Exam 14: Directional Derivatives, Gradients, and Extrema

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Let f(x,y)=x3+y318xyf ( x , y ) = x ^ { 3 } + y ^ { 3 } - 18 x y . Then f has a relative minimum at

Free
(Multiple Choice)
4.9/5
(36)
Correct Answer:
Verified

B

An equation of the tangent plane to the surface x23+y23+z23=14x ^ { \frac { 2 } { 3 } } + y ^ { \frac { 2 } { 3 } } + z ^ { \frac { 2 } { 3 } } = 14 at (-8, 27, 1) is

Free
(Multiple Choice)
4.9/5
(30)
Correct Answer:
Verified

C

Let f(x,y,z)=ztan1(yx)f ( x , y , z ) = z \tan ^ { - 1 } \left( \frac { y } { x } \right) . Then the maximum value of the directional derivative Duf(1,1,3)D _ { \mathrm { u } } f ( 1,1,3 ) is

Free
(Multiple Choice)
4.7/5
(45)
Correct Answer:
Verified

B

Let f(x,y)=sin(x+y)+sinx+sinyf ( x , y ) = \sin ( x + y ) + \sin x + \sin y . Then f has a relative minimum at

(Multiple Choice)
4.7/5
(27)

Let w=x2+y2+z2w = x ^ { 2 } + y ^ { 2 } + z ^ { 2 } with constraint 3xy+5z=13 x - y + 5 z = 1 . Then the minimum value of w is

(Multiple Choice)
4.7/5
(31)

Let f(x,y)=exy+2x2y2f ( x , y ) = e ^ { x y } + 2 x ^ { 2 } y ^ { 2 } . Then the directional derivative of f at (0,1) in the direction of the unit vector U\mathbf { U } which is parallel to v=5i+12j\mathbf { v } = - 5 \mathbf { i } + 12 \mathbf { j } is

(Multiple Choice)
4.9/5
(37)

An equation of the tangent plane to the surface 16z=4x2+y216 z = 4 x ^ { 2 } + y ^ { 2 } at (2, 4, 2) is

(Multiple Choice)
4.9/5
(26)

Let f(x,y)=x2+y2f ( x , y ) = \sqrt { x ^ { 2 } + y ^ { 2 } } . Then the maximum value of the directional derivative Duf(2,4)D _ { \mathrm { u } } f ( 2,4 ) is

(Multiple Choice)
4.7/5
(34)

Let f(x,y)=5x3yf ( x , y ) = 5 x - 3 y with constraint x2+y2=136x ^ { 2 } + y ^ { 2 } = 136 . Then f has a relative minimum at

(Multiple Choice)
4.9/5
(27)

An equation of the tangent plane to the surface zx2xy2yz2=18z x ^ { 2 } - x y ^ { 2 } - y z ^ { 2 } = 18 at (0, -2, 3) is

(Multiple Choice)
4.8/5
(47)

Let f(x,y)=x3+y3+3y23x9y+2f ( x , y ) = x ^ { 3 } + y ^ { 3 } + 3 y ^ { 2 } - 3 x - 9 y + 2 . Then the set of saddle points of f is

(Multiple Choice)
4.8/5
(24)

The absolute maximum of f(x,y)=2x+2yx2y2+2f ( x , y ) = 2 x + 2 y - x ^ { 2 } - y ^ { 2 } + 2 on or inside the triangle with vertices (0, 0), (9, 0), and (0,9) is

(Multiple Choice)
4.8/5
(42)

An equation of the tangent plane to the surface x2=12yx ^ { 2 } = 12 y at (-6, 3, 1) is

(Multiple Choice)
4.9/5
(35)

An equation of the tangent plane to the surface x23y24z2=2x ^ { 2 } - 3 y ^ { 2 } - 4 z ^ { 2 } = 2 at (3, 1, 1) is

(Multiple Choice)
4.9/5
(29)

The gradient of f(x,y,z)=x2y+y2z+z2xf ( x , y , z ) = x ^ { 2 } y + y ^ { 2 } z + z ^ { 2 } x at (1, 2, -1) is

(Multiple Choice)
4.9/5
(31)

Let f(x,y,z)=xyzf ( x , y , z ) = x y z with constraint x+y+z=1x + y + z = 1 . Assume that x,y,z0x , y , z \geq 0 . Then f has a relative maximum at

(Multiple Choice)
4.8/5
(32)

Let f(x,y)=2xey+3yexf ( x , y ) = 2 x e ^ { y } + 3 y e ^ { x } . Then the maximum value of the directional derivative Duf(0,0)D _ { \mathrm { u } } f ( 0,0 ) is

(Multiple Choice)
5.0/5
(40)

The symmetric equations of the normal line to the surface x2=12yx ^ { 2 } = 12 y at (-6, 3, 1) are

(Multiple Choice)
4.7/5
(41)

Let w=x2+y2+z2w = x ^ { 2 } + y ^ { 2 } + z ^ { 2 } with constraint 9x2+4y2+z2=369 x ^ { 2 } + 4 y ^ { 2 } + z ^ { 2 } = 36 . Then the maximum value of w is

(Multiple Choice)
4.8/5
(36)

Let f(x,y,z)=x2yxyz2f ( x , y , z ) = x ^ { 2 } y - x y z ^ { 2 } . Then the directional derivative of f at P=(0,1,2)P = ( 0,1,2 ) in the direction of the unit vector U\mathbf { U } which is parallel to PQ\overrightarrow { P Q } where Q=(1,4,3)Q = ( 1,4,3 ) is

(Multiple Choice)
4.7/5
(40)
Showing 1 - 20 of 80
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)