Exam 15: Multiple Integrals

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Let and x=u+vx = u + v Then y=uvy = u - v is

Free
(Multiple Choice)
4.7/5
(41)
Correct Answer:
Verified

D

The spherical coordinates of the given rectangular coordinates (1, 3\sqrt { 3 } , 2) are

Free
(Multiple Choice)
4.7/5
(34)
Correct Answer:
Verified

E

The iterated integral π2π[0xsin(4xy)dy]dx\int _ { \frac { \pi } { 2 } } ^ { \pi } \left[ \int _ { 0 } ^ { x } \sin ( 4 x - y ) d y \right] d x is

Free
(Multiple Choice)
4.8/5
(42)
Correct Answer:
Verified

D

The volume of the solid bounded by z2+r2=9z ^ { 2 } + r ^ { 2 } = 9 is

(Multiple Choice)
4.7/5
(29)

The iterated integral 0π20π02eρ3ρ2dρdθdφ\int_{0}^{\frac{\pi}{2}} \int_{0}^{\pi} \int_{0}^{2}e^{\rho^{3}} \rho^{2} d \rho d \theta d \varphi is

(Multiple Choice)
4.8/5
(23)

The volume of the surface bounded by the graph of z=6x+4yz = 6 x + 4 y with 0x1,0y10 \leq x \leq 1,0 \leq y \leq 1 is

(Multiple Choice)
4.9/5
(42)

The surface area of the surface x2+y2+z2=1x ^ { 2 } + y ^ { 2 } + z ^ { 2 } = 1 above z = 0 and inside x2+y2=xx ^ { 2 } + y ^ { 2 } = x is

(Multiple Choice)
4.9/5
(36)

The center of mass of a lamina in the shape of a region in the xy-plane bounded by the x-axis, ρ(x,y)=y2\rho ( x , y ) = y ^ { 2 } and the y-axis with area density ρ(x,y)=y2\rho ( x , y ) = y ^ { 2 } is

(Multiple Choice)
4.8/5
(33)

The volume of the solid in the first octant bounded by and all the coordinate planes is

(Multiple Choice)
4.9/5
(32)

The iterated integral 11[1ezxydy]dx\int _ { - 1 } ^ { 1 } \left[ \int _ { 1 } ^ { e ^ { z } } \frac { x } { y } d y \right] d x is

(Multiple Choice)
4.8/5
(34)

If σ(x,y,z)=k\sigma ( x , y , z ) = k is the volume density of the solid inside x2+y22x=0x ^ { 2 } + y ^ { 2 } - 2 x = 0 below x2+y2=z2x ^ { 2 } + y ^ { 2 } = z ^ { 2 } and above z = 0 then its moment of inertia about the z-axis is

(Multiple Choice)
4.8/5
(34)

The moment of inertia of a lamina in the shape of a region in the xy-plane bounded by y=34x,x=4y = \frac { 3 } { 4 } x , x = 4 and the x-axis with area density ρ(x,y)=k\rho ( x , y ) = k about the x-axis is

(Multiple Choice)
4.9/5
(37)

The rectangular coordinates of the given spherical coordinates (1,π4,π6)\left( 1 , \frac { \pi } { 4 } , \frac { \pi } { 6 } \right) are

(Multiple Choice)
4.8/5
(34)

If R is the region bounded by y = x, x = ? and the x-axis, then \iint R cos(x+y)dA\cos ( x + y ) d A is

(Multiple Choice)
4.9/5
(32)

The volume of the solid bounded x=0,x=1y2,x2+y2=zx = 0 , x = 1 - y ^ { 2 } , x ^ { 2 } + y ^ { 2 } = z and z = 0 is

(Multiple Choice)
4.8/5
(32)

Let x=u33uv2x = u ^ { 3 } - 3 u v ^ { 2 } and y=3u2vv3y = 3 u ^ { 2 } v - v ^ { 3 } Then (x,y)(u,v)\frac { \partial ( x , y ) } { \partial ( u , v ) } is

(Multiple Choice)
4.8/5
(33)

By Fubini's Theorem, the double integral \iint R yx2dA\frac { y } { x ^ { 2 } } d A with R={(x,y):1x2,0y2}R = \{ ( x , y ) : 1 \leq x \leq 2,0 \leq y \leq 2 \} is

(Multiple Choice)
4.7/5
(39)

Let x=eucosvx = e ^ { u } \cos v and y=eusinvy = e ^ { u } \sin v Then (x,y)(u,v)\frac { \partial ( x , y ) } { \partial ( u , v ) } is

(Multiple Choice)
4.9/5
(32)

If the order of integration of 02[y22yf(x,y)dx]dy\int _ { 0 } ^ { 2 } \left[ \int _ { y ^ { 2 } } ^ { 2 y } f ( x , y ) d x \right] d y is switched, the result is

(Multiple Choice)
4.9/5
(31)

Let and x=u+v+wx = u + v + w Then y=u+vwy = u + v - w is

(Multiple Choice)
4.8/5
(41)
Showing 1 - 20 of 181
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)