Exam 16: Vector Calculus

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

The area of the surface r(u,v)=(2+cosv)cosui+(2+cosv)sinuj+sinvk\mathbf { r } ( u , v ) = ( 2 + \cos v ) \cos u \mathbf { i } + ( 2 + \cos v ) \sin u \mathbf { j } + \sin v \mathbf { k } , where 0u2π0 \leq u \leq 2 \pi and 0v2π0 \leq v \leq 2 \pi is

Free
(Multiple Choice)
4.9/5
(34)
Correct Answer:
Verified

C

If I = \int C (ey2x)dx(xey+siny)dy\left( e ^ { - y } - 2 x \right) d x - \left( x e ^ { - y } + \sin y \right) d y is independent of the path where C is a curve from (0, ?) to (?, 0), then I is

Free
(Multiple Choice)
4.7/5
(35)
Correct Answer:
Verified

E

The rectangular equation for the parametric surface and x(u,v)=4cosvcosux ( u , v ) = 4 \cos v \cos u is

Free
(Multiple Choice)
5.0/5
(40)
Correct Answer:
Verified

C

The line integral \int C 3xdx+2xydy+dz3 x d x + 2 x y d y + d z where C is the curve is

(Multiple Choice)
4.9/5
(32)

Using Green's Theorem, the line integral \int C y2dx+x2dyy ^ { 2 } d x + x ^ { 2 } d y where C is the closed curve consisting of the arc of y=x2y = x ^ { 2 } from (0, 0) to (1, 1), the line segment from (1, 1) to (1, 0), and the line segment from (1, 0) to (0, 0), is

(Multiple Choice)
4.9/5
(31)

Let f(x,y,z)=x2+3yzz2f ( x , y , z ) = \sqrt { x ^ { 2 } + 3 y z - z ^ { 2 } } . Its gradient vector field is

(Multiple Choice)
4.7/5
(27)

If I = \int C 3(2x2+6xy)dx+3(3x2+8)dy3 \left( 2 x ^ { 2 } + 6 x y \right) d x + 3 \left( 3 x ^ { 2 } + 8 \right) d y is independent of the path where C is a curve from (1, 0) to (0, 1) then I is

(Multiple Choice)
5.0/5
(28)

The surface integral \int \int S ydSy d S where S is z=4y2z = 4 - y ^ { 2 } in the first octant bounded by x=3x = 3 and the coordinate planes, is

(Multiple Choice)
4.8/5
(30)

The line integral \int C xy2dsx y ^ { 2 } d s where C is the curve x=cost,y=sint,0tπ2x = \cos t , y = \sin t , 0 \leq t \leq \frac { \pi } { 2 } , is

(Multiple Choice)
4.8/5
(30)

Let F(x,y,z)=xi+yj+zk\mathbf { F } ( x , y , z ) = x \mathbf { i } + y \mathbf { j } + z \mathbf { k } and S is the boundary of the region enclosed on the side by x2+y2=9x ^ { 2 } + y ^ { 2 } = 9 , below by z = 0, and above z = 4. Using the Divergence Theorem, S\iint SFndS\mathbf { F } \bullet \mathbf { n } d S is

(Multiple Choice)
4.9/5
(38)

The rectangular equation for the parametric surface x(u,v)=ux ( u , v ) = u y(u,v)=vy ( u , v ) = v and z(u,v)=v3z ( u , v ) = \frac { v } { 3 } is

(Multiple Choice)
4.9/5
(20)

The outer unit normal vector to x+y+z=1x + y + z = 1 is

(Multiple Choice)
4.8/5
(34)

Let F(x,y)=2xyi+3xj,r(t)=3t2itj,0t1\mathbf { F } ( x , y ) = 2 x y \mathbf { i } + 3 x \mathbf { j } , \mathbf { r } ( t ) = 3 t ^ { 2 } \mathbf { i } - t \mathbf { j } , 0 \leq t \leq 1 . Then \int C Fdr\mathbf { F } \bullet d \mathbf { r } is

(Multiple Choice)
4.7/5
(33)

The work done by the force F(x,y)=x2yi+2yj\mathbf { F } ( x , y ) = - x ^ { 2 } y \mathbf { i } + 2 y \mathbf { j } moving along r(t)=costi+sintj\mathbf { r } ( t ) = \cos t \mathbf { i } + \sin t \mathbf { j } with 0tπ20 \leq t \leq \frac { \pi } { 2 } is

(Multiple Choice)
4.9/5
(29)

Let F(x,y,z)=5zk\mathbf { F } ( x , y , z ) = 5 z \mathbf { k } and S is x2+y2+z2=16x ^ { 2 } + y ^ { 2 } + z ^ { 2 } = 16 Using the Divergence Theorem, S\iint S FndS\mathbf { F } \bullet \mathbf { n } d S is

(Multiple Choice)
4.9/5
(37)

Using Green's Theorem, the line integral \int C (x2y2)dx+2xydy\left( x ^ { 2 } - y ^ { 2 } \right) d x + 2 x y d y where C is the circle x2+y2=1,x ^ { 2 } + y ^ { 2 } = 1 , is

(Multiple Choice)
4.9/5
(34)

Let F(x,y,z)=exi+3x2yj+(2y2z+x)k\mathbf { F } ( x , y , z ) = e ^ { x } \mathbf { i } + 3 x ^ { 2 } y \mathbf { j } + \left( 2 y ^ { 2 } z + x \right) \mathbf { k } . Then curl F is

(Multiple Choice)
4.8/5
(39)

Let F(x,y,z)=xi+yj+zk\mathbf { F } ( x , y , z ) = x \mathbf { i } + y \mathbf { j } + z \mathbf { k } and S is x2+y2+z2=4x ^ { 2 } + y ^ { 2 } + z ^ { 2 } = 4 . Using the Divergence Theorem, S\iint SFndS\mathbf { F } \bullet \mathbf { n } d S is

(Multiple Choice)
4.8/5
(37)

Let F(x,y,z)=cosyi+coszj+cosxk\mathbf { F } ( x , y , z ) = \cos y \mathbf { i } + \cos z \mathbf { j } + \cos x \mathbf { k } . Then curl F is

(Multiple Choice)
4.8/5
(43)

Let F(x,y,z)=x2i+y2j+z2k\mathbf { F } ( x , y , z ) = x ^ { 2 } \mathbf { i } + y ^ { 2 } \mathbf { j } + z ^ { 2 } \mathbf { k } and Sis the region bounded by and x=0,x=3x = 0 , x = 3 . Using the Divergence Theorem, S\iint Sy=0,y=3y = 0 , y = 3 \text {, } is

(Multiple Choice)
4.9/5
(33)
Showing 1 - 20 of 180
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)