Deck 14: Directional Derivatives, Gradients, and Extrema

Full screen (f)
exit full mode
Question
Let f(x,y)=x2y+y2f ( x , y ) = x ^ { 2 } y + y ^ { 2 } and u=12i+32j\mathbf { u } = \frac { 1 } { 2 } \mathbf { i } + \frac { \sqrt { 3 } } { 2 } \mathbf { j } Then the directional derivative of f at (-1, 2) in the direction of U\mathbf { U } is

A) 2+532\frac { - 2 + 5 \sqrt { 3 } } { 2 }
B) 4532\frac { 4 - 5 \sqrt { 3 } } { 2 }
C) 4+532\frac { - 4 + 5 \sqrt { 3 } } { 2 }
D) 4532\frac { - 4 - 5 \sqrt { 3 } } { 2 }
E) 4+532\frac { 4 + 5 \sqrt { 3 } } { 2 }
Use Space or
up arrow
down arrow
to flip the card.
Question
Let f(x,y)=xey+yexf ( x , y ) = x e ^ { y } + y e ^ { x } Then the directional derivative of f at (0,0) in the direction of the unit vector U\mathbf { U } which makes an angle of π6\frac { \pi } { 6 } from the positive x-axis is

A) 3+12\frac { \sqrt { 3 } + 1 } { 2 }
B) 312\frac { \sqrt { 3 } - 1 } { 2 }
C) 312- \frac { \sqrt { 3 } - 1 } { 2 }
D) 312- \frac { \sqrt { 3 } - 1 } { 2 } .
E) 3+32\frac { \sqrt { 3 } + 3 } { 2 }
Question
Let f(x,y)=exy+2x2y2f ( x , y ) = e ^ { x y } + 2 x ^ { 2 } y ^ { 2 } . Then the directional derivative of f at (0,1) in the direction of the unit vector U\mathbf { U } which is parallel to v=5i+12j\mathbf { v } = - 5 \mathbf { i } + 12 \mathbf { j } is

A) 512\frac { 5 } { 12 }
B) 512- \frac { 5 } { 12 }
C) 513\frac { 5 } { 13 }
D) 513- \frac { 5 } { 13 }
E) 713- \frac { 7 } { 13 }
Question
Let f(x,y)=lnx2+y2f ( x , y ) = \ln \sqrt { x ^ { 2 } + y ^ { 2 } } . Then the directional derivative of f at (3,4) in the direction of the unit vector U\mathbf { U } which is parallel to v=5i+12j\mathbf { v } = 5 \mathbf { i } + 12 \mathbf { j } is

A) 3+12\frac { \sqrt { 3 } + 1 } { 2 }
B) 15\sqrt { 15 }
C) 713- \frac { 7 } { 13 }
D) 513- \frac { 5 } { 13 }
E) 63325\frac { 63 } { 325 }
Question
Let f(x,y,z)=x2yxyz2f ( x , y , z ) = x ^ { 2 } y - x y z ^ { 2 } . Then the directional derivative of f at P=(0,1,2)P = ( 0,1,2 ) in the direction of the unit vector U\mathbf { U } which is parallel to PQ\overrightarrow { P Q } where Q=(1,4,3)Q = ( 1,4,3 ) is

A) 3+12\frac { \sqrt { 3 } + 1 } { 2 }
B) 426- \frac { 4 } { \sqrt { 26 } }
C) 4+532\frac { - 4 + 5 \sqrt { 3 } } { 2 }
D) 513- \frac { 5 } { 13 }
E) 78325\frac { 78 } { 325 }
Question
Let f(x,y,z)=x2y+y2z+z2xf ( x , y , z ) = x ^ { 2 } y + y ^ { 2 } z + z ^ { 2 } x Then the directional derivative of f at P=(1,2,1)P = ( 1,2 , - 1 ) in the direction of the unit vector u\mathbf { u } which is parallel to PQ\overrightarrow { P Q } where Q=(2,0,1)Q = ( 2,0,1 ) is

A) 5\sqrt { 5 }
B) 125\frac { 12 } { \sqrt { 5 } }
C)5
D) 513- \frac { 5 } { 13 }
E) 78325\frac { 78 } { 325 }
Question
The gradient of f(x,y,z)=x2yxyz2f ( x , y , z ) = x ^ { 2 } y - x y z ^ { 2 } at (0, 1, 2) is

A) 4k- 4 \mathbf { k }
B) 5i2j2k5 \mathbf { i } - 2 \mathbf { j } - 2 \mathbf { k }
C) 4i- 4 \mathbf { i }
D) 5i2j+2k5 \mathbf { i } - 2 \mathbf { j } + 2 \mathbf { k }
E) 4j- 4 \mathbf { j }
Question
The gradient of f(x,y,z)=x2y+y2z+z2xf ( x , y , z ) = x ^ { 2 } y + y ^ { 2 } z + z ^ { 2 } x at (1, 2, -1) is

A) 5i+3j+2k- 5 \mathbf { i } + 3 \mathbf { j } + 2 \mathbf { k }
B) 5i3j2k5 \mathbf { i } - 3 \mathbf { j } - 2 \mathbf { k }
C) 5i+3j+2k5 \mathbf { i } + 3 \mathbf { j } + 2 \mathbf { k }
D) 5i3j+2k- 5 \mathbf { i } - 3 \mathbf { j } + 2 \mathbf { k }
E) 5i3j+2k5 \mathbf { i } - 3 \mathbf { j } + 2 \mathbf { k }
Question
The gradient of f(x,y,z)=ztan1(yx)f ( x , y , z ) = z \tan ^ { - 1 } \left( \frac { y } { x } \right) at (1, 1, 3) is

A) 32i32j+π4k\frac { 3 } { 2 } \mathbf { i } - \frac { 3 } { 2 } \mathbf { j } + \frac { \pi } { 4 } \mathbf { k }
B) 32i+32j+π4k- \frac { 3 } { 2 } \mathbf { i } + \frac { 3 } { 2 } \mathbf { j } + \frac { \pi } { 4 } \mathbf { k }
C) 32i+32j+π4k\frac { 3 } { 2 } \mathbf { i } + \frac { 3 } { 2 } \mathbf { j } + \frac { \pi } { 4 } \mathbf { k }
D) 32i32j+π4k- \frac { 3 } { 2 } \mathbf { i } - \frac { 3 } { 2 } \mathbf { j } + \frac { \pi } { 4 } \mathbf { k }
E) 32i+32jπ4k- \frac { 3 } { 2 } \mathbf { i } + \frac { 3 } { 2 } \mathbf { j } - \frac { \pi } { 4 } \mathbf { k }
Question
The gradient of f(x,y,z)=x2+y2+z2f ( x , y , z ) = \sqrt { x ^ { 2 } + y ^ { 2 } + z ^ { 2 } } at (3, 0, -4) is

A) 35i45k\frac { 3 } { 5 } \mathbf { i } - \frac { 4 } { 5 } \mathbf { k }
B) 35i+45k\frac { 3 } { 5 } \mathbf { i } + \frac { 4 } { 5 } \mathbf { k }
C) 35i45k- \frac { 3 } { 5 } \mathbf { i } - \frac { 4 } { 5 } \mathbf { k }
D) 35i+45k- \frac { 3 } { 5 } \mathbf { i } + \frac { 4 } { 5 } \mathbf { k }
E) 35i45j\frac { 3 } { 5 } \mathbf { i } - \frac { 4 } { 5 } \mathbf { j }
Question
The gradient of f(x,y,z)=2x3+xy2+z2xf ( x , y , z ) = 2 x ^ { 3 } + x y ^ { 2 } + z ^ { 2 } x at (1, 1, 1) is

A) 8i+2j+2k- 8 \mathbf { i } + 2 \mathbf { j } + 2 \mathbf { k }
B) 8i2j2k8 \mathbf { i } - 2 \mathbf { j } - 2 \mathbf { k }
C) 8i+2j2k8 \mathbf { i } + 2 \mathbf { j } - 2 \mathbf { k }
D) 8i+2j+2k8 \mathbf { i } + 2 \mathbf { j } + 2 \mathbf { k }
E) 8i2j+2k8 \mathbf { i } - 2 \mathbf { j } + 2 \mathbf { k }
Question
The gradient of f(x,y,z)=y2+z24xzf ( x , y , z ) = y ^ { 2 } + z ^ { 2 } - 4 x z at (-2, 1, 3) is

A) 12i2j+14k- 12 \mathbf { i } - 2 \mathbf { j } + 14 \mathbf { k }
B) 12i+2j+14k- 12 \mathbf { i } + 2 \mathbf { j } + 14 \mathbf { k }
C) 12i+2j14k- 12 \mathbf { i } + 2 \mathbf { j } - 14 \mathbf { k }
D) 12i+2j+14k12 \mathbf { i } + 2 \mathbf { j } + 14 \mathbf { k }
E) 12i+2j14k12 \mathbf { i } + 2 \mathbf { j } - 14 \mathbf { k }
Question
Let f(x,y)=xy2+x2f ( x , y ) = x y ^ { 2 } + x ^ { 2 } . Then the maximum value of the directional derivative Duf(1,2)D _ { \mathrm { u } } f ( - 1,2 ) is

A) 5\sqrt { 5 }
B) 232 \sqrt { 3 }
C) 252 \sqrt { 5 }
D) 35\sqrt { 35 }
E)5
Question
Let f(x,y)=4xy+x2+2y2f ( x , y ) = 4 x y + x ^ { 2 } + 2 y ^ { 2 } . Then the maximum value of the directional derivative Duf(2,1)D _ { \mathrm { u } } f ( 2,1 ) is

A) 4134 \sqrt { 13 }
B) 3133 \sqrt { 13 }
C) 2132 \sqrt { 13 }
D) 13\sqrt { 13 }
E)13
Question
Let f(x,y)=2xey+3yexf ( x , y ) = 2 x e ^ { y } + 3 y e ^ { x } . Then the maximum value of the directional derivative Duf(0,0)D _ { \mathrm { u } } f ( 0,0 ) is

A) 4134 \sqrt { 13 }
B) 3133 \sqrt { 13 }
C) 2132 \sqrt { 13 }
D) 13\sqrt { 13 }
E)13
Question
Let f(x,y)=2xlnyf ( x , y ) = 2 x \ln y Then the maximum value of the directional derivative Duf(4,1)D _ { \mathrm { u } } f ( 4,1 ) is

A)24
B)4
C)16
D)8
E)2
Question
Let f(x,y)=xyx2+y2f ( x , y ) = \frac { x y } { x ^ { 2 } + y ^ { 2 } } . Then the maximum value of the directional derivative Duf(1,2)D _ { \mathrm { u } } f ( - 1,2 ) is

A)3
B) 3525\frac { 3 \sqrt { 5 } } { 25 }
C) 35\frac { 3 } { 5 }
D) 13\frac { 1 } { 3 }
E)5
Question
Let f(x,y)=x2+y2f ( x , y ) = \sqrt { x ^ { 2 } + y ^ { 2 } } . Then the maximum value of the directional derivative Duf(2,4)D _ { \mathrm { u } } f ( 2,4 ) is

A) 3\sqrt { 3 }
B)2
C)3
D)1
E)5
Question
Let f(x,y,z)=ztan1(yx)f ( x , y , z ) = z \tan ^ { - 1 } \left( \frac { y } { x } \right) . Then the maximum value of the directional derivative Duf(1,1,3)D _ { \mathrm { u } } f ( 1,1,3 ) is

A) 72+π22\frac { \sqrt { 72 + \pi ^ { 2 } } } { 2 }
B) 72+π24\frac { \sqrt { 72 + \pi ^ { 2 } } } { 4 }
C) 72π22\frac { \sqrt { 72 - \pi ^ { 2 } } } { 2 }
D) 72π24\frac { \sqrt { 72 - \pi ^ { 2 } } } { 4 }
E) 72+π23\frac { \sqrt { 72 + \pi ^ { 2 } } } { 3 }
Question
Let f(x,y,z)=x2+y2+z2f ( x , y , z ) = \sqrt { x ^ { 2 } + y ^ { 2 } + z ^ { 2 } } . Then the maximum value of the directional derivative Duf(3,4,0)D _ { \mathrm { u } } f ( 3,4,0 ) is

A)5
B)3
C)2
D)1
E) 13\frac { 1 } { 3 }
Question
An equation of the tangent plane to the surface 16z=4x2+y216 z = 4 x ^ { 2 } + y ^ { 2 } at (2, 4, 2) is

A) 2x+y2z=4- 2 x + y - 2 z = 4
B) 2xy+2z=42 x - y + 2 z = 4
C) 2x+y+2z=42 x + y + 2 z = 4
D) 2x+y2z=42 x + y - 2 z = 4
E) 2xy2z=42 x - y - 2 z = 4
Question
The symmetric equations of the normal line to the surface 16z=4x2+y216 z = 4 x ^ { 2 } + y ^ { 2 } at (2, 4, 2) are

A) x24=y4=z22\frac { x - 2 } { 4 } = y - 4 = \frac { z - 2 } { - 2 }
B) x22=y4=z24\frac { x - 2 } { 2 } = y - 4 = \frac { z - 2 } { - 4 }
C) x22=y4=z22\frac { x - 2 } { 2 } = y - 4 = \frac { z - 2 } { - 2 }
D) x22=y4=z22\frac { x - 2 } { 2 } = y - 4 = \frac { z - 2 } { 2 }
E) x22=y4=z22\frac { x - 2 } { - 2 } = y - 4 = \frac { z - 2 } { - 2 }
Question
An equation of the tangent plane to the surface 4x2+y2+2z2=264 x ^ { 2 } + y ^ { 2 } + 2 z ^ { 2 } = 26 at (1, -2, 3) is

A) 8x4y+12z=528 x - 4 y + 12 z = 52
B) 8x4y12z=528 x - 4 y - 12 z = 52
C) 8x+4y+12z=528 x + 4 y + 12 z = 52
D) 8x4y+12z=52- 8 x - 4 y + 12 z = 52
E) 8x+4y+12z=52- 8 x + 4 y + 12 z = 52
Question
The symmetric equations of the normal line to the surface 4x2+y2+2z2=264 x ^ { 2 } + y ^ { 2 } + 2 z ^ { 2 } = 26 at (1, -2, 3) are

A) x12=y+2=z33\frac { x - 1 } { 2 } = y + 2 = \frac { z - 3 } { 3 }
B) x13=y+2=z32\frac { x - 1 } { - 3 } = y + 2 = \frac { z - 3 } { 2 }
C) x13=y+2=z32\frac { x - 1 } { - 3 } = y + 2 = \frac { z - 3 } { - 2 }
D) x12=y+2=z33\frac { x - 1 } { 2 } = y + 2 = \frac { z - 3 } { - 3 }
E) x12=y+2=z33\frac { x - 1 } { - 2 } = y + 2 = \frac { z - 3 } { - 3 }
Question
An equation of the tangent plane to the surface 3z=x2+y223 z = x ^ { 2 } + y ^ { 2 } - 2 at (-2, -4, 6) is

A) 4x8y+3z=224 x - 8 y + 3 z = - 22
B) 4x+8y+3z=224 x + 8 y + 3 z = - 22
C) 4x+8y3z=224 x + 8 y - 3 z = - 22
D) 4x8y3z=224 x - 8 y - 3 z = - 22
E) 4x+8y+3z=22- 4 x + 8 y + 3 z = - 22
Question
The symmetric equations of the normal line to the surface 3z=x2+y223 z = x ^ { 2 } + y ^ { 2 } - 2 at (-2, -4, 6) are

A) x+24=y+48=z63\frac { x + 2 } { 4 } = \frac { y + 4 } { 8 } = \frac { z - 6 } { 3 }
B) x+24=y+48=z63\frac { x + 2 } { - 4 } = \frac { y + 4 } { 8 } = \frac { z - 6 } { 3 }
C) x+24=y+48=z63\frac { x + 2 } { 4 } = \frac { y + 4 } { - 8 } = \frac { z - 6 } { 3 }
D) x+24=y+48=z63\frac { x + 2 } { 4 } = \frac { y + 4 } { 8 } = \frac { z - 6 } { - 3 }
E) x+24=y+48=z63\frac { x + 2 } { - 4 } = \frac { y + 4 } { 8 } = \frac { z - 6 } { - 3 }
Question
An equation of the tangent plane to the surface y=excoszy = e ^ { x } \cos z at (1, e, 0) is

A) y=ex+zy = - e x + z
B) y=exzy = e x - z
C) y=ex+zy = e x + z
D) y=exy = - e x
E) y=exy = e x
Question
The symmetric equations of the normal line to the surface y=excoszy = e ^ { x } \cos z at (1, e, 0) are

A) x12e=ye,z=0\frac { x - 1 } { 2 e } = y - e , z = 0
B) x12e=ye,z=0\frac { x - 1 } { - 2 e } = y - e , z = 0
C) x13e=ye,z=0\frac { x - 1 } { 3 e } = y - e , z = 0
D) x1e=ye,z=0\frac { x - 1 } { e } = y - e , z = 0
E) x1e=ye,z=0\frac { x - 1 } { - e } = y - e , z = 0
Question
An equation of the tangent plane to the surface x2=12yx ^ { 2 } = 12 y at (-6, 3, 1) is

A) xy=7x - y = 7
B) x+y=7x + y = 7
C) x+y=9x + y = 9
D) xy=9x - y = 9
E) x+y=9- x + y = 9
Question
The symmetric equations of the normal line to the surface x2=12yx ^ { 2 } = 12 y at (-6, 3, 1) are

A) x+62=y3,z=1\frac { x + 6 } { 2 } = y - 3 , z = 1
B) x+6=y3,z=1x + 6 = y - 3 , z = 1
C) x+6=y32,z=1x + 6 = \frac { y - 3 } { 2 } , z = 1
D) x+63=y3,z=1\frac { x + 6 } { 3 } = y - 3 , z = 1
E) x+6=y33,z=1x + 6 = \frac { y - 3 } { 3 } , z = 1
Question
An equation of the tangent plane to the surface x+y+z=4\sqrt { x } + \sqrt { y } + \sqrt { z } = 4 at (1, 1, 4) is

A) 2x2y+z=82 x - 2 y + z = 8
B) 2x+2y+z=82 x + 2 y + z = 8
C) 2x+2yz=82 x + 2 y - z = 8
D) 2x2yz=82 x - 2 y - z = 8
E) 2x+2y+z=8- 2 x + 2 y + z = 8
Question
The symmetric equations of the normal line to the surface x+y+z=4\sqrt { x } + \sqrt { y } + \sqrt { z } = 4 at (1, 1, 4) are

A) x12=4(y1)=z4\frac { x - 1 } { 2 } = 4 ( y - 1 ) = z - 4
B) x14=4(y1)=z4=4(y1)=z4\frac { x - 1 } { - 4 } = 4 ( y - 1 ) = z - 4 = 4 ( y - 1 ) = z - 4
C) x14=4(y1)=z4\frac { x - 1 } { 4 } = 4 ( y - 1 ) = z - 4
D) 4(x1)=4(y1)=z4- 4 ( x - 1 ) = 4 ( y - 1 ) = z - 4
E) (x1)=(y1)=2(z4)( x - 1 ) = ( y - 1 ) = 2 ( z - 4 )
Question
An equation of the tangent plane to the surface zx2xy2yz2=18z x ^ { 2 } - x y ^ { 2 } - y z ^ { 2 } = 18 at (0, -2, 3) is

A) 4x9y+12z=544 x - 9 y + 12 z = 54
B) 4x9y12z=544 x - 9 y - 12 z = 54
C) 4x+9y+12z=54- 4 x + 9 y + 12 z = 54
D) 4x9y12z=54- 4 x - 9 y - 12 z = 54
E) 4x9y+12z=54- 4 x - 9 y + 12 z = 54
Question
The symmetric equations of the normal line to the surface zx2xy2yz2=18z x ^ { 2 } - x y ^ { 2 } - y z ^ { 2 } = 18 at (0, -2, 3) are

A) x4=y+29=z312\frac { x } { - 4 } = \frac { y + 2 } { - 9 } = \frac { z - 3 } { 12 }
B) x4=y+29=z312\frac { x } { - 4 } = \frac { y + 2 } { 9 } = \frac { z - 3 } { 12 }
C) x4=y+29=z312\frac { x } { 4 } = \frac { y + 2 } { - 9 } = \frac { z - 3 } { 12 }
D) x4=y+29=z312\frac { x } { 4 } = \frac { y + 2 } { 9 } = \frac { z - 3 } { 12 }
E) x9=y+24=z312\frac { x } { 9 } = \frac { y + 2 } { - 4 } = \frac { z - 3 } { 12 }
Question
An equation of the tangent plane to the surface x23+y23+z23=14x ^ { \frac { 2 } { 3 } } + y ^ { \frac { 2 } { 3 } } + z ^ { \frac { 2 } { 3 } } = 14 at (-8, 27, 1) is

A) 3x+2y6z=84- 3 x + 2 y - 6 z = - 84
B) 3x+2y+6z=843 x + 2 y + 6 z = - 84
C) 3x2y6z=843 x - 2 y - 6 z = - 84
D) 3x+2y6z=843 x + 2 y - 6 z = - 84
E) 3x2y+6z=843 x - 2 y + 6 z = - 84
Question
The symmetric equations of the normal line to the surface x23+y23+z23=14x ^ { \frac { 2 } { 3 } } + y ^ { \frac { 2 } { 3 } } + z ^ { \frac { 2 } { 3 } } = 14 at (-8, 27, 1) are

A) x+83=y272=z16\frac { x + 8 } { 3 } = \frac { y - 27 } { - 2 } = \frac { z - 1 } { - 6 }
B) x+83=y272=z16\frac { x + 8 } { - 3 } = \frac { y - 27 } { 2 } = \frac { z - 1 } { - 6 }
C) x+83=y272=z16\frac { x + 8 } { 3 } = \frac { y - 27 } { - 2 } = \frac { z - 1 } { 6 }
D) x+83=y272=z16\frac { x + 8 } { 3 } = \frac { y - 27 } { 2 } = \frac { z - 1 } { 6 }
E) x+83=y272=z16\frac { x + 8 } { - 3 } = \frac { y - 27 } { - 2 } = \frac { z - 1 } { 6 }
Question
An equation of the tangent plane to the surface x23y24z2=2x ^ { 2 } - 3 y ^ { 2 } - 4 z ^ { 2 } = 2 at (3, 1, 1) is

A) 3x3y4z=2- 3 x - 3 y - 4 z = 2
B) 3x+3y+4z=23 x + 3 y + 4 z = 2
C) 3x3y+4z=23 x - 3 y + 4 z = 2
D) 3x3y4z=23 x - 3 y - 4 z = 2
E) 3x+3y4z=23 x + 3 y - 4 z = 2
Question
The symmetric equations of the normal line to the surface x23y24z2=2x ^ { 2 } - 3 y ^ { 2 } - 4 z ^ { 2 } = 2 at (3, 1, 1) are

A) x33=y13=z14\frac { x - 3 } { - 3 } = \frac { y - 1 } { 3 } = \frac { z - 1 } { - 4 }
B) x33=y13=z14\frac { x - 3 } { 3 } = \frac { y - 1 } { - 3 } = \frac { z - 1 } { 4 }
C) x33=y13=z14\frac { x - 3 } { 3 } = \frac { y - 1 } { - 3 } = \frac { z - 1 } { - 4 }
D) x33=y13=z14\frac { x - 3 } { - 3 } = \frac { y - 1 } { - 3 } = \frac { z - 1 } { 4 }
E) x33=y13=z14\frac { x - 3 } { 3 } = \frac { y - 1 } { 3 } = \frac { z - 1 } { 4 }
Question
The set of points on 4x2+y2+2z2=504 x ^ { 2 } + y ^ { 2 } + 2 z ^ { 2 } = 50 at which the tangent plane is parallel to the xy-plane is

A) {(0,0,5),(0,0,5)}\{ ( 0,0 , - 5 ) , ( 0,0,5 ) \}
B) {(0,0,5)}\{ ( 0,0,5 ) \}
C) {(0,0,5)}\{ ( 0,0 , - 5 ) \}
D) {(0,0,3)}\{ ( 0,0 , - 3 ) \}
E) {(0,0,3)}\{ ( 0,0,3 ) \}
Question
The set of points on z=x23xy+y2z = x ^ { 2 } - 3 x y + y ^ { 2 } at which the tangent plane is parallel to the xy-plane is

A) {(0,0,3)}\{ ( 0,0,3 ) \}
B) {(0,0,2)}\{ ( 0,0,2 ) \}
C) {(0,0,1)}\{ ( 0,0,1 ) \}
D) {(0,0,0)}\{ ( 0,0,0 ) \}
E) {(0,0,5)}\{ ( 0,0,5 ) \}
Question
Let f(x,y)=x3+y26x2+y1f ( x , y ) = x ^ { 3 } + y ^ { 2 } - 6 x ^ { 2 } + y - 1 . Then f has a relative minimum at

A) (4,2)( 4 , - 2 )
B) (4,12)\left( - 4 , \frac { 1 } { 2 } \right)
C) (4,12)\left( - 4 , - \frac { 1 } { 2 } \right)
D) (4,12)\left( 4 , \frac { 1 } { 2 } \right)
E) (4,12)\left( 4 , - \frac { 1 } { 2 } \right)
Question
Let f(x,y)=1x64y+xyf ( x , y ) = \frac { 1 } { x } - \frac { 64 } { y } + x y . Then f has a relative maximum at

A) (14,16)\left( - \frac { 1 } { 4 } , 16 \right)
B) (14,16)\left( \frac { 1 } { 4 } , 16 \right)
C) (14,32)\left( \frac { 1 } { 4 } , 32 \right)
D) (14,16)\left( - \frac { 1 } { 4 } , - 16 \right)
E) (14,16)\left( \frac { 1 } { 4 } , - 16 \right)
Question
Let f(x,y)=4xy22x2yxf ( x , y ) = 4 x y ^ { 2 } - 2 x ^ { 2 } y - x . Then the set of saddle point(s) of f is

A) {(0,2,0)}\{ ( 0 , - 2,0 ) \}
B) {(0,2,0),(0,2,0)}\{ ( 0 , - 2,0 ) , ( 0,2,0 ) \}
C) {(0,12,0)}\left\{ \left( 0 , \frac { 1 } { 2 } , 0 \right) \right\}
D) {(0,12,0),(0,12,0)}\left\{ \left( 0 , - \frac { 1 } { 2 } , 0 \right) , \left( 0 , \frac { 1 } { 2 } , 0 \right) \right\}
E) {(0,12,0)}\left\{ \left( 0 , - \frac { 1 } { 2 } , 0 \right) \right\}
Question
Let f(x,y)=x3+y3+3y23x9y+2f ( x , y ) = x ^ { 3 } + y ^ { 3 } + 3 y ^ { 2 } - 3 x - 9 y + 2 . Then f has a relative minimum at

A) (1,1)( 1,1 )
B) (1,1)( - 1,1 )
C) (1,1)( 1 , - 1 )
D) (1,1)( - 1 , - 1 )
E) (1,12)\left( 1 , \frac { 1 } { 2 } \right)
Question
Let f(x,y)=x3+y3+3y23x9y+2f ( x , y ) = x ^ { 3 } + y ^ { 3 } + 3 y ^ { 2 } - 3 x - 9 y + 2 . Then f has a relative maximum at

A) (1,3)( 1,3 )
B) (1,3)( - 1 , - 3 )
C) (1,3)( 1 , - 3 )
D) (1,3)( - 1,3 )
E) (1,13)\left( - 1 , \frac { 1 } { 3 } \right)
Question
Let f(x,y)=x3+y3+3y23x9y+2f ( x , y ) = x ^ { 3 } + y ^ { 3 } + 3 y ^ { 2 } - 3 x - 9 y + 2 . Then the set of saddle points of f is

A) {(1,3,27)}\{ ( 1 , - 3,27 ) \}
B) {(1,1,1)}\{ ( - 1,1 , - 1 ) \}
C) {(1,3,27),(1,1,1)}\{ ( 1 , - 3,27 ) , ( - 1,1 , - 1 ) \}
D) {(1,3,27),(1,1,1)}\{ ( 1 , - 3,27 ) , ( - 1,1,1 ) \}
E) {(1,3,27),(1,1,1)}\{ ( 1 , - 3,27 ) , ( 1,1 , - 1 ) \}
Question
Let f(x,y)=sin(x+y)+sinx+sinyf ( x , y ) = \sin ( x + y ) + \sin x + \sin y . Then f has a relative maximum at

A) (π5,π5)\left( \frac { \pi } { 5 } , \frac { \pi } { 5 } \right)
B) (π3,π3)\left( - \frac { \pi } { 3 } , - \frac { \pi } { 3 } \right)
C) (π3,π3)\left( \frac { \pi } { 3 } , \frac { \pi } { 3 } \right)
D) (π3,π3)\left( - \frac { \pi } { 3 } , \frac { \pi } { 3 } \right)
E) (π3,π3)\left( \frac { \pi } { 3 } , - \frac { \pi } { 3 } \right)
Question
Let f(x,y)=sin(x+y)+sinx+sinyf ( x , y ) = \sin ( x + y ) + \sin x + \sin y . Then f has a relative minimum at

A) (5π3,5π3)\left( - \frac { 5 \pi } { 3 } , \frac { 5 \pi } { 3 } \right)
B) (5π3,5π3)\left( \frac { 5 \pi } { 3 } , \frac { 5 \pi } { 3 } \right)
C) (π3,π3)\left( \frac { \pi } { 3 } , \frac { \pi } { 3 } \right)
D) (π3,π3)\left( - \frac { \pi } { 3 } , \frac { \pi } { 3 } \right)
E) (5π3,5π3)\left( \frac { 5 \pi } { 3 } , - \frac { 5 \pi } { 3 } \right)
Question
Let f(x,y)=x2+y3f ( x , y ) = x ^ { 2 } + y ^ { 3 } . Then f has a relative minimum at

A) (2,3)( 2,3 )
B) (2,3)( - 2,3 )
C) (0,0)( 0,0 )
D) (2,3)( - 2 , - 3 )
E) (2,3)( 2 , - 3 )
Question
Let f(x,y)=x3+y318xyf ( x , y ) = x ^ { 3 } + y ^ { 3 } - 18 x y . Then f has a relative minimum at

A) (6,6)( 6 , - 6 )
B) (6,6)( 6,6 )
C) (4,2)( 4,2 )
D) (6,6)( - 6,6 )
E) (6,6)( - 6 , - 6 )
Question
Let f(x,y)=2x+2y+1x2+y2+1f ( x , y ) = \frac { 2 x + 2 y + 1 } { x ^ { 2 } + y ^ { 2 } + 1 } . Then f has a relative maximum at

A) (12,14)\left( \frac { 1 } { 2 } , \frac { 1 } { 4 } \right)
B) (12,12)\left( - \frac { 1 } { 2 } , - \frac { 1 } { 2 } \right)
C) (12,12)\left( \frac { 1 } { 2 } , - \frac { 1 } { 2 } \right)
D) (12,12)\left( - \frac { 1 } { 2 } , \frac { 1 } { 2 } \right)
E) (12,12)\left( \frac { 1 } { 2 } , \frac { 1 } { 2 } \right)
Question
Let f(x,y)=2x+2y+1x2+y2+1f ( x , y ) = \frac { 2 x + 2 y + 1 } { x ^ { 2 } + y ^ { 2 } + 1 } . Then f has a relative minimum at

A) (1,1)( - 1 , - 1 )
B) (1,1)( - 1,1 )
C) (1,1)( 1 , - 1 )
D) (1,1)( 1,1 )
E) (1,12)\left( - 1 , - \frac { 1 } { 2 } \right)
Question
Let f(x,y)=6x24yx2+2y3f ( x , y ) = 6 x - 24 y - x ^ { 2 } + 2 y ^ { 3 } . Then f has a relative maximum at

A) (3,1)( 3 , - 1 )
B) (3,1)( 3,1 )
C) (3,2)( 3 , - 2 )
D) (3,2)( 3,2 )
E) (3,2)( - 3,2 )
Question
Let f(x,y)=2x4+y2x22yf ( x , y ) = 2 x ^ { 4 } + y ^ { 2 } - x ^ { 2 } - 2 y . Then, the set of saddle points of f is

A) {(0,2,1)}\{ ( 0,2 , - 1 ) \}
B) {(0,1,1)}\{ ( 0,1,1 ) \}
C) {(0,1,1)}\{ ( 0,1 , - 1 ) \}
D) {(0,1,1)}\{ ( 0 , - 1,1 ) \}
E) {(0,1,1)}\{ ( 0 , - 1 , - 1 ) \}
Question
The absolute maximum of f(x,y)=88x+114y2x23y24xyf ( x , y ) = 88 x + 114 y - 2 x ^ { 2 } - 3 y ^ { 2 } - 4 x y on the set {(x,y):0x50,0y1253}\left\{ ( x , y ) : 0 \leq x \leq 50,0 \leq y \leq \frac { 125 } { 3 } \right\} is

A)1137
B)1067
C)989
D)923
E)891
Question
The absolute maximum of f(x,y)=2x+2yx2y2+2f ( x , y ) = 2 x + 2 y - x ^ { 2 } - y ^ { 2 } + 2 on or inside the triangle with vertices (0, 0), (9, 0), and (0,9) is

A)10
B)8
C)6
D)4
E)2
Question
The absolute minimum of f(x,y)=2x+2yx2y2+2f ( x , y ) = 2 x + 2 y - x ^ { 2 } - y ^ { 2 } + 2 on or inside the triangle with vertices (0, 0), (9, 0), and (0,9) is

A)-69
B)-61
C)-56
D)-51
E)-47
Question
The absolute maximum of f(x,y)=2x2+y24x4y+1f ( x , y ) = 2 x ^ { 2 } + y ^ { 2 } - 4 x - 4 y + 1 on or inside the triangle with vertices (0,0), (1,2), and (0,2) is

A)5
B)4
C)3
D)2
E)1
Question
The absolute minimum of f(x,y)=2x2+y24x4y+1f ( x , y ) = 2 x ^ { 2 } + y ^ { 2 } - 4 x - 4 y + 1 on or inside the triangle with vertices (0,0), (1,2), and (0,2) is

A)1137
B)-61
C)-5
D)4
E)1
Question
The absolute maximum of f(x,y)=x2+y2+xy6xf ( x , y ) = x ^ { 2 } + y ^ { 2 } + x y - 6 x on or inside the rectangle with vertices (0, -3), (5, -3), (5, 3), and (0, 3) is

A)19
B)16
C)14
D)12
E)8
Question
Let f(x,y)=x2+yf ( x , y ) = x ^ { 2 } + y with constraint x2+y2=9x ^ { 2 } + y ^ { 2 } = 9 . Then f has a relative minimum at

A) (3,0)( - 3,0 )
B) (0,3)( 0,3 )
C) (0,3)( 0 , - 3 )
D) (3,0)( 3,0 )
E) (2,5)( 2 , \sqrt { 5 } )
Question
Let f(x,y)=5x3yf ( x , y ) = 5 x - 3 y with constraint x2+y2=136x ^ { 2 } + y ^ { 2 } = 136 . Then f has a relative minimum at

A) (6,10)( 6,10 )
B) (6,10)( 6 , - 10 )
C) (10,6)( - 10,6 )
D) (10,6)( 10,6 )
E) (10,6)( 10 , - 6 )
Question
Let f(x,y)=xyf ( x , y ) = x y with constraint 3x2+y2=63 x ^ { 2 } + y ^ { 2 } = 6 . Then f has a relative minimum at

A) (1,3)( 1 , \sqrt { 3 } )
B) (1,3)( - 1 , \sqrt { 3 } )
C) (1,3)( 1 , - \sqrt { 3 } )
D) (±1,±3)(±1,3)( \pm 1 , \pm \sqrt { 3 } ) ( \pm 1 , \mp \sqrt { 3 } )
E) (±1,3)( \pm 1 , \mp \sqrt { 3 } )
Question
Let f(x,y)=x2+y2f ( x , y ) = x ^ { 2 } + y ^ { 2 } with constraint 3x+y=33 x + y = 3 . Then f has a relative minimum at

A) (910,310)\left( \frac { 9 } { 10 } , \frac { 3 } { 10 } \right)
B) (910,310)\left( - \frac { 9 } { 10 } , \frac { 3 } { 10 } \right)
C) (910,310)\left( \frac { 9 } { 10 } , - \frac { 3 } { 10 } \right)
D) (310,910)\left( \frac { 3 } { 10 } , \frac { 9 } { 10 } \right)
E) (310,910)\left( \frac { 3 } { 10 } , - \frac { 9 } { 10 } \right)
Question
Let f(x,y,z)=xyzf ( x , y , z ) = x y z with constraint x+y+z=1x + y + z = 1 . Assume that x,y,z0x , y , z \geq 0 . Then f has a relative maximum at

A) (13,16,12)\left( \frac { 1 } { 3 } , \frac { 1 } { 6 } , \frac { 1 } { 2 } \right)
B) (13,12,16)\left( \frac { 1 } { 3 } , \frac { 1 } { 2 } , \frac { 1 } { 6 } \right)
C) (12,16,13)\left( \frac { 1 } { 2 } , \frac { 1 } { 6 } , \frac { 1 } { 3 } \right)
D) (13,13,13)\left( \frac { 1 } { 3 } , \frac { 1 } { 3 } , \frac { 1 } { 3 } \right)
E) (12,13,16)\left( \frac { 1 } { 2 } , \frac { 1 } { 3 } , \frac { 1 } { 6 } \right)
Question
Let f(x,y,z)=x2y2f ( x , y , z ) = x ^ { 2 } - y ^ { 2 } with constraint x2+2y2+3z2=1x ^ { 2 } + 2 y ^ { 2 } + 3 z ^ { 2 } = 1 . Then f has a relative minimum at

A) (±1,0,0)( \pm 1,0,0 )
B) (1,0,0)( - 1,0,0 )
C) (1,0,0)( 1,0,0 )
D) (12,0,12)\left( \frac { 1 } { 2 } , 0 , \frac { 1 } { 2 } \right)
E) (12,0,12)\left( \frac { 1 } { 2 } , 0 , - \frac { 1 } { 2 } \right)
Question
Let f(x,y,z)=x2+y2+z2f ( x , y , z ) = x ^ { 2 } + y ^ { 2 } + z ^ { 2 } with constraint xyz = 1. Then f has a relative minimum at

A) (1,±1,±1)( 1 , \pm 1 , \pm 1 )
B) (1,±1,1)( - 1 , \pm 1 , \mp 1 )
C) (1,1,1),(1,1,1)( 1,1,1 ) , ( - 1 , - 1 , - 1 )
D) (1,1,1),(1,1,1)( 1 , - 1 , - 1 ) , ( - 1,1 , - 1 )
E) (1,±1,±1),(1,±1,1)( 1 , \pm 1 , \pm 1 ) , ( - 1 , \pm 1 , \mp 1 )
Question
Let f(x,y,z)=x+y+zf ( x , y , z ) = x + y + z with constraint x2+y2+z2=9x ^ { 2 } + y ^ { 2 } + z ^ { 2 } = 9 . Then f has a relative maximum at

A) (3,3,3)( \sqrt { 3 } , \sqrt { 3 } , - \sqrt { 3 } )
B) (3,3,3)( \sqrt { 3 } , - \sqrt { 3 } , \sqrt { 3 } )
C) (3,3,3)( \sqrt { 3 } , \sqrt { 3 } , \sqrt { 3 } )
D) (3,3,3)( - \sqrt { 3 } , \sqrt { 3 } , \sqrt { 3 } )
E) (3,3,3)( - \sqrt { 3 } , \sqrt { 3 } , - \sqrt { 3 } )
Question
Let f(x,y,z)=x+y+zf ( x , y , z ) = x + y + z with constraint x2+y2+z2=9x ^ { 2 } + y ^ { 2 } + z ^ { 2 } = 9 . Then f has a relative minimum at

A) (3,3,3)( \sqrt { 3 } , \sqrt { 3 } , - \sqrt { 3 } )
B) (3,3,3)( - \sqrt { 3 } , - \sqrt { 3 } , - \sqrt { 3 } )
C) (3,3,3)( \sqrt { 3 } , \sqrt { 3 } , \sqrt { 3 } )
D) (3,3,3)( - \sqrt { 3 } , \sqrt { 3 } , - \sqrt { 3 } )
E) (3,3,3)( \sqrt { 3 } , - \sqrt { 3 } , - \sqrt { 3 } )
Question
Let f(x,y,z)=xyzf ( x , y , z ) = x y z with constraint 2xy+3xz+yz=722 x y + 3 x z + y z = 72 . Then f has a relative maximum at

A) (2,6,4)( - 2 , - 6 , - 4 )
B) (2,6,4)( 2 , - 6 , - 4 )
C) (2,6,4)( - 2 , - 6,4 )
D) (2,6,4)( 2,6,4 )
E) (2,6,4)( - 2,6 , - 4 )
Question
Let f(x,y,z)=x2+4y2+16z2f ( x , y , z ) = x ^ { 2 } + 4 y ^ { 2 } + 16 z ^ { 2 } with constraint xyz = 1. Then f has a relative minimum at

A) (2,±1,±12),(2,1,12)\left( 2 , \pm 1 , \pm \frac { 1 } { 2 } \right) , \left( - 2 , - 1 , \frac { 1 } { 2 } \right)
B) (2,±1,±12),(2,1,12)\left( 2 , \pm 1 , \pm \frac { 1 } { 2 } \right) , \left( - 2,1 , - \frac { 1 } { 2 } \right)
C) (2,1,12),(2,±1,±12)\left( 2 , - 1 , - \frac { 1 } { 2 } \right) , \left( - 2 , \pm 1 , \pm \frac { 1 } { 2 } \right)
D) (2,1,12),(2,±1,±12)\left( 2,1 , \frac { 1 } { 2 } \right) , \left( - 2 , \pm 1 , \pm \frac { 1 } { 2 } \right)
E) (2,±1,±12),(2,±1,±12)\left( 2 , \pm 1 , \pm \frac { 1 } { 2 } \right) , \left( - 2 , \pm 1 , \pm \frac { 1 } { 2 } \right)
Question
Let f(x,y,z)=x2+4y2+16z2f ( x , y , z ) = x ^ { 2 } + 4 y ^ { 2 } + 16 z ^ { 2 } with constraint xy = 1. Then f has a relative minimum at

A) (2,12,0)\left( \sqrt { 2 } , \frac { 1 } { \sqrt { 2 } } , 0 \right)
B) (2,12,0)\left( - \sqrt { 2 } , - \frac { 1 } { \sqrt { 2 } } , 0 \right)
C) (12,2,0)\left( \frac { 1 } { \sqrt { 2 } } , \sqrt { 2 } , 0 \right)
D) (±2,±12,0)\left( \pm \sqrt { 2 } , \pm \frac { 1 } { \sqrt { 2 } } , 0 \right)
E) (12,2,0)\left( - \frac { 1 } { \sqrt { 2 } } , - \sqrt { 2 } , 0 \right)
Question
Let f(x,y,z)=x2+4y2+16z2f ( x , y , z ) = x ^ { 2 } + 4 y ^ { 2 } + 16 z ^ { 2 } with constraint x = 1. Then f has a relative minimum at

A) (1,12,14)\left( 1 , \frac { 1 } { 2 } , \frac { 1 } { 4 } \right)
B) (1,12,14)\left( 1 , \frac { 1 } { 2 } , - \frac { 1 } { 4 } \right)
C) (1,0,1)( 1,0,1 )
D) (1,12,14)\left( 1 , - \frac { 1 } { 2 } , \frac { 1 } { 4 } \right)
E) (1,0,0)( 1,0,0 )
Question
Let w=(x1)2+(y3)2+z2w = ( x - 1 ) ^ { 2 } + ( y - 3 ) ^ { 2 } + z ^ { 2 } with constraint 4x+2yz=54 x + 2 y - z = 5 . Then the minimum value of w is

A) 2921\frac { 29 } { 21 }
B) 2521\frac { 25 } { 21 }
C) 2321\frac { 23 } { 21 }
D) 2021\frac { 20 } { 21 }
E) 1921\frac { 19 } { 21 }
Question
Let w=(x1)2+(y+1)2+(z+1)2w = ( x - 1 ) ^ { 2 } + ( y + 1 ) ^ { 2 } + ( z + 1 ) ^ { 2 } with constraint x+4y+3z=2x + 4 y + 3 z = 2 . Then the minimum value of w is

A) 3713\frac { 37 } { 13 }
B) 3513\frac { 35 } { 13 }
C) 3313\frac { 33 } { 13 }
D) 3213\frac { 32 } { 13 }
E) 3013\frac { 30 } { 13 }
Question
Let w=x2+y2+z2w = x ^ { 2 } + y ^ { 2 } + z ^ { 2 } with constraint x2+4y2=16x ^ { 2 } + 4 y ^ { 2 } = 16 . Then the minimum value of w is

A)24
B)23
C)19
D)17
E)16
Question
Let w=x2+y2+z2w = x ^ { 2 } + y ^ { 2 } + z ^ { 2 } with constraint x+y+z=1x + y + z = 1 . Then the maximum value of w is

A) 13\frac { 1 } { 3 }
B)1
C) 43\frac { 4 } { 3 }
D) 54\frac { 5 } { 4 }
E)2
Question
Let w=x2+y2+z2w = x ^ { 2 } + y ^ { 2 } + z ^ { 2 } with constraint 9x2+4y2+z2=369 x ^ { 2 } + 4 y ^ { 2 } + z ^ { 2 } = 36 . Then the minimum value of w is

A)4
B)2
C)1
D) 23\frac { 2 } { 3 }
E) 13\frac { 1 } { 3 }
Question
Let w=x2+y2+z2w = x ^ { 2 } + y ^ { 2 } + z ^ { 2 } with constraint 9x2+4y2+z2=369 x ^ { 2 } + 4 y ^ { 2 } + z ^ { 2 } = 36 . Then the maximum value of w is

A)48
B)40
C)36
D)32
E)28
Question
Let w=x2+y2+z2w = x ^ { 2 } + y ^ { 2 } + z ^ { 2 } with constraint 3xy+5z=13 x - y + 5 z = 1 . Then the minimum value of w is

A) 113\frac { 1 } { 13 }
B) 119\frac { 1 } { 19 }
C) 121\frac { 1 } { 21 }
D) 135\frac { 1 } { 35 }
E) 141\frac { 1 } { 41 }
Unlock Deck
Sign up to unlock the cards in this deck!
Unlock Deck
Unlock Deck
1/80
auto play flashcards
Play
simple tutorial
Full screen (f)
exit full mode
Deck 14: Directional Derivatives, Gradients, and Extrema
1
Let f(x,y)=x2y+y2f ( x , y ) = x ^ { 2 } y + y ^ { 2 } and u=12i+32j\mathbf { u } = \frac { 1 } { 2 } \mathbf { i } + \frac { \sqrt { 3 } } { 2 } \mathbf { j } Then the directional derivative of f at (-1, 2) in the direction of U\mathbf { U } is

A) 2+532\frac { - 2 + 5 \sqrt { 3 } } { 2 }
B) 4532\frac { 4 - 5 \sqrt { 3 } } { 2 }
C) 4+532\frac { - 4 + 5 \sqrt { 3 } } { 2 }
D) 4532\frac { - 4 - 5 \sqrt { 3 } } { 2 }
E) 4+532\frac { 4 + 5 \sqrt { 3 } } { 2 }
4+532\frac { - 4 + 5 \sqrt { 3 } } { 2 }
2
Let f(x,y)=xey+yexf ( x , y ) = x e ^ { y } + y e ^ { x } Then the directional derivative of f at (0,0) in the direction of the unit vector U\mathbf { U } which makes an angle of π6\frac { \pi } { 6 } from the positive x-axis is

A) 3+12\frac { \sqrt { 3 } + 1 } { 2 }
B) 312\frac { \sqrt { 3 } - 1 } { 2 }
C) 312- \frac { \sqrt { 3 } - 1 } { 2 }
D) 312- \frac { \sqrt { 3 } - 1 } { 2 } .
E) 3+32\frac { \sqrt { 3 } + 3 } { 2 }
3+12\frac { \sqrt { 3 } + 1 } { 2 }
3
Let f(x,y)=exy+2x2y2f ( x , y ) = e ^ { x y } + 2 x ^ { 2 } y ^ { 2 } . Then the directional derivative of f at (0,1) in the direction of the unit vector U\mathbf { U } which is parallel to v=5i+12j\mathbf { v } = - 5 \mathbf { i } + 12 \mathbf { j } is

A) 512\frac { 5 } { 12 }
B) 512- \frac { 5 } { 12 }
C) 513\frac { 5 } { 13 }
D) 513- \frac { 5 } { 13 }
E) 713- \frac { 7 } { 13 }
513- \frac { 5 } { 13 }
4
Let f(x,y)=lnx2+y2f ( x , y ) = \ln \sqrt { x ^ { 2 } + y ^ { 2 } } . Then the directional derivative of f at (3,4) in the direction of the unit vector U\mathbf { U } which is parallel to v=5i+12j\mathbf { v } = 5 \mathbf { i } + 12 \mathbf { j } is

A) 3+12\frac { \sqrt { 3 } + 1 } { 2 }
B) 15\sqrt { 15 }
C) 713- \frac { 7 } { 13 }
D) 513- \frac { 5 } { 13 }
E) 63325\frac { 63 } { 325 }
Unlock Deck
Unlock for access to all 80 flashcards in this deck.
Unlock Deck
k this deck
5
Let f(x,y,z)=x2yxyz2f ( x , y , z ) = x ^ { 2 } y - x y z ^ { 2 } . Then the directional derivative of f at P=(0,1,2)P = ( 0,1,2 ) in the direction of the unit vector U\mathbf { U } which is parallel to PQ\overrightarrow { P Q } where Q=(1,4,3)Q = ( 1,4,3 ) is

A) 3+12\frac { \sqrt { 3 } + 1 } { 2 }
B) 426- \frac { 4 } { \sqrt { 26 } }
C) 4+532\frac { - 4 + 5 \sqrt { 3 } } { 2 }
D) 513- \frac { 5 } { 13 }
E) 78325\frac { 78 } { 325 }
Unlock Deck
Unlock for access to all 80 flashcards in this deck.
Unlock Deck
k this deck
6
Let f(x,y,z)=x2y+y2z+z2xf ( x , y , z ) = x ^ { 2 } y + y ^ { 2 } z + z ^ { 2 } x Then the directional derivative of f at P=(1,2,1)P = ( 1,2 , - 1 ) in the direction of the unit vector u\mathbf { u } which is parallel to PQ\overrightarrow { P Q } where Q=(2,0,1)Q = ( 2,0,1 ) is

A) 5\sqrt { 5 }
B) 125\frac { 12 } { \sqrt { 5 } }
C)5
D) 513- \frac { 5 } { 13 }
E) 78325\frac { 78 } { 325 }
Unlock Deck
Unlock for access to all 80 flashcards in this deck.
Unlock Deck
k this deck
7
The gradient of f(x,y,z)=x2yxyz2f ( x , y , z ) = x ^ { 2 } y - x y z ^ { 2 } at (0, 1, 2) is

A) 4k- 4 \mathbf { k }
B) 5i2j2k5 \mathbf { i } - 2 \mathbf { j } - 2 \mathbf { k }
C) 4i- 4 \mathbf { i }
D) 5i2j+2k5 \mathbf { i } - 2 \mathbf { j } + 2 \mathbf { k }
E) 4j- 4 \mathbf { j }
Unlock Deck
Unlock for access to all 80 flashcards in this deck.
Unlock Deck
k this deck
8
The gradient of f(x,y,z)=x2y+y2z+z2xf ( x , y , z ) = x ^ { 2 } y + y ^ { 2 } z + z ^ { 2 } x at (1, 2, -1) is

A) 5i+3j+2k- 5 \mathbf { i } + 3 \mathbf { j } + 2 \mathbf { k }
B) 5i3j2k5 \mathbf { i } - 3 \mathbf { j } - 2 \mathbf { k }
C) 5i+3j+2k5 \mathbf { i } + 3 \mathbf { j } + 2 \mathbf { k }
D) 5i3j+2k- 5 \mathbf { i } - 3 \mathbf { j } + 2 \mathbf { k }
E) 5i3j+2k5 \mathbf { i } - 3 \mathbf { j } + 2 \mathbf { k }
Unlock Deck
Unlock for access to all 80 flashcards in this deck.
Unlock Deck
k this deck
9
The gradient of f(x,y,z)=ztan1(yx)f ( x , y , z ) = z \tan ^ { - 1 } \left( \frac { y } { x } \right) at (1, 1, 3) is

A) 32i32j+π4k\frac { 3 } { 2 } \mathbf { i } - \frac { 3 } { 2 } \mathbf { j } + \frac { \pi } { 4 } \mathbf { k }
B) 32i+32j+π4k- \frac { 3 } { 2 } \mathbf { i } + \frac { 3 } { 2 } \mathbf { j } + \frac { \pi } { 4 } \mathbf { k }
C) 32i+32j+π4k\frac { 3 } { 2 } \mathbf { i } + \frac { 3 } { 2 } \mathbf { j } + \frac { \pi } { 4 } \mathbf { k }
D) 32i32j+π4k- \frac { 3 } { 2 } \mathbf { i } - \frac { 3 } { 2 } \mathbf { j } + \frac { \pi } { 4 } \mathbf { k }
E) 32i+32jπ4k- \frac { 3 } { 2 } \mathbf { i } + \frac { 3 } { 2 } \mathbf { j } - \frac { \pi } { 4 } \mathbf { k }
Unlock Deck
Unlock for access to all 80 flashcards in this deck.
Unlock Deck
k this deck
10
The gradient of f(x,y,z)=x2+y2+z2f ( x , y , z ) = \sqrt { x ^ { 2 } + y ^ { 2 } + z ^ { 2 } } at (3, 0, -4) is

A) 35i45k\frac { 3 } { 5 } \mathbf { i } - \frac { 4 } { 5 } \mathbf { k }
B) 35i+45k\frac { 3 } { 5 } \mathbf { i } + \frac { 4 } { 5 } \mathbf { k }
C) 35i45k- \frac { 3 } { 5 } \mathbf { i } - \frac { 4 } { 5 } \mathbf { k }
D) 35i+45k- \frac { 3 } { 5 } \mathbf { i } + \frac { 4 } { 5 } \mathbf { k }
E) 35i45j\frac { 3 } { 5 } \mathbf { i } - \frac { 4 } { 5 } \mathbf { j }
Unlock Deck
Unlock for access to all 80 flashcards in this deck.
Unlock Deck
k this deck
11
The gradient of f(x,y,z)=2x3+xy2+z2xf ( x , y , z ) = 2 x ^ { 3 } + x y ^ { 2 } + z ^ { 2 } x at (1, 1, 1) is

A) 8i+2j+2k- 8 \mathbf { i } + 2 \mathbf { j } + 2 \mathbf { k }
B) 8i2j2k8 \mathbf { i } - 2 \mathbf { j } - 2 \mathbf { k }
C) 8i+2j2k8 \mathbf { i } + 2 \mathbf { j } - 2 \mathbf { k }
D) 8i+2j+2k8 \mathbf { i } + 2 \mathbf { j } + 2 \mathbf { k }
E) 8i2j+2k8 \mathbf { i } - 2 \mathbf { j } + 2 \mathbf { k }
Unlock Deck
Unlock for access to all 80 flashcards in this deck.
Unlock Deck
k this deck
12
The gradient of f(x,y,z)=y2+z24xzf ( x , y , z ) = y ^ { 2 } + z ^ { 2 } - 4 x z at (-2, 1, 3) is

A) 12i2j+14k- 12 \mathbf { i } - 2 \mathbf { j } + 14 \mathbf { k }
B) 12i+2j+14k- 12 \mathbf { i } + 2 \mathbf { j } + 14 \mathbf { k }
C) 12i+2j14k- 12 \mathbf { i } + 2 \mathbf { j } - 14 \mathbf { k }
D) 12i+2j+14k12 \mathbf { i } + 2 \mathbf { j } + 14 \mathbf { k }
E) 12i+2j14k12 \mathbf { i } + 2 \mathbf { j } - 14 \mathbf { k }
Unlock Deck
Unlock for access to all 80 flashcards in this deck.
Unlock Deck
k this deck
13
Let f(x,y)=xy2+x2f ( x , y ) = x y ^ { 2 } + x ^ { 2 } . Then the maximum value of the directional derivative Duf(1,2)D _ { \mathrm { u } } f ( - 1,2 ) is

A) 5\sqrt { 5 }
B) 232 \sqrt { 3 }
C) 252 \sqrt { 5 }
D) 35\sqrt { 35 }
E)5
Unlock Deck
Unlock for access to all 80 flashcards in this deck.
Unlock Deck
k this deck
14
Let f(x,y)=4xy+x2+2y2f ( x , y ) = 4 x y + x ^ { 2 } + 2 y ^ { 2 } . Then the maximum value of the directional derivative Duf(2,1)D _ { \mathrm { u } } f ( 2,1 ) is

A) 4134 \sqrt { 13 }
B) 3133 \sqrt { 13 }
C) 2132 \sqrt { 13 }
D) 13\sqrt { 13 }
E)13
Unlock Deck
Unlock for access to all 80 flashcards in this deck.
Unlock Deck
k this deck
15
Let f(x,y)=2xey+3yexf ( x , y ) = 2 x e ^ { y } + 3 y e ^ { x } . Then the maximum value of the directional derivative Duf(0,0)D _ { \mathrm { u } } f ( 0,0 ) is

A) 4134 \sqrt { 13 }
B) 3133 \sqrt { 13 }
C) 2132 \sqrt { 13 }
D) 13\sqrt { 13 }
E)13
Unlock Deck
Unlock for access to all 80 flashcards in this deck.
Unlock Deck
k this deck
16
Let f(x,y)=2xlnyf ( x , y ) = 2 x \ln y Then the maximum value of the directional derivative Duf(4,1)D _ { \mathrm { u } } f ( 4,1 ) is

A)24
B)4
C)16
D)8
E)2
Unlock Deck
Unlock for access to all 80 flashcards in this deck.
Unlock Deck
k this deck
17
Let f(x,y)=xyx2+y2f ( x , y ) = \frac { x y } { x ^ { 2 } + y ^ { 2 } } . Then the maximum value of the directional derivative Duf(1,2)D _ { \mathrm { u } } f ( - 1,2 ) is

A)3
B) 3525\frac { 3 \sqrt { 5 } } { 25 }
C) 35\frac { 3 } { 5 }
D) 13\frac { 1 } { 3 }
E)5
Unlock Deck
Unlock for access to all 80 flashcards in this deck.
Unlock Deck
k this deck
18
Let f(x,y)=x2+y2f ( x , y ) = \sqrt { x ^ { 2 } + y ^ { 2 } } . Then the maximum value of the directional derivative Duf(2,4)D _ { \mathrm { u } } f ( 2,4 ) is

A) 3\sqrt { 3 }
B)2
C)3
D)1
E)5
Unlock Deck
Unlock for access to all 80 flashcards in this deck.
Unlock Deck
k this deck
19
Let f(x,y,z)=ztan1(yx)f ( x , y , z ) = z \tan ^ { - 1 } \left( \frac { y } { x } \right) . Then the maximum value of the directional derivative Duf(1,1,3)D _ { \mathrm { u } } f ( 1,1,3 ) is

A) 72+π22\frac { \sqrt { 72 + \pi ^ { 2 } } } { 2 }
B) 72+π24\frac { \sqrt { 72 + \pi ^ { 2 } } } { 4 }
C) 72π22\frac { \sqrt { 72 - \pi ^ { 2 } } } { 2 }
D) 72π24\frac { \sqrt { 72 - \pi ^ { 2 } } } { 4 }
E) 72+π23\frac { \sqrt { 72 + \pi ^ { 2 } } } { 3 }
Unlock Deck
Unlock for access to all 80 flashcards in this deck.
Unlock Deck
k this deck
20
Let f(x,y,z)=x2+y2+z2f ( x , y , z ) = \sqrt { x ^ { 2 } + y ^ { 2 } + z ^ { 2 } } . Then the maximum value of the directional derivative Duf(3,4,0)D _ { \mathrm { u } } f ( 3,4,0 ) is

A)5
B)3
C)2
D)1
E) 13\frac { 1 } { 3 }
Unlock Deck
Unlock for access to all 80 flashcards in this deck.
Unlock Deck
k this deck
21
An equation of the tangent plane to the surface 16z=4x2+y216 z = 4 x ^ { 2 } + y ^ { 2 } at (2, 4, 2) is

A) 2x+y2z=4- 2 x + y - 2 z = 4
B) 2xy+2z=42 x - y + 2 z = 4
C) 2x+y+2z=42 x + y + 2 z = 4
D) 2x+y2z=42 x + y - 2 z = 4
E) 2xy2z=42 x - y - 2 z = 4
Unlock Deck
Unlock for access to all 80 flashcards in this deck.
Unlock Deck
k this deck
22
The symmetric equations of the normal line to the surface 16z=4x2+y216 z = 4 x ^ { 2 } + y ^ { 2 } at (2, 4, 2) are

A) x24=y4=z22\frac { x - 2 } { 4 } = y - 4 = \frac { z - 2 } { - 2 }
B) x22=y4=z24\frac { x - 2 } { 2 } = y - 4 = \frac { z - 2 } { - 4 }
C) x22=y4=z22\frac { x - 2 } { 2 } = y - 4 = \frac { z - 2 } { - 2 }
D) x22=y4=z22\frac { x - 2 } { 2 } = y - 4 = \frac { z - 2 } { 2 }
E) x22=y4=z22\frac { x - 2 } { - 2 } = y - 4 = \frac { z - 2 } { - 2 }
Unlock Deck
Unlock for access to all 80 flashcards in this deck.
Unlock Deck
k this deck
23
An equation of the tangent plane to the surface 4x2+y2+2z2=264 x ^ { 2 } + y ^ { 2 } + 2 z ^ { 2 } = 26 at (1, -2, 3) is

A) 8x4y+12z=528 x - 4 y + 12 z = 52
B) 8x4y12z=528 x - 4 y - 12 z = 52
C) 8x+4y+12z=528 x + 4 y + 12 z = 52
D) 8x4y+12z=52- 8 x - 4 y + 12 z = 52
E) 8x+4y+12z=52- 8 x + 4 y + 12 z = 52
Unlock Deck
Unlock for access to all 80 flashcards in this deck.
Unlock Deck
k this deck
24
The symmetric equations of the normal line to the surface 4x2+y2+2z2=264 x ^ { 2 } + y ^ { 2 } + 2 z ^ { 2 } = 26 at (1, -2, 3) are

A) x12=y+2=z33\frac { x - 1 } { 2 } = y + 2 = \frac { z - 3 } { 3 }
B) x13=y+2=z32\frac { x - 1 } { - 3 } = y + 2 = \frac { z - 3 } { 2 }
C) x13=y+2=z32\frac { x - 1 } { - 3 } = y + 2 = \frac { z - 3 } { - 2 }
D) x12=y+2=z33\frac { x - 1 } { 2 } = y + 2 = \frac { z - 3 } { - 3 }
E) x12=y+2=z33\frac { x - 1 } { - 2 } = y + 2 = \frac { z - 3 } { - 3 }
Unlock Deck
Unlock for access to all 80 flashcards in this deck.
Unlock Deck
k this deck
25
An equation of the tangent plane to the surface 3z=x2+y223 z = x ^ { 2 } + y ^ { 2 } - 2 at (-2, -4, 6) is

A) 4x8y+3z=224 x - 8 y + 3 z = - 22
B) 4x+8y+3z=224 x + 8 y + 3 z = - 22
C) 4x+8y3z=224 x + 8 y - 3 z = - 22
D) 4x8y3z=224 x - 8 y - 3 z = - 22
E) 4x+8y+3z=22- 4 x + 8 y + 3 z = - 22
Unlock Deck
Unlock for access to all 80 flashcards in this deck.
Unlock Deck
k this deck
26
The symmetric equations of the normal line to the surface 3z=x2+y223 z = x ^ { 2 } + y ^ { 2 } - 2 at (-2, -4, 6) are

A) x+24=y+48=z63\frac { x + 2 } { 4 } = \frac { y + 4 } { 8 } = \frac { z - 6 } { 3 }
B) x+24=y+48=z63\frac { x + 2 } { - 4 } = \frac { y + 4 } { 8 } = \frac { z - 6 } { 3 }
C) x+24=y+48=z63\frac { x + 2 } { 4 } = \frac { y + 4 } { - 8 } = \frac { z - 6 } { 3 }
D) x+24=y+48=z63\frac { x + 2 } { 4 } = \frac { y + 4 } { 8 } = \frac { z - 6 } { - 3 }
E) x+24=y+48=z63\frac { x + 2 } { - 4 } = \frac { y + 4 } { 8 } = \frac { z - 6 } { - 3 }
Unlock Deck
Unlock for access to all 80 flashcards in this deck.
Unlock Deck
k this deck
27
An equation of the tangent plane to the surface y=excoszy = e ^ { x } \cos z at (1, e, 0) is

A) y=ex+zy = - e x + z
B) y=exzy = e x - z
C) y=ex+zy = e x + z
D) y=exy = - e x
E) y=exy = e x
Unlock Deck
Unlock for access to all 80 flashcards in this deck.
Unlock Deck
k this deck
28
The symmetric equations of the normal line to the surface y=excoszy = e ^ { x } \cos z at (1, e, 0) are

A) x12e=ye,z=0\frac { x - 1 } { 2 e } = y - e , z = 0
B) x12e=ye,z=0\frac { x - 1 } { - 2 e } = y - e , z = 0
C) x13e=ye,z=0\frac { x - 1 } { 3 e } = y - e , z = 0
D) x1e=ye,z=0\frac { x - 1 } { e } = y - e , z = 0
E) x1e=ye,z=0\frac { x - 1 } { - e } = y - e , z = 0
Unlock Deck
Unlock for access to all 80 flashcards in this deck.
Unlock Deck
k this deck
29
An equation of the tangent plane to the surface x2=12yx ^ { 2 } = 12 y at (-6, 3, 1) is

A) xy=7x - y = 7
B) x+y=7x + y = 7
C) x+y=9x + y = 9
D) xy=9x - y = 9
E) x+y=9- x + y = 9
Unlock Deck
Unlock for access to all 80 flashcards in this deck.
Unlock Deck
k this deck
30
The symmetric equations of the normal line to the surface x2=12yx ^ { 2 } = 12 y at (-6, 3, 1) are

A) x+62=y3,z=1\frac { x + 6 } { 2 } = y - 3 , z = 1
B) x+6=y3,z=1x + 6 = y - 3 , z = 1
C) x+6=y32,z=1x + 6 = \frac { y - 3 } { 2 } , z = 1
D) x+63=y3,z=1\frac { x + 6 } { 3 } = y - 3 , z = 1
E) x+6=y33,z=1x + 6 = \frac { y - 3 } { 3 } , z = 1
Unlock Deck
Unlock for access to all 80 flashcards in this deck.
Unlock Deck
k this deck
31
An equation of the tangent plane to the surface x+y+z=4\sqrt { x } + \sqrt { y } + \sqrt { z } = 4 at (1, 1, 4) is

A) 2x2y+z=82 x - 2 y + z = 8
B) 2x+2y+z=82 x + 2 y + z = 8
C) 2x+2yz=82 x + 2 y - z = 8
D) 2x2yz=82 x - 2 y - z = 8
E) 2x+2y+z=8- 2 x + 2 y + z = 8
Unlock Deck
Unlock for access to all 80 flashcards in this deck.
Unlock Deck
k this deck
32
The symmetric equations of the normal line to the surface x+y+z=4\sqrt { x } + \sqrt { y } + \sqrt { z } = 4 at (1, 1, 4) are

A) x12=4(y1)=z4\frac { x - 1 } { 2 } = 4 ( y - 1 ) = z - 4
B) x14=4(y1)=z4=4(y1)=z4\frac { x - 1 } { - 4 } = 4 ( y - 1 ) = z - 4 = 4 ( y - 1 ) = z - 4
C) x14=4(y1)=z4\frac { x - 1 } { 4 } = 4 ( y - 1 ) = z - 4
D) 4(x1)=4(y1)=z4- 4 ( x - 1 ) = 4 ( y - 1 ) = z - 4
E) (x1)=(y1)=2(z4)( x - 1 ) = ( y - 1 ) = 2 ( z - 4 )
Unlock Deck
Unlock for access to all 80 flashcards in this deck.
Unlock Deck
k this deck
33
An equation of the tangent plane to the surface zx2xy2yz2=18z x ^ { 2 } - x y ^ { 2 } - y z ^ { 2 } = 18 at (0, -2, 3) is

A) 4x9y+12z=544 x - 9 y + 12 z = 54
B) 4x9y12z=544 x - 9 y - 12 z = 54
C) 4x+9y+12z=54- 4 x + 9 y + 12 z = 54
D) 4x9y12z=54- 4 x - 9 y - 12 z = 54
E) 4x9y+12z=54- 4 x - 9 y + 12 z = 54
Unlock Deck
Unlock for access to all 80 flashcards in this deck.
Unlock Deck
k this deck
34
The symmetric equations of the normal line to the surface zx2xy2yz2=18z x ^ { 2 } - x y ^ { 2 } - y z ^ { 2 } = 18 at (0, -2, 3) are

A) x4=y+29=z312\frac { x } { - 4 } = \frac { y + 2 } { - 9 } = \frac { z - 3 } { 12 }
B) x4=y+29=z312\frac { x } { - 4 } = \frac { y + 2 } { 9 } = \frac { z - 3 } { 12 }
C) x4=y+29=z312\frac { x } { 4 } = \frac { y + 2 } { - 9 } = \frac { z - 3 } { 12 }
D) x4=y+29=z312\frac { x } { 4 } = \frac { y + 2 } { 9 } = \frac { z - 3 } { 12 }
E) x9=y+24=z312\frac { x } { 9 } = \frac { y + 2 } { - 4 } = \frac { z - 3 } { 12 }
Unlock Deck
Unlock for access to all 80 flashcards in this deck.
Unlock Deck
k this deck
35
An equation of the tangent plane to the surface x23+y23+z23=14x ^ { \frac { 2 } { 3 } } + y ^ { \frac { 2 } { 3 } } + z ^ { \frac { 2 } { 3 } } = 14 at (-8, 27, 1) is

A) 3x+2y6z=84- 3 x + 2 y - 6 z = - 84
B) 3x+2y+6z=843 x + 2 y + 6 z = - 84
C) 3x2y6z=843 x - 2 y - 6 z = - 84
D) 3x+2y6z=843 x + 2 y - 6 z = - 84
E) 3x2y+6z=843 x - 2 y + 6 z = - 84
Unlock Deck
Unlock for access to all 80 flashcards in this deck.
Unlock Deck
k this deck
36
The symmetric equations of the normal line to the surface x23+y23+z23=14x ^ { \frac { 2 } { 3 } } + y ^ { \frac { 2 } { 3 } } + z ^ { \frac { 2 } { 3 } } = 14 at (-8, 27, 1) are

A) x+83=y272=z16\frac { x + 8 } { 3 } = \frac { y - 27 } { - 2 } = \frac { z - 1 } { - 6 }
B) x+83=y272=z16\frac { x + 8 } { - 3 } = \frac { y - 27 } { 2 } = \frac { z - 1 } { - 6 }
C) x+83=y272=z16\frac { x + 8 } { 3 } = \frac { y - 27 } { - 2 } = \frac { z - 1 } { 6 }
D) x+83=y272=z16\frac { x + 8 } { 3 } = \frac { y - 27 } { 2 } = \frac { z - 1 } { 6 }
E) x+83=y272=z16\frac { x + 8 } { - 3 } = \frac { y - 27 } { - 2 } = \frac { z - 1 } { 6 }
Unlock Deck
Unlock for access to all 80 flashcards in this deck.
Unlock Deck
k this deck
37
An equation of the tangent plane to the surface x23y24z2=2x ^ { 2 } - 3 y ^ { 2 } - 4 z ^ { 2 } = 2 at (3, 1, 1) is

A) 3x3y4z=2- 3 x - 3 y - 4 z = 2
B) 3x+3y+4z=23 x + 3 y + 4 z = 2
C) 3x3y+4z=23 x - 3 y + 4 z = 2
D) 3x3y4z=23 x - 3 y - 4 z = 2
E) 3x+3y4z=23 x + 3 y - 4 z = 2
Unlock Deck
Unlock for access to all 80 flashcards in this deck.
Unlock Deck
k this deck
38
The symmetric equations of the normal line to the surface x23y24z2=2x ^ { 2 } - 3 y ^ { 2 } - 4 z ^ { 2 } = 2 at (3, 1, 1) are

A) x33=y13=z14\frac { x - 3 } { - 3 } = \frac { y - 1 } { 3 } = \frac { z - 1 } { - 4 }
B) x33=y13=z14\frac { x - 3 } { 3 } = \frac { y - 1 } { - 3 } = \frac { z - 1 } { 4 }
C) x33=y13=z14\frac { x - 3 } { 3 } = \frac { y - 1 } { - 3 } = \frac { z - 1 } { - 4 }
D) x33=y13=z14\frac { x - 3 } { - 3 } = \frac { y - 1 } { - 3 } = \frac { z - 1 } { 4 }
E) x33=y13=z14\frac { x - 3 } { 3 } = \frac { y - 1 } { 3 } = \frac { z - 1 } { 4 }
Unlock Deck
Unlock for access to all 80 flashcards in this deck.
Unlock Deck
k this deck
39
The set of points on 4x2+y2+2z2=504 x ^ { 2 } + y ^ { 2 } + 2 z ^ { 2 } = 50 at which the tangent plane is parallel to the xy-plane is

A) {(0,0,5),(0,0,5)}\{ ( 0,0 , - 5 ) , ( 0,0,5 ) \}
B) {(0,0,5)}\{ ( 0,0,5 ) \}
C) {(0,0,5)}\{ ( 0,0 , - 5 ) \}
D) {(0,0,3)}\{ ( 0,0 , - 3 ) \}
E) {(0,0,3)}\{ ( 0,0,3 ) \}
Unlock Deck
Unlock for access to all 80 flashcards in this deck.
Unlock Deck
k this deck
40
The set of points on z=x23xy+y2z = x ^ { 2 } - 3 x y + y ^ { 2 } at which the tangent plane is parallel to the xy-plane is

A) {(0,0,3)}\{ ( 0,0,3 ) \}
B) {(0,0,2)}\{ ( 0,0,2 ) \}
C) {(0,0,1)}\{ ( 0,0,1 ) \}
D) {(0,0,0)}\{ ( 0,0,0 ) \}
E) {(0,0,5)}\{ ( 0,0,5 ) \}
Unlock Deck
Unlock for access to all 80 flashcards in this deck.
Unlock Deck
k this deck
41
Let f(x,y)=x3+y26x2+y1f ( x , y ) = x ^ { 3 } + y ^ { 2 } - 6 x ^ { 2 } + y - 1 . Then f has a relative minimum at

A) (4,2)( 4 , - 2 )
B) (4,12)\left( - 4 , \frac { 1 } { 2 } \right)
C) (4,12)\left( - 4 , - \frac { 1 } { 2 } \right)
D) (4,12)\left( 4 , \frac { 1 } { 2 } \right)
E) (4,12)\left( 4 , - \frac { 1 } { 2 } \right)
Unlock Deck
Unlock for access to all 80 flashcards in this deck.
Unlock Deck
k this deck
42
Let f(x,y)=1x64y+xyf ( x , y ) = \frac { 1 } { x } - \frac { 64 } { y } + x y . Then f has a relative maximum at

A) (14,16)\left( - \frac { 1 } { 4 } , 16 \right)
B) (14,16)\left( \frac { 1 } { 4 } , 16 \right)
C) (14,32)\left( \frac { 1 } { 4 } , 32 \right)
D) (14,16)\left( - \frac { 1 } { 4 } , - 16 \right)
E) (14,16)\left( \frac { 1 } { 4 } , - 16 \right)
Unlock Deck
Unlock for access to all 80 flashcards in this deck.
Unlock Deck
k this deck
43
Let f(x,y)=4xy22x2yxf ( x , y ) = 4 x y ^ { 2 } - 2 x ^ { 2 } y - x . Then the set of saddle point(s) of f is

A) {(0,2,0)}\{ ( 0 , - 2,0 ) \}
B) {(0,2,0),(0,2,0)}\{ ( 0 , - 2,0 ) , ( 0,2,0 ) \}
C) {(0,12,0)}\left\{ \left( 0 , \frac { 1 } { 2 } , 0 \right) \right\}
D) {(0,12,0),(0,12,0)}\left\{ \left( 0 , - \frac { 1 } { 2 } , 0 \right) , \left( 0 , \frac { 1 } { 2 } , 0 \right) \right\}
E) {(0,12,0)}\left\{ \left( 0 , - \frac { 1 } { 2 } , 0 \right) \right\}
Unlock Deck
Unlock for access to all 80 flashcards in this deck.
Unlock Deck
k this deck
44
Let f(x,y)=x3+y3+3y23x9y+2f ( x , y ) = x ^ { 3 } + y ^ { 3 } + 3 y ^ { 2 } - 3 x - 9 y + 2 . Then f has a relative minimum at

A) (1,1)( 1,1 )
B) (1,1)( - 1,1 )
C) (1,1)( 1 , - 1 )
D) (1,1)( - 1 , - 1 )
E) (1,12)\left( 1 , \frac { 1 } { 2 } \right)
Unlock Deck
Unlock for access to all 80 flashcards in this deck.
Unlock Deck
k this deck
45
Let f(x,y)=x3+y3+3y23x9y+2f ( x , y ) = x ^ { 3 } + y ^ { 3 } + 3 y ^ { 2 } - 3 x - 9 y + 2 . Then f has a relative maximum at

A) (1,3)( 1,3 )
B) (1,3)( - 1 , - 3 )
C) (1,3)( 1 , - 3 )
D) (1,3)( - 1,3 )
E) (1,13)\left( - 1 , \frac { 1 } { 3 } \right)
Unlock Deck
Unlock for access to all 80 flashcards in this deck.
Unlock Deck
k this deck
46
Let f(x,y)=x3+y3+3y23x9y+2f ( x , y ) = x ^ { 3 } + y ^ { 3 } + 3 y ^ { 2 } - 3 x - 9 y + 2 . Then the set of saddle points of f is

A) {(1,3,27)}\{ ( 1 , - 3,27 ) \}
B) {(1,1,1)}\{ ( - 1,1 , - 1 ) \}
C) {(1,3,27),(1,1,1)}\{ ( 1 , - 3,27 ) , ( - 1,1 , - 1 ) \}
D) {(1,3,27),(1,1,1)}\{ ( 1 , - 3,27 ) , ( - 1,1,1 ) \}
E) {(1,3,27),(1,1,1)}\{ ( 1 , - 3,27 ) , ( 1,1 , - 1 ) \}
Unlock Deck
Unlock for access to all 80 flashcards in this deck.
Unlock Deck
k this deck
47
Let f(x,y)=sin(x+y)+sinx+sinyf ( x , y ) = \sin ( x + y ) + \sin x + \sin y . Then f has a relative maximum at

A) (π5,π5)\left( \frac { \pi } { 5 } , \frac { \pi } { 5 } \right)
B) (π3,π3)\left( - \frac { \pi } { 3 } , - \frac { \pi } { 3 } \right)
C) (π3,π3)\left( \frac { \pi } { 3 } , \frac { \pi } { 3 } \right)
D) (π3,π3)\left( - \frac { \pi } { 3 } , \frac { \pi } { 3 } \right)
E) (π3,π3)\left( \frac { \pi } { 3 } , - \frac { \pi } { 3 } \right)
Unlock Deck
Unlock for access to all 80 flashcards in this deck.
Unlock Deck
k this deck
48
Let f(x,y)=sin(x+y)+sinx+sinyf ( x , y ) = \sin ( x + y ) + \sin x + \sin y . Then f has a relative minimum at

A) (5π3,5π3)\left( - \frac { 5 \pi } { 3 } , \frac { 5 \pi } { 3 } \right)
B) (5π3,5π3)\left( \frac { 5 \pi } { 3 } , \frac { 5 \pi } { 3 } \right)
C) (π3,π3)\left( \frac { \pi } { 3 } , \frac { \pi } { 3 } \right)
D) (π3,π3)\left( - \frac { \pi } { 3 } , \frac { \pi } { 3 } \right)
E) (5π3,5π3)\left( \frac { 5 \pi } { 3 } , - \frac { 5 \pi } { 3 } \right)
Unlock Deck
Unlock for access to all 80 flashcards in this deck.
Unlock Deck
k this deck
49
Let f(x,y)=x2+y3f ( x , y ) = x ^ { 2 } + y ^ { 3 } . Then f has a relative minimum at

A) (2,3)( 2,3 )
B) (2,3)( - 2,3 )
C) (0,0)( 0,0 )
D) (2,3)( - 2 , - 3 )
E) (2,3)( 2 , - 3 )
Unlock Deck
Unlock for access to all 80 flashcards in this deck.
Unlock Deck
k this deck
50
Let f(x,y)=x3+y318xyf ( x , y ) = x ^ { 3 } + y ^ { 3 } - 18 x y . Then f has a relative minimum at

A) (6,6)( 6 , - 6 )
B) (6,6)( 6,6 )
C) (4,2)( 4,2 )
D) (6,6)( - 6,6 )
E) (6,6)( - 6 , - 6 )
Unlock Deck
Unlock for access to all 80 flashcards in this deck.
Unlock Deck
k this deck
51
Let f(x,y)=2x+2y+1x2+y2+1f ( x , y ) = \frac { 2 x + 2 y + 1 } { x ^ { 2 } + y ^ { 2 } + 1 } . Then f has a relative maximum at

A) (12,14)\left( \frac { 1 } { 2 } , \frac { 1 } { 4 } \right)
B) (12,12)\left( - \frac { 1 } { 2 } , - \frac { 1 } { 2 } \right)
C) (12,12)\left( \frac { 1 } { 2 } , - \frac { 1 } { 2 } \right)
D) (12,12)\left( - \frac { 1 } { 2 } , \frac { 1 } { 2 } \right)
E) (12,12)\left( \frac { 1 } { 2 } , \frac { 1 } { 2 } \right)
Unlock Deck
Unlock for access to all 80 flashcards in this deck.
Unlock Deck
k this deck
52
Let f(x,y)=2x+2y+1x2+y2+1f ( x , y ) = \frac { 2 x + 2 y + 1 } { x ^ { 2 } + y ^ { 2 } + 1 } . Then f has a relative minimum at

A) (1,1)( - 1 , - 1 )
B) (1,1)( - 1,1 )
C) (1,1)( 1 , - 1 )
D) (1,1)( 1,1 )
E) (1,12)\left( - 1 , - \frac { 1 } { 2 } \right)
Unlock Deck
Unlock for access to all 80 flashcards in this deck.
Unlock Deck
k this deck
53
Let f(x,y)=6x24yx2+2y3f ( x , y ) = 6 x - 24 y - x ^ { 2 } + 2 y ^ { 3 } . Then f has a relative maximum at

A) (3,1)( 3 , - 1 )
B) (3,1)( 3,1 )
C) (3,2)( 3 , - 2 )
D) (3,2)( 3,2 )
E) (3,2)( - 3,2 )
Unlock Deck
Unlock for access to all 80 flashcards in this deck.
Unlock Deck
k this deck
54
Let f(x,y)=2x4+y2x22yf ( x , y ) = 2 x ^ { 4 } + y ^ { 2 } - x ^ { 2 } - 2 y . Then, the set of saddle points of f is

A) {(0,2,1)}\{ ( 0,2 , - 1 ) \}
B) {(0,1,1)}\{ ( 0,1,1 ) \}
C) {(0,1,1)}\{ ( 0,1 , - 1 ) \}
D) {(0,1,1)}\{ ( 0 , - 1,1 ) \}
E) {(0,1,1)}\{ ( 0 , - 1 , - 1 ) \}
Unlock Deck
Unlock for access to all 80 flashcards in this deck.
Unlock Deck
k this deck
55
The absolute maximum of f(x,y)=88x+114y2x23y24xyf ( x , y ) = 88 x + 114 y - 2 x ^ { 2 } - 3 y ^ { 2 } - 4 x y on the set {(x,y):0x50,0y1253}\left\{ ( x , y ) : 0 \leq x \leq 50,0 \leq y \leq \frac { 125 } { 3 } \right\} is

A)1137
B)1067
C)989
D)923
E)891
Unlock Deck
Unlock for access to all 80 flashcards in this deck.
Unlock Deck
k this deck
56
The absolute maximum of f(x,y)=2x+2yx2y2+2f ( x , y ) = 2 x + 2 y - x ^ { 2 } - y ^ { 2 } + 2 on or inside the triangle with vertices (0, 0), (9, 0), and (0,9) is

A)10
B)8
C)6
D)4
E)2
Unlock Deck
Unlock for access to all 80 flashcards in this deck.
Unlock Deck
k this deck
57
The absolute minimum of f(x,y)=2x+2yx2y2+2f ( x , y ) = 2 x + 2 y - x ^ { 2 } - y ^ { 2 } + 2 on or inside the triangle with vertices (0, 0), (9, 0), and (0,9) is

A)-69
B)-61
C)-56
D)-51
E)-47
Unlock Deck
Unlock for access to all 80 flashcards in this deck.
Unlock Deck
k this deck
58
The absolute maximum of f(x,y)=2x2+y24x4y+1f ( x , y ) = 2 x ^ { 2 } + y ^ { 2 } - 4 x - 4 y + 1 on or inside the triangle with vertices (0,0), (1,2), and (0,2) is

A)5
B)4
C)3
D)2
E)1
Unlock Deck
Unlock for access to all 80 flashcards in this deck.
Unlock Deck
k this deck
59
The absolute minimum of f(x,y)=2x2+y24x4y+1f ( x , y ) = 2 x ^ { 2 } + y ^ { 2 } - 4 x - 4 y + 1 on or inside the triangle with vertices (0,0), (1,2), and (0,2) is

A)1137
B)-61
C)-5
D)4
E)1
Unlock Deck
Unlock for access to all 80 flashcards in this deck.
Unlock Deck
k this deck
60
The absolute maximum of f(x,y)=x2+y2+xy6xf ( x , y ) = x ^ { 2 } + y ^ { 2 } + x y - 6 x on or inside the rectangle with vertices (0, -3), (5, -3), (5, 3), and (0, 3) is

A)19
B)16
C)14
D)12
E)8
Unlock Deck
Unlock for access to all 80 flashcards in this deck.
Unlock Deck
k this deck
61
Let f(x,y)=x2+yf ( x , y ) = x ^ { 2 } + y with constraint x2+y2=9x ^ { 2 } + y ^ { 2 } = 9 . Then f has a relative minimum at

A) (3,0)( - 3,0 )
B) (0,3)( 0,3 )
C) (0,3)( 0 , - 3 )
D) (3,0)( 3,0 )
E) (2,5)( 2 , \sqrt { 5 } )
Unlock Deck
Unlock for access to all 80 flashcards in this deck.
Unlock Deck
k this deck
62
Let f(x,y)=5x3yf ( x , y ) = 5 x - 3 y with constraint x2+y2=136x ^ { 2 } + y ^ { 2 } = 136 . Then f has a relative minimum at

A) (6,10)( 6,10 )
B) (6,10)( 6 , - 10 )
C) (10,6)( - 10,6 )
D) (10,6)( 10,6 )
E) (10,6)( 10 , - 6 )
Unlock Deck
Unlock for access to all 80 flashcards in this deck.
Unlock Deck
k this deck
63
Let f(x,y)=xyf ( x , y ) = x y with constraint 3x2+y2=63 x ^ { 2 } + y ^ { 2 } = 6 . Then f has a relative minimum at

A) (1,3)( 1 , \sqrt { 3 } )
B) (1,3)( - 1 , \sqrt { 3 } )
C) (1,3)( 1 , - \sqrt { 3 } )
D) (±1,±3)(±1,3)( \pm 1 , \pm \sqrt { 3 } ) ( \pm 1 , \mp \sqrt { 3 } )
E) (±1,3)( \pm 1 , \mp \sqrt { 3 } )
Unlock Deck
Unlock for access to all 80 flashcards in this deck.
Unlock Deck
k this deck
64
Let f(x,y)=x2+y2f ( x , y ) = x ^ { 2 } + y ^ { 2 } with constraint 3x+y=33 x + y = 3 . Then f has a relative minimum at

A) (910,310)\left( \frac { 9 } { 10 } , \frac { 3 } { 10 } \right)
B) (910,310)\left( - \frac { 9 } { 10 } , \frac { 3 } { 10 } \right)
C) (910,310)\left( \frac { 9 } { 10 } , - \frac { 3 } { 10 } \right)
D) (310,910)\left( \frac { 3 } { 10 } , \frac { 9 } { 10 } \right)
E) (310,910)\left( \frac { 3 } { 10 } , - \frac { 9 } { 10 } \right)
Unlock Deck
Unlock for access to all 80 flashcards in this deck.
Unlock Deck
k this deck
65
Let f(x,y,z)=xyzf ( x , y , z ) = x y z with constraint x+y+z=1x + y + z = 1 . Assume that x,y,z0x , y , z \geq 0 . Then f has a relative maximum at

A) (13,16,12)\left( \frac { 1 } { 3 } , \frac { 1 } { 6 } , \frac { 1 } { 2 } \right)
B) (13,12,16)\left( \frac { 1 } { 3 } , \frac { 1 } { 2 } , \frac { 1 } { 6 } \right)
C) (12,16,13)\left( \frac { 1 } { 2 } , \frac { 1 } { 6 } , \frac { 1 } { 3 } \right)
D) (13,13,13)\left( \frac { 1 } { 3 } , \frac { 1 } { 3 } , \frac { 1 } { 3 } \right)
E) (12,13,16)\left( \frac { 1 } { 2 } , \frac { 1 } { 3 } , \frac { 1 } { 6 } \right)
Unlock Deck
Unlock for access to all 80 flashcards in this deck.
Unlock Deck
k this deck
66
Let f(x,y,z)=x2y2f ( x , y , z ) = x ^ { 2 } - y ^ { 2 } with constraint x2+2y2+3z2=1x ^ { 2 } + 2 y ^ { 2 } + 3 z ^ { 2 } = 1 . Then f has a relative minimum at

A) (±1,0,0)( \pm 1,0,0 )
B) (1,0,0)( - 1,0,0 )
C) (1,0,0)( 1,0,0 )
D) (12,0,12)\left( \frac { 1 } { 2 } , 0 , \frac { 1 } { 2 } \right)
E) (12,0,12)\left( \frac { 1 } { 2 } , 0 , - \frac { 1 } { 2 } \right)
Unlock Deck
Unlock for access to all 80 flashcards in this deck.
Unlock Deck
k this deck
67
Let f(x,y,z)=x2+y2+z2f ( x , y , z ) = x ^ { 2 } + y ^ { 2 } + z ^ { 2 } with constraint xyz = 1. Then f has a relative minimum at

A) (1,±1,±1)( 1 , \pm 1 , \pm 1 )
B) (1,±1,1)( - 1 , \pm 1 , \mp 1 )
C) (1,1,1),(1,1,1)( 1,1,1 ) , ( - 1 , - 1 , - 1 )
D) (1,1,1),(1,1,1)( 1 , - 1 , - 1 ) , ( - 1,1 , - 1 )
E) (1,±1,±1),(1,±1,1)( 1 , \pm 1 , \pm 1 ) , ( - 1 , \pm 1 , \mp 1 )
Unlock Deck
Unlock for access to all 80 flashcards in this deck.
Unlock Deck
k this deck
68
Let f(x,y,z)=x+y+zf ( x , y , z ) = x + y + z with constraint x2+y2+z2=9x ^ { 2 } + y ^ { 2 } + z ^ { 2 } = 9 . Then f has a relative maximum at

A) (3,3,3)( \sqrt { 3 } , \sqrt { 3 } , - \sqrt { 3 } )
B) (3,3,3)( \sqrt { 3 } , - \sqrt { 3 } , \sqrt { 3 } )
C) (3,3,3)( \sqrt { 3 } , \sqrt { 3 } , \sqrt { 3 } )
D) (3,3,3)( - \sqrt { 3 } , \sqrt { 3 } , \sqrt { 3 } )
E) (3,3,3)( - \sqrt { 3 } , \sqrt { 3 } , - \sqrt { 3 } )
Unlock Deck
Unlock for access to all 80 flashcards in this deck.
Unlock Deck
k this deck
69
Let f(x,y,z)=x+y+zf ( x , y , z ) = x + y + z with constraint x2+y2+z2=9x ^ { 2 } + y ^ { 2 } + z ^ { 2 } = 9 . Then f has a relative minimum at

A) (3,3,3)( \sqrt { 3 } , \sqrt { 3 } , - \sqrt { 3 } )
B) (3,3,3)( - \sqrt { 3 } , - \sqrt { 3 } , - \sqrt { 3 } )
C) (3,3,3)( \sqrt { 3 } , \sqrt { 3 } , \sqrt { 3 } )
D) (3,3,3)( - \sqrt { 3 } , \sqrt { 3 } , - \sqrt { 3 } )
E) (3,3,3)( \sqrt { 3 } , - \sqrt { 3 } , - \sqrt { 3 } )
Unlock Deck
Unlock for access to all 80 flashcards in this deck.
Unlock Deck
k this deck
70
Let f(x,y,z)=xyzf ( x , y , z ) = x y z with constraint 2xy+3xz+yz=722 x y + 3 x z + y z = 72 . Then f has a relative maximum at

A) (2,6,4)( - 2 , - 6 , - 4 )
B) (2,6,4)( 2 , - 6 , - 4 )
C) (2,6,4)( - 2 , - 6,4 )
D) (2,6,4)( 2,6,4 )
E) (2,6,4)( - 2,6 , - 4 )
Unlock Deck
Unlock for access to all 80 flashcards in this deck.
Unlock Deck
k this deck
71
Let f(x,y,z)=x2+4y2+16z2f ( x , y , z ) = x ^ { 2 } + 4 y ^ { 2 } + 16 z ^ { 2 } with constraint xyz = 1. Then f has a relative minimum at

A) (2,±1,±12),(2,1,12)\left( 2 , \pm 1 , \pm \frac { 1 } { 2 } \right) , \left( - 2 , - 1 , \frac { 1 } { 2 } \right)
B) (2,±1,±12),(2,1,12)\left( 2 , \pm 1 , \pm \frac { 1 } { 2 } \right) , \left( - 2,1 , - \frac { 1 } { 2 } \right)
C) (2,1,12),(2,±1,±12)\left( 2 , - 1 , - \frac { 1 } { 2 } \right) , \left( - 2 , \pm 1 , \pm \frac { 1 } { 2 } \right)
D) (2,1,12),(2,±1,±12)\left( 2,1 , \frac { 1 } { 2 } \right) , \left( - 2 , \pm 1 , \pm \frac { 1 } { 2 } \right)
E) (2,±1,±12),(2,±1,±12)\left( 2 , \pm 1 , \pm \frac { 1 } { 2 } \right) , \left( - 2 , \pm 1 , \pm \frac { 1 } { 2 } \right)
Unlock Deck
Unlock for access to all 80 flashcards in this deck.
Unlock Deck
k this deck
72
Let f(x,y,z)=x2+4y2+16z2f ( x , y , z ) = x ^ { 2 } + 4 y ^ { 2 } + 16 z ^ { 2 } with constraint xy = 1. Then f has a relative minimum at

A) (2,12,0)\left( \sqrt { 2 } , \frac { 1 } { \sqrt { 2 } } , 0 \right)
B) (2,12,0)\left( - \sqrt { 2 } , - \frac { 1 } { \sqrt { 2 } } , 0 \right)
C) (12,2,0)\left( \frac { 1 } { \sqrt { 2 } } , \sqrt { 2 } , 0 \right)
D) (±2,±12,0)\left( \pm \sqrt { 2 } , \pm \frac { 1 } { \sqrt { 2 } } , 0 \right)
E) (12,2,0)\left( - \frac { 1 } { \sqrt { 2 } } , - \sqrt { 2 } , 0 \right)
Unlock Deck
Unlock for access to all 80 flashcards in this deck.
Unlock Deck
k this deck
73
Let f(x,y,z)=x2+4y2+16z2f ( x , y , z ) = x ^ { 2 } + 4 y ^ { 2 } + 16 z ^ { 2 } with constraint x = 1. Then f has a relative minimum at

A) (1,12,14)\left( 1 , \frac { 1 } { 2 } , \frac { 1 } { 4 } \right)
B) (1,12,14)\left( 1 , \frac { 1 } { 2 } , - \frac { 1 } { 4 } \right)
C) (1,0,1)( 1,0,1 )
D) (1,12,14)\left( 1 , - \frac { 1 } { 2 } , \frac { 1 } { 4 } \right)
E) (1,0,0)( 1,0,0 )
Unlock Deck
Unlock for access to all 80 flashcards in this deck.
Unlock Deck
k this deck
74
Let w=(x1)2+(y3)2+z2w = ( x - 1 ) ^ { 2 } + ( y - 3 ) ^ { 2 } + z ^ { 2 } with constraint 4x+2yz=54 x + 2 y - z = 5 . Then the minimum value of w is

A) 2921\frac { 29 } { 21 }
B) 2521\frac { 25 } { 21 }
C) 2321\frac { 23 } { 21 }
D) 2021\frac { 20 } { 21 }
E) 1921\frac { 19 } { 21 }
Unlock Deck
Unlock for access to all 80 flashcards in this deck.
Unlock Deck
k this deck
75
Let w=(x1)2+(y+1)2+(z+1)2w = ( x - 1 ) ^ { 2 } + ( y + 1 ) ^ { 2 } + ( z + 1 ) ^ { 2 } with constraint x+4y+3z=2x + 4 y + 3 z = 2 . Then the minimum value of w is

A) 3713\frac { 37 } { 13 }
B) 3513\frac { 35 } { 13 }
C) 3313\frac { 33 } { 13 }
D) 3213\frac { 32 } { 13 }
E) 3013\frac { 30 } { 13 }
Unlock Deck
Unlock for access to all 80 flashcards in this deck.
Unlock Deck
k this deck
76
Let w=x2+y2+z2w = x ^ { 2 } + y ^ { 2 } + z ^ { 2 } with constraint x2+4y2=16x ^ { 2 } + 4 y ^ { 2 } = 16 . Then the minimum value of w is

A)24
B)23
C)19
D)17
E)16
Unlock Deck
Unlock for access to all 80 flashcards in this deck.
Unlock Deck
k this deck
77
Let w=x2+y2+z2w = x ^ { 2 } + y ^ { 2 } + z ^ { 2 } with constraint x+y+z=1x + y + z = 1 . Then the maximum value of w is

A) 13\frac { 1 } { 3 }
B)1
C) 43\frac { 4 } { 3 }
D) 54\frac { 5 } { 4 }
E)2
Unlock Deck
Unlock for access to all 80 flashcards in this deck.
Unlock Deck
k this deck
78
Let w=x2+y2+z2w = x ^ { 2 } + y ^ { 2 } + z ^ { 2 } with constraint 9x2+4y2+z2=369 x ^ { 2 } + 4 y ^ { 2 } + z ^ { 2 } = 36 . Then the minimum value of w is

A)4
B)2
C)1
D) 23\frac { 2 } { 3 }
E) 13\frac { 1 } { 3 }
Unlock Deck
Unlock for access to all 80 flashcards in this deck.
Unlock Deck
k this deck
79
Let w=x2+y2+z2w = x ^ { 2 } + y ^ { 2 } + z ^ { 2 } with constraint 9x2+4y2+z2=369 x ^ { 2 } + 4 y ^ { 2 } + z ^ { 2 } = 36 . Then the maximum value of w is

A)48
B)40
C)36
D)32
E)28
Unlock Deck
Unlock for access to all 80 flashcards in this deck.
Unlock Deck
k this deck
80
Let w=x2+y2+z2w = x ^ { 2 } + y ^ { 2 } + z ^ { 2 } with constraint 3xy+5z=13 x - y + 5 z = 1 . Then the minimum value of w is

A) 113\frac { 1 } { 13 }
B) 119\frac { 1 } { 19 }
C) 121\frac { 1 } { 21 }
D) 135\frac { 1 } { 35 }
E) 141\frac { 1 } { 41 }
Unlock Deck
Unlock for access to all 80 flashcards in this deck.
Unlock Deck
k this deck
locked card icon
Unlock Deck
Unlock for access to all 80 flashcards in this deck.