Deck 15: Multiple Integrals

Full screen (f)
exit full mode
Question
The partial integral 12xy2dy\int _ { 1 } ^ { 2 } \frac { x } { y ^ { 2 } } d y is

A) x42\frac { x } { 42 }
B) x3\frac { x } { 3 }
C) x2\frac { x } { 2 }
D) 2x2 x
E) 3x3 x
Use Space or
up arrow
down arrow
to flip the card.
Question
The partial integral 022xydx\int _ { 0 } ^ { 2 } \frac { 2 x } { y } d x is

A) 3y\frac { 3 } { y }
B) 4y\frac { 4 } { y }
C) 6y\frac { 6 } { y }
D) 3y2\frac { 3 } { y ^ { 2 } }
E) 32y2\frac { 3 } { 2 y ^ { 2 } }
Question
The iterated integral 0π4[012xcos(y)dx]dy\int _ { 0 } ^ { \frac { \pi } { 4 } } \left[ \int _ { 0 } ^ { 1 } 2 x \cos ( y ) d x \right] d y is

A) 13\frac { 1 } { \sqrt { 3 } }
B) 12\frac { 1 } { 2 }
C) 13\frac { 1 } { 3 }
D) 15\frac { 1 } { 5 }
E) 12\frac { 1 } { \sqrt { 2 } }
Question
The iterated integral 01[033x2y2dy]dx\int _ { 0 } ^ { 1 } \left[ \int _ { 0 } ^ { 3 } 3 x ^ { 2 } y ^ { 2 } d y \right] d x is

A)9
B)6
C)4
D) 12\frac { 1 } { 2 }
E) 14\frac { 1 } { 4 }
Question
The iterated integral 0π[0π2xsin(y)dx]dy\int _ { 0 } ^ { \pi } \left[ \int _ { 0 } ^ { \pi } 2 x \sin ( y ) d x \right] d y is

A) π22\frac { \pi ^ { 2 } } { 2 }
B) π2\pi ^ { 2 }
C) 2π23\frac { 2 \pi ^ { 2 } } { 3 }
D) 2π22 \pi ^ { 2 }
E) π22\frac { \pi ^ { 2 } } { \sqrt { 2 } }
Question
The iterated integral 1e[02xydx]dy\int _ { 1 } ^ { e } \left[ \int _ { 0 } ^ { 2 } \frac { x } { y } d x \right] d y is

A)4
B)2
C) 23\frac { 2 } { 3 }
D)1
E) 12\frac { 1 } { 2 }
Question
The iterated integral 01[01exdx]dy\int _ { 0 } ^ { 1 } \left[ \int _ { 0 } ^ { 1 } e ^ { x } d x \right] d y is

A) e+2e + 2
B) e+1e + 1
C) e1e - 1
D) e2e - 2
E) ee
Question
By Fubini's Theorem, the double integral \iint R (2x+3y2)dA\left( 2 x + 3 y ^ { 2 } \right) d A with R={(x,y):0x2,0y3}R = \{ ( x , y ) : 0 \leq x \leq 2,0 \leq y \leq 3 \} is

A)64
B)66
C)72
D)76
E)84
Question
By Fubini's Theorem, the double integral \iint R 6(x2y)dA6 \left( x ^ { 2 } - y \right) d A with R={(x,y):1x2,0y1}R = \{ ( x , y ) : - 1 \leq x \leq 2,0 \leq y \leq 1 \} is

A)2
B)4
C)6
D)9
E)12
Question
By Fubini's Theorem, the double integral \iint R xydA\sqrt { x y } d A with R={(x,y):0x1,0y1}R = \{ ( x , y ) : 0 \leq x \leq 1,0 \leq y \leq 1 \} is

A) 419\frac { 41 } { 9 }
B) 294\frac { 29 } { 4 }
C) 139\frac { 13 } { 9 }
D) 12\frac { 1 } { 2 }
E) 49\frac { 4 } { 9 }
Question
By Fubini's Theorem, the double integral \iint R 4xeydA4 x e ^ { y } d A with R={(x,y):0x1,0y1}R = \{ ( x , y ) : 0 \leq x \leq 1,0 \leq y \leq 1 \} is

A) e1e - 1
B) e+1e + 1
C) 2(e1)2 ( e - 1 )
D) 2(e+1)2 ( e + 1 )
E) e+2e + 2
Question
By Fubini's Theorem, the double integral \iint R 2xtan(y)dA2 x \tan ( y ) d A with R={(x,y):0x1,0yπ4}R = \left\{ ( x , y ) : 0 \leq x \leq 1,0 \leq y \leq \frac { \pi } { 4 } \right\} is

A) ln32\frac { \ln 3 } { 2 }
B) ln22\frac { \ln 2 } { 2 }
C) ln24\frac { \ln 2 } { 4 }
D) ln23\frac { \ln 2 } { 3 }
E) ln34\frac { \ln 3 } { 4 }
Question
By Fubini's Theorem, the double integral \iint R 2xy+1dA\frac { 2 x } { y + 1 } d A with R={(x,y):0x1,0ye1}R = \{ ( x , y ) : 0 \leq x \leq 1,0 \leq y \leq e - 1 \} is

A) 32\frac { 3 } { 2 }
B) 12\frac { 1 } { 2 }
C) 14\frac { 1 } { 4 }
D) 13\frac { 1 } { 3 }
E)1
Question
By Fubini's Theorem, the double integral \iint R yexdAy e ^ { x } d A with R={(x,y):0x1,0y2}R = \{ ( x , y ) : 0 \leq x \leq 1,0 \leq y \leq 2 \} is

A) e1e - 1
B) e+1e + 1
C) 2(e1)2 ( e - 1 )
D) 2(e+1)2 ( e + 1 )
E) e+2e + 2
Question
By Fubini's Theorem, the double integral \iint R yxdA\frac { y } { x } d A with R={(x,y):1x2,0y2}R = \{ ( x , y ) : 1 \leq x \leq 2,0 \leq y \leq 2 \} is

A) ln2\ln 2
B) ln22\frac { \ln 2 } { 2 }
C) ln3\ln 3
D) ln4\ln 4
E) ln32\frac { \ln 3 } { 2 }
Question
By Fubini's Theorem, the double integral \iint R yx2dA\frac { y } { x ^ { 2 } } d A with R={(x,y):1x2,0y2}R = \{ ( x , y ) : 1 \leq x \leq 2,0 \leq y \leq 2 \} is

A) 32\frac { 3 } { 2 }
B) 12\frac { 1 } { 2 }
C) 14\frac { 1 } { 4 }
D) 13\frac { 1 } { 3 }
E)1
Question
The volume of the surface bounded by the graph of z=4x+2yz = 4 x + 2 y with 0x1,0y10 \leq x \leq 1,0 \leq y \leq 1 is

A)3
B) 52\frac { 5 } { 2 }
C)2
D) 43\frac { 4 } { 3 }
E)1
Question
The volume of the surface bounded by the graph of z=6x+4yz = 6 x + 4 y with 0x1,0y10 \leq x \leq 1,0 \leq y \leq 1 is

A)2
B)3
C)4
D)5
E)7
Question
The volume of the surface bounded by the graph of z=1x+1yz = \frac { 1 } { x } + \frac { 1 } { y } with 1x2,1y21 \leq x \leq 2,1 \leq y \leq 2 is

A) ln2\ln 2
B) ln4\ln 4
C) ln3\ln 3
D) ln14\ln \frac { 1 } { 4 }
E) ln32\frac { \ln 3 } { 2 }
Question
The volume of the surface bounded by the graph of z=ex+yz = e ^ { x + y } with 0x1,0y10 \leq x \leq 1,0 \leq y \leq 1 is

A) e1e - 1
B) e+1e + 1
C) (e1)2( e - 1 ) ^ { 2 }
D) (e+1)2( e + 1 ) ^ { 2 }
E) (e+2)2( e + 2 ) ^ { 2 }
Question
The iterated integral 12[02xxy3dy]dx\int _ { 1 } ^ { 2 } \left[ \int _ { 0 } ^ { 2 x } x y ^ { 3 } d y \right] d x is

A)56
B)48
C)42
D)36
E)32
Question
The iterated integral 04[0ydx]dy\int _ { 0 } ^ { 4 } \left[ \int _ { 0 } ^ { y } d x \right] d y is

A)8
B)12
C)14
D)16
E)18
Question
The iterated integral 04[0y9+y2dx]dy\int _ { 0 } ^ { 4 } \left[ \int _ { 0 } ^ { y } \sqrt { 9 + y ^ { 2 } } d x \right] d y is

A) 683\frac { 68 } { 3 }
B) 793\frac { 79 } { 3 }
C) 833\frac { 83 } { 3 }
D) 983\frac { 98 } { 3 }
E) 1013\frac { 101 } { 3 }
Question
The iterated integral 11[1ezxydy]dx\int _ { - 1 } ^ { 1 } \left[ \int _ { 1 } ^ { e ^ { z } } \frac { x } { y } d y \right] d x is

A) 13\frac { 1 } { 3 }
B) 23\frac { 2 } { 3 }
C) 43\frac { 4 } { 3 }
D) 53\frac { 5 } { 3 }
E) 83\frac { 8 } { 3 }
Question
The iterated integral 14[y2yyxdx]dy\int _ { 1 } ^ { 4 } \left[ \int _ { y ^ { 2 } } ^ { y } \sqrt { \frac { y } { x } } d x \right] d y is

A) 315- \frac { 31 } { 5 }
B) 335- \frac { 33 } { 5 }
C) 395- \frac { 39 } { 5 }
D) 415- \frac { 41 } { 5 }
E) 495- \frac { 49 } { 5 }
Question
The iterated integral 14[x2xyxdy]dx\int _ { 1 } ^ { 4 } \left[ \int _ { x ^ { 2 } } ^ { x } \sqrt { \frac { y } { x } } d y \right] d x is

A) 47321- \frac { 473 } { 21 }
B) 45121- \frac { 451 } { 21 }
C) 40321- \frac { 403 } { 21 }
D) 40121- \frac { 401 } { 21 }
E) 38321- \frac { 383 } { 21 }
Question
The iterated integral 03[0xx2exydy]dx\int _ { 0 } ^ { 3 } \left[ \int _ { 0 } ^ { x } x ^ { 2 } e ^ { x y } d y \right] d x is

A) e9+102\frac { e ^ { 9 } + 10 } { 2 }
B) e9102\frac { e ^ { 9 } - 10 } { 2 }
C) e7+102\frac { e ^ { 7 } + 10 } { 2 }
D) e7102\frac { e ^ { 7 } - 10 } { 2 }
E) e5+102\frac { e ^ { 5 } + 10 } { 2 }
Question
The iterated integral π2π[0xsin(4xy)dy]dx\int _ { \frac { \pi } { 2 } } ^ { \pi } \left[ \int _ { 0 } ^ { x } \sin ( 4 x - y ) d y \right] d x is

A) 43\frac { 4 } { 3 }
B) 23\frac { 2 } { 3 }
C) 12\frac { 1 } { 2 }
D) 13\frac { 1 } { 3 }
E) 14\frac { 1 } { 4 }
Question
If R is the region bounded by y=2x,y=x2y = 2 x , y = \frac { x } { 2 } and x=π2x = \frac { \pi } { 2 } then \iint R sinxdA\sin x d A is

A) 35\frac { 3 } { 5 }
B) 14\frac { 1 } { 4 }
C) 12\frac { 1 } { 2 }
D) 34\frac { 3 } { 4 }
E) 32\frac { 3 } { 2 }
Question
If R is the region bounded by y = x, x = ? and the x-axis, then \iint R cos(x+y)dA\cos ( x + y ) d A is

A) 3- 3
B) 2- 2
C) 1- 1
D) 12- \frac { 1 } { 2 }
E) 14- \frac { 1 } { 4 }
Question
If R is the region bounded by x2+y2=9x ^ { 2 } + y ^ { 2 } = 9 then \iint R x29x2dAx ^ { 2 } \sqrt { 9 - x ^ { 2 } } d A is

A) 5845\frac { 584 } { 5 }
B) 6325\frac { 632 } { 5 }
C) 6945\frac { 694 } { 5 }
D) 7445\frac { 744 } { 5 }
E) 6485\frac { 648 } { 5 }
Question
If R is the region bounded by y = x, y = 2, and xy = 1, then \iint R y2x2dA\frac { y ^ { 2 } } { x ^ { 2 } } d A is

A) 154\frac { 15 } { 4 }
B) 134\frac { 13 } { 4 }
C) 114\frac { 11 } { 4 }
D) 94\frac { 9 } { 4 }
E) 54\frac { 5 } { 4 }
Question
The area bounded by y=x3y = x ^ { 3 } and y=x2y = x ^ { 2 } is

A) 1312\frac { 13 } { 12 }
B) 1112\frac { 11 } { 12 }
C) 712\frac { 7 } { 12 }
D) 512\frac { 5 } { 12 }
E) 112\frac { 1 } { 12 }
Question
The area bounded by y2=4xy ^ { 2 } = 4 x and x2=4yx ^ { 2 } = 4 y is

A) 173\frac { 17 } { 3 }
B) 163\frac { 16 } { 3 }
C) 143\frac { 14 } { 3 }
D) 133\frac { 13 } { 3 }
E) 113\frac { 11 } { 3 }
Question
The area bounded by y=x29y = x ^ { 2 } - 9 and y=9x2y = 9 - x ^ { 2 } is

A)72
B)68
C)64
D)60
E)56
Question
The area bounded by x2+y2=16x ^ { 2 } + y ^ { 2 } = 16 and y2=6xy ^ { 2 } = 6 x is

A) 4(93+2+6π)9\frac { 4 ( 9 \sqrt { 3 } + 2 + 6 \pi ) } { 9 }
B) 4(93+6π)9\frac { 4 ( 9 \sqrt { 3 } + 6 \pi ) } { 9 }
C) 4(932+6π)9\frac { 4 ( 9 \sqrt { 3 } - 2 + 6 \pi ) } { 9 }
D) 4(93+6π)9\frac { - 4 ( 9 \sqrt { 3 } + 6 \pi ) } { 9 }
E) 4(93+2+6π)9\frac { - 4 ( 9 \sqrt { 3 } + 2 + 6 \pi ) } { 9 }
Question
If the order of integration of 04[x2f(x,y)dy]dx\int _ { 0 } ^ { 4 } \left[ \int _ { \sqrt { \sqrt { x } } } ^ { 2 } f ( x , y ) d y \right] d x is switched, the result is

A) 04[4y2f(x,y)dx]dy\int _ { 0 } ^ { 4 } \left[ \int _ { 4 } ^ { y ^ { 2 } } f ( x , y ) d x \right] d y
B) 02[2y2f(x,y)dx]dy\int _ { 0 } ^ { 2 } \left[ \int _ { 2 } ^ { y ^ { 2 } } f ( x , y ) d x \right] d y
C) 02[4y2f(x,y)dx]dy\int _ { 0 } ^ { 2 } \left[ \int _ { 4 } ^ { y ^ { 2 } } f ( x , y ) d x \right] d y
D) 02[0y2f(x,y)dx]dy\int _ { 0 } ^ { 2 } \left[ \int _ { 0 } ^ { y ^ { 2 } } f ( x , y ) d x \right] d y
E) 04[2y2f(x,y)dx]dy\int _ { 0 } ^ { 4 } \left[ \int _ { 2 } ^ { y ^ { 2 } } f ( x , y ) d x \right] d y
Question
If the order of integration of 02[y22yf(x,y)dx]dy\int _ { 0 } ^ { 2 } \left[ \int _ { y ^ { 2 } } ^ { 2 y } f ( x , y ) d x \right] d y is switched, the result is

A) 04[x2xf(x,y)dy]dx\int _ { 0 } ^ { 4 } \left[ \int _ { \frac { x } { 2 } } ^ { \sqrt { x } } f ( x , y ) d y \right] d x
B) 02[x2xf(x,y)dy]dx\int _ { 0 } ^ { 2 } \left[ \int _ { \frac { x } { 2 } } ^ { \sqrt { x } } f ( x , y ) d y \right] d x
C) 04[xx2f(x,y)dy]dx\int _ { 0 } ^ { 4 } \left[ \int _ { \sqrt { x } } ^ { \frac { x } { 2 } } f ( x , y ) d y \right] d x
D) 02[xx2f(x,y)dy]dx\int _ { 0 } ^ { 2 } \left[ \int _ { \sqrt { x } } ^ { \frac { x } { 2 } } f ( x , y ) d y \right] d x
E) 01[x2xf(x,y)dy]dx\int _ { 0 } ^ { 1 } \left[ \int _ { \frac { x } { 2 } } ^ { \sqrt { x } } f ( x , y ) d y \right] d x
Question
If the order of integration of 01[y2y3f(x,y)dx]dy\int _ { 0 } ^ { 1 } \left[ \int _ { y ^ { 2 } } ^ { \sqrt [ 3 ] { y } } f ( x , y ) d x \right] d y is switched, the result is

A) 13[x3xf(x,y)dy]dx\int _ { 1 } ^ { 3 } \left[ \int _ { x ^ { 3 } } ^ { \sqrt { x } } f ( x , y ) d y \right] d x
B) 02[xx2f(x,y)dy]dx\int _ { 0 } ^ { 2 } \left[ \int _ { \sqrt { x } } ^ { x ^ { 2 } } f ( x , y ) d y \right] d x
C) 02[x3zf(x,y)dy]dx\int _ { 0 } ^ { 2 } \left[ \int _ { x ^ { 3 } } ^ { \sqrt { z } } f ( x , y ) d y \right] d x
D) 01[xx3f(x,y)dy]dx\int _ { 0 } ^ { 1 } \left[ \int _ { \sqrt { x } } ^ { x ^ { 3 } } f ( x , y ) d y \right] d x
E) 01[x3xf(x,y)dy]dx\int _ { 0 } ^ { 1 } \left[ \int _ { x ^ { 3 } } ^ { \sqrt { x } } f ( x , y ) d y \right] d x
Question
If the order of integration of 02[x24xf(x,y)dy]dx\int _ { 0 } ^ { 2 } \left[ \int _ { x ^ { 2 } } ^ { 4 x } f ( x , y ) d y \right] d x is switched, the result is

A) 08[y4y4f(x,y)dx]dy\int _ { 0 } ^ { 8 } \left[ \int _ { \sqrt [ 4 ] { y } } ^ { \frac { y } { 4 } } f ( x , y ) d x \right] d y
B) 08[y4y2f(x,y)dx]dy\int _ { 0 } ^ { 8 } \left[ \int _ { \frac { y } { 4 } } ^ { \sqrt [ 2 ] { y } } f ( x , y ) d x \right] d y
C) 04[y4y3f(x,y)dx]dy\int _ { 0 } ^ { 4 } \left[ \int _ { \frac { y } { 4 } } ^ { \sqrt [ 3 ] { y } } f ( x , y ) d x \right] d y
D) 04[yy4f(x,y)dx]dy\int _ { 0 } ^ { 4 } \left[ \int _ { \sqrt { y } } ^ { \frac { y } { 4 } } f ( x , y ) d x \right] d y
E) 02[y4y3f(x,y)dx]dy\int _ { 0 } ^ { 2 } \left[ \int _ { \frac { y } { 4 } } ^ { \sqrt [ 3 ] { y } } f ( x , y ) d x \right] d y
Question
For what value of c is the function
F(x,y)=cxy,0x2,0y4F ( x , y ) = c x y , 0 \leq x \leq 2,0 \leq y \leq 4 0, elsewhere
A joint probability density function for random variables X and Y?

A)1/16
B)1/8
C)1/4
D)1/2
Question
If R is the region bounded by x2+y2=9,x0,y0x ^ { 2 } + y ^ { 2 } = 9 , x \geq 0 , y \geq 0 then \iint R (2x+5y)dA( 2 x + 5 y ) d A in polar form is

A) π2π2[03r2(2cosθ+5sinθ)dr]dθ\int _ { - \frac { \pi } { 2 } } ^ { \frac { \pi } { 2 } } \left[ \int _ { 0 } ^ { 3 } r ^ { 2 } ( 2 \cos \theta + 5 \sin \theta ) d r \right] d \theta
B) ππ[03r2(2cosθ+5sinθ)dr]dθ\int _ { - \pi } ^ { \pi } \left[ \int _ { 0 } ^ { 3 } r ^ { 2 } ( 2 \cos \theta + 5 \sin \theta ) d r \right] d \theta
C) 0π2[03r2(2cosθ+5sinθ)dr]dθ\int _ { 0 } ^ { \frac { \pi } { 2 } } \left[ \int _ { 0 } ^ { 3 } r ^ { 2 } ( 2 \cos \theta + 5 \sin \theta ) d r \right] d \theta
D) 0π[03r2(2cosθ+5sinθ)dr]dθ\int _ { 0 } ^ { \pi } \left[ \int _ { 0 } ^ { 3 } r ^ { 2 } ( 2 \cos \theta + 5 \sin \theta ) d r \right] d \theta
E) 02π[03r2(2cosθ+5sinθ)dr]dθ\int _ { 0 } ^ { 2 \pi } \left[ \int _ { 0 } ^ { 3 } r ^ { 2 } ( 2 \cos \theta + 5 \sin \theta ) d r \right] d \theta
Question
If R is the region bounded by y=4x2,y=x,y=xy = \sqrt { 4 - x ^ { 2 } } , y = x , y = - x then \iint R (x2+y2)dA\left( x ^ { 2 } + y ^ { 2 } \right) d A in polar form is

A) π23π2[02r3dr]dθ\int _ { \frac { \pi } { 2 } } ^ { \frac { 3 \pi } { 2 } } \left[ \int _ { 0 } ^ { 2 } r ^ { 3 } d r \right] d \theta
B) π43π2[02r3dr]dθ\int _ { - \frac { \pi } { 4 } } ^ { \frac { 3 \pi } { 2 } } \left[ \int _ { 0 } ^ { 2 } r ^ { 3 } d r \right] d \theta
C) π43π2[02r3dr]dθ\int _ { \frac { \pi } { 4 } } ^ { \frac { 3 \pi } { 2 } } \left[ \int _ { 0 } ^ { 2 } r ^ { 3 } d r \right] d \theta
D) π43π4[02r3dr]dθ\int _ { - \frac { \pi } { 4 } } ^ { \frac { 3 \pi } { 4 } } \left[ \int _ { 0 } ^ { 2 } r ^ { 3 } d r \right] d \theta
E) π43π4[02r3dr]dθ\int _ { \frac { \pi } { 4 } } ^ { \frac { 3 \pi } { 4 } } \left[ \int _ { 0 } ^ { 2 } r ^ { 3 } d r \right] d \theta
Question
If R is the region bounded by x=1y2,y=xx = \sqrt { 1 - y ^ { 2 } } , y = x and the positive x-axis, then \iint R xdAx d A in polar form is

A) 0π4[01rcosθdr]dθ\int _ { 0 } ^ { \frac { \pi } { 4 } } \left[ \int _ { 0 } ^ { 1 } r \cos \theta d r \right] d \theta
B) 0π2[01rcosθdr]dθ\int _ { 0 } ^ { \frac { \pi } { 2 } } \left[ \int _ { 0 } ^ { 1 } r \cos \theta d r \right] d \theta
C) 0π4[01r2cosθdr]dθ\int _ { 0 } ^ { \frac { \pi } { 4 } } \left[ \int _ { 0 } ^ { 1 } r ^ { 2 } \cos \theta d r \right] d \theta
D) 0π2[01r2cosθdr]dθ\int _ { 0 } ^ { \frac { \pi } { 2 } } \left[ \int _ { 0 } ^ { 1 } r ^ { 2 } \cos \theta d r \right] d \theta
E) π4π2[01r2cosθdr]dθ\int _ { \frac { \pi } { 4 } } ^ { \frac { \pi } { 2 } } \left[ \int _ { 0 } ^ { 1 } r ^ { 2 } \cos \theta d r \right] d \theta
Question
If R is the region bounded by y=9x2y = \sqrt { 9 - x ^ { 2 } } in the first quadrant, then \iint R ydAy d A in polar form is

A) 0π2[03rsinθdr]dθ\int _ { 0 } ^ { \frac { \pi } { 2 } } \left[ \int _ { 0 } ^ { 3 } r \sin \theta d r \right] d \theta
B) 0π4[03rsinθdr]dθ\int _ { 0 } ^ { \frac { \pi } { 4 } } \left[ \int _ { 0 } ^ { 3 } r \sin \theta d r \right] d \theta
C) π4π4[03r2sinθdr]dθ\int _ { - \frac { \pi } { 4 } } ^ { \frac { \pi } { 4 } } \left[ \int _ { 0 } ^ { 3 } r ^ { 2 } \sin \theta d r \right] d \theta
D) 0π2[03r2sinθdr]dθ\int _ { 0 } ^ { \frac { \pi } { 2 } } \left[ \int _ { 0 } ^ { 3 } r ^ { 2 } \sin \theta d r \right] d \theta
E) π4π2[03r2sinθdr]dθ\int _ { \frac { \pi } { 4 } } ^ { \frac { \pi } { 2 } } \left[ \int _ { 0 } ^ { 3 } r ^ { 2 } \sin \theta d r \right] d \theta
Question
If R is the region bounded by x2+y2=4,x2+y2=9x ^ { 2 } + y ^ { 2 } = 4 , x ^ { 2 } + y ^ { 2 } = 9 then \iint R (x2+y)dA\left( x ^ { 2 } + y \right) d A in polar form is

A) 02π[23r(rcos2θ+sinθ)dr]dθ\int _ { 0 } ^ { 2 \pi } \left[ \int _ { 2 } ^ { 3 } r \left( r \cos ^ { 2 } \theta + \sin \theta \right) d r \right] d \theta
B) 02π[23r2(rcos2θ+sinθ)dr]dθ\int _ { 0 } ^ { 2 \pi } \left[ \int _ { 2 } ^ { 3 } r ^ { 2 } \left( r \cos ^ { 2 } \theta + \sin \theta \right) d r \right] d \theta
C) 0π[23r2(rcos2θ+sinθ)dr]dθ\int _ { 0 } ^ { \pi } \left[ \int _ { 2 } ^ { 3 } r ^ { 2 } \left( r \cos ^ { 2 } \theta + \sin \theta \right) d r \right] d \theta
D) 0π[23r(rcos2θ+sinθ)dr]dθ\int _ { 0 } ^ { \pi } \left[ \int _ { 2 } ^ { 3 } r \left( r \cos ^ { 2 } \theta + \sin \theta \right) d r \right] d \theta
E) ππ[23r2(rcos2θ+sinθ)dr]dθ\int _ { - \pi } ^ { \pi } \left[ \int _ { 2 } ^ { 3 } r ^ { 2 } \left( r \cos ^ { 2 } \theta + \sin \theta \right) d r \right] d \theta
Question
If R is the region bounded by x2+y2=1,x2+y2=9x ^ { 2 } + y ^ { 2 } = 1 , x ^ { 2 } + y ^ { 2 } = 9 then \iint R 5x2+y2dA5 \sqrt { x ^ { 2 } + y ^ { 2 } } d A in polar form is

A) 0π[135r2dr]dθ\int _ { 0 } ^ { \pi } \left[ \int _ { 1 } ^ { 3 } 5 r ^ { 2 } d r \right] d \theta
B) 02π[135rdr]dθ\int _ { 0 } ^ { 2 \pi } \left[ \int _ { 1 } ^ { 3 } 5 r d r \right] d \theta
C) 02π[135r2dr]dθ\int _ { 0 } ^ { 2 \pi } \left[ \int _ { 1 } ^ { 3 } 5 r ^ { 2 } d r \right] d \theta
D) 0π[135rdr]dθ\int _ { 0 } ^ { \pi } \left[ \int _ { 1 } ^ { 3 } 5 r d r \right] d \theta
E) π2π[135r2dr]dθ\int _ { \pi } ^ { 2 \pi } \left[ \int _ { 1 } ^ { 3 } 5 r ^ { 2 } d r \right] d \theta
Question
If R is the region in the first quadrant bounded by x2+y2=1,x2+y2=9x ^ { 2 } + y ^ { 2 } = 1 , x ^ { 2 } + y ^ { 2 } = 9 then \iint R ex2+y2dAe ^ { x ^ { 2 } + y ^ { 2 } } d A in polar form is

A) 0π2[23er2dr]dθ\int _ { 0 } ^ { \frac { \pi } { 2 } } \left[ \int _ { 2 } ^ { 3 } e ^ { r 2 } d r \right] d \theta
B) 0π2[23rer2dr]dθ\int _ { 0 } ^ { \frac { \pi } { 2 } } \left[ \int _ { 2 } ^ { 3 } r e ^ { r 2 } d r \right] d \theta
C) 0π4[23rer2dr]dθ\int _ { 0 } ^ { \frac { \pi } { 4 } } \left[ \int _ { 2 } ^ { 3 } r e ^ { r 2 } d r \right] d \theta
D) 0π4[23er2dr]dθ\int _ { 0 } ^ { \frac { \pi } { 4 } } \left[ \int _ { 2 } ^ { 3 } e ^ { r 2 } d r \right] d \theta
E) π4π2[23rer2dr]dθ\int _ { \frac { \pi } { 4 } } ^ { \frac { \pi } { 2 } } \left[ \int _ { 2 } ^ { 3 } r e ^ { r 2 } d r \right] d \theta
Question
Let I=02[04x2dy]dxI = \int _ { 0 } ^ { 2 } \left[ \int _ { 0 } ^ { \sqrt { 4 - x ^ { 2 } } } d y \right] d x Then I in polar form is

A) π2π[02rdr]dθ\int _ { \frac { \pi } { 2 } } ^ { \pi } \left[ \int _ { 0 } ^ { 2 } r d r \right] d \theta
B) 0π[02dr]dθ\int _ { 0 } ^ { \pi } \left[ \int _ { 0 } ^ { 2 } d r \right] d \theta
C) 0π[02rdr]dθ\int _ { 0 } ^ { \pi } \left[ \int _ { 0 } ^ { 2 } r d r \right] d \theta
D) 0π2[02dr]dθ\int _ { 0 } ^ { \frac { \pi } { 2 } } \left[ \int _ { 0 } ^ { 2 } d r \right] d \theta
E) 0π2[02rdr]dθ\int _ { 0 } ^ { \frac { \pi } { 2 } } \left[ \int _ { 0 } ^ { 2 } r d r \right] d \theta
Question
Let I=33[09x2(x2+y2)dy]dxI = \int _ { - 3 } ^ { 3 } \left[ \int _ { 0 } ^ { \sqrt { 9 - x ^ { 2 } } } \left( x ^ { 2 } + y ^ { 2 } \right) d y \right] d x Then I in polar form is

A) 0π[03r2dr]dθ\int _ { 0 } ^ { \pi } \left[ \int _ { 0 } ^ { 3 } r ^ { 2 } d r \right] d \theta
B) 0π[03r3dr]dθ\int _ { 0 } ^ { \pi } \left[ \int _ { 0 } ^ { 3 } r ^ { 3 } d r \right] d \theta
C) 0π2[03r3dr]dθ\int _ { 0 } ^ { \frac { \pi } { 2 } } \left[ \int _ { 0 } ^ { 3 } r ^ { 3 } d r \right] d \theta
D) 0π2[03r2dr]dθ\int _ { 0 } ^ { \frac { \pi } { 2 } } \left[ \int _ { 0 } ^ { 3 } r ^ { 2 } d r \right] d \theta
E) π2π[03r3dr]dθ\int _ { \frac { \pi } { 2 } } ^ { \pi } \left[ \int _ { 0 } ^ { 3 } r ^ { 3 } d r \right] d \theta
Question
Let I=01[01x21x2y2dy]dxI = \int _ { 0 } ^ { 1 } \left[ \int _ { 0 } ^ { \sqrt { 1 - x ^ { 2 } } } \sqrt { 1 - x ^ { 2 } - y ^ { 2 } } d y \right] d x Then I in polar form is

A) π2π[01r1r2dr]dθ\int _ { \frac { \pi } { 2 } } ^ { \pi } \left[ \int _ { 0 } ^ { 1 } r \sqrt { 1 - r ^ { 2 } } d r \right] d \theta
B) 0π[011r2dr]dθ\int _ { 0 } ^ { \pi } \left[ \int _ { 0 } ^ { 1 } \sqrt { 1 - r ^ { 2 } } d r \right] d \theta
C) 0π2[011r2dr]dθ\int _ { 0 } ^ { \frac { \pi } { 2 } } \left[ \int _ { 0 } ^ { 1 } \sqrt { 1 - r ^ { 2 } } d r \right] d \theta
D) 0π2[01r1r2dr]dθ\int _ { 0 } ^ { \frac { \pi } { 2 } } \left[ \int _ { 0 } ^ { 1 } r \sqrt { 1 - r ^ { 2 } } d r \right] d \theta
E) 0π[01r1r2dr]dθ\int _ { 0 } ^ { \pi } \left[ \int _ { 0 } ^ { 1 } r \sqrt { 1 - r ^ { 2 } } d r \right] d \theta
Question
Let I=02[04x2sin(x2+y2)dy]dxI = \int _ { 0 } ^ { 2 } \left[ \int _ { 0 } ^ { \sqrt { 4 - x ^ { 2 } } } \sin \left( x ^ { 2 } + y ^ { 2 } \right) d y \right] d x Then I in polar form is

A) π2π[02rsin(r2)dr]dθ\int _ { \frac { \pi } { 2 } } ^ { \pi } \left[ \int _ { 0 } ^ { 2 } r \sin \left( r ^ { 2 } \right) d r \right] d \theta
B) 0π[02sin(r2)dr]dθ\int _ { 0 } ^ { \pi } \left[ \int _ { 0 } ^ { 2 } \sin \left( r ^ { 2 } \right) d r \right] d \theta
C) 0π[02rsin(r2)dr]dθ\int _ { 0 } ^ { \pi } \left[ \int _ { 0 } ^ { 2 } r \sin \left( r ^ { 2 } \right) d r \right] d \theta
D) 0π2[02rsin(r2)dr]dθ\int _ { 0 } ^ { \frac { \pi } { 2 } } \left[ \int _ { 0 } ^ { 2 } r \sin \left( r ^ { 2 } \right) d r \right] d \theta
E) 0π2[02sin(r2)dr]dθ\int _ { 0 } ^ { \frac { \pi } { 2 } } \left[ \int _ { 0 } ^ { 2 } \sin \left( r ^ { 2 } \right) d r \right] d \theta
Question
Let I=03[09y2ex2+y2dx]dxI = \int _ { 0 } ^ { 3 } \left[ \int _ { 0 } ^ { \sqrt { 9 - y ^ { 2 } } } e ^ { \sqrt { x ^ { 2 } + y ^ { 2 } } } d x \right] d x Then I in polar form is

A) 0π2[03erdr]dθ\int _ { 0 } ^ { \frac { \pi } { 2 } } \left[ \int _ { 0 } ^ { 3 } e ^ { r } d r \right] d \theta
B) 0π2[03rerdr]dθ\int _ { 0 } ^ { \frac { \pi } { 2 } } \left[ \int _ { 0 } ^ { 3 } r e ^ { r } d r \right] d \theta
C) 0π[03rerdr]dθ\int _ { 0 } ^ { \pi } \left[ \int _ { 0 } ^ { 3 } r e ^ { r } d r \right] d \theta
D) 0π[03erdr]dθ\int _ { 0 } ^ { \pi } \left[ \int _ { 0 } ^ { 3 } e ^ { r } d r \right] d \theta
E) π2π[03rerdr]dθ\int _ { \frac { \pi } { 2 } } ^ { \pi } \left[ \int _ { 0 } ^ { 3 } r e ^ { r } d r \right] d \theta
Question
The area of the region inside r=2(1+cosθ)r = 2 ( 1 + \cos \theta ) and outside r = 2 is

A) 8+π28 + \frac { \pi } { 2 }
B) 8π28 - \frac { \pi } { 2 }
C) 8+π8 + \pi
D) 8π8 - \pi
E) 8+π2\frac { 8 + \pi } { 2 }
Question
The area of one leaf of rose r=2cos(2θ)r = 2 \cos ( 2 \theta ) is

A) π2\frac { \pi } { 2 }
B) π\pi
C) 3π2\frac { 3 \pi } { 2 }
D) 5π2\frac { 5 \pi } { 2 }
E) 2π2 \pi
Question
The volume of the solid bounded by z2+r2=9z ^ { 2 } + r ^ { 2 } = 9 is

A)9?
B)81?
C)18?
D)24?
E)36?
Question
The volume of the solid cut out of z2+r2=4z ^ { 2 } + r ^ { 2 } = 4 by r = 1 is

A) 4π(8+33)3\frac { 4 \pi ( 8 + 3 \sqrt { 3 } ) } { 3 }
B) 4π(833)3\frac { 4 \pi ( 8 - 3 \sqrt { 3 } ) } { 3 }
C) 2π(833)3\frac { 2 \pi ( 8 - 3 \sqrt { 3 } ) } { 3 }
D) 2π(8+33)3\frac { 2 \pi ( 8 + 3 \sqrt { 3 } ) } { 3 }
E) 4π(833)5\frac { 4 \pi ( 8 - 3 \sqrt { 3 } ) } { 5 }
Question
The volume of the solid cut out of z2+r2=16z ^ { 2 } + r ^ { 2 } = 16 by r=4cosθr = 4 \cos \theta is

A) 128(3π4)3\frac { 128 ( 3 \pi - 4 ) } { 3 }
B) 128(3π4)9\frac { 128 ( 3 \pi - 4 ) } { 9 }
C) 128(3π+4)9\frac { 128 ( 3 \pi + 4 ) } { 9 }
D) 128(3π2)9\frac { 128 ( 3 \pi - 2 ) } { 9 }
E) 128(3π+2)9\frac { 128 ( 3 \pi + 2 ) } { 9 }
Question
The volume of the solid above the polar plane bounded by z = 2r and r=1cosθr = 1 - \cos \theta is

A) 19π3\frac { 19 \pi } { 3 }
B) 17π3\frac { 17 \pi } { 3 }
C) 13π3\frac { 13 \pi } { 3 }
D) 11π3\frac { 11 \pi } { 3 }
E) 10π3\frac { 10 \pi } { 3 }
Question
The volume of the solid bounded by z=4r2,r=1z = 4 - r ^ { 2 } , r = 1 and the polar plane is

A) 11π2\frac { 11 \pi } { 2 }
B) 9π2\frac { 9 \pi } { 2 }
C) 7π2\frac { 7 \pi } { 2 }
D) 5π2\frac { 5 \pi } { 2 }
E) 3π2\frac { 3 \pi } { 2 }
Question
The volume of the solid bounded above by z=r2z = r ^ { 2 } and below by z=2rsinθz = 2 r \sin \theta is

A) π2\frac { \pi } { 2 }
B) 3π2\frac { 3 \pi } { 2 }
C) 5π2\frac { 5 \pi } { 2 }
D) 7π2\frac { 7 \pi } { 2 }
E) 11π3\frac { 11 \pi } { 3 }
Question
The center of mass of a lamina in the shape of a region in the xy-plane bounded by the x-axis, x = 3, y = 2 and the y-axis with area density ρ(x,y)=xy2\rho ( x , y ) = x y ^ { 2 } is

A) (1,34)\left( - 1 , \frac { 3 } { 4 } \right)
B) (1,34)\left( 1 , - \frac { 3 } { 4 } \right)
C) (1,34)\left( 1 , \frac { 3 } { 4 } \right)
D) (1,34)\left( - 1 , - \frac { 3 } { 4 } \right)
E) (1,32)\left( 1 , \frac { 3 } { 2 } \right)
Question
The center of mass of a lamina in the shape of a region in the xy-plane bounded by the x-axis, ρ(x,y)=y2\rho ( x , y ) = y ^ { 2 } and the y-axis with area density ρ(x,y)=y2\rho ( x , y ) = y ^ { 2 } is

A) (65,95)\left( - \frac { 6 } { 5 } , \frac { 9 } { 5 } \right)
B) (65,65)\left( \frac { 6 } { 5 } , - \frac { 6 } { 5 } \right)
C) (65,95)\left( \frac { 6 } { 5 } , - \frac { 9 } { 5 } \right)
D) (65,65)\left( \frac { 6 } { 5 } , \frac { 6 } { 5 } \right)
E) (65,95)\left( \frac { 6 } { 5 } , \frac { 9 } { 5 } \right)
Question
The center of mass of a lamina in the shape of a region in the xy-plane bounded by the x-axis, x + y = 3 and the y-axis with area density ρ(x,y)=x2+y2\rho ( x , y ) = x ^ { 2 } + y ^ { 2 } is

A) (65,65)\left( \frac { 6 } { 5 } , \frac { 6 } { 5 } \right)
B) (272,795)\left( \frac { 27 } { 2 } , \frac { 79 } { 5 } \right)
C) (232,815)\left( \frac { 23 } { 2 } , \frac { 81 } { 5 } \right)
D) (252,815)\left( \frac { 25 } { 2 } , \frac { 81 } { 5 } \right)
E) (212,815)\left( \frac { 21 } { 2 } , \frac { 81 } { 5 } \right)
Question
The center of mass of a lamina in the shape of a region in the xy-plane bounded by the y-axis, y = x and y = 2 - x with area density ρ(x,y)=6x+3y+3\rho ( x , y ) = 6 x + 3 y + 3 is

A) (78,1716)\left( \frac { 7 } { 8 } , \frac { 17 } { 16 } \right)
B) (38,1916)\left( \frac { 3 } { 8 } , \frac { 19 } { 16 } \right)
C) (58,1716)\left( \frac { 5 } { 8 } , \frac { 17 } { 16 } \right)
D) (38,1716)\left( \frac { 3 } { 8 } , \frac { 17 } { 16 } \right)
E) (18,1716)\left( \frac { 1 } { 8 } , \frac { 17 } { 16 } \right)
Question
The center of mass of a lamina in the shape of a region in the xy-plane bounded by the y-axis, y=x2y = x ^ { 2 } and y = 1 with area density ρ(x,y)=x+y\rho ( x , y ) = x + y is

A) (272,815)\left( \frac { 27 } { 2 } , \frac { 81 } { 5 } \right)
B) (613,190273)\left( \frac { 6 } { 13 } , \frac { 190 } { 273 } \right)
C) (2,32)\left( 2 , \frac { 3 } { 2 } \right)
D) (38,1716)\left( \frac { 3 } { 8 } , \frac { 17 } { 16 } \right)
E) (65,95)\left( \frac { 6 } { 5 } , \frac { 9 } { 5 } \right)
Question
The center of mass of a lamina in the shape of a region in the xy-plane bounded by the y-axis, 8y=x28 y = x ^ { 2 } and y = 2 with area density ρ(x,y)=y+1\rho ( x , y ) = y + 1 is

A) (272,815)\left( \frac { 27 } { 2 } , \frac { 81 } { 5 } \right)
B) (613,190273)\left( \frac { 6 } { 13 } , \frac { 190 } { 273 } \right)
C) (2,32)\left( 2 , \frac { 3 } { 2 } \right)
D) (38,1716)\left( \frac { 3 } { 8 } , \frac { 17 } { 16 } \right)
E) (3522,10277)\left( \frac { 35 } { 22 } , \frac { 102 } { 77 } \right)
Question
The center of mass of a lamina in the shape of a region in the xy-plane bounded by the x2+y2=1,x0,y0x ^ { 2 } + y ^ { 2 } = 1 , x \geq 0 , y \geq 0 with area density ρ(x,y)=x+y\rho ( x , y ) = x + y is

A) (3(2+π)16,3(2+π)32)\left( \frac { 3 ( 2 + \pi ) } { 16 } , \frac { 3 ( 2 + \pi ) } { 32 } \right)
B) (3(2π)32,3(2π)32)\left( \frac { 3 ( 2 - \pi ) } { 32 } , \frac { 3 ( 2 - \pi ) } { 32 } \right)
C) (3(2+π)32,3(2+π)32)\left( \frac { 3 ( 2 + \pi ) } { 32 } , \frac { 3 ( 2 + \pi ) } { 32 } \right)
D) (3(2+π)32,3(2π)32)\left( \frac { 3 ( 2 + \pi ) } { 32 } , \frac { 3 ( 2 - \pi ) } { 32 } \right)
E) (3(2π)32,3(2+π)32)\left( \frac { 3 ( 2 - \pi ) } { 32 } , \frac { 3 ( 2 + \pi ) } { 32 } \right)
Question
The center of mass of a lamina in the shape of a region in the xy-plane bounded by the y-axis, 3x+2y=183 x + 2 y = 18 and y = 0 with area density ρ(x,y)=xy\rho ( x , y ) = x y is

A) (272,815)\left( \frac { 27 } { 2 } , \frac { 81 } { 5 } \right)
B) (125,185)\left( \frac { 12 } { 5 } , \frac { 18 } { 5 } \right)
C) (3(2+π)32,3(2+π)32)\left( \frac { 3 ( 2 + \pi ) } { 32 } , \frac { 3 ( 2 + \pi ) } { 32 } \right)
D) (38,1716)\left( \frac { 3 } { 8 } , \frac { 17 } { 16 } \right)
E) (3522,10277)\left( \frac { 35 } { 22 } , \frac { 102 } { 77 } \right)
Question
The center of mass of a lamina in the shape of a region in the xy-plane bounded by the x-axis, y=sinxy = \sin x from x = 0 to x =?with area density ρ(x,y)=y\rho ( x , y ) = y is

A) (π2,916π)\left( \frac { \pi } { 2 } , \frac { 9 } { 16 \pi } \right)
B) (π2,9π16)\left( \frac { \pi } { 2 } , \frac { 9 \pi } { 16 } \right)
C) (π2,16π7)\left( \frac { \pi } { 2 } , \frac { 16 \pi } { 7 } \right)
D) (π2,169π)\left( \frac { \pi } { 2 } , \frac { 16 } { 9 \pi } \right)
E) (π2,16π9)\left( \frac { \pi } { 2 } , \frac { 16 \pi } { 9 } \right)
Question
The center of mass of a lamina in the shape of a region in the xy-plane bounded by y=xy = \sqrt { x } and y = x with area density ρ(x,y)=x\rho ( x , y ) = x is

A) (1528,58)\left( \frac { 15 } { 28 } , \frac { 5 } { 8 } \right)
B) (125,185)\left( \frac { 12 } { 5 } , \frac { 18 } { 5 } \right)
C) (1528,59)\left( \frac { 15 } { 28 } , \frac { 5 } { 9 } \right)
D) (12,169)\left( \frac { 1 } { 2 } , \frac { 16 } { 9 } \right)
E) (3522,10277)\left( \frac { 35 } { 22 } , \frac { 102 } { 77 } \right)
Question
The center of mass of a lamina in the shape of a region in the xy-plane bounded by x2+y2=4,x0,y0x ^ { 2 } + y ^ { 2 } = 4 , x \geq 0 , y \geq 0 and x + y = 2 with area density ρ(x,y)=xy\rho ( x , y ) = x y is

A) (1528,58)\left( \frac { 15 } { 28 } , \frac { 5 } { 8 } \right)
B) (125,185)\left( \frac { 12 } { 5 } , \frac { 18 } { 5 } \right)
C) (3522,10277)\left( \frac { 35 } { 22 } , \frac { 102 } { 77 } \right)
D) (85,85)\left( \frac { 8 } { 5 } , \frac { 8 } { 5 } \right)
E) (65,65)\left( \frac { 6 } { 5 } , \frac { 6 } { 5 } \right)
Question
The center of mass of a lamina in the shape of a region in the xy-plane bounded by x2+y2=1x ^ { 2 } + y ^ { 2 } = 1 and y =1 with area density ρ(x,y)=xy\rho ( x , y ) = x y is

A) (1528,58)\left( \frac { 15 } { 28 } , \frac { 5 } { 8 } \right)
B) (125,185)\left( \frac { 12 } { 5 } , \frac { 18 } { 5 } \right)
C) (45,45)\left( \frac { 4 } { 5 } , \frac { 4 } { 5 } \right)
D) (3522,10277)\left( \frac { 35 } { 22 } , \frac { 102 } { 77 } \right)
E) (85,85)\left( \frac { 8 } { 5 } , \frac { 8 } { 5 } \right)
Question
The center of mass of a lamina in the shape of a region in the xy-plane bounded by r=2(1+sinθ)r = 2 ( 1 + \sin \theta ) with area density ρ(r,θ)=r\rho ( r , \theta ) = r is

A) (1528,58)\left( \frac { 15 } { 28 } , \frac { 5 } { 8 } \right)
B) (0,2110)\left( 0 , \frac { 21 } { 10 } \right)
C) (45,45)\left( \frac { 4 } { 5 } , \frac { 4 } { 5 } \right)
D) (125,185)\left( \frac { 12 } { 5 } , \frac { 18 } { 5 } \right)
E) (85,85)\left( \frac { 8 } { 5 } , \frac { 8 } { 5 } \right)
Question
The center of mass of a lamina in the shape of a region in the xy-plane bounded by r=cos(2θ)r = \cos ( 2 \theta ) for the petal on the right with area density ρ(r,θ)=r\rho ( r , \theta ) = r is

A) (1528,58)\left( \frac { 15 } { 28 } , \frac { 5 } { 8 } \right)
B) (0,2110)\left( 0 , \frac { 21 } { 10 } \right)
C) (45,45)\left( \frac { 4 } { 5 } , \frac { 4 } { 5 } \right)
D) (16235,0)\left( \frac { 16 \sqrt { 2 } } { 35 } , 0 \right)
E) (85,85)\left( \frac { 8 } { 5 } , \frac { 8 } { 5 } \right)
Question
The center of mass of a lamina in the shape of a region in the xy-plane bounded by r=2cos(θ)r = 2 - \cos ( \theta ) with area density ρ(r,θ)=r\rho ( r , \theta ) = r is

A) (1528,58)\left( \frac { 15 } { 28 } , \frac { 5 } { 8 } \right)
B) (0,2110)\left( 0 , \frac { 21 } { 10 } \right)
C) (5744,0)\left( - \frac { 57 } { 44 } , 0 \right)
D) (1732280,0)\left( \frac { 173 \sqrt { 2 } } { 280 } , 0 \right)
E) (85,85)\left( \frac { 8 } { 5 } , \frac { 8 } { 5 } \right)
Question
The center of mass of a lamina in the shape of a region in the xy-plane bounded by r=2+cos(θ),0θπr = 2 + \cos ( \theta ) , 0 \leq \theta \leq \pi and the polar axis with area density ρ(r,θ)=sinθ\rho ( r , \theta ) = \sin \theta is

A) (1528,58)\left( \frac { 15 } { 28 } , \frac { 5 } { 8 } \right)
B) (0,2110)\left( 0 , \frac { 21 } { 10 } \right)
C) (5744,0)\left( - \frac { 57 } { 44 } , 0 \right)
D) (4265,19π52)\left( \frac { 42 } { 65 } , \frac { 19 \pi } { 52 } \right)
E) (85,85)\left( \frac { 8 } { 5 } , \frac { 8 } { 5 } \right)
Question
The moment of inertia of a lamina in the shape of a region in the xy-plane bounded by y=34x,x=4y = \frac { 3 } { 4 } x , x = 4 and the x-axis with area density ρ(x,y)=k\rho ( x , y ) = k about the x-axis is

A) 13k13 k
B) 9k9 k
C) 8k8 k
D) 11k11 k
E) 7k7 k
Question
The moment of inertia of a lamina in the shape of a region in the xy-plane bounded by x2+y2=1,y0x ^ { 2 } + y ^ { 2 } = 1 , y \geq 0 and the x-axis with area density ρ(x,y)=y\rho ( x , y ) = y about the x-axis is

A)13
B)9
C) 658\frac { 65 } { 8 }
D) 415\frac { 4 } { 15 }
E) 115\frac { 1 } { 15 }
Question
The moment of inertia of a lamina in the shape of a region in the xy-plane bounded by x=3,y=2,x=0x = 3 , y = 2 , x = 0 and the x-axis with area density ρ(x,y)=xy2\rho ( x , y ) = x y ^ { 2 } about the y-axis is

A)54
B)48
C)45
D)42
E)38
Unlock Deck
Sign up to unlock the cards in this deck!
Unlock Deck
Unlock Deck
1/181
auto play flashcards
Play
simple tutorial
Full screen (f)
exit full mode
Deck 15: Multiple Integrals
1
The partial integral 12xy2dy\int _ { 1 } ^ { 2 } \frac { x } { y ^ { 2 } } d y is

A) x42\frac { x } { 42 }
B) x3\frac { x } { 3 }
C) x2\frac { x } { 2 }
D) 2x2 x
E) 3x3 x
x2\frac { x } { 2 }
2
The partial integral 022xydx\int _ { 0 } ^ { 2 } \frac { 2 x } { y } d x is

A) 3y\frac { 3 } { y }
B) 4y\frac { 4 } { y }
C) 6y\frac { 6 } { y }
D) 3y2\frac { 3 } { y ^ { 2 } }
E) 32y2\frac { 3 } { 2 y ^ { 2 } }
4y\frac { 4 } { y }
3
The iterated integral 0π4[012xcos(y)dx]dy\int _ { 0 } ^ { \frac { \pi } { 4 } } \left[ \int _ { 0 } ^ { 1 } 2 x \cos ( y ) d x \right] d y is

A) 13\frac { 1 } { \sqrt { 3 } }
B) 12\frac { 1 } { 2 }
C) 13\frac { 1 } { 3 }
D) 15\frac { 1 } { 5 }
E) 12\frac { 1 } { \sqrt { 2 } }
12\frac { 1 } { \sqrt { 2 } }
4
The iterated integral 01[033x2y2dy]dx\int _ { 0 } ^ { 1 } \left[ \int _ { 0 } ^ { 3 } 3 x ^ { 2 } y ^ { 2 } d y \right] d x is

A)9
B)6
C)4
D) 12\frac { 1 } { 2 }
E) 14\frac { 1 } { 4 }
Unlock Deck
Unlock for access to all 181 flashcards in this deck.
Unlock Deck
k this deck
5
The iterated integral 0π[0π2xsin(y)dx]dy\int _ { 0 } ^ { \pi } \left[ \int _ { 0 } ^ { \pi } 2 x \sin ( y ) d x \right] d y is

A) π22\frac { \pi ^ { 2 } } { 2 }
B) π2\pi ^ { 2 }
C) 2π23\frac { 2 \pi ^ { 2 } } { 3 }
D) 2π22 \pi ^ { 2 }
E) π22\frac { \pi ^ { 2 } } { \sqrt { 2 } }
Unlock Deck
Unlock for access to all 181 flashcards in this deck.
Unlock Deck
k this deck
6
The iterated integral 1e[02xydx]dy\int _ { 1 } ^ { e } \left[ \int _ { 0 } ^ { 2 } \frac { x } { y } d x \right] d y is

A)4
B)2
C) 23\frac { 2 } { 3 }
D)1
E) 12\frac { 1 } { 2 }
Unlock Deck
Unlock for access to all 181 flashcards in this deck.
Unlock Deck
k this deck
7
The iterated integral 01[01exdx]dy\int _ { 0 } ^ { 1 } \left[ \int _ { 0 } ^ { 1 } e ^ { x } d x \right] d y is

A) e+2e + 2
B) e+1e + 1
C) e1e - 1
D) e2e - 2
E) ee
Unlock Deck
Unlock for access to all 181 flashcards in this deck.
Unlock Deck
k this deck
8
By Fubini's Theorem, the double integral \iint R (2x+3y2)dA\left( 2 x + 3 y ^ { 2 } \right) d A with R={(x,y):0x2,0y3}R = \{ ( x , y ) : 0 \leq x \leq 2,0 \leq y \leq 3 \} is

A)64
B)66
C)72
D)76
E)84
Unlock Deck
Unlock for access to all 181 flashcards in this deck.
Unlock Deck
k this deck
9
By Fubini's Theorem, the double integral \iint R 6(x2y)dA6 \left( x ^ { 2 } - y \right) d A with R={(x,y):1x2,0y1}R = \{ ( x , y ) : - 1 \leq x \leq 2,0 \leq y \leq 1 \} is

A)2
B)4
C)6
D)9
E)12
Unlock Deck
Unlock for access to all 181 flashcards in this deck.
Unlock Deck
k this deck
10
By Fubini's Theorem, the double integral \iint R xydA\sqrt { x y } d A with R={(x,y):0x1,0y1}R = \{ ( x , y ) : 0 \leq x \leq 1,0 \leq y \leq 1 \} is

A) 419\frac { 41 } { 9 }
B) 294\frac { 29 } { 4 }
C) 139\frac { 13 } { 9 }
D) 12\frac { 1 } { 2 }
E) 49\frac { 4 } { 9 }
Unlock Deck
Unlock for access to all 181 flashcards in this deck.
Unlock Deck
k this deck
11
By Fubini's Theorem, the double integral \iint R 4xeydA4 x e ^ { y } d A with R={(x,y):0x1,0y1}R = \{ ( x , y ) : 0 \leq x \leq 1,0 \leq y \leq 1 \} is

A) e1e - 1
B) e+1e + 1
C) 2(e1)2 ( e - 1 )
D) 2(e+1)2 ( e + 1 )
E) e+2e + 2
Unlock Deck
Unlock for access to all 181 flashcards in this deck.
Unlock Deck
k this deck
12
By Fubini's Theorem, the double integral \iint R 2xtan(y)dA2 x \tan ( y ) d A with R={(x,y):0x1,0yπ4}R = \left\{ ( x , y ) : 0 \leq x \leq 1,0 \leq y \leq \frac { \pi } { 4 } \right\} is

A) ln32\frac { \ln 3 } { 2 }
B) ln22\frac { \ln 2 } { 2 }
C) ln24\frac { \ln 2 } { 4 }
D) ln23\frac { \ln 2 } { 3 }
E) ln34\frac { \ln 3 } { 4 }
Unlock Deck
Unlock for access to all 181 flashcards in this deck.
Unlock Deck
k this deck
13
By Fubini's Theorem, the double integral \iint R 2xy+1dA\frac { 2 x } { y + 1 } d A with R={(x,y):0x1,0ye1}R = \{ ( x , y ) : 0 \leq x \leq 1,0 \leq y \leq e - 1 \} is

A) 32\frac { 3 } { 2 }
B) 12\frac { 1 } { 2 }
C) 14\frac { 1 } { 4 }
D) 13\frac { 1 } { 3 }
E)1
Unlock Deck
Unlock for access to all 181 flashcards in this deck.
Unlock Deck
k this deck
14
By Fubini's Theorem, the double integral \iint R yexdAy e ^ { x } d A with R={(x,y):0x1,0y2}R = \{ ( x , y ) : 0 \leq x \leq 1,0 \leq y \leq 2 \} is

A) e1e - 1
B) e+1e + 1
C) 2(e1)2 ( e - 1 )
D) 2(e+1)2 ( e + 1 )
E) e+2e + 2
Unlock Deck
Unlock for access to all 181 flashcards in this deck.
Unlock Deck
k this deck
15
By Fubini's Theorem, the double integral \iint R yxdA\frac { y } { x } d A with R={(x,y):1x2,0y2}R = \{ ( x , y ) : 1 \leq x \leq 2,0 \leq y \leq 2 \} is

A) ln2\ln 2
B) ln22\frac { \ln 2 } { 2 }
C) ln3\ln 3
D) ln4\ln 4
E) ln32\frac { \ln 3 } { 2 }
Unlock Deck
Unlock for access to all 181 flashcards in this deck.
Unlock Deck
k this deck
16
By Fubini's Theorem, the double integral \iint R yx2dA\frac { y } { x ^ { 2 } } d A with R={(x,y):1x2,0y2}R = \{ ( x , y ) : 1 \leq x \leq 2,0 \leq y \leq 2 \} is

A) 32\frac { 3 } { 2 }
B) 12\frac { 1 } { 2 }
C) 14\frac { 1 } { 4 }
D) 13\frac { 1 } { 3 }
E)1
Unlock Deck
Unlock for access to all 181 flashcards in this deck.
Unlock Deck
k this deck
17
The volume of the surface bounded by the graph of z=4x+2yz = 4 x + 2 y with 0x1,0y10 \leq x \leq 1,0 \leq y \leq 1 is

A)3
B) 52\frac { 5 } { 2 }
C)2
D) 43\frac { 4 } { 3 }
E)1
Unlock Deck
Unlock for access to all 181 flashcards in this deck.
Unlock Deck
k this deck
18
The volume of the surface bounded by the graph of z=6x+4yz = 6 x + 4 y with 0x1,0y10 \leq x \leq 1,0 \leq y \leq 1 is

A)2
B)3
C)4
D)5
E)7
Unlock Deck
Unlock for access to all 181 flashcards in this deck.
Unlock Deck
k this deck
19
The volume of the surface bounded by the graph of z=1x+1yz = \frac { 1 } { x } + \frac { 1 } { y } with 1x2,1y21 \leq x \leq 2,1 \leq y \leq 2 is

A) ln2\ln 2
B) ln4\ln 4
C) ln3\ln 3
D) ln14\ln \frac { 1 } { 4 }
E) ln32\frac { \ln 3 } { 2 }
Unlock Deck
Unlock for access to all 181 flashcards in this deck.
Unlock Deck
k this deck
20
The volume of the surface bounded by the graph of z=ex+yz = e ^ { x + y } with 0x1,0y10 \leq x \leq 1,0 \leq y \leq 1 is

A) e1e - 1
B) e+1e + 1
C) (e1)2( e - 1 ) ^ { 2 }
D) (e+1)2( e + 1 ) ^ { 2 }
E) (e+2)2( e + 2 ) ^ { 2 }
Unlock Deck
Unlock for access to all 181 flashcards in this deck.
Unlock Deck
k this deck
21
The iterated integral 12[02xxy3dy]dx\int _ { 1 } ^ { 2 } \left[ \int _ { 0 } ^ { 2 x } x y ^ { 3 } d y \right] d x is

A)56
B)48
C)42
D)36
E)32
Unlock Deck
Unlock for access to all 181 flashcards in this deck.
Unlock Deck
k this deck
22
The iterated integral 04[0ydx]dy\int _ { 0 } ^ { 4 } \left[ \int _ { 0 } ^ { y } d x \right] d y is

A)8
B)12
C)14
D)16
E)18
Unlock Deck
Unlock for access to all 181 flashcards in this deck.
Unlock Deck
k this deck
23
The iterated integral 04[0y9+y2dx]dy\int _ { 0 } ^ { 4 } \left[ \int _ { 0 } ^ { y } \sqrt { 9 + y ^ { 2 } } d x \right] d y is

A) 683\frac { 68 } { 3 }
B) 793\frac { 79 } { 3 }
C) 833\frac { 83 } { 3 }
D) 983\frac { 98 } { 3 }
E) 1013\frac { 101 } { 3 }
Unlock Deck
Unlock for access to all 181 flashcards in this deck.
Unlock Deck
k this deck
24
The iterated integral 11[1ezxydy]dx\int _ { - 1 } ^ { 1 } \left[ \int _ { 1 } ^ { e ^ { z } } \frac { x } { y } d y \right] d x is

A) 13\frac { 1 } { 3 }
B) 23\frac { 2 } { 3 }
C) 43\frac { 4 } { 3 }
D) 53\frac { 5 } { 3 }
E) 83\frac { 8 } { 3 }
Unlock Deck
Unlock for access to all 181 flashcards in this deck.
Unlock Deck
k this deck
25
The iterated integral 14[y2yyxdx]dy\int _ { 1 } ^ { 4 } \left[ \int _ { y ^ { 2 } } ^ { y } \sqrt { \frac { y } { x } } d x \right] d y is

A) 315- \frac { 31 } { 5 }
B) 335- \frac { 33 } { 5 }
C) 395- \frac { 39 } { 5 }
D) 415- \frac { 41 } { 5 }
E) 495- \frac { 49 } { 5 }
Unlock Deck
Unlock for access to all 181 flashcards in this deck.
Unlock Deck
k this deck
26
The iterated integral 14[x2xyxdy]dx\int _ { 1 } ^ { 4 } \left[ \int _ { x ^ { 2 } } ^ { x } \sqrt { \frac { y } { x } } d y \right] d x is

A) 47321- \frac { 473 } { 21 }
B) 45121- \frac { 451 } { 21 }
C) 40321- \frac { 403 } { 21 }
D) 40121- \frac { 401 } { 21 }
E) 38321- \frac { 383 } { 21 }
Unlock Deck
Unlock for access to all 181 flashcards in this deck.
Unlock Deck
k this deck
27
The iterated integral 03[0xx2exydy]dx\int _ { 0 } ^ { 3 } \left[ \int _ { 0 } ^ { x } x ^ { 2 } e ^ { x y } d y \right] d x is

A) e9+102\frac { e ^ { 9 } + 10 } { 2 }
B) e9102\frac { e ^ { 9 } - 10 } { 2 }
C) e7+102\frac { e ^ { 7 } + 10 } { 2 }
D) e7102\frac { e ^ { 7 } - 10 } { 2 }
E) e5+102\frac { e ^ { 5 } + 10 } { 2 }
Unlock Deck
Unlock for access to all 181 flashcards in this deck.
Unlock Deck
k this deck
28
The iterated integral π2π[0xsin(4xy)dy]dx\int _ { \frac { \pi } { 2 } } ^ { \pi } \left[ \int _ { 0 } ^ { x } \sin ( 4 x - y ) d y \right] d x is

A) 43\frac { 4 } { 3 }
B) 23\frac { 2 } { 3 }
C) 12\frac { 1 } { 2 }
D) 13\frac { 1 } { 3 }
E) 14\frac { 1 } { 4 }
Unlock Deck
Unlock for access to all 181 flashcards in this deck.
Unlock Deck
k this deck
29
If R is the region bounded by y=2x,y=x2y = 2 x , y = \frac { x } { 2 } and x=π2x = \frac { \pi } { 2 } then \iint R sinxdA\sin x d A is

A) 35\frac { 3 } { 5 }
B) 14\frac { 1 } { 4 }
C) 12\frac { 1 } { 2 }
D) 34\frac { 3 } { 4 }
E) 32\frac { 3 } { 2 }
Unlock Deck
Unlock for access to all 181 flashcards in this deck.
Unlock Deck
k this deck
30
If R is the region bounded by y = x, x = ? and the x-axis, then \iint R cos(x+y)dA\cos ( x + y ) d A is

A) 3- 3
B) 2- 2
C) 1- 1
D) 12- \frac { 1 } { 2 }
E) 14- \frac { 1 } { 4 }
Unlock Deck
Unlock for access to all 181 flashcards in this deck.
Unlock Deck
k this deck
31
If R is the region bounded by x2+y2=9x ^ { 2 } + y ^ { 2 } = 9 then \iint R x29x2dAx ^ { 2 } \sqrt { 9 - x ^ { 2 } } d A is

A) 5845\frac { 584 } { 5 }
B) 6325\frac { 632 } { 5 }
C) 6945\frac { 694 } { 5 }
D) 7445\frac { 744 } { 5 }
E) 6485\frac { 648 } { 5 }
Unlock Deck
Unlock for access to all 181 flashcards in this deck.
Unlock Deck
k this deck
32
If R is the region bounded by y = x, y = 2, and xy = 1, then \iint R y2x2dA\frac { y ^ { 2 } } { x ^ { 2 } } d A is

A) 154\frac { 15 } { 4 }
B) 134\frac { 13 } { 4 }
C) 114\frac { 11 } { 4 }
D) 94\frac { 9 } { 4 }
E) 54\frac { 5 } { 4 }
Unlock Deck
Unlock for access to all 181 flashcards in this deck.
Unlock Deck
k this deck
33
The area bounded by y=x3y = x ^ { 3 } and y=x2y = x ^ { 2 } is

A) 1312\frac { 13 } { 12 }
B) 1112\frac { 11 } { 12 }
C) 712\frac { 7 } { 12 }
D) 512\frac { 5 } { 12 }
E) 112\frac { 1 } { 12 }
Unlock Deck
Unlock for access to all 181 flashcards in this deck.
Unlock Deck
k this deck
34
The area bounded by y2=4xy ^ { 2 } = 4 x and x2=4yx ^ { 2 } = 4 y is

A) 173\frac { 17 } { 3 }
B) 163\frac { 16 } { 3 }
C) 143\frac { 14 } { 3 }
D) 133\frac { 13 } { 3 }
E) 113\frac { 11 } { 3 }
Unlock Deck
Unlock for access to all 181 flashcards in this deck.
Unlock Deck
k this deck
35
The area bounded by y=x29y = x ^ { 2 } - 9 and y=9x2y = 9 - x ^ { 2 } is

A)72
B)68
C)64
D)60
E)56
Unlock Deck
Unlock for access to all 181 flashcards in this deck.
Unlock Deck
k this deck
36
The area bounded by x2+y2=16x ^ { 2 } + y ^ { 2 } = 16 and y2=6xy ^ { 2 } = 6 x is

A) 4(93+2+6π)9\frac { 4 ( 9 \sqrt { 3 } + 2 + 6 \pi ) } { 9 }
B) 4(93+6π)9\frac { 4 ( 9 \sqrt { 3 } + 6 \pi ) } { 9 }
C) 4(932+6π)9\frac { 4 ( 9 \sqrt { 3 } - 2 + 6 \pi ) } { 9 }
D) 4(93+6π)9\frac { - 4 ( 9 \sqrt { 3 } + 6 \pi ) } { 9 }
E) 4(93+2+6π)9\frac { - 4 ( 9 \sqrt { 3 } + 2 + 6 \pi ) } { 9 }
Unlock Deck
Unlock for access to all 181 flashcards in this deck.
Unlock Deck
k this deck
37
If the order of integration of 04[x2f(x,y)dy]dx\int _ { 0 } ^ { 4 } \left[ \int _ { \sqrt { \sqrt { x } } } ^ { 2 } f ( x , y ) d y \right] d x is switched, the result is

A) 04[4y2f(x,y)dx]dy\int _ { 0 } ^ { 4 } \left[ \int _ { 4 } ^ { y ^ { 2 } } f ( x , y ) d x \right] d y
B) 02[2y2f(x,y)dx]dy\int _ { 0 } ^ { 2 } \left[ \int _ { 2 } ^ { y ^ { 2 } } f ( x , y ) d x \right] d y
C) 02[4y2f(x,y)dx]dy\int _ { 0 } ^ { 2 } \left[ \int _ { 4 } ^ { y ^ { 2 } } f ( x , y ) d x \right] d y
D) 02[0y2f(x,y)dx]dy\int _ { 0 } ^ { 2 } \left[ \int _ { 0 } ^ { y ^ { 2 } } f ( x , y ) d x \right] d y
E) 04[2y2f(x,y)dx]dy\int _ { 0 } ^ { 4 } \left[ \int _ { 2 } ^ { y ^ { 2 } } f ( x , y ) d x \right] d y
Unlock Deck
Unlock for access to all 181 flashcards in this deck.
Unlock Deck
k this deck
38
If the order of integration of 02[y22yf(x,y)dx]dy\int _ { 0 } ^ { 2 } \left[ \int _ { y ^ { 2 } } ^ { 2 y } f ( x , y ) d x \right] d y is switched, the result is

A) 04[x2xf(x,y)dy]dx\int _ { 0 } ^ { 4 } \left[ \int _ { \frac { x } { 2 } } ^ { \sqrt { x } } f ( x , y ) d y \right] d x
B) 02[x2xf(x,y)dy]dx\int _ { 0 } ^ { 2 } \left[ \int _ { \frac { x } { 2 } } ^ { \sqrt { x } } f ( x , y ) d y \right] d x
C) 04[xx2f(x,y)dy]dx\int _ { 0 } ^ { 4 } \left[ \int _ { \sqrt { x } } ^ { \frac { x } { 2 } } f ( x , y ) d y \right] d x
D) 02[xx2f(x,y)dy]dx\int _ { 0 } ^ { 2 } \left[ \int _ { \sqrt { x } } ^ { \frac { x } { 2 } } f ( x , y ) d y \right] d x
E) 01[x2xf(x,y)dy]dx\int _ { 0 } ^ { 1 } \left[ \int _ { \frac { x } { 2 } } ^ { \sqrt { x } } f ( x , y ) d y \right] d x
Unlock Deck
Unlock for access to all 181 flashcards in this deck.
Unlock Deck
k this deck
39
If the order of integration of 01[y2y3f(x,y)dx]dy\int _ { 0 } ^ { 1 } \left[ \int _ { y ^ { 2 } } ^ { \sqrt [ 3 ] { y } } f ( x , y ) d x \right] d y is switched, the result is

A) 13[x3xf(x,y)dy]dx\int _ { 1 } ^ { 3 } \left[ \int _ { x ^ { 3 } } ^ { \sqrt { x } } f ( x , y ) d y \right] d x
B) 02[xx2f(x,y)dy]dx\int _ { 0 } ^ { 2 } \left[ \int _ { \sqrt { x } } ^ { x ^ { 2 } } f ( x , y ) d y \right] d x
C) 02[x3zf(x,y)dy]dx\int _ { 0 } ^ { 2 } \left[ \int _ { x ^ { 3 } } ^ { \sqrt { z } } f ( x , y ) d y \right] d x
D) 01[xx3f(x,y)dy]dx\int _ { 0 } ^ { 1 } \left[ \int _ { \sqrt { x } } ^ { x ^ { 3 } } f ( x , y ) d y \right] d x
E) 01[x3xf(x,y)dy]dx\int _ { 0 } ^ { 1 } \left[ \int _ { x ^ { 3 } } ^ { \sqrt { x } } f ( x , y ) d y \right] d x
Unlock Deck
Unlock for access to all 181 flashcards in this deck.
Unlock Deck
k this deck
40
If the order of integration of 02[x24xf(x,y)dy]dx\int _ { 0 } ^ { 2 } \left[ \int _ { x ^ { 2 } } ^ { 4 x } f ( x , y ) d y \right] d x is switched, the result is

A) 08[y4y4f(x,y)dx]dy\int _ { 0 } ^ { 8 } \left[ \int _ { \sqrt [ 4 ] { y } } ^ { \frac { y } { 4 } } f ( x , y ) d x \right] d y
B) 08[y4y2f(x,y)dx]dy\int _ { 0 } ^ { 8 } \left[ \int _ { \frac { y } { 4 } } ^ { \sqrt [ 2 ] { y } } f ( x , y ) d x \right] d y
C) 04[y4y3f(x,y)dx]dy\int _ { 0 } ^ { 4 } \left[ \int _ { \frac { y } { 4 } } ^ { \sqrt [ 3 ] { y } } f ( x , y ) d x \right] d y
D) 04[yy4f(x,y)dx]dy\int _ { 0 } ^ { 4 } \left[ \int _ { \sqrt { y } } ^ { \frac { y } { 4 } } f ( x , y ) d x \right] d y
E) 02[y4y3f(x,y)dx]dy\int _ { 0 } ^ { 2 } \left[ \int _ { \frac { y } { 4 } } ^ { \sqrt [ 3 ] { y } } f ( x , y ) d x \right] d y
Unlock Deck
Unlock for access to all 181 flashcards in this deck.
Unlock Deck
k this deck
41
For what value of c is the function
F(x,y)=cxy,0x2,0y4F ( x , y ) = c x y , 0 \leq x \leq 2,0 \leq y \leq 4 0, elsewhere
A joint probability density function for random variables X and Y?

A)1/16
B)1/8
C)1/4
D)1/2
Unlock Deck
Unlock for access to all 181 flashcards in this deck.
Unlock Deck
k this deck
42
If R is the region bounded by x2+y2=9,x0,y0x ^ { 2 } + y ^ { 2 } = 9 , x \geq 0 , y \geq 0 then \iint R (2x+5y)dA( 2 x + 5 y ) d A in polar form is

A) π2π2[03r2(2cosθ+5sinθ)dr]dθ\int _ { - \frac { \pi } { 2 } } ^ { \frac { \pi } { 2 } } \left[ \int _ { 0 } ^ { 3 } r ^ { 2 } ( 2 \cos \theta + 5 \sin \theta ) d r \right] d \theta
B) ππ[03r2(2cosθ+5sinθ)dr]dθ\int _ { - \pi } ^ { \pi } \left[ \int _ { 0 } ^ { 3 } r ^ { 2 } ( 2 \cos \theta + 5 \sin \theta ) d r \right] d \theta
C) 0π2[03r2(2cosθ+5sinθ)dr]dθ\int _ { 0 } ^ { \frac { \pi } { 2 } } \left[ \int _ { 0 } ^ { 3 } r ^ { 2 } ( 2 \cos \theta + 5 \sin \theta ) d r \right] d \theta
D) 0π[03r2(2cosθ+5sinθ)dr]dθ\int _ { 0 } ^ { \pi } \left[ \int _ { 0 } ^ { 3 } r ^ { 2 } ( 2 \cos \theta + 5 \sin \theta ) d r \right] d \theta
E) 02π[03r2(2cosθ+5sinθ)dr]dθ\int _ { 0 } ^ { 2 \pi } \left[ \int _ { 0 } ^ { 3 } r ^ { 2 } ( 2 \cos \theta + 5 \sin \theta ) d r \right] d \theta
Unlock Deck
Unlock for access to all 181 flashcards in this deck.
Unlock Deck
k this deck
43
If R is the region bounded by y=4x2,y=x,y=xy = \sqrt { 4 - x ^ { 2 } } , y = x , y = - x then \iint R (x2+y2)dA\left( x ^ { 2 } + y ^ { 2 } \right) d A in polar form is

A) π23π2[02r3dr]dθ\int _ { \frac { \pi } { 2 } } ^ { \frac { 3 \pi } { 2 } } \left[ \int _ { 0 } ^ { 2 } r ^ { 3 } d r \right] d \theta
B) π43π2[02r3dr]dθ\int _ { - \frac { \pi } { 4 } } ^ { \frac { 3 \pi } { 2 } } \left[ \int _ { 0 } ^ { 2 } r ^ { 3 } d r \right] d \theta
C) π43π2[02r3dr]dθ\int _ { \frac { \pi } { 4 } } ^ { \frac { 3 \pi } { 2 } } \left[ \int _ { 0 } ^ { 2 } r ^ { 3 } d r \right] d \theta
D) π43π4[02r3dr]dθ\int _ { - \frac { \pi } { 4 } } ^ { \frac { 3 \pi } { 4 } } \left[ \int _ { 0 } ^ { 2 } r ^ { 3 } d r \right] d \theta
E) π43π4[02r3dr]dθ\int _ { \frac { \pi } { 4 } } ^ { \frac { 3 \pi } { 4 } } \left[ \int _ { 0 } ^ { 2 } r ^ { 3 } d r \right] d \theta
Unlock Deck
Unlock for access to all 181 flashcards in this deck.
Unlock Deck
k this deck
44
If R is the region bounded by x=1y2,y=xx = \sqrt { 1 - y ^ { 2 } } , y = x and the positive x-axis, then \iint R xdAx d A in polar form is

A) 0π4[01rcosθdr]dθ\int _ { 0 } ^ { \frac { \pi } { 4 } } \left[ \int _ { 0 } ^ { 1 } r \cos \theta d r \right] d \theta
B) 0π2[01rcosθdr]dθ\int _ { 0 } ^ { \frac { \pi } { 2 } } \left[ \int _ { 0 } ^ { 1 } r \cos \theta d r \right] d \theta
C) 0π4[01r2cosθdr]dθ\int _ { 0 } ^ { \frac { \pi } { 4 } } \left[ \int _ { 0 } ^ { 1 } r ^ { 2 } \cos \theta d r \right] d \theta
D) 0π2[01r2cosθdr]dθ\int _ { 0 } ^ { \frac { \pi } { 2 } } \left[ \int _ { 0 } ^ { 1 } r ^ { 2 } \cos \theta d r \right] d \theta
E) π4π2[01r2cosθdr]dθ\int _ { \frac { \pi } { 4 } } ^ { \frac { \pi } { 2 } } \left[ \int _ { 0 } ^ { 1 } r ^ { 2 } \cos \theta d r \right] d \theta
Unlock Deck
Unlock for access to all 181 flashcards in this deck.
Unlock Deck
k this deck
45
If R is the region bounded by y=9x2y = \sqrt { 9 - x ^ { 2 } } in the first quadrant, then \iint R ydAy d A in polar form is

A) 0π2[03rsinθdr]dθ\int _ { 0 } ^ { \frac { \pi } { 2 } } \left[ \int _ { 0 } ^ { 3 } r \sin \theta d r \right] d \theta
B) 0π4[03rsinθdr]dθ\int _ { 0 } ^ { \frac { \pi } { 4 } } \left[ \int _ { 0 } ^ { 3 } r \sin \theta d r \right] d \theta
C) π4π4[03r2sinθdr]dθ\int _ { - \frac { \pi } { 4 } } ^ { \frac { \pi } { 4 } } \left[ \int _ { 0 } ^ { 3 } r ^ { 2 } \sin \theta d r \right] d \theta
D) 0π2[03r2sinθdr]dθ\int _ { 0 } ^ { \frac { \pi } { 2 } } \left[ \int _ { 0 } ^ { 3 } r ^ { 2 } \sin \theta d r \right] d \theta
E) π4π2[03r2sinθdr]dθ\int _ { \frac { \pi } { 4 } } ^ { \frac { \pi } { 2 } } \left[ \int _ { 0 } ^ { 3 } r ^ { 2 } \sin \theta d r \right] d \theta
Unlock Deck
Unlock for access to all 181 flashcards in this deck.
Unlock Deck
k this deck
46
If R is the region bounded by x2+y2=4,x2+y2=9x ^ { 2 } + y ^ { 2 } = 4 , x ^ { 2 } + y ^ { 2 } = 9 then \iint R (x2+y)dA\left( x ^ { 2 } + y \right) d A in polar form is

A) 02π[23r(rcos2θ+sinθ)dr]dθ\int _ { 0 } ^ { 2 \pi } \left[ \int _ { 2 } ^ { 3 } r \left( r \cos ^ { 2 } \theta + \sin \theta \right) d r \right] d \theta
B) 02π[23r2(rcos2θ+sinθ)dr]dθ\int _ { 0 } ^ { 2 \pi } \left[ \int _ { 2 } ^ { 3 } r ^ { 2 } \left( r \cos ^ { 2 } \theta + \sin \theta \right) d r \right] d \theta
C) 0π[23r2(rcos2θ+sinθ)dr]dθ\int _ { 0 } ^ { \pi } \left[ \int _ { 2 } ^ { 3 } r ^ { 2 } \left( r \cos ^ { 2 } \theta + \sin \theta \right) d r \right] d \theta
D) 0π[23r(rcos2θ+sinθ)dr]dθ\int _ { 0 } ^ { \pi } \left[ \int _ { 2 } ^ { 3 } r \left( r \cos ^ { 2 } \theta + \sin \theta \right) d r \right] d \theta
E) ππ[23r2(rcos2θ+sinθ)dr]dθ\int _ { - \pi } ^ { \pi } \left[ \int _ { 2 } ^ { 3 } r ^ { 2 } \left( r \cos ^ { 2 } \theta + \sin \theta \right) d r \right] d \theta
Unlock Deck
Unlock for access to all 181 flashcards in this deck.
Unlock Deck
k this deck
47
If R is the region bounded by x2+y2=1,x2+y2=9x ^ { 2 } + y ^ { 2 } = 1 , x ^ { 2 } + y ^ { 2 } = 9 then \iint R 5x2+y2dA5 \sqrt { x ^ { 2 } + y ^ { 2 } } d A in polar form is

A) 0π[135r2dr]dθ\int _ { 0 } ^ { \pi } \left[ \int _ { 1 } ^ { 3 } 5 r ^ { 2 } d r \right] d \theta
B) 02π[135rdr]dθ\int _ { 0 } ^ { 2 \pi } \left[ \int _ { 1 } ^ { 3 } 5 r d r \right] d \theta
C) 02π[135r2dr]dθ\int _ { 0 } ^ { 2 \pi } \left[ \int _ { 1 } ^ { 3 } 5 r ^ { 2 } d r \right] d \theta
D) 0π[135rdr]dθ\int _ { 0 } ^ { \pi } \left[ \int _ { 1 } ^ { 3 } 5 r d r \right] d \theta
E) π2π[135r2dr]dθ\int _ { \pi } ^ { 2 \pi } \left[ \int _ { 1 } ^ { 3 } 5 r ^ { 2 } d r \right] d \theta
Unlock Deck
Unlock for access to all 181 flashcards in this deck.
Unlock Deck
k this deck
48
If R is the region in the first quadrant bounded by x2+y2=1,x2+y2=9x ^ { 2 } + y ^ { 2 } = 1 , x ^ { 2 } + y ^ { 2 } = 9 then \iint R ex2+y2dAe ^ { x ^ { 2 } + y ^ { 2 } } d A in polar form is

A) 0π2[23er2dr]dθ\int _ { 0 } ^ { \frac { \pi } { 2 } } \left[ \int _ { 2 } ^ { 3 } e ^ { r 2 } d r \right] d \theta
B) 0π2[23rer2dr]dθ\int _ { 0 } ^ { \frac { \pi } { 2 } } \left[ \int _ { 2 } ^ { 3 } r e ^ { r 2 } d r \right] d \theta
C) 0π4[23rer2dr]dθ\int _ { 0 } ^ { \frac { \pi } { 4 } } \left[ \int _ { 2 } ^ { 3 } r e ^ { r 2 } d r \right] d \theta
D) 0π4[23er2dr]dθ\int _ { 0 } ^ { \frac { \pi } { 4 } } \left[ \int _ { 2 } ^ { 3 } e ^ { r 2 } d r \right] d \theta
E) π4π2[23rer2dr]dθ\int _ { \frac { \pi } { 4 } } ^ { \frac { \pi } { 2 } } \left[ \int _ { 2 } ^ { 3 } r e ^ { r 2 } d r \right] d \theta
Unlock Deck
Unlock for access to all 181 flashcards in this deck.
Unlock Deck
k this deck
49
Let I=02[04x2dy]dxI = \int _ { 0 } ^ { 2 } \left[ \int _ { 0 } ^ { \sqrt { 4 - x ^ { 2 } } } d y \right] d x Then I in polar form is

A) π2π[02rdr]dθ\int _ { \frac { \pi } { 2 } } ^ { \pi } \left[ \int _ { 0 } ^ { 2 } r d r \right] d \theta
B) 0π[02dr]dθ\int _ { 0 } ^ { \pi } \left[ \int _ { 0 } ^ { 2 } d r \right] d \theta
C) 0π[02rdr]dθ\int _ { 0 } ^ { \pi } \left[ \int _ { 0 } ^ { 2 } r d r \right] d \theta
D) 0π2[02dr]dθ\int _ { 0 } ^ { \frac { \pi } { 2 } } \left[ \int _ { 0 } ^ { 2 } d r \right] d \theta
E) 0π2[02rdr]dθ\int _ { 0 } ^ { \frac { \pi } { 2 } } \left[ \int _ { 0 } ^ { 2 } r d r \right] d \theta
Unlock Deck
Unlock for access to all 181 flashcards in this deck.
Unlock Deck
k this deck
50
Let I=33[09x2(x2+y2)dy]dxI = \int _ { - 3 } ^ { 3 } \left[ \int _ { 0 } ^ { \sqrt { 9 - x ^ { 2 } } } \left( x ^ { 2 } + y ^ { 2 } \right) d y \right] d x Then I in polar form is

A) 0π[03r2dr]dθ\int _ { 0 } ^ { \pi } \left[ \int _ { 0 } ^ { 3 } r ^ { 2 } d r \right] d \theta
B) 0π[03r3dr]dθ\int _ { 0 } ^ { \pi } \left[ \int _ { 0 } ^ { 3 } r ^ { 3 } d r \right] d \theta
C) 0π2[03r3dr]dθ\int _ { 0 } ^ { \frac { \pi } { 2 } } \left[ \int _ { 0 } ^ { 3 } r ^ { 3 } d r \right] d \theta
D) 0π2[03r2dr]dθ\int _ { 0 } ^ { \frac { \pi } { 2 } } \left[ \int _ { 0 } ^ { 3 } r ^ { 2 } d r \right] d \theta
E) π2π[03r3dr]dθ\int _ { \frac { \pi } { 2 } } ^ { \pi } \left[ \int _ { 0 } ^ { 3 } r ^ { 3 } d r \right] d \theta
Unlock Deck
Unlock for access to all 181 flashcards in this deck.
Unlock Deck
k this deck
51
Let I=01[01x21x2y2dy]dxI = \int _ { 0 } ^ { 1 } \left[ \int _ { 0 } ^ { \sqrt { 1 - x ^ { 2 } } } \sqrt { 1 - x ^ { 2 } - y ^ { 2 } } d y \right] d x Then I in polar form is

A) π2π[01r1r2dr]dθ\int _ { \frac { \pi } { 2 } } ^ { \pi } \left[ \int _ { 0 } ^ { 1 } r \sqrt { 1 - r ^ { 2 } } d r \right] d \theta
B) 0π[011r2dr]dθ\int _ { 0 } ^ { \pi } \left[ \int _ { 0 } ^ { 1 } \sqrt { 1 - r ^ { 2 } } d r \right] d \theta
C) 0π2[011r2dr]dθ\int _ { 0 } ^ { \frac { \pi } { 2 } } \left[ \int _ { 0 } ^ { 1 } \sqrt { 1 - r ^ { 2 } } d r \right] d \theta
D) 0π2[01r1r2dr]dθ\int _ { 0 } ^ { \frac { \pi } { 2 } } \left[ \int _ { 0 } ^ { 1 } r \sqrt { 1 - r ^ { 2 } } d r \right] d \theta
E) 0π[01r1r2dr]dθ\int _ { 0 } ^ { \pi } \left[ \int _ { 0 } ^ { 1 } r \sqrt { 1 - r ^ { 2 } } d r \right] d \theta
Unlock Deck
Unlock for access to all 181 flashcards in this deck.
Unlock Deck
k this deck
52
Let I=02[04x2sin(x2+y2)dy]dxI = \int _ { 0 } ^ { 2 } \left[ \int _ { 0 } ^ { \sqrt { 4 - x ^ { 2 } } } \sin \left( x ^ { 2 } + y ^ { 2 } \right) d y \right] d x Then I in polar form is

A) π2π[02rsin(r2)dr]dθ\int _ { \frac { \pi } { 2 } } ^ { \pi } \left[ \int _ { 0 } ^ { 2 } r \sin \left( r ^ { 2 } \right) d r \right] d \theta
B) 0π[02sin(r2)dr]dθ\int _ { 0 } ^ { \pi } \left[ \int _ { 0 } ^ { 2 } \sin \left( r ^ { 2 } \right) d r \right] d \theta
C) 0π[02rsin(r2)dr]dθ\int _ { 0 } ^ { \pi } \left[ \int _ { 0 } ^ { 2 } r \sin \left( r ^ { 2 } \right) d r \right] d \theta
D) 0π2[02rsin(r2)dr]dθ\int _ { 0 } ^ { \frac { \pi } { 2 } } \left[ \int _ { 0 } ^ { 2 } r \sin \left( r ^ { 2 } \right) d r \right] d \theta
E) 0π2[02sin(r2)dr]dθ\int _ { 0 } ^ { \frac { \pi } { 2 } } \left[ \int _ { 0 } ^ { 2 } \sin \left( r ^ { 2 } \right) d r \right] d \theta
Unlock Deck
Unlock for access to all 181 flashcards in this deck.
Unlock Deck
k this deck
53
Let I=03[09y2ex2+y2dx]dxI = \int _ { 0 } ^ { 3 } \left[ \int _ { 0 } ^ { \sqrt { 9 - y ^ { 2 } } } e ^ { \sqrt { x ^ { 2 } + y ^ { 2 } } } d x \right] d x Then I in polar form is

A) 0π2[03erdr]dθ\int _ { 0 } ^ { \frac { \pi } { 2 } } \left[ \int _ { 0 } ^ { 3 } e ^ { r } d r \right] d \theta
B) 0π2[03rerdr]dθ\int _ { 0 } ^ { \frac { \pi } { 2 } } \left[ \int _ { 0 } ^ { 3 } r e ^ { r } d r \right] d \theta
C) 0π[03rerdr]dθ\int _ { 0 } ^ { \pi } \left[ \int _ { 0 } ^ { 3 } r e ^ { r } d r \right] d \theta
D) 0π[03erdr]dθ\int _ { 0 } ^ { \pi } \left[ \int _ { 0 } ^ { 3 } e ^ { r } d r \right] d \theta
E) π2π[03rerdr]dθ\int _ { \frac { \pi } { 2 } } ^ { \pi } \left[ \int _ { 0 } ^ { 3 } r e ^ { r } d r \right] d \theta
Unlock Deck
Unlock for access to all 181 flashcards in this deck.
Unlock Deck
k this deck
54
The area of the region inside r=2(1+cosθ)r = 2 ( 1 + \cos \theta ) and outside r = 2 is

A) 8+π28 + \frac { \pi } { 2 }
B) 8π28 - \frac { \pi } { 2 }
C) 8+π8 + \pi
D) 8π8 - \pi
E) 8+π2\frac { 8 + \pi } { 2 }
Unlock Deck
Unlock for access to all 181 flashcards in this deck.
Unlock Deck
k this deck
55
The area of one leaf of rose r=2cos(2θ)r = 2 \cos ( 2 \theta ) is

A) π2\frac { \pi } { 2 }
B) π\pi
C) 3π2\frac { 3 \pi } { 2 }
D) 5π2\frac { 5 \pi } { 2 }
E) 2π2 \pi
Unlock Deck
Unlock for access to all 181 flashcards in this deck.
Unlock Deck
k this deck
56
The volume of the solid bounded by z2+r2=9z ^ { 2 } + r ^ { 2 } = 9 is

A)9?
B)81?
C)18?
D)24?
E)36?
Unlock Deck
Unlock for access to all 181 flashcards in this deck.
Unlock Deck
k this deck
57
The volume of the solid cut out of z2+r2=4z ^ { 2 } + r ^ { 2 } = 4 by r = 1 is

A) 4π(8+33)3\frac { 4 \pi ( 8 + 3 \sqrt { 3 } ) } { 3 }
B) 4π(833)3\frac { 4 \pi ( 8 - 3 \sqrt { 3 } ) } { 3 }
C) 2π(833)3\frac { 2 \pi ( 8 - 3 \sqrt { 3 } ) } { 3 }
D) 2π(8+33)3\frac { 2 \pi ( 8 + 3 \sqrt { 3 } ) } { 3 }
E) 4π(833)5\frac { 4 \pi ( 8 - 3 \sqrt { 3 } ) } { 5 }
Unlock Deck
Unlock for access to all 181 flashcards in this deck.
Unlock Deck
k this deck
58
The volume of the solid cut out of z2+r2=16z ^ { 2 } + r ^ { 2 } = 16 by r=4cosθr = 4 \cos \theta is

A) 128(3π4)3\frac { 128 ( 3 \pi - 4 ) } { 3 }
B) 128(3π4)9\frac { 128 ( 3 \pi - 4 ) } { 9 }
C) 128(3π+4)9\frac { 128 ( 3 \pi + 4 ) } { 9 }
D) 128(3π2)9\frac { 128 ( 3 \pi - 2 ) } { 9 }
E) 128(3π+2)9\frac { 128 ( 3 \pi + 2 ) } { 9 }
Unlock Deck
Unlock for access to all 181 flashcards in this deck.
Unlock Deck
k this deck
59
The volume of the solid above the polar plane bounded by z = 2r and r=1cosθr = 1 - \cos \theta is

A) 19π3\frac { 19 \pi } { 3 }
B) 17π3\frac { 17 \pi } { 3 }
C) 13π3\frac { 13 \pi } { 3 }
D) 11π3\frac { 11 \pi } { 3 }
E) 10π3\frac { 10 \pi } { 3 }
Unlock Deck
Unlock for access to all 181 flashcards in this deck.
Unlock Deck
k this deck
60
The volume of the solid bounded by z=4r2,r=1z = 4 - r ^ { 2 } , r = 1 and the polar plane is

A) 11π2\frac { 11 \pi } { 2 }
B) 9π2\frac { 9 \pi } { 2 }
C) 7π2\frac { 7 \pi } { 2 }
D) 5π2\frac { 5 \pi } { 2 }
E) 3π2\frac { 3 \pi } { 2 }
Unlock Deck
Unlock for access to all 181 flashcards in this deck.
Unlock Deck
k this deck
61
The volume of the solid bounded above by z=r2z = r ^ { 2 } and below by z=2rsinθz = 2 r \sin \theta is

A) π2\frac { \pi } { 2 }
B) 3π2\frac { 3 \pi } { 2 }
C) 5π2\frac { 5 \pi } { 2 }
D) 7π2\frac { 7 \pi } { 2 }
E) 11π3\frac { 11 \pi } { 3 }
Unlock Deck
Unlock for access to all 181 flashcards in this deck.
Unlock Deck
k this deck
62
The center of mass of a lamina in the shape of a region in the xy-plane bounded by the x-axis, x = 3, y = 2 and the y-axis with area density ρ(x,y)=xy2\rho ( x , y ) = x y ^ { 2 } is

A) (1,34)\left( - 1 , \frac { 3 } { 4 } \right)
B) (1,34)\left( 1 , - \frac { 3 } { 4 } \right)
C) (1,34)\left( 1 , \frac { 3 } { 4 } \right)
D) (1,34)\left( - 1 , - \frac { 3 } { 4 } \right)
E) (1,32)\left( 1 , \frac { 3 } { 2 } \right)
Unlock Deck
Unlock for access to all 181 flashcards in this deck.
Unlock Deck
k this deck
63
The center of mass of a lamina in the shape of a region in the xy-plane bounded by the x-axis, ρ(x,y)=y2\rho ( x , y ) = y ^ { 2 } and the y-axis with area density ρ(x,y)=y2\rho ( x , y ) = y ^ { 2 } is

A) (65,95)\left( - \frac { 6 } { 5 } , \frac { 9 } { 5 } \right)
B) (65,65)\left( \frac { 6 } { 5 } , - \frac { 6 } { 5 } \right)
C) (65,95)\left( \frac { 6 } { 5 } , - \frac { 9 } { 5 } \right)
D) (65,65)\left( \frac { 6 } { 5 } , \frac { 6 } { 5 } \right)
E) (65,95)\left( \frac { 6 } { 5 } , \frac { 9 } { 5 } \right)
Unlock Deck
Unlock for access to all 181 flashcards in this deck.
Unlock Deck
k this deck
64
The center of mass of a lamina in the shape of a region in the xy-plane bounded by the x-axis, x + y = 3 and the y-axis with area density ρ(x,y)=x2+y2\rho ( x , y ) = x ^ { 2 } + y ^ { 2 } is

A) (65,65)\left( \frac { 6 } { 5 } , \frac { 6 } { 5 } \right)
B) (272,795)\left( \frac { 27 } { 2 } , \frac { 79 } { 5 } \right)
C) (232,815)\left( \frac { 23 } { 2 } , \frac { 81 } { 5 } \right)
D) (252,815)\left( \frac { 25 } { 2 } , \frac { 81 } { 5 } \right)
E) (212,815)\left( \frac { 21 } { 2 } , \frac { 81 } { 5 } \right)
Unlock Deck
Unlock for access to all 181 flashcards in this deck.
Unlock Deck
k this deck
65
The center of mass of a lamina in the shape of a region in the xy-plane bounded by the y-axis, y = x and y = 2 - x with area density ρ(x,y)=6x+3y+3\rho ( x , y ) = 6 x + 3 y + 3 is

A) (78,1716)\left( \frac { 7 } { 8 } , \frac { 17 } { 16 } \right)
B) (38,1916)\left( \frac { 3 } { 8 } , \frac { 19 } { 16 } \right)
C) (58,1716)\left( \frac { 5 } { 8 } , \frac { 17 } { 16 } \right)
D) (38,1716)\left( \frac { 3 } { 8 } , \frac { 17 } { 16 } \right)
E) (18,1716)\left( \frac { 1 } { 8 } , \frac { 17 } { 16 } \right)
Unlock Deck
Unlock for access to all 181 flashcards in this deck.
Unlock Deck
k this deck
66
The center of mass of a lamina in the shape of a region in the xy-plane bounded by the y-axis, y=x2y = x ^ { 2 } and y = 1 with area density ρ(x,y)=x+y\rho ( x , y ) = x + y is

A) (272,815)\left( \frac { 27 } { 2 } , \frac { 81 } { 5 } \right)
B) (613,190273)\left( \frac { 6 } { 13 } , \frac { 190 } { 273 } \right)
C) (2,32)\left( 2 , \frac { 3 } { 2 } \right)
D) (38,1716)\left( \frac { 3 } { 8 } , \frac { 17 } { 16 } \right)
E) (65,95)\left( \frac { 6 } { 5 } , \frac { 9 } { 5 } \right)
Unlock Deck
Unlock for access to all 181 flashcards in this deck.
Unlock Deck
k this deck
67
The center of mass of a lamina in the shape of a region in the xy-plane bounded by the y-axis, 8y=x28 y = x ^ { 2 } and y = 2 with area density ρ(x,y)=y+1\rho ( x , y ) = y + 1 is

A) (272,815)\left( \frac { 27 } { 2 } , \frac { 81 } { 5 } \right)
B) (613,190273)\left( \frac { 6 } { 13 } , \frac { 190 } { 273 } \right)
C) (2,32)\left( 2 , \frac { 3 } { 2 } \right)
D) (38,1716)\left( \frac { 3 } { 8 } , \frac { 17 } { 16 } \right)
E) (3522,10277)\left( \frac { 35 } { 22 } , \frac { 102 } { 77 } \right)
Unlock Deck
Unlock for access to all 181 flashcards in this deck.
Unlock Deck
k this deck
68
The center of mass of a lamina in the shape of a region in the xy-plane bounded by the x2+y2=1,x0,y0x ^ { 2 } + y ^ { 2 } = 1 , x \geq 0 , y \geq 0 with area density ρ(x,y)=x+y\rho ( x , y ) = x + y is

A) (3(2+π)16,3(2+π)32)\left( \frac { 3 ( 2 + \pi ) } { 16 } , \frac { 3 ( 2 + \pi ) } { 32 } \right)
B) (3(2π)32,3(2π)32)\left( \frac { 3 ( 2 - \pi ) } { 32 } , \frac { 3 ( 2 - \pi ) } { 32 } \right)
C) (3(2+π)32,3(2+π)32)\left( \frac { 3 ( 2 + \pi ) } { 32 } , \frac { 3 ( 2 + \pi ) } { 32 } \right)
D) (3(2+π)32,3(2π)32)\left( \frac { 3 ( 2 + \pi ) } { 32 } , \frac { 3 ( 2 - \pi ) } { 32 } \right)
E) (3(2π)32,3(2+π)32)\left( \frac { 3 ( 2 - \pi ) } { 32 } , \frac { 3 ( 2 + \pi ) } { 32 } \right)
Unlock Deck
Unlock for access to all 181 flashcards in this deck.
Unlock Deck
k this deck
69
The center of mass of a lamina in the shape of a region in the xy-plane bounded by the y-axis, 3x+2y=183 x + 2 y = 18 and y = 0 with area density ρ(x,y)=xy\rho ( x , y ) = x y is

A) (272,815)\left( \frac { 27 } { 2 } , \frac { 81 } { 5 } \right)
B) (125,185)\left( \frac { 12 } { 5 } , \frac { 18 } { 5 } \right)
C) (3(2+π)32,3(2+π)32)\left( \frac { 3 ( 2 + \pi ) } { 32 } , \frac { 3 ( 2 + \pi ) } { 32 } \right)
D) (38,1716)\left( \frac { 3 } { 8 } , \frac { 17 } { 16 } \right)
E) (3522,10277)\left( \frac { 35 } { 22 } , \frac { 102 } { 77 } \right)
Unlock Deck
Unlock for access to all 181 flashcards in this deck.
Unlock Deck
k this deck
70
The center of mass of a lamina in the shape of a region in the xy-plane bounded by the x-axis, y=sinxy = \sin x from x = 0 to x =?with area density ρ(x,y)=y\rho ( x , y ) = y is

A) (π2,916π)\left( \frac { \pi } { 2 } , \frac { 9 } { 16 \pi } \right)
B) (π2,9π16)\left( \frac { \pi } { 2 } , \frac { 9 \pi } { 16 } \right)
C) (π2,16π7)\left( \frac { \pi } { 2 } , \frac { 16 \pi } { 7 } \right)
D) (π2,169π)\left( \frac { \pi } { 2 } , \frac { 16 } { 9 \pi } \right)
E) (π2,16π9)\left( \frac { \pi } { 2 } , \frac { 16 \pi } { 9 } \right)
Unlock Deck
Unlock for access to all 181 flashcards in this deck.
Unlock Deck
k this deck
71
The center of mass of a lamina in the shape of a region in the xy-plane bounded by y=xy = \sqrt { x } and y = x with area density ρ(x,y)=x\rho ( x , y ) = x is

A) (1528,58)\left( \frac { 15 } { 28 } , \frac { 5 } { 8 } \right)
B) (125,185)\left( \frac { 12 } { 5 } , \frac { 18 } { 5 } \right)
C) (1528,59)\left( \frac { 15 } { 28 } , \frac { 5 } { 9 } \right)
D) (12,169)\left( \frac { 1 } { 2 } , \frac { 16 } { 9 } \right)
E) (3522,10277)\left( \frac { 35 } { 22 } , \frac { 102 } { 77 } \right)
Unlock Deck
Unlock for access to all 181 flashcards in this deck.
Unlock Deck
k this deck
72
The center of mass of a lamina in the shape of a region in the xy-plane bounded by x2+y2=4,x0,y0x ^ { 2 } + y ^ { 2 } = 4 , x \geq 0 , y \geq 0 and x + y = 2 with area density ρ(x,y)=xy\rho ( x , y ) = x y is

A) (1528,58)\left( \frac { 15 } { 28 } , \frac { 5 } { 8 } \right)
B) (125,185)\left( \frac { 12 } { 5 } , \frac { 18 } { 5 } \right)
C) (3522,10277)\left( \frac { 35 } { 22 } , \frac { 102 } { 77 } \right)
D) (85,85)\left( \frac { 8 } { 5 } , \frac { 8 } { 5 } \right)
E) (65,65)\left( \frac { 6 } { 5 } , \frac { 6 } { 5 } \right)
Unlock Deck
Unlock for access to all 181 flashcards in this deck.
Unlock Deck
k this deck
73
The center of mass of a lamina in the shape of a region in the xy-plane bounded by x2+y2=1x ^ { 2 } + y ^ { 2 } = 1 and y =1 with area density ρ(x,y)=xy\rho ( x , y ) = x y is

A) (1528,58)\left( \frac { 15 } { 28 } , \frac { 5 } { 8 } \right)
B) (125,185)\left( \frac { 12 } { 5 } , \frac { 18 } { 5 } \right)
C) (45,45)\left( \frac { 4 } { 5 } , \frac { 4 } { 5 } \right)
D) (3522,10277)\left( \frac { 35 } { 22 } , \frac { 102 } { 77 } \right)
E) (85,85)\left( \frac { 8 } { 5 } , \frac { 8 } { 5 } \right)
Unlock Deck
Unlock for access to all 181 flashcards in this deck.
Unlock Deck
k this deck
74
The center of mass of a lamina in the shape of a region in the xy-plane bounded by r=2(1+sinθ)r = 2 ( 1 + \sin \theta ) with area density ρ(r,θ)=r\rho ( r , \theta ) = r is

A) (1528,58)\left( \frac { 15 } { 28 } , \frac { 5 } { 8 } \right)
B) (0,2110)\left( 0 , \frac { 21 } { 10 } \right)
C) (45,45)\left( \frac { 4 } { 5 } , \frac { 4 } { 5 } \right)
D) (125,185)\left( \frac { 12 } { 5 } , \frac { 18 } { 5 } \right)
E) (85,85)\left( \frac { 8 } { 5 } , \frac { 8 } { 5 } \right)
Unlock Deck
Unlock for access to all 181 flashcards in this deck.
Unlock Deck
k this deck
75
The center of mass of a lamina in the shape of a region in the xy-plane bounded by r=cos(2θ)r = \cos ( 2 \theta ) for the petal on the right with area density ρ(r,θ)=r\rho ( r , \theta ) = r is

A) (1528,58)\left( \frac { 15 } { 28 } , \frac { 5 } { 8 } \right)
B) (0,2110)\left( 0 , \frac { 21 } { 10 } \right)
C) (45,45)\left( \frac { 4 } { 5 } , \frac { 4 } { 5 } \right)
D) (16235,0)\left( \frac { 16 \sqrt { 2 } } { 35 } , 0 \right)
E) (85,85)\left( \frac { 8 } { 5 } , \frac { 8 } { 5 } \right)
Unlock Deck
Unlock for access to all 181 flashcards in this deck.
Unlock Deck
k this deck
76
The center of mass of a lamina in the shape of a region in the xy-plane bounded by r=2cos(θ)r = 2 - \cos ( \theta ) with area density ρ(r,θ)=r\rho ( r , \theta ) = r is

A) (1528,58)\left( \frac { 15 } { 28 } , \frac { 5 } { 8 } \right)
B) (0,2110)\left( 0 , \frac { 21 } { 10 } \right)
C) (5744,0)\left( - \frac { 57 } { 44 } , 0 \right)
D) (1732280,0)\left( \frac { 173 \sqrt { 2 } } { 280 } , 0 \right)
E) (85,85)\left( \frac { 8 } { 5 } , \frac { 8 } { 5 } \right)
Unlock Deck
Unlock for access to all 181 flashcards in this deck.
Unlock Deck
k this deck
77
The center of mass of a lamina in the shape of a region in the xy-plane bounded by r=2+cos(θ),0θπr = 2 + \cos ( \theta ) , 0 \leq \theta \leq \pi and the polar axis with area density ρ(r,θ)=sinθ\rho ( r , \theta ) = \sin \theta is

A) (1528,58)\left( \frac { 15 } { 28 } , \frac { 5 } { 8 } \right)
B) (0,2110)\left( 0 , \frac { 21 } { 10 } \right)
C) (5744,0)\left( - \frac { 57 } { 44 } , 0 \right)
D) (4265,19π52)\left( \frac { 42 } { 65 } , \frac { 19 \pi } { 52 } \right)
E) (85,85)\left( \frac { 8 } { 5 } , \frac { 8 } { 5 } \right)
Unlock Deck
Unlock for access to all 181 flashcards in this deck.
Unlock Deck
k this deck
78
The moment of inertia of a lamina in the shape of a region in the xy-plane bounded by y=34x,x=4y = \frac { 3 } { 4 } x , x = 4 and the x-axis with area density ρ(x,y)=k\rho ( x , y ) = k about the x-axis is

A) 13k13 k
B) 9k9 k
C) 8k8 k
D) 11k11 k
E) 7k7 k
Unlock Deck
Unlock for access to all 181 flashcards in this deck.
Unlock Deck
k this deck
79
The moment of inertia of a lamina in the shape of a region in the xy-plane bounded by x2+y2=1,y0x ^ { 2 } + y ^ { 2 } = 1 , y \geq 0 and the x-axis with area density ρ(x,y)=y\rho ( x , y ) = y about the x-axis is

A)13
B)9
C) 658\frac { 65 } { 8 }
D) 415\frac { 4 } { 15 }
E) 115\frac { 1 } { 15 }
Unlock Deck
Unlock for access to all 181 flashcards in this deck.
Unlock Deck
k this deck
80
The moment of inertia of a lamina in the shape of a region in the xy-plane bounded by x=3,y=2,x=0x = 3 , y = 2 , x = 0 and the x-axis with area density ρ(x,y)=xy2\rho ( x , y ) = x y ^ { 2 } about the y-axis is

A)54
B)48
C)45
D)42
E)38
Unlock Deck
Unlock for access to all 181 flashcards in this deck.
Unlock Deck
k this deck
locked card icon
Unlock Deck
Unlock for access to all 181 flashcards in this deck.