f ( x , y ) = \left( 6 x ^ { 2 } + y ^ { 2 } + z ^ { 2 } \right) \mathbf { i } - 2 x y \mathbf { j } - 2 x z \mathbf { k }
C) f(x,y)=(6x2+y2+z2)i+2xyj2xzk\nabla f ( x , y ) = \left( 6 x ^ { 2 } + y ^ { 2 } + z ^ { 2 } \right) \mathbf { i } + 2 x y \mathbf { j } - 2 x z \mathbf { k }
D) f(x,y)=(6x2+y2+z2)i+2xyj+2xzk\nabla f ( x , y ) = \left( 6 x ^ { 2 } + y ^ { 2 } + z ^ { 2 } \right) \mathbf { i } + 2 x y \mathbf { j } + 2 x z \mathbf { k }
E) f(x,y)=(6x2+y2+z2)i2xyj+2xzk\nabla f ( x , y ) = \left( 6 x ^ { 2 } + y ^ { 2 } + z ^ { 2 } \right) \mathbf { i } - 2 x y \mathbf { j } + 2 x z \mathbf { k }
Question
The line integral \int C (x+y)ds( x + y ) d s , where C is the curve x=t,y=1t,0t1,x = t , y = 1 - t , 0 \leq t \leq 1 , is

A) 222 \sqrt { 2 }
B) 2\sqrt { 2 }
C) 323 \sqrt { 2 }
D) 3\sqrt { 3 }
E) 12\frac { 1 } { \sqrt { 2 } }
Question
The line integral \int C (yx2)ds\left( y - x ^ { 2 } \right) d s , where C is the curve x=t,y=2t,0t1x = t , y = 2 t , 0 \leq t \leq 1 \text {, } is

A) 252 \sqrt { 5 }
B) 5\sqrt { 5 }
C) 352\frac { 3 \sqrt { 5 } } { 2 }
D) 354\frac { 3 \sqrt { 5 } } { 4 }
E) 253\frac { 2 \sqrt { 5 } } { 3 }
Question
The line integral \int C xyds,x y d s , where C is the curve x=4t,y=t2,0t2x = 4 t , y = t ^ { 2 } , 0 \leq t \leq 2 is

A) 512(1+2)15- \frac { 512 ( 1 + \sqrt { 2 } ) } { 15 }
B) 512(1+2)5\frac { 512 ( 1 + \sqrt { 2 } ) } { 5 }
C) 512(12)5\frac { 512 ( 1 - \sqrt { 2 } ) } { 5 }
D) 512(1+2)15\frac { 512 ( 1 + \sqrt { 2 } ) } { 15 }
E) 512(12)15\frac { 512 ( 1 - \sqrt { 2 } ) } { 15 }
Question
The line integral \int C ydsy d s where C is the curve x=3t2,y=t,0t1x = 3 t ^ { 2 } , y = t , 0 \leq t \leq 1 is

A) 37371108\frac { 37 \sqrt { 37 } - 1 } { 108 }
B) 3737+1108\frac { 37 \sqrt { 37 } + 1 } { 108 }
C) 37371105\frac { 37 \sqrt { 37 } - 1 } { 105 }
D) 3737+1105\frac { 37 \sqrt { 37 } + 1 } { 105 }
E) 37371108- \frac { 37 \sqrt { 37 } - 1 } { 108 }
Question
The line integral \int C (xy+1)ds( x y + 1 ) d s where C is the curve x=sint,y=cost,0tπ,x = \sin t , y = \cos t , 0 \leq t \leq \pi , is

A) 3π3 \pi
B) 2π2 \pi
C) π\pi
D) π2\frac { \pi } { 2 }
E) π3\frac { \pi } { 3 }
Question
The line integral \int C xy2dsx y ^ { 2 } d s where C is the curve x=cost,y=sint,0tπ2x = \cos t , y = \sin t , 0 \leq t \leq \frac { \pi } { 2 } , is

A) 73\frac { 7 } { 3 }
B) 53\frac { 5 } { 3 }
C) 43\frac { 4 } { 3 }
D) 23\frac { 2 } { 3 }
E) 13\frac { 1 } { 3 }
Question
The line integral \int C 4xydx+(2x23xy)dy4 x y d x + \left( 2 x ^ { 2 } - 3 x y \right) d y , where C is the line y=xy = x from (0,0) to (2,2), is

A)12
B)8
C)6
D)4
E)2
Question
The line integral \int C (x2+xy)dx+(y2xy)dy\left( x ^ { 2 } + x y \right) d x + \left( y ^ { 2 } - x y \right) d y , where C is the curve 2y=x22 y = x ^ { 2 } from (0,0) to (2,2), is

A) 7615\frac { 76 } { 15 }
B) 6815\frac { 68 } { 15 }
C) 6415\frac { 64 } { 15 }
D) 6215\frac { 62 } { 15 }
E) 5915\frac { 59 } { 15 }
Question
The line integral \int C (x2+xy)dx+(y2xy)dy\left( x ^ { 2 } + x y \right) d x + \left( y ^ { 2 } - x y \right) d y , where C is the line y=xy = x from (0,0) to (2,2), is

A) 323\frac { 32 } { 3 }
B) 283\frac { 28 } { 3 }
C) 163\frac { 16 } { 3 }
D) 143\frac { 14 } { 3 }
E) 133\frac { 13 } { 3 }
Question
The line integral \int C (xyz)dx+exdy+ydz( x y - z ) d x + e ^ { x } d y + y d z , where C is the line segment from (1,0,0) to (3,4,8), is

A) 6(e3+e)+523\frac { 6 \left( e ^ { 3 } + e \right) + 52 } { 3 }
B) 6(e3e)+523\frac { 6 \left( e ^ { 3 } - e \right) + 52 } { 3 }
C) 6(e3+e)523\frac { 6 \left( e ^ { 3 } + e \right) - 52 } { 3 }
D) 6(e3+e)+523- \frac { 6 \left( e ^ { 3 } + e \right) + 52 } { 3 }
E) 6(e3+e)+525\frac { 6 \left( e ^ { 3 } + e \right) + 52 } { 5 }
Question
The line integral \int C (x+y)dx+(y+z)dy+(x+z)dz( x + y ) d x + ( y + z ) d y + ( x + z ) d z , where C is the line segment from (0,0,0) to (1,2,4), is

A) 392\frac { 39 } { 2 }
B) 372\frac { 37 } { 2 }
C) 352\frac { 35 } { 2 }
D) 332\frac { 33 } { 2 }
E) 312\frac { 31 } { 2 }
Question
The line integral \int C 3xdx+2xydy+dz3 x d x + 2 x y d y + d z where C is the curve is

A) 4π4 \pi
B) 3π3 \pi
C) 2π2 \pi
D) π\pi
E) π2\frac { \pi } { 2 }
Question
Let F(x,y)=yi+xj,r(t)=3t2itj,0t1\mathbf { F } ( x , y ) = y \mathbf { i } + x \mathbf { j } , \mathbf { r } ( t ) = 3 t ^ { 2 } \mathbf { i } - t \mathbf { j } , 0 \leq t \leq 1 Then \int C Fdr\mathbf { F } \bullet d \mathbf { r } is

A) 3- 3
B)2
C) 52\frac { 5 } { 2 }
D)3
E) 72\frac { 7 } { 2 }
Question
Let F(x,y)=2xyi+3xj,r(t)=3t2itj,0t1\mathbf { F } ( x , y ) = 2 x y \mathbf { i } + 3 x \mathbf { j } , \mathbf { r } ( t ) = 3 t ^ { 2 } \mathbf { i } - t \mathbf { j } , 0 \leq t \leq 1 . Then \int C Fdr\mathbf { F } \bullet d \mathbf { r } is

A) 265- \frac { 26 } { 5 }
B) 235- \frac { 23 } { 5 }
C) 215- \frac { 21 } { 5 }
D) 195- \frac { 19 } { 5 }
E) 515- \frac { 51 } { 5 }
Question
Let F(x,y)=2xyi+(x2y)j,r(t)=sinti2costj,0tπ\mathbf { F } ( x , y ) = 2 x y \mathbf { i } + ( x - 2 y ) \mathbf { j } , \mathbf { r } ( t ) = \sin t \mathbf { i } - 2 \cos t \mathbf { j } , 0 \leq t \leq \pi . Then \int C Fdr\mathbf { F } \bullet d \mathbf { r } is

A) 3π87\frac { 3 \pi - 8 } { 7 }
B) 3π+85\frac { 3 \pi + 8 } { 5 }
C) 3π85\frac { 3 \pi - 8 } { 5 }
D) 3π+83\frac { 3 \pi + 8 } { 3 }
E) 3π83\frac { 3 \pi - 8 } { 3 }
Question
Let F(x,y)=ysinxicosxj\mathbf { F } ( x , y ) = y \sin x \mathbf { i } - \cos x \mathbf { j } where C is the line segment from (π2,0)\left( \frac { \pi } { 2 } , 0 \right) to (π,1)( \pi , 1 ) . Then \int C Fdr\mathbf { F } \bullet d \mathbf { r } is

A)1
B)2
C) 52\frac { 5 } { 2 }
D)3
E) 72\frac { 7 } { 2 }
Question
Let F(x,y)=9x2yi+(5x2y)j\mathbf { F } ( x , y ) = 9 x ^ { 2 } y \mathbf { i } + \left( 5 x ^ { 2 } - y \right) \mathbf { j } , where C is the y=x3+1y = x ^ { 3 } + 1 from (1,2) to (3,28). Then \int C Fdr\mathbf { F } \bullet d \mathbf { r } is

A)188
B)376
C)758
D)1506
E)3012
Question
Let F(x,y,z)=zi+xj+yk,r(t)=costi+sintj+tk,0t2π\mathbf { F } ( x , y , z ) = z \mathbf { i } + x \mathbf { j } + y \mathbf { k } , \mathbf { r } ( t ) = \cos t \mathbf { i } + \sin t \mathbf { j } + t \mathbf { k } , 0 \leq t \leq 2 \pi . Then \int C Fdr\mathbf { F } \bullet d \mathbf { r } is

A) 4π4 \pi
B) 3π3 \pi
C) 2π2 \pi
D) π\pi
E) π2\frac { \pi } { 2 }
Question
Let F(x,y,z)=exi+xezj+xsinπy2k,r(t)=costi+sintj+tk,0t2π\mathbf { F } ( x , y , z ) = e ^ { x } \mathbf { i } + x e ^ { z } \mathbf { j } + x \sin \pi y ^ { 2 } \mathbf { k } , \mathbf { r } ( t ) = \cos t \mathbf { i } + \sin t \mathbf { j } + t \mathbf { k } , 0 \leq t \leq 2 \pi . Then \int C Fdr\mathbf { F } \bullet d \mathbf { r } is

A) 3(e2π+1)5\frac { 3 \left( e ^ { 2 \pi } + 1 \right) } { 5 }
B) 3(e2π1)5\frac { 3 \left( e ^ { 2 \pi } - 1 \right) } { 5 }
C) 3(e2π1)5- \frac { 3 \left( e ^ { 2 \pi } - 1 \right) } { 5 }
D) 3(e2π+1)5- \frac { 3 \left( e ^ { 2 \pi } + 1 \right) } { 5 }
E) 2(e2π1)5\frac { 2 \left( e ^ { 2 \pi } - 1 \right) } { 5 }
Question
Let F(x,y,z)=2xyi+(6y2xz)j+10zk,r(t)=ti+t2j+t3k,0t1\mathbf { F } ( x , y , z ) = 2 x y \mathbf { i } + \left( 6 y ^ { 2 } - x z \right) \mathbf { j } + 10 z \mathbf { k } , \mathbf { r } ( t ) = t \mathbf { i } + t ^ { 2 } \mathbf { j } + t ^ { 3 } \mathbf { k } , 0 \leq t \leq 1 . Then \int C Fdr\mathbf { F } \bullet d \mathbf { r } is

A) 356\frac { 35 } { 6 }
B) 376\frac { 37 } { 6 }
C) 416\frac { 41 } { 6 }
D) 436\frac { 43 } { 6 }
E) 476\frac { 47 } { 6 }
Question
The work done by the force F(x,y)=3yi+4xj\mathbf { F } ( x , y ) = 3 y \mathbf { i } + 4 x \mathbf { j } moving along r(t)=2t2itj\mathbf { r } ( t ) = 2 t ^ { 2 } \mathbf { i } - t \mathbf { j } with 0t10 \leq t \leq 1 is

A) 207- \frac { 20 } { 7 }
B) 207\frac { 20 } { 7 }
C) 203- \frac { 20 } { 3 }
D) 203\frac { 20 } { 3 }
E) 5
4
Question
The work done by the force F(x,y)=(x+y)i(yx)j\mathbf { F } ( x , y ) = - ( x + y ) \mathbf { i } - ( y - x ) \mathbf { j } moving along r(t)=t3i+t2j\mathbf { r } ( t ) = t ^ { 3 } \mathbf { i } + t ^ { 2 } \mathbf { j } from (8, 4) to (1, 1) is

A) 1765\frac { 176 } { 5 }
B) 1865\frac { 186 } { 5 }
C) 1965\frac { 196 } { 5 }
D) 2215\frac { 221 } { 5 }
E) 2265\frac { 226 } { 5 }
Question
The work done by the force F(x,y)=(2x+3y)i+xyj\mathbf { F } ( x , y ) = ( 2 x + 3 y ) \mathbf { i } + x y \mathbf { j } moving along r(t)=4sinticostj\mathbf { r } ( t ) = 4 \sin t \mathbf { i } - \cos t \mathbf { j } with 0tπ20 \leq t \leq \frac { \pi } { 2 } is

A) 44+9π3\frac { 44 + 9 \pi } { 3 }
B) 449π3\frac { 44 - 9 \pi } { 3 }
C) 446π3\frac { 44 - 6 \pi } { 3 }
D) 44+6π3\frac { 44 + 6 \pi } { 3 }
E) 443π3\frac { 44 - 3 \pi } { 3 }
Question
The work done by the force F(x,y)=(2x+y)i+(x2y)j\mathbf { F } ( x , y ) = ( 2 x + y ) \mathbf { i } + ( x - 2 y ) \mathbf { j } moving along r(t)=3costi+3sintj\mathbf { r } ( t ) = 3 \cos t \mathbf { i } + 3 \sin t \mathbf { j } with 0t2π0 \leq t \leq 2 \pi is

A) 52\frac { 5 } { 2 }
B) 83\frac { 8 } { 3 }
C) 43\frac { 4 } { 3 }
D)0
E) 45\frac { 4 } { 5 }
Question
The work done by the force F(x,y)=2xyi+(x2+y2)j\mathbf { F } ( x , y ) = 2 x y \mathbf { i } + \left( x ^ { 2 } + y ^ { 2 } \right) \mathbf { j } moving along y = x from (0, 0) to (1, 1) is

A) 43\frac { 4 } { 3 }
B) 83\frac { 8 } { 3 }
C) 52\frac { 5 } { 2 }
D)0
E) 22
Question
The work done by the force F(x,y)=2xyi+(x2+y2)j\mathbf { F } ( x , y ) = 2 x y \mathbf { i } + \left( x ^ { 2 } + y ^ { 2 } \right) \mathbf { j } moving along y2=xy ^ { 2 } = x from (0, 0) to (1, 1) is

A) 52\frac { 5 } { 2 }
B) 83\frac { 8 } { 3 }
C) 43\frac { 4 } { 3 }
D)0
E) 45\frac { 4 } { 5 }
Question
The work done by the force F(x,y)=(yx)i+x2yj\mathbf { F } ( x , y ) = ( y - x ) \mathbf { i } + x ^ { 2 } y \mathbf { j } moving along y=3x2y = 3 x - 2 from (1, 1) to (2, 4) is

A) 854\frac { 85 } { 4 }
B) 834\frac { 83 } { 4 }
C) 814\frac { 81 } { 4 }
D) 774\frac { 77 } { 4 }
E) 715\frac { 71 } { 5 }
Question
The work done by the force F(x,y)=(yx)i+x2yj\mathbf { F } ( x , y ) = ( y - x ) \mathbf { i } + x ^ { 2 } y \mathbf { j } moving along y=x2y = x ^ { 2 } from (1, 1) to (2, 4) is

A) 1316\frac { 131 } { 6 }
B) 1216\frac { 121 } { 6 }
C) 1116\frac { 111 } { 6 }
D) 1016\frac { 101 } { 6 }
E) 116\frac { 11 } { 6 }
Question
The work done by the force F(x,y)=(yx)i+x2yj\mathbf { F } ( x , y ) = ( y - x ) \mathbf { i } + x ^ { 2 } y \mathbf { j } moving along the line segment from (1, 1) to (2, 2) and then the line segment from (2, 2) to (2, 4) is

A) 1414\frac { 141 } { 4 }
B) 1314\frac { 131 } { 4 }
C) 1214\frac { 121 } { 4 }
D) 1114\frac { 111 } { 4 }
E) 114\frac { 11 } { 4 }
Question
The work done by the force F(x,y)=x2yi+2yj\mathbf { F } ( x , y ) = - x ^ { 2 } y \mathbf { i } + 2 y \mathbf { j } moving along the line segment from (1, 0) to (0, 1) is

A) 2512\frac { 25 } { 12 }
B) 2312\frac { 23 } { 12 }
C) 1912\frac { 19 } { 12 }
D) 1712\frac { 17 } { 12 }
E) 1312\frac { 13 } { 12 }
Question
The work done by the force F(x,y)=x2yi+2yj\mathbf { F } ( x , y ) = - x ^ { 2 } y \mathbf { i } + 2 y \mathbf { j } moving along r(t)=costi+sintj\mathbf { r } ( t ) = \cos t \mathbf { i } + \sin t \mathbf { j } with 0tπ20 \leq t \leq \frac { \pi } { 2 } is

A) 16π8\frac { 16 - \pi } { 8 }
B) π+168\frac { \pi + 16 } { 8 }
C) π+1616\frac { \pi + 16 } { 16 }
D) 16π16\frac { 16 - \pi } { 16 }
E) π+1632\frac { \pi + 16 } { 32 }
Question
The work done by the force F(x,y)=x2yi+2yj\mathbf { F } ( x , y ) = - x ^ { 2 } y \mathbf { i } + 2 y \mathbf { j } moving along the line segment from (1, 0) to (1, 1) and then the line segment from (1, 1) to (0, 1) is

A) 52\frac { 5 } { 2 }
B) 83\frac { 8 } { 3 }
C) 43\frac { 4 } { 3 }
D)0
E) 45\frac { 4 } { 5 }
Question
The work done by the force F(x,y)=x2yi+2yj\mathbf { F } ( x , y ) = - x ^ { 2 } y \mathbf { i } + 2 y \mathbf { j } moving along the line segment from (2, 0) to (0, 2) is

A) 313\frac { 31 } { 3 }
B) 283\frac { 28 } { 3 }
C) 263\frac { 26 } { 3 }
D) 223\frac { 22 } { 3 }
E) 163\frac { 16 } { 3 }
Question
The work done by the force F(x,y)=x2yi+2yj\mathbf { F } ( x , y ) = - x ^ { 2 } y \mathbf { i } + 2 y \mathbf { j } moving along r(t)=2costi+2sintj\mathbf { r } ( t ) = 2 \cos t \mathbf { i } + 2 \sin t \mathbf { j } with 0tπ20 \leq t \leq \frac { \pi } { 2 } is

A) π+43\frac { \pi + 4 } { 3 }
B) π+42\frac { \pi + 4 } { 2 }
C) π+4\pi + 4
D) 2(π+4)2 ( \pi + 4 )
E) 3(π+4)3 ( \pi + 4 )
Question
The work done by the force F(x,y)=x2yi+2yj\mathbf { F } ( x , y ) = - x ^ { 2 } y \mathbf { i } + 2 y \mathbf { j } moving along the line segment from (2, 0) to (2, 2) and then the line segment from (2, 2) to (0, 2) is

A) 343\frac { 34 } { 3 }
B) 323\frac { 32 } { 3 }
C) 283\frac { 28 } { 3 }
D) 263\frac { 26 } { 3 }
E) 253\frac { 25 } { 3 }
Question
The work done by the force F(x,y)=x2yi+2yj\mathbf { F } ( x , y ) = - x ^ { 2 } y \mathbf { i } + 2 y \mathbf { j } moving along the line segment from (3, 0) to (0, 3) is

A) 714\frac { 71 } { 4 }
B) 694\frac { 69 } { 4 }
C) 674\frac { 67 } { 4 }
D) 654\frac { 65 } { 4 }
E) 634\frac { 63 } { 4 }
Question
The work done by the force F(x,y)=x2yi+2yj\mathbf { F } ( x , y ) = - x ^ { 2 } y \mathbf { i } + 2 y \mathbf { j } moving along r(t)=3costi+3sintj\mathbf { r } ( t ) = 3 \cos t \mathbf { i } + 3 \sin t \mathbf { j } with 0tπ20 \leq t \leq \frac { \pi } { 2 } is

A) 9(9π+16)8\frac { 9 ( 9 \pi + 16 ) } { 8 }
B) 9(9π16)8\frac { 9 ( 9 \pi - 16 ) } { 8 }
C) 9(9π+16)16\frac { 9 ( 9 \pi + 16 ) } { 16 }
D) 9(9π16)16\frac { 9 ( 9 \pi - 16 ) } { 16 }
E) 9(9π+16)4\frac { 9 ( 9 \pi + 16 ) } { 4 }
Question
The work done by the force F(x,y)=x2yi+2yj\mathbf { F } ( x , y ) = - x ^ { 2 } y \mathbf { i } + 2 y \mathbf { j } moving along the line segment from (3, 0) to (3, 3) and then the line segment from (3, 3) to (0, 3) is

A)48
B)42
C)36
D)33
E)30
Question
The work done by the force F(x,y)=x2yi+2yj\mathbf { F } ( x , y ) = - x ^ { 2 } y \mathbf { i } + 2 y \mathbf { j } moving along the line segment from (4, 0) to (0, 4) is

A) 1273\frac { 127 } { 3 }
B) 1253\frac { 125 } { 3 }
C) 1243\frac { 124 } { 3 }
D) 1213\frac { 121 } { 3 }
E) 1123\frac { 112 } { 3 }
Question
The work done by the force F(x,y)=x2yi+2yj\mathbf { F } ( x , y ) = - x ^ { 2 } y \mathbf { i } + 2 y \mathbf { j } moving along r(t)=4costi+4sintj\mathbf { r } ( t ) = 4 \cos t \mathbf { i } + 4 \sin t \mathbf { j } with 0tπ20 \leq t \leq \frac { \pi } { 2 } is

A) 4(π+1)4 ( \pi + 1 )
B) 8(π+1)8 ( \pi + 1 )
C) 16(π+1)16 ( \pi + 1 )
D) 22(π+1)22 ( \pi + 1 )
E) 24(π+1)24 ( \pi + 1 )
Question
If F(x,y)=ey2cosxi+2yey2sinxj\mathbf { F } ( x , y ) = e ^ { y ^ { 2 } } \cos x \mathbf { i } + 2 y e ^ { y ^ { 2 } } \sin x \mathbf { j } is a conservative field, then its potential function f(x,y)f ( x , y ) is

A) 3ey2sinx+C- 3 e ^ { y ^ { 2 } } \sin x + C
B) 2ey2sinx+C2 e ^ { y ^ { 2 } } \sin x + C
C) 2ey2sinx+C- 2 e ^ { y ^ { 2 } } \sin x + C
D) ey2sinx+C- e ^ { y ^ { 2 } } \sin x + C
E) ey2sinx+Ce ^ { y ^ { 2 } } \sin x + C
Question
If F(x,y)=(ey2x)i(xey+siny)j\mathbf { F } ( x , y ) = \left( e ^ { - y } - 2 x \right) \mathbf { i } - \left( x e ^ { - y } + \sin y \right) \mathbf { j } is a conservative field, then its potential function f(x,y)f ( x , y ) is

A) xey+x2+cosy+C- x e ^ { - y } + x ^ { 2 } + \cos y + C
B) xeyx2+cosy+C- x e ^ { - y } - x ^ { 2 } + \cos y + C
C) xeyx2+cosy+Cx e ^ { - y } - x ^ { 2 } + \cos y + C
D) xey+x2+cosy+Cx e ^ { - y } + x ^ { 2 } + \cos y + C
E) xeyx2cosy+Cx e ^ { - y } - x ^ { 2 } - \cos y + C
Question
If F(x,y)=(6x5y)i(5x6y2)j\mathbf { F } ( x , y ) = ( 6 x - 5 y ) \mathbf { i } - \left( 5 x - 6 y ^ { 2 } \right) \mathbf { j } is a conservative field, then its potential function f(x,y)f ( x , y ) is

A) 3x25xy+2y3+C3 x ^ { 2 } - 5 x y + 2 y ^ { 3 } + C
B) 3x2+5xy+2y3+C3 x ^ { 2 } + 5 x y + 2 y ^ { 3 } + C
C) 3x25xy2y3+C3 x ^ { 2 } - 5 x y - 2 y ^ { 3 } + C
D) 3x2+5xy2y3+C3 x ^ { 2 } + 5 x y - 2 y ^ { 3 } + C
E) 3x25xy+2y3+C- 3 x ^ { 2 } - 5 x y + 2 y ^ { 3 } + C
Question
If F(x,y)=(4y2+6xy2)i+(3x2+8xy+1)j\mathbf { F } ( x , y ) = \left( 4 y ^ { 2 } + 6 x y - 2 \right) \mathbf { i } + \left( 3 x ^ { 2 } + 8 x y + 1 \right) \mathbf { j } is a conservative field, then its potential function f(x,y)f ( x , y ) is

A) 4xy23x2y2xy+C4 x y ^ { 2 } - 3 x ^ { 2 } y - 2 x - y + C
B) 4xy23x2y+2x+y+C4 x y ^ { 2 } - 3 x ^ { 2 } y + 2 x + y + C
C) 4xy2+3x2y+2x+y+C4 x y ^ { 2 } + 3 x ^ { 2 } y + 2 x + y + C
D) 4xy2+3x2y2x+y+C4 x y ^ { 2 } + 3 x ^ { 2 } y - 2 x + y + C
E) 4xy23x2y2x+y+C4 x y ^ { 2 } - 3 x ^ { 2 } y - 2 x + y + C
Question
If F(x,y)=(6x2y214xy+3)i+(4x3y7x28)j\mathbf { F } ( x , y ) = \left( 6 x ^ { 2 } y ^ { 2 } - 14 x y + 3 \right) \mathbf { i } + \left( 4 x ^ { 3 } y - 7 x ^ { 2 } - 8 \right) \mathbf { j } is a conservative field, then its potential function f(x,y)f ( x , y ) is

A) 2x3y2+7x2y+3x8y+C2 x ^ { 3 } y ^ { 2 } + 7 x ^ { 2 } y + 3 x - 8 y + C
B) 2x3y27x2y+3x8y+C2 x ^ { 3 } y ^ { 2 } - 7 x ^ { 2 } y + 3 x - 8 y + C
C) 2x3y27x2y3x8y+C2 x ^ { 3 } y ^ { 2 } - 7 x ^ { 2 } y - 3 x - 8 y + C
D) 2x3y27x2y+3x+8y+C2 x ^ { 3 } y ^ { 2 } - 7 x ^ { 2 } y + 3 x + 8 y + C
E) 2x3y2+7x2y3x8y+C2 x ^ { 3 } y ^ { 2 } + 7 x ^ { 2 } y - 3 x - 8 y + C
Question
If F(x,y)=(2x+lny)i+(y2+xy)j\mathbf { F } ( x , y ) = ( 2 x + \ln y ) \mathbf { i } + \left( y ^ { 2 } + \frac { x } { y } \right) \mathbf { j } is a conservative field, then its potential function f(x,y)f ( x , y ) is

A) x2+xlny+y33+C- x ^ { 2 } + x \ln y + \frac { y ^ { 3 } } { 3 } + C
B) x2xlnyy33+Cx ^ { 2 } - x \ln y - \frac { y ^ { 3 } } { 3 } + C
C) x2+xlny+y33+Cx ^ { 2 } + x \ln y + \frac { y ^ { 3 } } { 3 } + C
D) x2xlny+y33+Cx ^ { 2 } - x \ln y + \frac { y ^ { 3 } } { 3 } + C
E) x2+xlnyy33+Cx ^ { 2 } + x \ln y - \frac { y ^ { 3 } } { 3 } + C
Question
If F(x,y)=(1x2+1y2)i+(12xy3)j\mathbf { F } ( x , y ) = \left( \frac { 1 } { x ^ { 2 } } + \frac { 1 } { y ^ { 2 } } \right) \mathbf { i } + \left( \frac { 1 - 2 x } { y ^ { 3 } } \right) \mathbf { j } is a conservative field, then its potential function f(x,y)f ( x , y ) is

A) 2x22y2x2xy2+C- \frac { 2 x ^ { 2 } - 2 y ^ { 2 } - x } { 2 x y ^ { 2 } } + C
B) 2x2+2y2+x2xy2+C\frac { 2 x ^ { 2 } + 2 y ^ { 2 } + x } { 2 x y ^ { 2 } } + C
C) 2x22y2+x2xy2+C\frac { 2 x ^ { 2 } - 2 y ^ { 2 } + x } { 2 x y ^ { 2 } } + C
D) 2x2+2y2x2xy2+C\frac { 2 x ^ { 2 } + 2 y ^ { 2 } - x } { 2 x y ^ { 2 } } + C
E) 2x22y2x2xy2+C\frac { 2 x ^ { 2 } - 2 y ^ { 2 } - x } { 2 x y ^ { 2 } } + C
Question
If F(x,y)=(2x1y)i+(xx2y2)j\mathbf { F } ( x , y ) = \left( \frac { 2 x - 1 } { y } \right) \mathbf { i } + \left( \frac { x - x ^ { 2 } } { y ^ { 2 } } \right) \mathbf { j } is a conservative field, then its potential function f(x,y)f ( x , y ) is

A) x2+xy+C\frac { x ^ { 2 } + x } { y } + C
B) x2xy+C\frac { x ^ { 2 } - x } { y } + C
C) x2xy+C- \frac { x ^ { 2 } - x } { y } + C
D) x2x2y+C\frac { x ^ { 2 } - x } { 2 y } + C
E) x2+x2y+C\frac { x ^ { 2 } + x } { 2 y } + C
Question
If F(x,y)=2xsec2yi+2x2sec2ytan2yj\mathbf { F } ( x , y ) = 2 x \sec 2 y \mathbf { i } + 2 x ^ { 2 } \sec 2 y \tan 2 y \mathbf { j } is a conservative field, then its potential function f(x,y)f ( x , y ) is

A) 3x2sec2y+C3 x ^ { 2 } \sec 2 y + C
B) 2x2sec2y+C- 2 x ^ { 2 } \sec 2 y + C
C) 2x2sec2y+C2 x ^ { 2 } \sec 2 y + C
D) x2sec2y+Cx ^ { 2 } \sec 2 y + C
E) x2sec2y+C- x ^ { 2 } \sec 2 y + C
Question
If F(x,y)=(2xyysinx)i+(x2+cosx)j\mathbf { F } ( x , y ) = ( 2 x y - y \sin x ) \mathbf { i } + \left( x ^ { 2 } + \cos x \right) \mathbf { j } is a conservative field, then its potential function f(x,y)f ( x , y ) is

A) 2x2y+ycosx+C2 x ^ { 2 } y + y \cos x + C
B) x2yycosx+C- x ^ { 2 } y - y \cos x + C
C) x2y+ycosx+C- x ^ { 2 } y + y \cos x + C
D) x2yycosx+Cx ^ { 2 } y - y \cos x + C
E) x2y+ycosx+Cx ^ { 2 } y + y \cos x + C
Question
If I = \int C 3(2x2+6xy)dx+3(3x2+8)dy3 \left( 2 x ^ { 2 } + 6 x y \right) d x + 3 \left( 3 x ^ { 2 } + 8 \right) d y is independent of the path where C is a curve from (1, 0) to (0, 1) then I is

A)-12
B)12
C)22
D)-22
E)32
Question
If I = \int C (ey2xy)dx+(xeyx2)dy\left( e ^ { y } - 2 x y \right) d x + \left( x e ^ { y } - x ^ { 2 } \right) d y is independent of the path where C is a curve from (2, 1) to (1, 0) then I is

A) 52e5 - 2 e
B) 5+2e5 + 2 e
C) 52e- 5 - 2 e
D) 5+2e- 5 + 2 e
E) 5e5 - e
Question
If I = \int C (sin2xtany)dx+xsec2ydy( \sin 2 x - \tan y ) d x + x \sec ^ { 2 } y d y is independent of the path where C is a curve from (0,π4)\left( 0 , \frac { \pi } { 4 } \right) to (π4,π4)\left( \frac { \pi } { 4 } , - \frac { \pi } { 4 } \right) then I is

A) π+22\frac { \pi + 2 } { 2 }
B) π22\frac { \pi - 2 } { 2 }
C) π24- \frac { \pi - 2 } { 4 }
D) π24\frac { \pi - 2 } { 4 }
E) π+24\frac { \pi + 2 } { 4 }
Question
If I = \int C (x+y)dx+(2y+x)dy( x + y ) d x + ( 2 y + x ) d y is independent of the path where C is a curve from (-1, 3) to (2, 0) then I is

A) 92\frac { 9 } { 2 }
B) 92- \frac { 9 } { 2 }
C) 72\frac { 7 } { 2 }
D) 72- \frac { 7 } { 2 }
E) 52- \frac { 5 } { 2 }
Question
If I = \int C (x+y)dx+(2y+x)dy( x + y ) d x + ( 2 y + x ) d y is independent of the path where C is a curve from (0, 2) to (1, 3), then I is

A) 5(e1)5 ( e - 1 )
B) 3(e+1)- 3 ( e + 1 )
C) 3(e1)- 3 ( e - 1 )
D) 3(e+1)3 ( e + 1 )
E) 3(e1)3 ( e - 1 )
Question
If I = \int C (yx1)dx+(ln(2x2)+1y)dy\left( \frac { y } { x - 1 } \right) d x + \left( \ln ( 2 x - 2 ) + \frac { 1 } { y } \right) d y is independent of the path where C is a curve from (3, 1) to (2, 2), then I is

A)0
B) ln2\ln 2
C) ln3\ln 3
D) ln5\ln 5
E) ln6\ln 6
Question
If I = \int C (2ye2xx2)dx+e2xdy\left( 2 y e ^ { 2 x } - x ^ { 2 } \right) d x + e ^ { 2 x } d y is independent of the path where C is a curve from (0, 1) to (1, 2), then I is

A) 2(3e2+2)5\frac { 2 \left( 3 e ^ { 2 } + 2 \right) } { 5 }
B) 2(3e2+2)3- \frac { 2 \left( 3 e ^ { 2 } + 2 \right) } { 3 }
C) 2(3e2+2)3\frac { 2 \left( 3 e ^ { 2 } + 2 \right) } { 3 }
D) 2(3e22)3\frac { 2 \left( 3 e ^ { 2 } - 2 \right) } { 3 }
E) 2(3e22)3- \frac { 2 \left( 3 e ^ { 2 } - 2 \right) } { 3 }
Question
If I = \int C (ey2x)dx(xey+siny)dy\left( e ^ { - y } - 2 x \right) d x - \left( x e ^ { - y } + \sin y \right) d y is independent of the path where C is a curve from (0, ?) to (?, 0), then I is

A) π2π2\pi ^ { 2 } - \pi - 2
B) π2π+2\pi ^ { 2 } - \pi + 2
C) π2+π2\pi ^ { 2 } + \pi - 2
D) π2+π+2\pi ^ { 2 } + \pi + 2
E) π2π+2- \pi ^ { 2 } - \pi + 2
Question
If I = \int C 1ydxxy2dy\frac { 1 } { y } d x - \frac { x } { y ^ { 2 } } d y is independent of the path where C is a curve from (5, -1) to (9, -3) then I is

A) π\pi
B)3
C)2
D)-2
E)-3
Question
If I = \int C (lnx+2)dx+(ey+2x)dy( \ln x + 2 ) d x + \left( e ^ { y } + 2 x \right) d y is independent of the path where C is a curve from (3, 1) to (1, 3), then I is

A) e3+e+3ln3+6e ^ { 3 } + e + 3 \ln 3 + 6
B) e3e3ln36e ^ { 3 } - e - 3 \ln 3 - 6
C) e3e+3ln3+6e ^ { 3 } - e + 3 \ln 3 + 6
D) e3e3ln3+6e ^ { 3 } - e - 3 \ln 3 + 6
E) e3+e3ln3+6e ^ { 3 } + e - 3 \ln 3 + 6
Unlock Deck
Sign up to unlock the cards in this deck!
Unlock Deck
Unlock Deck
1/180
auto play flashcards
Play
simple tutorial
Full screen (f)
exit full mode
Deck 16: Vector Calculus
1
The domain of the vector field F(x,y)=1xi+1yj\mathbf { F } ( x , y ) = \frac { 1 } { x } \mathbf { i } + \frac { 1 } { y } \mathbf { j } is

A) {(x,y):xy0}\{ ( x , y ) : x y \neq 0 \}
B) {(x,y):(x,y)(0,0)}\{ ( x , y ) : ( x , y ) \neq ( 0,0 ) \}
C) {(x,y):x0}\{ ( x , y ) : x \neq 0 \}
D) {(x,y):y0}\{ ( x , y ) : y \neq 0 \}
E) {(x,y):xy>0}\{ ( x , y ) : x y > 0 \}
{(x,y):xy0}\{ ( x , y ) : x y \neq 0 \}
2
The domain of the vector field F(x,y)=1xi+lnyj\mathbf { F } ( x , y ) = \sqrt { 1 - x } \mathbf { i } + \ln y \mathbf { j } is

A) {(x,y):xy0}\{ ( x , y ) : x y \neq 0 \}
B) {(x,y):x1,y0}\{ ( x , y ) : x \langle 1 , y \rangle 0 \}
C) {(x,y):x1,y>0}\{ ( x , y ) : x \leq 1 , y > 0 \}
D) {(x,y):x>1,y>0}\{ ( x , y ) : x > 1 , y > 0 \}
E) {(x,y):x<1,y0}\{ ( x , y ) : x < 1 , y \geq 0 \}
{(x,y):x1,y>0}\{ ( x , y ) : x \leq 1 , y > 0 \}
3
The domain of the vector field F(x,y)=xyi+5xyj\mathbf { F } ( x , y ) = \sqrt { x y } \mathbf { i } + \frac { 5 } { x y } \mathbf { j } is

A) {(x,y):xy0}\{ ( x , y ) : x y \neq 0 \}
B) {(x,y):xy>0}\{ ( x , y ) : x y > 0 \}
C) {(x,y):xy0}\{ ( x , y ) : x y \geq 0 \}
D) {(x,y):x>0,y>0}\{ ( x , y ) : x > 0 , y > 0 \}
E) {(x,y):x<0,y<0}\{ ( x , y ) : x < 0 , y < 0 \}
{(x,y):xy>0}\{ ( x , y ) : x y > 0 \}
4
The domain of the vector field F(x,y)=xyx2+y2i+5x2y2j\mathbf { F } ( x , y ) = \frac { x y } { x ^ { 2 } + y ^ { 2 } } \mathbf { i } + \frac { 5 } { x ^ { 2 } - y ^ { 2 } } \mathbf { j } is

A) {(x,y):(x,y)(0,0)}\{ ( x , y ) : ( x , y ) \neq ( 0,0 ) \}
B) {(x,y):x>y}\{ ( x , y ) : x > | y | \}
C) {(x,y):xy}\{ ( x , y ) : x \neq - y \}
D) {(x,y):xy}\{ ( x , y ) : x \neq y \}
E) {(x,y):xy}\{ ( x , y ) : x \neq | y | \}
Unlock Deck
Unlock for access to all 180 flashcards in this deck.
Unlock Deck
k this deck
5
The domain of the vector field F(x,y)=1x2i+lnyj\mathbf { F } ( x , y ) = \sqrt { 1 - x ^ { 2 } } \mathbf { i } + \ln y \mathbf { j } is

A) {(x,y):x1,y0}\{ ( x , y ) : x \langle 1 , y \rangle 0 \}
B) {(x,y):xy>0}\{ ( x , y ) : x y > 0 \}
C) {(x,y):1x1,y>0}\{ ( x , y ) : - 1 \leq x \leq 1 , y > 0 \}
D) {(x,y):x1,y0}\{ ( x , y ) : x \leq 1 , y \geq 0 \}
E) {(x,y):1x1,y0}\{ ( x , y ) : - 1 \leq x \langle 1 , y \rangle 0 \}
Unlock Deck
Unlock for access to all 180 flashcards in this deck.
Unlock Deck
k this deck
6
The domain of the vector field F(x,y)=sin(x+y)i5x22xy+y2j\mathbf { F } ( x , y ) = \sin ( x + y ) \mathbf { i } - \frac { 5 } { x ^ { 2 } - 2 x y + y ^ { 2 } } \mathbf { j } is

A) {(x,y):xy}\{ ( x , y ) : x \neq y \}
B) {(x,y):xy>0}\{ ( x , y ) : x y > 0 \}
C) {(x,y):xy}\{ ( x , y ) : x \neq | y | \}
D) {(x,y):x>1,y>0}\{ ( x , y ) : x > 1 , y > 0 \}
E) {(x,y):xy}\{ ( x , y ) : x \geq | y | \}
Unlock Deck
Unlock for access to all 180 flashcards in this deck.
Unlock Deck
k this deck
7
The domain of the vector field F(x,y,z)=yzeyzi+xzexzj+xyezyk\mathbf { F } ( x , y , z ) = \frac { y z } { e ^ { y z } } \mathbf { i } + \frac { x z } { e ^ { x z } } \mathbf { j } + \frac { x y } { e ^ { z y } } \mathbf { k } is

A) {(x,y,z):xy}\{ ( x , y , z ) : x \neq y \}
B) {(x,y,z):xy0}\{ ( x , y , z ) : x y \neq 0 \}
C) {(x,y,z):<x<,<y<,<z<}\{ ( x , y , z ) : - \infty < x < \infty , - \infty < y < \infty , - \infty < z < \infty \}
D) {(x,y,z):xz>0}\{ ( x , y , z ) : x z > 0 \}
E) {(x,y,z):yz0}\{ ( x , y , z ) : y z \neq 0 \}
Unlock Deck
Unlock for access to all 180 flashcards in this deck.
Unlock Deck
k this deck
8
The domain of the vector field F(x,y,z)=lnxi+lnyj+lnzk\mathbf { F } ( x , y , z ) = \ln x \mathbf { i } + \ln y \mathbf { j } + \ln z \mathbf { k } is

A) {(x,y,z):x>y>z>0}\{ ( x , y , z ) : x > y > z > 0 \}
B) {(x,y,z):xy>0}\{ ( x , y , z ) : x y > 0 \}
C) {(x,y,z):xz>0}\{ ( x , y , z ) : x z > 0 \}
D) {(x,y,z):yz>0}\{ ( x , y , z ) : y z > 0 \}
E) {(x,y,z):x>0,y>0,z>0}\{ ( x , y , z ) : x > 0 , y > 0 , z > 0 \}
Unlock Deck
Unlock for access to all 180 flashcards in this deck.
Unlock Deck
k this deck
9
Let f(x,y)=sinx+xy+cosy.f ( x , y ) = \sin x + x y + \cos y . Its gradient vector field is

A) f(x,y)=(cosx+y)i(x+siny)j\nabla f ( x , y ) = ( \cos x + y ) \mathbf { i } - ( x + \sin y ) \mathbf { j }
B) f(x,y)=(cosx+y)i+(x+siny)j\nabla f ( x , y ) = ( \cos x + y ) \mathbf { i } + ( x + \sin y ) \mathbf { j }
C) f(x,y)=(cosxy)i+(xsiny)j\nabla f ( x , y ) = ( \cos x - y ) \mathbf { i } + ( x - \sin y ) \mathbf { j }
D) f(x,y)=(cosx+y)i+(xsiny)j\nabla f ( x , y ) = ( \cos x + y ) \mathbf { i } + ( x - \sin y ) \mathbf { j }
E) f(x,y)=(cosx+y)i(xsiny)j\nabla f ( x , y ) = ( \cos x + y ) \mathbf { i } - ( x - \sin y ) \mathbf { j }
Unlock Deck
Unlock for access to all 180 flashcards in this deck.
Unlock Deck
k this deck
10
Let f(x,y)=exsiny+eycosxf ( x , y ) = e ^ { x } \sin y + e ^ { y } \cos x Its gradient vector field is

A) f(x,y)=(exsinyeysinx)i+(excosy+eycosx)j\nabla f ( x , y ) = \left( e ^ { x } \sin y - e ^ { y } \sin x \right) \mathbf { i } + \left( e ^ { x } \cos y + e ^ { y } \cos x \right) \mathbf { j }
B) f(x,y)=(exsinyeysinx)i(excosy+eycosx)j\nabla f ( x , y ) = \left( e ^ { x } \sin y - e ^ { y } \sin x \right) \mathbf { i } - \left( e ^ { x } \cos y + e ^ { y } \cos x \right) \mathbf { j }
C) f(x,y)=(exsinyeysinx)i+(excosyeycosx)j\nabla f ( x , y ) = \left( e ^ { x } \sin y - e ^ { y } \sin x \right) \mathbf { i } + \left( e ^ { x } \cos y - e ^ { y } \cos x \right) \mathbf { j }
D) f(x,y)=(exsiny+eysinx)i+(excosy+eycosx)j\nabla f ( x , y ) = \left( e ^ { x } \sin y + e ^ { y } \sin x \right) \mathbf { i } + \left( e ^ { x } \cos y + e ^ { y } \cos x \right) \mathbf { j }
E) f(x,y)=(exsiny+eysinx)i+(excosyeycosx)j\nabla f ( x , y ) = \left( e ^ { x } \sin y + e ^ { y } \sin x \right) \mathbf { i } + \left( e ^ { x } \cos y - e ^ { y } \cos x \right) \mathbf { j }
Unlock Deck
Unlock for access to all 180 flashcards in this deck.
Unlock Deck
k this deck
11
Let f(x,y)=xsiny+ycosxf ( x , y ) = x \sin y + y \cos x Its gradient vector field is

A) f(x,y)=(sinyycosx)i+(xcosycosx)j\nabla f ( x , y ) = ( \sin y - y \cos x ) \mathbf { i } + ( x \cos y - \cos x ) \mathbf { j }
B) f(x,y)=(sinyycosx)i+(xcosy+cosx)j\nabla f ( x , y ) = ( \sin y - y \cos x ) \mathbf { i } + ( x \cos y + \cos x ) \mathbf { j }
C) f(x,y)=(siny+ycosx)i+(xcosycosx)j\nabla f ( x , y ) = ( \sin y + y \cos x ) \mathbf { i } + ( x \cos y - \cos x ) \mathbf { j }
D) f(x,y)=(siny+ycosx)i(xcosy+cosx)j\nabla f ( x , y ) = ( \sin y + y \cos x ) \mathbf { i } - ( x \cos y + \cos x ) \mathbf { j }
E) f(x,y)=(siny±ysinx)i+(xcosy+cosx)j\nabla f ( x , y ) = ( \sin y \pm y \sin x ) \mathbf { i } + ( x \cos y + \cos x ) \mathbf { j }
Unlock Deck
Unlock for access to all 180 flashcards in this deck.
Unlock Deck
k this deck
12
Let f(x,y)=tan1(yx)f ( x , y ) = \tan ^ { - 1 } \left( \frac { y } { x } \right) . Its gradient vector field is

A) f(x,y)=yx2+y2i+xx2+y2j\nabla f ( x , y ) = \frac { y } { x ^ { 2 } + y ^ { 2 } } \mathbf { i } + \frac { x } { x ^ { 2 } + y ^ { 2 } } \mathbf { j }
B) f(x,y)=yx2+y2ixx2+y2j\nabla f ( x , y ) = - \frac { y } { x ^ { 2 } + y ^ { 2 } } \mathbf { i } - \frac { x } { x ^ { 2 } + y ^ { 2 } } \mathbf { j }
C) f(x,y)=yx2+y2i+xx2+y2j\nabla f ( x , y ) = - \frac { y } { x ^ { 2 } + y ^ { 2 } } \mathbf { i } + \frac { x } { x ^ { 2 } + y ^ { 2 } } \mathbf { j }
D) f(x,y)=yx2y2i+xx2y2j\nabla f ( x , y ) = - \frac { y } { x ^ { 2 } - y ^ { 2 } } \mathbf { i } + \frac { x } { x ^ { 2 } - y ^ { 2 } } \mathbf { j }
E) f(x,y)=yx2y2i+xx2y2j\nabla f ( x , y ) = \frac { y } { x ^ { 2 } - y ^ { 2 } } \mathbf { i } + \frac { x } { x ^ { 2 } - y ^ { 2 } } \mathbf { j }
Unlock Deck
Unlock for access to all 180 flashcards in this deck.
Unlock Deck
k this deck
13
Let f(x,y)=2x33x2y+xy2f ( x , y ) = 2 x ^ { 3 } - 3 x ^ { 2 } y + x y ^ { 2 } . Its gradient vector field is

A) f(x,y)=(6x26xy+y2)i+(2xy3x2)j\nabla f ( x , y ) = \left( 6 x ^ { 2 } - 6 x y + y ^ { 2 } \right) \mathbf { i } + \left( 2 x y - 3 x ^ { 2 } \right) \mathbf { j }
B) f(x,y)=(6x26xy+y2)i(2xy3x2)j\nabla f ( x , y ) = \left( 6 x ^ { 2 } - 6 x y + y ^ { 2 } \right) \mathbf { i } - \left( 2 x y - 3 x ^ { 2 } \right) \mathbf { j }
C) f(x,y)=(6x26xyy2)i+(2xy3x2)j\nabla f ( x , y ) = \left( 6 x ^ { 2 } - 6 x y - y ^ { 2 } \right) \mathbf { i } + \left( 2 x y - 3 x ^ { 2 } \right) \mathbf { j }
D) f(x,y)=(6x26xy+y2)i+(2xy+3x2)\nabla f ( x , y ) = \left( 6 x ^ { 2 } - 6 x y + y ^ { 2 } \right) \mathbf { i } + \left( 2 x y + 3 x ^ { 2 } \right)
E) f(x,y)=(6x26xyy2)i+(2xy+3x2)j\nabla f ( x , y ) = \left( 6 x ^ { 2 } - 6 x y - y ^ { 2 } \right) \mathbf { i } + \left( 2 x y + 3 x ^ { 2 } \right) \mathbf { j }
Unlock Deck
Unlock for access to all 180 flashcards in this deck.
Unlock Deck
k this deck
14
Let f(x,y)=ln(yx)+eyxf ( x , y ) = \ln \left( \frac { y } { x } \right) + e ^ { \frac { y } { x } } . Its gradient vector field is

A) f(x,y)=x+yeyxx2i+x+yeyxxyj\nabla f ( x , y ) = \frac { x + y e ^ { \frac { y } { x } } } { x ^ { 2 } } \mathbf { i } + \frac { x + y e ^ { \frac { y } { x } } } { x y } \mathbf { j }
B) f(x,y)=x+yeyxx2i+x+yeyxxyj\nabla f ( x , y ) = - \frac { x + y e ^ { \frac { y } { x } } } { x ^ { 2 } } \mathbf { i } + \frac { x + y e ^ { \frac { y } { x } } } { x y } \mathbf { j }
C) f(x,y)=x+yeyxx2ix+yeyxxyj\nabla f ( x , y ) = \frac { x + y e ^ { \frac { y } { x } } } { x ^ { 2 } } \mathbf { i } - \frac { x + y e ^ { \frac { y } { x } } } { x y } \mathbf { j }
D) f(x,y)=x+yeyxx2ix+yeyxxyj\nabla f ( x , y ) = - \frac { x + y e ^ { \frac { y } { x } } } { x ^ { 2 } } \mathbf { i } - \frac { x + y e ^ { \frac { y } { x } } } { x y } \mathbf { j }
E) f(x,y)=x+yeyxx2i+xyeyxxyj\nabla f ( x , y ) = - \frac { x + y e ^ { \frac { y } { x } } } { x ^ { 2 } } \mathbf { i } + \frac { x - y e ^ { \frac { y } { x } } } { x y } \mathbf { j }
Unlock Deck
Unlock for access to all 180 flashcards in this deck.
Unlock Deck
k this deck
15
Let f(x,y)=2x3y+7x2y25xy3f ( x , y ) = 2 x ^ { 3 } y + 7 x ^ { 2 } y ^ { 2 } - 5 x y ^ { 3 } . Its gradient vector field is

A) f(x,y)=(6x2y14xy2+5y3)i+(2x3+14x2y15xy2)j\nabla f ( x , y ) = \left( 6 x ^ { 2 } y - 14 x y ^ { 2 } + 5 y ^ { 3 } \right) \mathbf { i } + \left( 2 x ^ { 3 } + 14 x ^ { 2 } y - 15 x y ^ { 2 } \right) \mathbf { j }
B) f(x,y)=(6x2y+14xy25y3)i+(2x314x2y15xy2)j\nabla f ( x , y ) = \left( 6 x ^ { 2 } y + 14 x y ^ { 2 } - 5 y ^ { 3 } \right) \mathbf { i } + \left( 2 x ^ { 3 } - 14 x ^ { 2 } y - 15 x y ^ { 2 } \right) \mathbf { j }
C) f(x,y)=(6x2y14xy25y3)i+(2x3+14x2y15xy2)j\nabla f ( x , y ) = \left( 6 x ^ { 2 } y - 14 x y ^ { 2 } - 5 y ^ { 3 } \right) \mathbf { i } + \left( 2 x ^ { 3 } + 14 x ^ { 2 } y - 15 x y ^ { 2 } \right) \mathbf { j }
D) f(x,y)=(6x2y+14xy25y3)i+(2x3+14x2y15xy2)j\nabla f ( x , y ) = \left( 6 x ^ { 2 } y + 14 x y ^ { 2 } - 5 y ^ { 3 } \right) \mathbf { i } + \left( 2 x ^ { 3 } + 14 x ^ { 2 } y - 15 x y ^ { 2 } \right) \mathbf { j }
E) f(x,y)=(6x2y+14xy25y3)i(2x3+14x2y15xy2)j\nabla f ( x , y ) = \left( 6 x ^ { 2 } y + 14 x y ^ { 2 } - 5 y ^ { 3 } \right) \mathbf { i } - \left( 2 x ^ { 3 } + 14 x ^ { 2 } y - 15 x y ^ { 2 } \right) \mathbf { j }
Unlock Deck
Unlock for access to all 180 flashcards in this deck.
Unlock Deck
k this deck
16
Let f(x,y,z)=ln(xyz)f ( x , y , z ) = \ln ( x y z ) . Its gradient vector field is

A) f(x,y)=1xi1yj+1zk\nabla f ( x , y ) = \frac { 1 } { x } \mathbf { i } - \frac { 1 } { y } \mathbf { j } + \frac { 1 } { z } \mathbf { k }
B) f(x,y)=1xi+1yj+1zk\nabla f ( x , y ) = \frac { 1 } { x } \mathbf { i } + \frac { 1 } { y } \mathbf { j } + \frac { 1 } { z } \mathbf { k }
C) f(x,y)=1xi+1yj1zk\nabla f ( x , y ) = \frac { 1 } { x } \mathbf { i } + \frac { 1 } { y } \mathbf { j } - \frac { 1 } { z } \mathbf { k }
D) f(x,y)=1xi1yj1zk\nabla f ( x , y ) = \frac { 1 } { x } \mathbf { i } - \frac { 1 } { y } \mathbf { j } - \frac { 1 } { z } \mathbf { k }
E) f(x,y)=1xi+1yj+1zk\nabla f ( x , y ) = - \frac { 1 } { x } \mathbf { i } + \frac { 1 } { y } \mathbf { j } + \frac { 1 } { z } \mathbf { k }
Unlock Deck
Unlock for access to all 180 flashcards in this deck.
Unlock Deck
k this deck
17
Let f(x,y,z)=ln(x2+y2+z2)f ( x , y , z ) = \ln \left( x ^ { 2 } + y ^ { 2 } + z ^ { 2 } \right) . Its gradient vector field is

A) f(x,y,z)=2xx2+y2+z2i+2yx2+y2+z2j+2zx2+y2+z2k\nabla f ( x , y , z ) = - \frac { 2 x } { x ^ { 2 } + y ^ { 2 } + z ^ { 2 } } \mathbf { i } + \frac { 2 y } { x ^ { 2 } + y ^ { 2 } + z ^ { 2 } } \mathbf { j } + \frac { 2 z } { x ^ { 2 } + y ^ { 2 } + z ^ { 2 } } \mathbf { k }
B) f(x,y,z)=2xx2+y2+z2i2yx2+y2+z2j2zx2+y2+z2k\nabla f ( x , y , z ) = \frac { 2 x } { x ^ { 2 } + y ^ { 2 } + z ^ { 2 } } \mathbf { i } - \frac { 2 y } { x ^ { 2 } + y ^ { 2 } + z ^ { 2 } } \mathbf { j } - \frac { 2 z } { x ^ { 2 } + y ^ { 2 } + z ^ { 2 } } \mathbf { k }
C) f(x,y,z)=2xx2+y2+z2i+2yx2+y2+z2j2zx2+y2+z2k\nabla f ( x , y , z ) = \frac { 2 x } { x ^ { 2 } + y ^ { 2 } + z ^ { 2 } } \mathbf { i } + \frac { 2 y } { x ^ { 2 } + y ^ { 2 } + z ^ { 2 } } \mathbf { j } - \frac { 2 z } { x ^ { 2 } + y ^ { 2 } + z ^ { 2 } } \mathbf { k }
D) f(x,y,z)=2xx2+y2+z2i2yx2+y2+z2j+2zx2+y2+z2k\nabla f ( x , y , z ) = \frac { 2 x } { x ^ { 2 } + y ^ { 2 } + z ^ { 2 } } \mathbf { i } - \frac { 2 y } { x ^ { 2 } + y ^ { 2 } + z ^ { 2 } } \mathbf { j } + \frac { 2 z } { x ^ { 2 } + y ^ { 2 } + z ^ { 2 } } \mathbf { k }
E) f(x,y,z)=2xx2+y2+z2i+2yx2+y2+z2j+2zx2+y2+z2k\nabla f ( x , y , z ) = \frac { 2 x } { x ^ { 2 } + y ^ { 2 } + z ^ { 2 } } \mathbf { i } + \frac { 2 y } { x ^ { 2 } + y ^ { 2 } + z ^ { 2 } } \mathbf { j } + \frac { 2 z } { x ^ { 2 } + y ^ { 2 } + z ^ { 2 } } \mathbf { k }
Unlock Deck
Unlock for access to all 180 flashcards in this deck.
Unlock Deck
k this deck
18
Let f(x,y,z)=x2+3yzz2f ( x , y , z ) = \sqrt { x ^ { 2 } + 3 y z - z ^ { 2 } } . Its gradient vector field is

A) f(x,y)=2xi+3zj+(3y2z)k2x2+3yzz2\nabla f ( x , y ) = \frac { 2 x \mathbf { i } + 3 z \mathbf { j } + ( 3 y - 2 z ) \mathbf { k } } { 2 \sqrt { x ^ { 2 } + 3 y z - z ^ { 2 } } }
B) f(x,y)=2xi+3zj(3y2z)k2x2+3yzz2\nabla f ( x , y ) = \frac { 2 x \mathbf { i } + 3 z \mathbf { j } - ( 3 y - 2 z ) \mathbf { k } } { 2 \sqrt { x ^ { 2 } + 3 y z - z ^ { 2 } } }
C) f(x,y)=2xi3zj+(3y2z)k2x2+3yzz2\nabla f ( x , y ) = \frac { 2 x \mathbf { i } - 3 z \mathbf { j } + ( 3 y - 2 z ) \mathbf { k } } { 2 \sqrt { x ^ { 2 } + 3 y z - z ^ { 2 } } }
D) f(x,y)=2xi3zj(3y2z)k2x2+3yzz2\nabla f ( x , y ) = \frac { 2 \boldsymbol { x } \mathbf { i } - 3 z \mathbf { j } - ( 3 y - 2 z ) \mathbf { k } } { 2 \sqrt { x ^ { 2 } + 3 y z - z ^ { 2 } } }
E) f(x,y)=2xi+3zj+(3y+2z)k2x2+3yzz2\nabla f ( x , y ) = \frac { 2 x \mathbf { i } + 3 z \mathbf { j } + ( 3 y + 2 z ) \mathbf { k } } { 2 \sqrt { x ^ { 2 } + 3 y z - z ^ { 2 } } }
Unlock Deck
Unlock for access to all 180 flashcards in this deck.
Unlock Deck
k this deck
19
Let f(x,y,z)=(x2+y2+z2)12f ( x , y , z ) = \left( x ^ { 2 } + y ^ { 2 } + z ^ { 2 } \right) ^ { - \frac { 1 } { 2 } } .Its gradient vector field is

A) f(x,y,z)=xiyj+zk(x2+y2+z2)32\nabla f ( x , y , z ) = - \frac { x \mathbf { i } - y \mathbf { j } + z \mathbf { k } } { \left( x ^ { 2 } + y ^ { 2 } + z ^ { 2 } \right) ^ { \frac { 3 } { 2 } } }
B) f(x,y,z)=xi+yj+zk(x2+y2+z2)32\nabla f ( x , y , z ) = \frac { x \mathbf { i } + y \mathbf { j } + z \mathbf { k } } { \left( x ^ { 2 } + y ^ { 2 } + z ^ { 2 } \right) ^ { \frac { 3 } { 2 } } }
C) f(x,y,z)=xi+yj+zk(x2+y2+z2)32\nabla f ( x , y , z ) = - \frac { x \mathbf { i } + y \mathbf { j } + z \mathbf { k } } { \left( x ^ { 2 } + y ^ { 2 } + z ^ { 2 } \right) ^ { \frac { 3 } { 2 } } }
D) f(x,y,z)=xiyj+zk(x2+y2+z2)32\nabla f ( x , y , z ) = \frac { x \mathbf { i } - y \mathbf { j } + z \mathbf { k } } { \left( x ^ { 2 } + y ^ { 2 } + z ^ { 2 } \right) ^ { \frac { 3 } { 2 } } }
E) f(x,y,z)=xiyjzk(x2+y2+z2)32\nabla f ( x , y , z ) = - \frac { x \mathbf { i } - y \mathbf { j } - z \mathbf { k } } { \left( x ^ { 2 } + y ^ { 2 } + z ^ { 2 } \right) ^ { \frac { 3 } { 2 } } }
Unlock Deck
Unlock for access to all 180 flashcards in this deck.
Unlock Deck
k this deck
20
Let f(x,y)=2x3+xy2+xz2f ( x , y ) = 2 x ^ { 3 } + x y ^ { 2 } + x z ^ { 2 } . Its gradient vector field is

A) f(x,y)=(6x2+y2+z2)i+2xyj+2xzk\nabla f ( x , y ) = - \left( 6 x ^ { 2 } + y ^ { 2 } + z ^ { 2 } \right) \mathbf { i } + 2 x y \mathbf { j } + 2 x z \mathbf { k }
B) f(x,y)=(6x2+y2+z2)i2xyj2xzk\nabla f ( x , y ) = \left( 6 x ^ { 2 } + y ^ { 2 } + z ^ { 2 } \right) \mathbf { i } - 2 x y \mathbf { j } - 2 x z \mathbf { k }
C) f(x,y)=(6x2+y2+z2)i+2xyj2xzk\nabla f ( x , y ) = \left( 6 x ^ { 2 } + y ^ { 2 } + z ^ { 2 } \right) \mathbf { i } + 2 x y \mathbf { j } - 2 x z \mathbf { k }
D) f(x,y)=(6x2+y2+z2)i+2xyj+2xzk\nabla f ( x , y ) = \left( 6 x ^ { 2 } + y ^ { 2 } + z ^ { 2 } \right) \mathbf { i } + 2 x y \mathbf { j } + 2 x z \mathbf { k }
E) f(x,y)=(6x2+y2+z2)i2xyj+2xzk\nabla f ( x , y ) = \left( 6 x ^ { 2 } + y ^ { 2 } + z ^ { 2 } \right) \mathbf { i } - 2 x y \mathbf { j } + 2 x z \mathbf { k }
Unlock Deck
Unlock for access to all 180 flashcards in this deck.
Unlock Deck
k this deck
21
The line integral \int C (x+y)ds( x + y ) d s , where C is the curve x=t,y=1t,0t1,x = t , y = 1 - t , 0 \leq t \leq 1 , is

A) 222 \sqrt { 2 }
B) 2\sqrt { 2 }
C) 323 \sqrt { 2 }
D) 3\sqrt { 3 }
E) 12\frac { 1 } { \sqrt { 2 } }
Unlock Deck
Unlock for access to all 180 flashcards in this deck.
Unlock Deck
k this deck
22
The line integral \int C (yx2)ds\left( y - x ^ { 2 } \right) d s , where C is the curve x=t,y=2t,0t1x = t , y = 2 t , 0 \leq t \leq 1 \text {, } is

A) 252 \sqrt { 5 }
B) 5\sqrt { 5 }
C) 352\frac { 3 \sqrt { 5 } } { 2 }
D) 354\frac { 3 \sqrt { 5 } } { 4 }
E) 253\frac { 2 \sqrt { 5 } } { 3 }
Unlock Deck
Unlock for access to all 180 flashcards in this deck.
Unlock Deck
k this deck
23
The line integral \int C xyds,x y d s , where C is the curve x=4t,y=t2,0t2x = 4 t , y = t ^ { 2 } , 0 \leq t \leq 2 is

A) 512(1+2)15- \frac { 512 ( 1 + \sqrt { 2 } ) } { 15 }
B) 512(1+2)5\frac { 512 ( 1 + \sqrt { 2 } ) } { 5 }
C) 512(12)5\frac { 512 ( 1 - \sqrt { 2 } ) } { 5 }
D) 512(1+2)15\frac { 512 ( 1 + \sqrt { 2 } ) } { 15 }
E) 512(12)15\frac { 512 ( 1 - \sqrt { 2 } ) } { 15 }
Unlock Deck
Unlock for access to all 180 flashcards in this deck.
Unlock Deck
k this deck
24
The line integral \int C ydsy d s where C is the curve x=3t2,y=t,0t1x = 3 t ^ { 2 } , y = t , 0 \leq t \leq 1 is

A) 37371108\frac { 37 \sqrt { 37 } - 1 } { 108 }
B) 3737+1108\frac { 37 \sqrt { 37 } + 1 } { 108 }
C) 37371105\frac { 37 \sqrt { 37 } - 1 } { 105 }
D) 3737+1105\frac { 37 \sqrt { 37 } + 1 } { 105 }
E) 37371108- \frac { 37 \sqrt { 37 } - 1 } { 108 }
Unlock Deck
Unlock for access to all 180 flashcards in this deck.
Unlock Deck
k this deck
25
The line integral \int C (xy+1)ds( x y + 1 ) d s where C is the curve x=sint,y=cost,0tπ,x = \sin t , y = \cos t , 0 \leq t \leq \pi , is

A) 3π3 \pi
B) 2π2 \pi
C) π\pi
D) π2\frac { \pi } { 2 }
E) π3\frac { \pi } { 3 }
Unlock Deck
Unlock for access to all 180 flashcards in this deck.
Unlock Deck
k this deck
26
The line integral \int C xy2dsx y ^ { 2 } d s where C is the curve x=cost,y=sint,0tπ2x = \cos t , y = \sin t , 0 \leq t \leq \frac { \pi } { 2 } , is

A) 73\frac { 7 } { 3 }
B) 53\frac { 5 } { 3 }
C) 43\frac { 4 } { 3 }
D) 23\frac { 2 } { 3 }
E) 13\frac { 1 } { 3 }
Unlock Deck
Unlock for access to all 180 flashcards in this deck.
Unlock Deck
k this deck
27
The line integral \int C 4xydx+(2x23xy)dy4 x y d x + \left( 2 x ^ { 2 } - 3 x y \right) d y , where C is the line y=xy = x from (0,0) to (2,2), is

A)12
B)8
C)6
D)4
E)2
Unlock Deck
Unlock for access to all 180 flashcards in this deck.
Unlock Deck
k this deck
28
The line integral \int C (x2+xy)dx+(y2xy)dy\left( x ^ { 2 } + x y \right) d x + \left( y ^ { 2 } - x y \right) d y , where C is the curve 2y=x22 y = x ^ { 2 } from (0,0) to (2,2), is

A) 7615\frac { 76 } { 15 }
B) 6815\frac { 68 } { 15 }
C) 6415\frac { 64 } { 15 }
D) 6215\frac { 62 } { 15 }
E) 5915\frac { 59 } { 15 }
Unlock Deck
Unlock for access to all 180 flashcards in this deck.
Unlock Deck
k this deck
29
The line integral \int C (x2+xy)dx+(y2xy)dy\left( x ^ { 2 } + x y \right) d x + \left( y ^ { 2 } - x y \right) d y , where C is the line y=xy = x from (0,0) to (2,2), is

A) 323\frac { 32 } { 3 }
B) 283\frac { 28 } { 3 }
C) 163\frac { 16 } { 3 }
D) 143\frac { 14 } { 3 }
E) 133\frac { 13 } { 3 }
Unlock Deck
Unlock for access to all 180 flashcards in this deck.
Unlock Deck
k this deck
30
The line integral \int C (xyz)dx+exdy+ydz( x y - z ) d x + e ^ { x } d y + y d z , where C is the line segment from (1,0,0) to (3,4,8), is

A) 6(e3+e)+523\frac { 6 \left( e ^ { 3 } + e \right) + 52 } { 3 }
B) 6(e3e)+523\frac { 6 \left( e ^ { 3 } - e \right) + 52 } { 3 }
C) 6(e3+e)523\frac { 6 \left( e ^ { 3 } + e \right) - 52 } { 3 }
D) 6(e3+e)+523- \frac { 6 \left( e ^ { 3 } + e \right) + 52 } { 3 }
E) 6(e3+e)+525\frac { 6 \left( e ^ { 3 } + e \right) + 52 } { 5 }
Unlock Deck
Unlock for access to all 180 flashcards in this deck.
Unlock Deck
k this deck
31
The line integral \int C (x+y)dx+(y+z)dy+(x+z)dz( x + y ) d x + ( y + z ) d y + ( x + z ) d z , where C is the line segment from (0,0,0) to (1,2,4), is

A) 392\frac { 39 } { 2 }
B) 372\frac { 37 } { 2 }
C) 352\frac { 35 } { 2 }
D) 332\frac { 33 } { 2 }
E) 312\frac { 31 } { 2 }
Unlock Deck
Unlock for access to all 180 flashcards in this deck.
Unlock Deck
k this deck
32
The line integral \int C 3xdx+2xydy+dz3 x d x + 2 x y d y + d z where C is the curve is

A) 4π4 \pi
B) 3π3 \pi
C) 2π2 \pi
D) π\pi
E) π2\frac { \pi } { 2 }
Unlock Deck
Unlock for access to all 180 flashcards in this deck.
Unlock Deck
k this deck
33
Let F(x,y)=yi+xj,r(t)=3t2itj,0t1\mathbf { F } ( x , y ) = y \mathbf { i } + x \mathbf { j } , \mathbf { r } ( t ) = 3 t ^ { 2 } \mathbf { i } - t \mathbf { j } , 0 \leq t \leq 1 Then \int C Fdr\mathbf { F } \bullet d \mathbf { r } is

A) 3- 3
B)2
C) 52\frac { 5 } { 2 }
D)3
E) 72\frac { 7 } { 2 }
Unlock Deck
Unlock for access to all 180 flashcards in this deck.
Unlock Deck
k this deck
34
Let F(x,y)=2xyi+3xj,r(t)=3t2itj,0t1\mathbf { F } ( x , y ) = 2 x y \mathbf { i } + 3 x \mathbf { j } , \mathbf { r } ( t ) = 3 t ^ { 2 } \mathbf { i } - t \mathbf { j } , 0 \leq t \leq 1 . Then \int C Fdr\mathbf { F } \bullet d \mathbf { r } is

A) 265- \frac { 26 } { 5 }
B) 235- \frac { 23 } { 5 }
C) 215- \frac { 21 } { 5 }
D) 195- \frac { 19 } { 5 }
E) 515- \frac { 51 } { 5 }
Unlock Deck
Unlock for access to all 180 flashcards in this deck.
Unlock Deck
k this deck
35
Let F(x,y)=2xyi+(x2y)j,r(t)=sinti2costj,0tπ\mathbf { F } ( x , y ) = 2 x y \mathbf { i } + ( x - 2 y ) \mathbf { j } , \mathbf { r } ( t ) = \sin t \mathbf { i } - 2 \cos t \mathbf { j } , 0 \leq t \leq \pi . Then \int C Fdr\mathbf { F } \bullet d \mathbf { r } is

A) 3π87\frac { 3 \pi - 8 } { 7 }
B) 3π+85\frac { 3 \pi + 8 } { 5 }
C) 3π85\frac { 3 \pi - 8 } { 5 }
D) 3π+83\frac { 3 \pi + 8 } { 3 }
E) 3π83\frac { 3 \pi - 8 } { 3 }
Unlock Deck
Unlock for access to all 180 flashcards in this deck.
Unlock Deck
k this deck
36
Let F(x,y)=ysinxicosxj\mathbf { F } ( x , y ) = y \sin x \mathbf { i } - \cos x \mathbf { j } where C is the line segment from (π2,0)\left( \frac { \pi } { 2 } , 0 \right) to (π,1)( \pi , 1 ) . Then \int C Fdr\mathbf { F } \bullet d \mathbf { r } is

A)1
B)2
C) 52\frac { 5 } { 2 }
D)3
E) 72\frac { 7 } { 2 }
Unlock Deck
Unlock for access to all 180 flashcards in this deck.
Unlock Deck
k this deck
37
Let F(x,y)=9x2yi+(5x2y)j\mathbf { F } ( x , y ) = 9 x ^ { 2 } y \mathbf { i } + \left( 5 x ^ { 2 } - y \right) \mathbf { j } , where C is the y=x3+1y = x ^ { 3 } + 1 from (1,2) to (3,28). Then \int C Fdr\mathbf { F } \bullet d \mathbf { r } is

A)188
B)376
C)758
D)1506
E)3012
Unlock Deck
Unlock for access to all 180 flashcards in this deck.
Unlock Deck
k this deck
38
Let F(x,y,z)=zi+xj+yk,r(t)=costi+sintj+tk,0t2π\mathbf { F } ( x , y , z ) = z \mathbf { i } + x \mathbf { j } + y \mathbf { k } , \mathbf { r } ( t ) = \cos t \mathbf { i } + \sin t \mathbf { j } + t \mathbf { k } , 0 \leq t \leq 2 \pi . Then \int C Fdr\mathbf { F } \bullet d \mathbf { r } is

A) 4π4 \pi
B) 3π3 \pi
C) 2π2 \pi
D) π\pi
E) π2\frac { \pi } { 2 }
Unlock Deck
Unlock for access to all 180 flashcards in this deck.
Unlock Deck
k this deck
39
Let F(x,y,z)=exi+xezj+xsinπy2k,r(t)=costi+sintj+tk,0t2π\mathbf { F } ( x , y , z ) = e ^ { x } \mathbf { i } + x e ^ { z } \mathbf { j } + x \sin \pi y ^ { 2 } \mathbf { k } , \mathbf { r } ( t ) = \cos t \mathbf { i } + \sin t \mathbf { j } + t \mathbf { k } , 0 \leq t \leq 2 \pi . Then \int C Fdr\mathbf { F } \bullet d \mathbf { r } is

A) 3(e2π+1)5\frac { 3 \left( e ^ { 2 \pi } + 1 \right) } { 5 }
B) 3(e2π1)5\frac { 3 \left( e ^ { 2 \pi } - 1 \right) } { 5 }
C) 3(e2π1)5- \frac { 3 \left( e ^ { 2 \pi } - 1 \right) } { 5 }
D) 3(e2π+1)5- \frac { 3 \left( e ^ { 2 \pi } + 1 \right) } { 5 }
E) 2(e2π1)5\frac { 2 \left( e ^ { 2 \pi } - 1 \right) } { 5 }
Unlock Deck
Unlock for access to all 180 flashcards in this deck.
Unlock Deck
k this deck
40
Let F(x,y,z)=2xyi+(6y2xz)j+10zk,r(t)=ti+t2j+t3k,0t1\mathbf { F } ( x , y , z ) = 2 x y \mathbf { i } + \left( 6 y ^ { 2 } - x z \right) \mathbf { j } + 10 z \mathbf { k } , \mathbf { r } ( t ) = t \mathbf { i } + t ^ { 2 } \mathbf { j } + t ^ { 3 } \mathbf { k } , 0 \leq t \leq 1 . Then \int C Fdr\mathbf { F } \bullet d \mathbf { r } is

A) 356\frac { 35 } { 6 }
B) 376\frac { 37 } { 6 }
C) 416\frac { 41 } { 6 }
D) 436\frac { 43 } { 6 }
E) 476\frac { 47 } { 6 }
Unlock Deck
Unlock for access to all 180 flashcards in this deck.
Unlock Deck
k this deck
41
The work done by the force F(x,y)=3yi+4xj\mathbf { F } ( x , y ) = 3 y \mathbf { i } + 4 x \mathbf { j } moving along r(t)=2t2itj\mathbf { r } ( t ) = 2 t ^ { 2 } \mathbf { i } - t \mathbf { j } with 0t10 \leq t \leq 1 is

A) 207- \frac { 20 } { 7 }
B) 207\frac { 20 } { 7 }
C) 203- \frac { 20 } { 3 }
D) 203\frac { 20 } { 3 }
E) 5
4
Unlock Deck
Unlock for access to all 180 flashcards in this deck.
Unlock Deck
k this deck
42
The work done by the force F(x,y)=(x+y)i(yx)j\mathbf { F } ( x , y ) = - ( x + y ) \mathbf { i } - ( y - x ) \mathbf { j } moving along r(t)=t3i+t2j\mathbf { r } ( t ) = t ^ { 3 } \mathbf { i } + t ^ { 2 } \mathbf { j } from (8, 4) to (1, 1) is

A) 1765\frac { 176 } { 5 }
B) 1865\frac { 186 } { 5 }
C) 1965\frac { 196 } { 5 }
D) 2215\frac { 221 } { 5 }
E) 2265\frac { 226 } { 5 }
Unlock Deck
Unlock for access to all 180 flashcards in this deck.
Unlock Deck
k this deck
43
The work done by the force F(x,y)=(2x+3y)i+xyj\mathbf { F } ( x , y ) = ( 2 x + 3 y ) \mathbf { i } + x y \mathbf { j } moving along r(t)=4sinticostj\mathbf { r } ( t ) = 4 \sin t \mathbf { i } - \cos t \mathbf { j } with 0tπ20 \leq t \leq \frac { \pi } { 2 } is

A) 44+9π3\frac { 44 + 9 \pi } { 3 }
B) 449π3\frac { 44 - 9 \pi } { 3 }
C) 446π3\frac { 44 - 6 \pi } { 3 }
D) 44+6π3\frac { 44 + 6 \pi } { 3 }
E) 443π3\frac { 44 - 3 \pi } { 3 }
Unlock Deck
Unlock for access to all 180 flashcards in this deck.
Unlock Deck
k this deck
44
The work done by the force F(x,y)=(2x+y)i+(x2y)j\mathbf { F } ( x , y ) = ( 2 x + y ) \mathbf { i } + ( x - 2 y ) \mathbf { j } moving along r(t)=3costi+3sintj\mathbf { r } ( t ) = 3 \cos t \mathbf { i } + 3 \sin t \mathbf { j } with 0t2π0 \leq t \leq 2 \pi is

A) 52\frac { 5 } { 2 }
B) 83\frac { 8 } { 3 }
C) 43\frac { 4 } { 3 }
D)0
E) 45\frac { 4 } { 5 }
Unlock Deck
Unlock for access to all 180 flashcards in this deck.
Unlock Deck
k this deck
45
The work done by the force F(x,y)=2xyi+(x2+y2)j\mathbf { F } ( x , y ) = 2 x y \mathbf { i } + \left( x ^ { 2 } + y ^ { 2 } \right) \mathbf { j } moving along y = x from (0, 0) to (1, 1) is

A) 43\frac { 4 } { 3 }
B) 83\frac { 8 } { 3 }
C) 52\frac { 5 } { 2 }
D)0
E) 22
Unlock Deck
Unlock for access to all 180 flashcards in this deck.
Unlock Deck
k this deck
46
The work done by the force F(x,y)=2xyi+(x2+y2)j\mathbf { F } ( x , y ) = 2 x y \mathbf { i } + \left( x ^ { 2 } + y ^ { 2 } \right) \mathbf { j } moving along y2=xy ^ { 2 } = x from (0, 0) to (1, 1) is

A) 52\frac { 5 } { 2 }
B) 83\frac { 8 } { 3 }
C) 43\frac { 4 } { 3 }
D)0
E) 45\frac { 4 } { 5 }
Unlock Deck
Unlock for access to all 180 flashcards in this deck.
Unlock Deck
k this deck
47
The work done by the force F(x,y)=(yx)i+x2yj\mathbf { F } ( x , y ) = ( y - x ) \mathbf { i } + x ^ { 2 } y \mathbf { j } moving along y=3x2y = 3 x - 2 from (1, 1) to (2, 4) is

A) 854\frac { 85 } { 4 }
B) 834\frac { 83 } { 4 }
C) 814\frac { 81 } { 4 }
D) 774\frac { 77 } { 4 }
E) 715\frac { 71 } { 5 }
Unlock Deck
Unlock for access to all 180 flashcards in this deck.
Unlock Deck
k this deck
48
The work done by the force F(x,y)=(yx)i+x2yj\mathbf { F } ( x , y ) = ( y - x ) \mathbf { i } + x ^ { 2 } y \mathbf { j } moving along y=x2y = x ^ { 2 } from (1, 1) to (2, 4) is

A) 1316\frac { 131 } { 6 }
B) 1216\frac { 121 } { 6 }
C) 1116\frac { 111 } { 6 }
D) 1016\frac { 101 } { 6 }
E) 116\frac { 11 } { 6 }
Unlock Deck
Unlock for access to all 180 flashcards in this deck.
Unlock Deck
k this deck
49
The work done by the force F(x,y)=(yx)i+x2yj\mathbf { F } ( x , y ) = ( y - x ) \mathbf { i } + x ^ { 2 } y \mathbf { j } moving along the line segment from (1, 1) to (2, 2) and then the line segment from (2, 2) to (2, 4) is

A) 1414\frac { 141 } { 4 }
B) 1314\frac { 131 } { 4 }
C) 1214\frac { 121 } { 4 }
D) 1114\frac { 111 } { 4 }
E) 114\frac { 11 } { 4 }
Unlock Deck
Unlock for access to all 180 flashcards in this deck.
Unlock Deck
k this deck
50
The work done by the force F(x,y)=x2yi+2yj\mathbf { F } ( x , y ) = - x ^ { 2 } y \mathbf { i } + 2 y \mathbf { j } moving along the line segment from (1, 0) to (0, 1) is

A) 2512\frac { 25 } { 12 }
B) 2312\frac { 23 } { 12 }
C) 1912\frac { 19 } { 12 }
D) 1712\frac { 17 } { 12 }
E) 1312\frac { 13 } { 12 }
Unlock Deck
Unlock for access to all 180 flashcards in this deck.
Unlock Deck
k this deck
51
The work done by the force F(x,y)=x2yi+2yj\mathbf { F } ( x , y ) = - x ^ { 2 } y \mathbf { i } + 2 y \mathbf { j } moving along r(t)=costi+sintj\mathbf { r } ( t ) = \cos t \mathbf { i } + \sin t \mathbf { j } with 0tπ20 \leq t \leq \frac { \pi } { 2 } is

A) 16π8\frac { 16 - \pi } { 8 }
B) π+168\frac { \pi + 16 } { 8 }
C) π+1616\frac { \pi + 16 } { 16 }
D) 16π16\frac { 16 - \pi } { 16 }
E) π+1632\frac { \pi + 16 } { 32 }
Unlock Deck
Unlock for access to all 180 flashcards in this deck.
Unlock Deck
k this deck
52
The work done by the force F(x,y)=x2yi+2yj\mathbf { F } ( x , y ) = - x ^ { 2 } y \mathbf { i } + 2 y \mathbf { j } moving along the line segment from (1, 0) to (1, 1) and then the line segment from (1, 1) to (0, 1) is

A) 52\frac { 5 } { 2 }
B) 83\frac { 8 } { 3 }
C) 43\frac { 4 } { 3 }
D)0
E) 45\frac { 4 } { 5 }
Unlock Deck
Unlock for access to all 180 flashcards in this deck.
Unlock Deck
k this deck
53
The work done by the force F(x,y)=x2yi+2yj\mathbf { F } ( x , y ) = - x ^ { 2 } y \mathbf { i } + 2 y \mathbf { j } moving along the line segment from (2, 0) to (0, 2) is

A) 313\frac { 31 } { 3 }
B) 283\frac { 28 } { 3 }
C) 263\frac { 26 } { 3 }
D) 223\frac { 22 } { 3 }
E) 163\frac { 16 } { 3 }
Unlock Deck
Unlock for access to all 180 flashcards in this deck.
Unlock Deck
k this deck
54
The work done by the force F(x,y)=x2yi+2yj\mathbf { F } ( x , y ) = - x ^ { 2 } y \mathbf { i } + 2 y \mathbf { j } moving along r(t)=2costi+2sintj\mathbf { r } ( t ) = 2 \cos t \mathbf { i } + 2 \sin t \mathbf { j } with 0tπ20 \leq t \leq \frac { \pi } { 2 } is

A) π+43\frac { \pi + 4 } { 3 }
B) π+42\frac { \pi + 4 } { 2 }
C) π+4\pi + 4
D) 2(π+4)2 ( \pi + 4 )
E) 3(π+4)3 ( \pi + 4 )
Unlock Deck
Unlock for access to all 180 flashcards in this deck.
Unlock Deck
k this deck
55
The work done by the force F(x,y)=x2yi+2yj\mathbf { F } ( x , y ) = - x ^ { 2 } y \mathbf { i } + 2 y \mathbf { j } moving along the line segment from (2, 0) to (2, 2) and then the line segment from (2, 2) to (0, 2) is

A) 343\frac { 34 } { 3 }
B) 323\frac { 32 } { 3 }
C) 283\frac { 28 } { 3 }
D) 263\frac { 26 } { 3 }
E) 253\frac { 25 } { 3 }
Unlock Deck
Unlock for access to all 180 flashcards in this deck.
Unlock Deck
k this deck
56
The work done by the force F(x,y)=x2yi+2yj\mathbf { F } ( x , y ) = - x ^ { 2 } y \mathbf { i } + 2 y \mathbf { j } moving along the line segment from (3, 0) to (0, 3) is

A) 714\frac { 71 } { 4 }
B) 694\frac { 69 } { 4 }
C) 674\frac { 67 } { 4 }
D) 654\frac { 65 } { 4 }
E) 634\frac { 63 } { 4 }
Unlock Deck
Unlock for access to all 180 flashcards in this deck.
Unlock Deck
k this deck
57
The work done by the force F(x,y)=x2yi+2yj\mathbf { F } ( x , y ) = - x ^ { 2 } y \mathbf { i } + 2 y \mathbf { j } moving along r(t)=3costi+3sintj\mathbf { r } ( t ) = 3 \cos t \mathbf { i } + 3 \sin t \mathbf { j } with 0tπ20 \leq t \leq \frac { \pi } { 2 } is

A) 9(9π+16)8\frac { 9 ( 9 \pi + 16 ) } { 8 }
B) 9(9π16)8\frac { 9 ( 9 \pi - 16 ) } { 8 }
C) 9(9π+16)16\frac { 9 ( 9 \pi + 16 ) } { 16 }
D) 9(9π16)16\frac { 9 ( 9 \pi - 16 ) } { 16 }
E) 9(9π+16)4\frac { 9 ( 9 \pi + 16 ) } { 4 }
Unlock Deck
Unlock for access to all 180 flashcards in this deck.
Unlock Deck
k this deck
58
The work done by the force F(x,y)=x2yi+2yj\mathbf { F } ( x , y ) = - x ^ { 2 } y \mathbf { i } + 2 y \mathbf { j } moving along the line segment from (3, 0) to (3, 3) and then the line segment from (3, 3) to (0, 3) is

A)48
B)42
C)36
D)33
E)30
Unlock Deck
Unlock for access to all 180 flashcards in this deck.
Unlock Deck
k this deck
59
The work done by the force F(x,y)=x2yi+2yj\mathbf { F } ( x , y ) = - x ^ { 2 } y \mathbf { i } + 2 y \mathbf { j } moving along the line segment from (4, 0) to (0, 4) is

A) 1273\frac { 127 } { 3 }
B) 1253\frac { 125 } { 3 }
C) 1243\frac { 124 } { 3 }
D) 1213\frac { 121 } { 3 }
E) 1123\frac { 112 } { 3 }
Unlock Deck
Unlock for access to all 180 flashcards in this deck.
Unlock Deck
k this deck
60
The work done by the force F(x,y)=x2yi+2yj\mathbf { F } ( x , y ) = - x ^ { 2 } y \mathbf { i } + 2 y \mathbf { j } moving along r(t)=4costi+4sintj\mathbf { r } ( t ) = 4 \cos t \mathbf { i } + 4 \sin t \mathbf { j } with 0tπ20 \leq t \leq \frac { \pi } { 2 } is

A) 4(π+1)4 ( \pi + 1 )
B) 8(π+1)8 ( \pi + 1 )
C) 16(π+1)16 ( \pi + 1 )
D) 22(π+1)22 ( \pi + 1 )
E) 24(π+1)24 ( \pi + 1 )
Unlock Deck
Unlock for access to all 180 flashcards in this deck.
Unlock Deck
k this deck
61
If F(x,y)=ey2cosxi+2yey2sinxj\mathbf { F } ( x , y ) = e ^ { y ^ { 2 } } \cos x \mathbf { i } + 2 y e ^ { y ^ { 2 } } \sin x \mathbf { j } is a conservative field, then its potential function f(x,y)f ( x , y ) is

A) 3ey2sinx+C- 3 e ^ { y ^ { 2 } } \sin x + C
B) 2ey2sinx+C2 e ^ { y ^ { 2 } } \sin x + C
C) 2ey2sinx+C- 2 e ^ { y ^ { 2 } } \sin x + C
D) ey2sinx+C- e ^ { y ^ { 2 } } \sin x + C
E) ey2sinx+Ce ^ { y ^ { 2 } } \sin x + C
Unlock Deck
Unlock for access to all 180 flashcards in this deck.
Unlock Deck
k this deck
62
If F(x,y)=(ey2x)i(xey+siny)j\mathbf { F } ( x , y ) = \left( e ^ { - y } - 2 x \right) \mathbf { i } - \left( x e ^ { - y } + \sin y \right) \mathbf { j } is a conservative field, then its potential function f(x,y)f ( x , y ) is

A) xey+x2+cosy+C- x e ^ { - y } + x ^ { 2 } + \cos y + C
B) xeyx2+cosy+C- x e ^ { - y } - x ^ { 2 } + \cos y + C
C) xeyx2+cosy+Cx e ^ { - y } - x ^ { 2 } + \cos y + C
D) xey+x2+cosy+Cx e ^ { - y } + x ^ { 2 } + \cos y + C
E) xeyx2cosy+Cx e ^ { - y } - x ^ { 2 } - \cos y + C
Unlock Deck
Unlock for access to all 180 flashcards in this deck.
Unlock Deck
k this deck
63
If F(x,y)=(6x5y)i(5x6y2)j\mathbf { F } ( x , y ) = ( 6 x - 5 y ) \mathbf { i } - \left( 5 x - 6 y ^ { 2 } \right) \mathbf { j } is a conservative field, then its potential function f(x,y)f ( x , y ) is

A) 3x25xy+2y3+C3 x ^ { 2 } - 5 x y + 2 y ^ { 3 } + C
B) 3x2+5xy+2y3+C3 x ^ { 2 } + 5 x y + 2 y ^ { 3 } + C
C) 3x25xy2y3+C3 x ^ { 2 } - 5 x y - 2 y ^ { 3 } + C
D) 3x2+5xy2y3+C3 x ^ { 2 } + 5 x y - 2 y ^ { 3 } + C
E) 3x25xy+2y3+C- 3 x ^ { 2 } - 5 x y + 2 y ^ { 3 } + C
Unlock Deck
Unlock for access to all 180 flashcards in this deck.
Unlock Deck
k this deck
64
If F(x,y)=(4y2+6xy2)i+(3x2+8xy+1)j\mathbf { F } ( x , y ) = \left( 4 y ^ { 2 } + 6 x y - 2 \right) \mathbf { i } + \left( 3 x ^ { 2 } + 8 x y + 1 \right) \mathbf { j } is a conservative field, then its potential function f(x,y)f ( x , y ) is

A) 4xy23x2y2xy+C4 x y ^ { 2 } - 3 x ^ { 2 } y - 2 x - y + C
B) 4xy23x2y+2x+y+C4 x y ^ { 2 } - 3 x ^ { 2 } y + 2 x + y + C
C) 4xy2+3x2y+2x+y+C4 x y ^ { 2 } + 3 x ^ { 2 } y + 2 x + y + C
D) 4xy2+3x2y2x+y+C4 x y ^ { 2 } + 3 x ^ { 2 } y - 2 x + y + C
E) 4xy23x2y2x+y+C4 x y ^ { 2 } - 3 x ^ { 2 } y - 2 x + y + C
Unlock Deck
Unlock for access to all 180 flashcards in this deck.
Unlock Deck
k this deck
65
If F(x,y)=(6x2y214xy+3)i+(4x3y7x28)j\mathbf { F } ( x , y ) = \left( 6 x ^ { 2 } y ^ { 2 } - 14 x y + 3 \right) \mathbf { i } + \left( 4 x ^ { 3 } y - 7 x ^ { 2 } - 8 \right) \mathbf { j } is a conservative field, then its potential function f(x,y)f ( x , y ) is

A) 2x3y2+7x2y+3x8y+C2 x ^ { 3 } y ^ { 2 } + 7 x ^ { 2 } y + 3 x - 8 y + C
B) 2x3y27x2y+3x8y+C2 x ^ { 3 } y ^ { 2 } - 7 x ^ { 2 } y + 3 x - 8 y + C
C) 2x3y27x2y3x8y+C2 x ^ { 3 } y ^ { 2 } - 7 x ^ { 2 } y - 3 x - 8 y + C
D) 2x3y27x2y+3x+8y+C2 x ^ { 3 } y ^ { 2 } - 7 x ^ { 2 } y + 3 x + 8 y + C
E) 2x3y2+7x2y3x8y+C2 x ^ { 3 } y ^ { 2 } + 7 x ^ { 2 } y - 3 x - 8 y + C
Unlock Deck
Unlock for access to all 180 flashcards in this deck.
Unlock Deck
k this deck
66
If F(x,y)=(2x+lny)i+(y2+xy)j\mathbf { F } ( x , y ) = ( 2 x + \ln y ) \mathbf { i } + \left( y ^ { 2 } + \frac { x } { y } \right) \mathbf { j } is a conservative field, then its potential function f(x,y)f ( x , y ) is

A) x2+xlny+y33+C- x ^ { 2 } + x \ln y + \frac { y ^ { 3 } } { 3 } + C
B) x2xlnyy33+Cx ^ { 2 } - x \ln y - \frac { y ^ { 3 } } { 3 } + C
C) x2+xlny+y33+Cx ^ { 2 } + x \ln y + \frac { y ^ { 3 } } { 3 } + C
D) x2xlny+y33+Cx ^ { 2 } - x \ln y + \frac { y ^ { 3 } } { 3 } + C
E) x2+xlnyy33+Cx ^ { 2 } + x \ln y - \frac { y ^ { 3 } } { 3 } + C
Unlock Deck
Unlock for access to all 180 flashcards in this deck.
Unlock Deck
k this deck
67
If F(x,y)=(1x2+1y2)i+(12xy3)j\mathbf { F } ( x , y ) = \left( \frac { 1 } { x ^ { 2 } } + \frac { 1 } { y ^ { 2 } } \right) \mathbf { i } + \left( \frac { 1 - 2 x } { y ^ { 3 } } \right) \mathbf { j } is a conservative field, then its potential function f(x,y)f ( x , y ) is

A) 2x22y2x2xy2+C- \frac { 2 x ^ { 2 } - 2 y ^ { 2 } - x } { 2 x y ^ { 2 } } + C
B) 2x2+2y2+x2xy2+C\frac { 2 x ^ { 2 } + 2 y ^ { 2 } + x } { 2 x y ^ { 2 } } + C
C) 2x22y2+x2xy2+C\frac { 2 x ^ { 2 } - 2 y ^ { 2 } + x } { 2 x y ^ { 2 } } + C
D) 2x2+2y2x2xy2+C\frac { 2 x ^ { 2 } + 2 y ^ { 2 } - x } { 2 x y ^ { 2 } } + C
E) 2x22y2x2xy2+C\frac { 2 x ^ { 2 } - 2 y ^ { 2 } - x } { 2 x y ^ { 2 } } + C
Unlock Deck
Unlock for access to all 180 flashcards in this deck.
Unlock Deck
k this deck
68
If F(x,y)=(2x1y)i+(xx2y2)j\mathbf { F } ( x , y ) = \left( \frac { 2 x - 1 } { y } \right) \mathbf { i } + \left( \frac { x - x ^ { 2 } } { y ^ { 2 } } \right) \mathbf { j } is a conservative field, then its potential function f(x,y)f ( x , y ) is

A) x2+xy+C\frac { x ^ { 2 } + x } { y } + C
B) x2xy+C\frac { x ^ { 2 } - x } { y } + C
C) x2xy+C- \frac { x ^ { 2 } - x } { y } + C
D) x2x2y+C\frac { x ^ { 2 } - x } { 2 y } + C
E) x2+x2y+C\frac { x ^ { 2 } + x } { 2 y } + C
Unlock Deck
Unlock for access to all 180 flashcards in this deck.
Unlock Deck
k this deck
69
If F(x,y)=2xsec2yi+2x2sec2ytan2yj\mathbf { F } ( x , y ) = 2 x \sec 2 y \mathbf { i } + 2 x ^ { 2 } \sec 2 y \tan 2 y \mathbf { j } is a conservative field, then its potential function f(x,y)f ( x , y ) is

A) 3x2sec2y+C3 x ^ { 2 } \sec 2 y + C
B) 2x2sec2y+C- 2 x ^ { 2 } \sec 2 y + C
C) 2x2sec2y+C2 x ^ { 2 } \sec 2 y + C
D) x2sec2y+Cx ^ { 2 } \sec 2 y + C
E) x2sec2y+C- x ^ { 2 } \sec 2 y + C
Unlock Deck
Unlock for access to all 180 flashcards in this deck.
Unlock Deck
k this deck
70
If F(x,y)=(2xyysinx)i+(x2+cosx)j\mathbf { F } ( x , y ) = ( 2 x y - y \sin x ) \mathbf { i } + \left( x ^ { 2 } + \cos x \right) \mathbf { j } is a conservative field, then its potential function f(x,y)f ( x , y ) is

A) 2x2y+ycosx+C2 x ^ { 2 } y + y \cos x + C
B) x2yycosx+C- x ^ { 2 } y - y \cos x + C
C) x2y+ycosx+C- x ^ { 2 } y + y \cos x + C
D) x2yycosx+Cx ^ { 2 } y - y \cos x + C
E) x2y+ycosx+Cx ^ { 2 } y + y \cos x + C
Unlock Deck
Unlock for access to all 180 flashcards in this deck.
Unlock Deck
k this deck
71
If I = \int C 3(2x2+6xy)dx+3(3x2+8)dy3 \left( 2 x ^ { 2 } + 6 x y \right) d x + 3 \left( 3 x ^ { 2 } + 8 \right) d y is independent of the path where C is a curve from (1, 0) to (0, 1) then I is

A)-12
B)12
C)22
D)-22
E)32
Unlock Deck
Unlock for access to all 180 flashcards in this deck.
Unlock Deck
k this deck
72
If I = \int C (ey2xy)dx+(xeyx2)dy\left( e ^ { y } - 2 x y \right) d x + \left( x e ^ { y } - x ^ { 2 } \right) d y is independent of the path where C is a curve from (2, 1) to (1, 0) then I is

A) 52e5 - 2 e
B) 5+2e5 + 2 e
C) 52e- 5 - 2 e
D) 5+2e- 5 + 2 e
E) 5e5 - e
Unlock Deck
Unlock for access to all 180 flashcards in this deck.
Unlock Deck
k this deck
73
If I = \int C (sin2xtany)dx+xsec2ydy( \sin 2 x - \tan y ) d x + x \sec ^ { 2 } y d y is independent of the path where C is a curve from (0,π4)\left( 0 , \frac { \pi } { 4 } \right) to (π4,π4)\left( \frac { \pi } { 4 } , - \frac { \pi } { 4 } \right) then I is

A) π+22\frac { \pi + 2 } { 2 }
B) π22\frac { \pi - 2 } { 2 }
C) π24- \frac { \pi - 2 } { 4 }
D) π24\frac { \pi - 2 } { 4 }
E) π+24\frac { \pi + 2 } { 4 }
Unlock Deck
Unlock for access to all 180 flashcards in this deck.
Unlock Deck
k this deck
74
If I = \int C (x+y)dx+(2y+x)dy( x + y ) d x + ( 2 y + x ) d y is independent of the path where C is a curve from (-1, 3) to (2, 0) then I is

A) 92\frac { 9 } { 2 }
B) 92- \frac { 9 } { 2 }
C) 72\frac { 7 } { 2 }
D) 72- \frac { 7 } { 2 }
E) 52- \frac { 5 } { 2 }
Unlock Deck
Unlock for access to all 180 flashcards in this deck.
Unlock Deck
k this deck
75
If I = \int C (x+y)dx+(2y+x)dy( x + y ) d x + ( 2 y + x ) d y is independent of the path where C is a curve from (0, 2) to (1, 3), then I is

A) 5(e1)5 ( e - 1 )
B) 3(e+1)- 3 ( e + 1 )
C) 3(e1)- 3 ( e - 1 )
D) 3(e+1)3 ( e + 1 )
E) 3(e1)3 ( e - 1 )
Unlock Deck
Unlock for access to all 180 flashcards in this deck.
Unlock Deck
k this deck
76
If I = \int C (yx1)dx+(ln(2x2)+1y)dy\left( \frac { y } { x - 1 } \right) d x + \left( \ln ( 2 x - 2 ) + \frac { 1 } { y } \right) d y is independent of the path where C is a curve from (3, 1) to (2, 2), then I is

A)0
B) ln2\ln 2
C) ln3\ln 3
D) ln5\ln 5
E) ln6\ln 6
Unlock Deck
Unlock for access to all 180 flashcards in this deck.
Unlock Deck
k this deck
77
If I = \int C (2ye2xx2)dx+e2xdy\left( 2 y e ^ { 2 x } - x ^ { 2 } \right) d x + e ^ { 2 x } d y is independent of the path where C is a curve from (0, 1) to (1, 2), then I is

A) 2(3e2+2)5\frac { 2 \left( 3 e ^ { 2 } + 2 \right) } { 5 }
B) 2(3e2+2)3- \frac { 2 \left( 3 e ^ { 2 } + 2 \right) } { 3 }
C) 2(3e2+2)3\frac { 2 \left( 3 e ^ { 2 } + 2 \right) } { 3 }
D) 2(3e22)3\frac { 2 \left( 3 e ^ { 2 } - 2 \right) } { 3 }
E) 2(3e22)3- \frac { 2 \left( 3 e ^ { 2 } - 2 \right) } { 3 }
Unlock Deck
Unlock for access to all 180 flashcards in this deck.
Unlock Deck
k this deck
78
If I = \int C (ey2x)dx(xey+siny)dy\left( e ^ { - y } - 2 x \right) d x - \left( x e ^ { - y } + \sin y \right) d y is independent of the path where C is a curve from (0, ?) to (?, 0), then I is

A) π2π2\pi ^ { 2 } - \pi - 2
B) π2π+2\pi ^ { 2 } - \pi + 2
C) π2+π2\pi ^ { 2 } + \pi - 2
D) π2+π+2\pi ^ { 2 } + \pi + 2
E) π2π+2- \pi ^ { 2 } - \pi + 2
Unlock Deck
Unlock for access to all 180 flashcards in this deck.
Unlock Deck
k this deck
79
If I = \int C 1ydxxy2dy\frac { 1 } { y } d x - \frac { x } { y ^ { 2 } } d y is independent of the path where C is a curve from (5, -1) to (9, -3) then I is

A) π\pi
B)3
C)2
D)-2
E)-3
Unlock Deck
Unlock for access to all 180 flashcards in this deck.
Unlock Deck
k this deck
80
If I = \int C (lnx+2)dx+(ey+2x)dy( \ln x + 2 ) d x + \left( e ^ { y } + 2 x \right) d y is independent of the path where C is a curve from (3, 1) to (1, 3), then I is

A) e3+e+3ln3+6e ^ { 3 } + e + 3 \ln 3 + 6
B) e3e3ln36e ^ { 3 } - e - 3 \ln 3 - 6
C) e3e+3ln3+6e ^ { 3 } - e + 3 \ln 3 + 6
D) e3e3ln3+6e ^ { 3 } - e - 3 \ln 3 + 6
E) e3+e3ln3+6e ^ { 3 } + e - 3 \ln 3 + 6
Unlock Deck
Unlock for access to all 180 flashcards in this deck.
Unlock Deck
k this deck
locked card icon
Unlock Deck
Unlock for access to all 180 flashcards in this deck.