Deck 14: Vector Analysis

Full screen (f)
exit full mode
Question
Find a potential for the given vector field: F(x,y)=2xy,x2+1\vec { F } ( x , y ) = \left\langle 2 x y , x ^ { 2 } + 1 \right\rangle
Use Space or
up arrow
down arrow
to flip the card.
Question
Find a potential for the given vector field: F(x,y)=eysin(xey),xeysin(xey)\vec { F } ( x , y ) = \left\langle - e ^ { y } \sin \left( x e ^ { y } \right) , - x e ^ { y } \sin \left( x e ^ { y } \right) \right\rangle
Question
Find a potential for the given vector field: F(x,y)=3x2cos(xy)x3ysin(xy),x4sin(xy)\vec { F } ( x , y ) = \left\langle 3 x ^ { 2 } \cos ( x y ) - x ^ { 3 } y \sin ( x y ) , - x ^ { 4 } \sin ( x y ) \right\rangle

A) f(x,y)=x4cos(xy)f ( x , y ) = x ^ { 4 } \cos ( x y )
B) f(x,y)=x3sin(xy)f ( x , y ) = x ^ { 3 } \sin ( x y )
C) f(x,y)=x3cos(xy)f ( x , y ) = x ^ { 3 } \cos ( x y )
D) f(x,y)=x4sin(xy)f ( x , y ) = x ^ { 4 } \sin ( x y )
Question
Find a potential for the given vector field: F(x,y)=ycos(xy)esin(xy),xcos(xy)esin(xy)\vec { F } ( x , y ) = \left\langle y \cos ( x y ) e ^ { \sin ( x y ) } , x \cos ( x y ) e ^ { \sin ( x y ) } \right\rangle
Question
Find a potential for the given vector field: F(x,y)=2x,2y\vec { F } ( x , y ) = \left\langle \frac { 2 } { x } , \frac { 2 } { y } \right\rangle
Question
Find a potential for the given vector field: F(x,y)=2xy1,x2y2\vec { F } ( x , y ) = \left\langle 2 x y ^ { - 1 } , - x ^ { 2 } y ^ { - 2 } \right\rangle

A) f(x,y)=x2y1f ( x , y ) = - x ^ { 2 } y ^ { - 1 }
B) f(x,y)=xy2f ( x , y ) = x y ^ { - 2 }
C) f(x,y)=xy1f ( x , y ) = x y ^ { - 1 }
D) f(x,y)=x2y1f ( x , y ) = x ^ { 2 } y ^ { - 1 }
Question
Find a potential for the given vector field: F(x,y,z)=yz1,xz1,xyz2\vec { F } ( x , y , z ) = \left\langle y z ^ { - 1 } , x z ^ { - 1 } , - x y z ^ { - 2 } \right\rangle
Question
Find a potential for the given vector field: F(x,y,z)=yzexyz,xzexyz,xyexyz\vec { F } ( x , y , z ) = \left\langle y z e ^ { x y z } , x z e ^ { x y z } , x y e ^ { x y z } \right\rangle
Question
Find a potential for the given vector field: F(x,y,z)=1x,1y,cot(z)\vec { F } ( x , y , z ) = \left\langle \frac { 1 } { x } , \frac { 1 } { y } , \cot ( z ) \right\rangle

A) f(x,y,z)=ln(xytan(z))f ( x , y , z ) = \ln ( x y \tan ( z ) )
B) f(x,y,z)=ln(xycos(z))f ( x , y , z ) = \ln ( x y \cos ( z ) )
C) f(x,y,z)=ln(xysin(z))f ( x , y , z ) = \ln ( x y \sin ( z ) )
D) f(x,y,z)=ln(xysec(z))f ( x , y , z ) = \ln ( x y \sec ( z ) )
Question
Is the given vector field conservative? F(x,y)=xy1,xyln(x)\vec { F } ( x , y ) = \left\langle x ^ { y - 1 } , x ^ { y } \ln ( x ) \right\rangle
Question
Is the given vector field conservative? F(x,y)=2xy3,3x2y2\vec { F } ( x , y ) = \left\langle 2 x y ^ { 3 } , 3 x ^ { 2 } y ^ { 2 } \right\rangle
Question
Is the given vector field conservative? F(x,y)=3xy3,3x2y3\vec { F } ( x , y ) = \left\langle 3 x y ^ { 3 } , 3 x ^ { 2 } y ^ { 3 } \right\rangle
Question
Evaluate the line integral of the function over the given curve: f(x,y)=x3f ( x , y ) = x ^ { 3 } and the curve C is given by y=x3,0x2y = x ^ { 3 } , 0 \leq x \leq 2
Question
Evaluate the line integral of the function over the given curve: f(x,y)=yf ( x , y ) = y and the curve C is given by y=x3,0x2y = x ^ { 3 } , 0 \leq x \leq 2
Question
Evaluate the line integral of the function over the given curve: f(x,y)=xf ( x , y ) = x and the curve C is given by y=x2,0x2y = x ^ { 2 } , 0 \leq x \leq 2

A) 1717112\frac { 17 \sqrt { 17 } - 1 } { 12 }
B) 1717114\frac { 17 \sqrt { 17 } - 1 } { 14 }
C) 1717117\frac { 17 \sqrt { 17 } - 1 } { 17 }
D) 1717212\frac { 17 \sqrt { 17 } - 2 } { 12 }
Question
Evaluate the line integral of the function over the given curve: f(x,y)=xf ( x , y ) = x and the curve C is given by r(t)=cos(t),sin(t),0tπ2\vec { r } ( t ) = \langle \cos ( t ) , \sin ( t ) \rangle , 0 \leq t \leq \frac { \pi } { 2 }
Question
Evaluate the line integral of the function over the given curve: f(x,y)=xyf ( x , y ) = x y and the curve C is given by r(t)=cos(t),sin(t),0tπ2\vec { r } ( t ) = \langle \cos ( t ) , \sin ( t ) \rangle , 0 \leq t \leq \frac { \pi } { 2 }
Question
Evaluate the line integral of the function over the given curve: f(x,y)=xeyf ( x , y ) = x e ^ { y } and the curve C is given by r(t)=cos(t),sin(t),0tπ2\vec { r } ( t ) = \langle \cos ( t ) , \sin ( t ) \rangle , 0 \leq t \leq \frac { \pi } { 2 }

A) ee
B) e1e - 1
C) 1- 1
D) eπ21e ^ { \frac { \pi } { 2 } } - 1
Question
Evaluate the line integral of the function over the given curve: f(x,y,z)=yexf ( x , y , z ) = y e ^ { x } and the curve C is given by r(t)=cos(t),sin(t),t,0tπ2\vec { r } ( t ) = \langle \cos ( t ) , \sin ( t ) , t \rangle , 0 \leq t \leq \frac { \pi } { 2 }
Question
Evaluate the line integral of the function over the given curve: f(x,y,z)=ezf ( x , y , z ) = e ^ { z } and the curve C is given by r(t)=cos(t),sin(t),t,0tπ2\vec { r } ( t ) = \langle \cos ( t ) , \sin ( t ) , t \rangle , 0 \leq t \leq \frac { \pi } { 2 }
Question
Evaluate the line integral of the function over the given curve: f(x,y,z)=xeyf ( x , y , z ) = x e ^ { y } and the curve C is given by r(t)=cos(t),sin(t),t,0tπ2\vec { r } ( t ) = \langle \cos ( t ) , \sin ( t ) , t \rangle , 0 \leq t \leq \frac { \pi } { 2 }
Question
Find CFdr\int _ { C } \vec { F } \cdot d \vec { r } of the function over the given curve: F(x,y)=x,x\vec { F } ( x , y ) = \langle x , x \rangle and the curve C is given by y=x3,0x2y = x ^ { 3 } , 0 \leq x \leq 2
Question
Find CFdr\int _ { C } \vec { F } \cdot d \vec { r } of the function over the given curve: F(x,y)=y,y\vec { F } ( x , y ) = \langle y , y \rangle and the curve C is given by y=x3,0x2y = x ^ { 3 } , 0 \leq x \leq 2
Question
Find CFdr\int _ { C } \vec { F } \cdot d \vec { r } of the function over the given curve: F(x,y)=x,y\vec { F } ( x , y ) = \langle x , y \rangle and the curve C is given by y=x2,0x2y = x ^ { 2 } , 0 \leq x \leq 2

A) 4
B) 88

C) 1010
D) 1212
Question
Find CFdr\int _ { C } \vec { F } \cdot d \vec { r } of the function over the given curve: F(x,y)=x,x\vec { F } ( x , y ) = \langle x , x \rangle and the curve C is given by r(t)=cos(t),sin(t),0tπ2\vec { r } ( t ) = \langle \cos ( t ) , \sin ( t ) \rangle , 0 \leq t \leq \frac { \pi } { 2 }
Question
Find CFdr\int _ { C } \vec { F } \cdot d \vec { r } of the function over the given curve: F(x,y)=y,y\vec { F } ( x , y ) = \langle y , y \rangle and the curve C is given by r(t)=cos(t),sin(t),0tπ2\vec { r } ( t ) = \langle \cos ( t ) , \sin ( t ) \rangle , 0 \leq t \leq \frac { \pi } { 2 }
Question
Find CFdr\int _ { C } \vec { F } \cdot d \vec { r } of the function over the given curve: F(x,y)=x,y\vec { F } ( x , y ) = \langle x , y \rangle and the curve C is given by r(t)=cos(t),sin(t),0tπ2\vec { r } ( t ) = \langle \cos ( t ) , \sin ( t ) \rangle , 0 \leq t \leq \frac { \pi } { 2 }

A) 12\frac { 1 } { 2 }
B) 00
C) 1- 1
D) π1\pi - 1
Question
Find CFdr\int _ { C } \vec { F } \cdot d \vec { r } of the function over the given curve: F(x,y)=x,y,z\vec { F } ( x , y ) = \langle x , y , z \rangle and the curve C is given by r(t)=cos(t),sin(t),t,0tπ2\vec { r } ( t ) = \langle \cos ( t ) , \sin ( t ) , t \rangle , 0 \leq t \leq \frac { \pi } { 2 }
Question
Find CFdr\int _ { C } \vec { F } \cdot d \vec { r } of the function over the given curve: F(x,y)=x,x,x\vec { F } ( x , y ) = \langle x , x , x \rangle and the curve C is given by r(t)=cos(t),sin(t),t,0tπ2\vec { r } ( t ) = \langle \cos ( t ) , \sin ( t ) , t \rangle , 0 \leq t \leq \frac { \pi } { 2 }
Question
Find CFdr\int _ { C } \vec { F } \cdot d \vec { r } of the function over the given curve: F(x,y)=1,x,1\vec { F } ( x , y ) = \langle 1 , x , 1 \rangle and the curve C is given by r(t)=cos(t),sin(t),t,0tπ2\vec { r } ( t ) = \langle \cos ( t ) , \sin ( t ) , t \rangle , 0 \leq t \leq \frac { \pi } { 2 }

A) 3π41\frac { 3 \pi } { 4 } - 1
B) 3π4\frac { 3 \pi } { 4 }
C) π41\frac { \pi } { 4 } - 1
D) 3π432\frac { 3 \pi } { 4 } - \frac { 3 } { 2 }
Question
Find the area of the surface SS Let SS be the portion of the plane z=2x+y+3z = 2 x + y + 3 above the rectangle 0x20 \leq x \leq 2 and 1y61 \leq y \leq 6
Question
Find the area of the surface SS Let SS be the portion of the plane z=3x+4y+7z = 3 x + 4 y + 7 above the rectangle 0x30 \leq x \leq 3 and 0y40 \leq y \leq 4
Question
Find the area of the surface SS Let SS be the portion of the plane z=x+9y2z = x + 9 y - 2 above the rectangle 1x31 \leq x \leq 3 and 2y42 \leq y \leq 4

A) 4834 \sqrt { 83 }
B) 2832 \sqrt { 83 }
C) 83\sqrt { 83 }
D) 1283\frac { 1 } { 2 } \sqrt { 83 }
Question
Find the area of the surface SS Let S={(2u+v,uv,u+3v):0u2 and 0v1}S = \{ ( 2 u + v , u - v , u + 3 v ) : 0 \leq u \leq 2 \text { and } 0 \leq v \leq 1 \}
Question
Find the area of the surface SS Let S={(v,u,u):0u1 and 0v1}S = \{ ( v , u , u ) : 0 \leq u \leq 1 \text { and } 0 \leq v \leq 1 \}
Question
Find the area of the surface SS Let S={(u+v,3u+2v,6v):0u1 and 1v3}S = \{ ( u + v , 3 u + 2 v , 6 v ) : 0 \leq u \leq 1 \text { and } 1 \leq v \leq 3 \}

A) 219\sqrt { 219 }
B) 2832 \sqrt { 83 }
C) 83\sqrt { 83 }
D) 3838
Question
Integrate the function ff over the surface SS Let SS be the portion of the plane z=2x+y+3z = 2 x + y + 3 above the rectangle 0x20 \leq x \leq 2 and 1x61 \leq x \leq 6 and f(x,y)=xf ( x , y ) = x
Question
Integrate the function ff over the surface SS Let SS be the portion of the plane z=3x+4y+7z = 3 x + 4 y + 7 above the rectangle 0x30 \leq x \leq 3 and 0x40 \leq x \leq 4 and f(x,y)=xyf ( x , y ) = x y
Question
Integrate the function ff over the surface SS Let SS be the portion of the plane z=x+9y2z = x + 9 y - 2 above the rectangle 1x31 \leq x \leq 3 and 2x42 \leq x \leq 4 and f(x,y)=x2f ( x , y ) = x ^ { 2 }

A) 528352 \sqrt { 83 }
B) 268326 \sqrt { 83 }
C) 52383\frac { 52 } { 3 } \sqrt { 83 }
D) 26383\frac { 26 } { 3 } \sqrt { 83 }
Question
Integrate the function ff over the surface SS Let S={(2u+v,uv,u+3v):0u2 and 0v1}S = \{ ( 2 u + v , u - v , u + 3 v ) : 0 \leq u \leq 2 \text { and } 0 \leq v \leq 1 \} and f(x,y)=exf ( x , y ) = e ^ { x }
Question
Integrate the function ff over the surface SS Let S={(v,u,u):0u1 and 0v1}S = \{ ( v , u , u ) : 0 \leq u \leq 1 \text { and } 0 \leq v \leq 1 \} and f(x,y)=yf ( x , y ) = y
Question
Integrate the function ff over the surface SS Let S={(u+v,3u+2v,6v):0u1 and 1v3}S = \{ ( u + v , 3 u + 2 v , 6 v ) : 0 \leq u \leq 1 \text { and } 1 \leq v \leq 3 \} and f(x,y)=sin(x)f ( x , y ) = \sin ( x )

A) sin(4)sin(3)sin(2)+sin(1)\sin ( 4 ) - \sin ( 3 ) - \sin ( 2 ) + \sin ( 1 )
B) 19(sin(4)+sin(3)+sin(2)sin(1))19 ( - \sin ( 4 ) + \sin ( 3 ) + \sin ( 2 ) - \sin ( 1 ) )
C) sin(4)+sin(3)- \sin ( 4 ) + \sin ( 3 )
D) 22192 \sqrt { 219 }
Question
Find the flux of F\vec { F } through the surface SS in the positive z direction. Let S={(2u+v,uv,u+3v):0u2 and 0v1}S = \{ ( 2 u + v , u - v , u + 3 v ) : 0 \leq u \leq 2 \text { and } 0 \leq v \leq 1 \} and F(x,y,z)=x,y,zy\vec { F } ( x , y , z ) = \langle x , y , z - y \rangle
Question
Find the flux of F\vec { F } through the surface SS in the positive z direction. Let S={(v,u,u):0u1 and 0v1}S = \{ ( v , u , u ) : 0 \leq u \leq 1 \text { and } 0 \leq v \leq 1 \} and F(x,y,z)=x,y,zy\vec { F } ( x , y , z ) = \langle x , y , z - y \rangle
Question
Find the flux of F\vec { F } through the surface SS in the positive z direction. Let S={(u+v,3u+2v,6v):0u1 and 1v3}S = \{ ( u + v , 3 u + 2 v , 6 v ) : 0 \leq u \leq 1 \text { and } 1 \leq v \leq 3 \} and F(x,y,z)=z,x,y\vec { F } ( x , y , z ) = \langle z , x , y \rangle

A) 378378
B) 791- 791
C) 409- 409
D) 00
Question
Find the divergence of F(x,y)=x,xy\vec { F } ( x , y ) = \langle x , x y \rangle
Question
Find the divergence of F(x,y)=x2y,exy\vec { F } ( x , y ) = \left\langle x ^ { 2 } y , e ^ { x y } \right\rangle
Question
Find the divergence of F(x,y)=sin(xy),cos(y2)\vec { F } ( x , y ) = \left\langle \sin ( x y ) , \cos \left( y ^ { 2 } \right) \right\rangle

A) ycos(xy)2ysin(y2)y \cos ( x y ) - 2 y \sin \left( y ^ { 2 } \right)
B) cos(xy)2sin(y2)\cos ( x y ) - 2 \sin \left( y ^ { 2 } \right)
C) ycos(xy)+2ysin(y2)- y \cos ( x y ) + 2 y \sin \left( y ^ { 2 } \right)
D) ycos(xy)ysin(y2)y \cos ( x y ) - y \sin \left( y ^ { 2 } \right)
Question
Find the divergence of F(x,y,z)=x,y2,z3\vec { F } ( x , y , z ) = \left\langle x , y ^ { 2 } , z ^ { 3 } \right\rangle
Question
Find the divergence of F(x,y,z)=xy,yz,xz\vec { F } ( x , y , z ) = \langle x y , y z , x z \rangle
Question
Find the divergence of F(x,y,z)=eyz,exz,exy\vec { F } ( x , y , z ) = \left\langle e ^ { y z } , e ^ { x z } , e ^ { x y } \right\rangle

A) eyz+exz+exye ^ { y z } + e ^ { x z } + e ^ { x y }
B) yeyz+xexz+xexyy e ^ { y z } + x e ^ { x z } + x e ^ { x y }
C) 00
D) 3exy3 e ^ { x y }
Question
Find the curl of F(x,y,z)=x,y2,z3\vec { F } ( x , y , z ) = \left\langle x , y ^ { 2 } , z ^ { 3 } \right\rangle
Question
Find the curl of F(x,y,z)=xy,yz,xz\vec { F } ( x , y , z ) = \langle x y , y z , x z \rangle
Question
Find the curl of F(x,y,z)=eyz,exz,exy\vec { F } ( x , y , z ) = \left\langle e ^ { y z } , e ^ { x z } , e ^ { x y } \right\rangle

A) xexyzexz,yeyzxexy,zexzyeyz>\left\langle x e ^ { x y } - z e ^ { x z } , y e ^ { y z } - x e ^ { x y } , z e ^ { x z } - y e ^ { y z } > \right.
B) <xexy+xexz,yeyz+yexy,zexz+zeyz>< x e ^ { x y } + x e ^ { x z } , y e ^ { y z } + y e ^ { x y } , z e ^ { x z } + z e ^ { y z } >
C) xexyxexz,yeyzyexy,zexzzeyz>\left\langle x e ^ { x y } - x e ^ { x z } , y e ^ { y z } - y e ^ { x y } , z e ^ { x z } - z e ^ { y z } > \right.
D) xexy,yeyz,zexz\left\langle x e ^ { x y } , y e ^ { y z } , z e ^ { x z } \right\rangle
Question
Compute the integral using Green's theorem. CFdr\int _ { C } \vec { F } \cdot d \vec { r } , where C is the square with vertices (1, 1), (0, 1), (0, 0), and (1, 0) traversed counterclockwise and F(x,y)=x2y,x2y2\vec { F } ( x , y ) = \left\langle x ^ { 2 } y , x ^ { 2 } y ^ { 2 } \right\rangle
Question
Compute the integral using Green's theorem. CFdr\int _ { C } \vec { F } \cdot d \vec { r } , where C is the unit circle traversed counterclockwise and F(x,y)=y3,x3\vec { F } ( x , y ) = \left\langle y ^ { 3 } , - x ^ { 3 } \right\rangle
Question
Compute the integral using Green's theorem. CFdr\int _ { C } \vec { F } \cdot d \vec { r } , where C is the triangle with vertices (1, 1), (0, 0), and (1, 0) traversed counterclockwise and F(x,y)=x2y,x3y3\vec { F } ( x , y ) = \left\langle x ^ { 2 } y , x ^ { 3 } y ^ { 3 } \right\rangle

A) 17- \frac { 1 } { 7 }
B) 17\frac { 1 } { 7 }
C) 114- \frac { 1 } { 14 }
D) 114\frac { 1 } { 14 }
Question
Use Stokes' theorem to evaluate CFdr\int _ { C } \vec { F } \cdot d \vec { r } , where C is in the plane z=6xyz = 6 - x - y lying above the square with vertices (0, 0), (1, 0), (1, 1), and (0, 1) with the normal vector in the positive z direction where F(x,y,z)=xz,yx,xyz\vec { F } ( x , y , z ) = \langle x z , y x , x y z \rangle
Question
Use Stokes' theorem to evaluate CFdr\int _ { C } \vec { F } \cdot d \vec { r } , where C is in the plane z=6xyz = 6 - x - y lying above the square with vertices (0, 0), (1, 0), (1, 1), and (0, 1) with the normal vector in the positive z direction where F(x,y,z)=z,y,2x\vec { F } ( x , y , z ) = \langle z , y , 2 x \rangle
Question
Use Stokes' theorem to evaluate CFdr\int _ { C } \vec { F } \cdot d \vec { r } , where C is in the plane z=6xyz = 6 - x - y lying above the square with vertices (0, 0), (1, 0), (1, 1), and (0, 1) with the normal vector in the positive z direction where F(x,y,z)=z,y2,3x\vec { F } ( x , y , z ) = \left\langle z , y ^ { 2 } , 3 x \right\rangle

A) 4- 4
B) 2- 2
C) 1- 1
D) 00
Question
Use Stokes' theorem to evaluate CFdr\int _ { C } \vec { F } \cdot d \vec { r } , where C is in the plane z=72xyz = 7 - 2 x - y lying above the square with vertices (0, 0), (2, 0), (2, 2), and (0, 2) with the normal vector in the positive z direction where F(x,y,z)=xz,yx,xyz\vec { F } ( x , y , z ) = \langle x z , y x , x y z \rangle
Question
Use Stokes' theorem to evaluate CFdr\int _ { C } \vec { F } \cdot d \vec { r } , where C is in the plane z=72xyz = 7 - 2 x - y lying above the unit disk with the normal vector in the positive z direction where F(x,y,z)=z,y,2x\vec { F } ( x , y , z ) = \langle z , y , 2 x \rangle
Question
Use Stokes' theorem to evaluate CFdr\int _ { C } \vec { F } \cdot d \vec { r } , where C is in the plane z=72xyz = 7 - 2 x - y lying above the square with vertices (0, 0), (2, 0), (2, 2), and (0, 2) with the normal vector in the positive z direction where F(x,y,z)=z,y2,3x\vec { F } ( x , y , z ) = \left\langle z , y ^ { 2 } , 3 x \right\rangle

A) 16- 16
B) 8- 8
C) 4- 4
D) 2- 2
Question
Use Stokes' theorem to evaluate CFdr\int _ { C } \vec { F } \cdot d \vec { r } , where C is the boundary curve of the surface S={(uv,u,uv):0u1 and 0v1}S = \{ ( u v , u , u - v ) : 0 \leq u \leq 1 \text { and } 0 \leq v \leq 1 \} with the normal vector in the positive z direction where F(x,y,z)=x,x,y\vec { F } ( x , y , z ) = \langle x , x , y \rangle
Question
Use Stokes' theorem to evaluate CFdr\int _ { C } \vec { F } \cdot d \vec { r } , where C is the boundary curve of the surface S={(uv,u,uv):0u1 and 0v1}S = \{ ( u v , u , u - v ) : 0 \leq u \leq 1 \text { and } 0 \leq v \leq 1 \} with the normal vector in the positive z direction where F(x,y,z)=z,y,2x\vec { F } ( x , y , z ) = \langle z , y , 2 x \rangle
Question
Use Stokes' theorem to evaluate CFdr\int _ { C } \vec { F } \cdot d \vec { r } , where C is the boundary curve of the surface S={(uv,u,uv):0u1 and 0v1}S = \{ ( u v , u , u - v ) : 0 \leq u \leq 1 \text { and } 0 \leq v \leq 1 \} with the normal vector in the positive z direction where F(x,y,z)=z,y2,3x\vec { F } ( x , y , z ) = \left\langle z , y ^ { 2 } , 3 x \right\rangle

A) 1
B) 1- 1
C) 2- 2
D) 2
Question
Find DivF\operatorname { Div } \vec { F } for F(x,y,z)=2x,yz,z2\vec { F } ( x , y , z ) = \left\langle 2 x , y z , z ^ { 2 } \right\rangle
Question
Find DivF\operatorname { Div } \vec { F } for F(x,y,z)=yx2,exy,z\vec { F } ( x , y , z ) = \left\langle y x ^ { 2 } , e ^ { x y } , z \right\rangle
Question
Find DivF\operatorname { Div } \vec { F } for F(x,y,z)=cos(xy),sin(y),ez\vec { F } ( x , y , z ) = \left\langle \cos ( x y ) , \sin ( y ) , e ^ { z } \right\rangle

A) ysin(xy)cos(y)+ezy \sin ( x y ) - \cos ( y ) + e ^ { z }
B) sin(xy)+cos(y)+ez- \sin ( x y ) + \cos ( y ) + e ^ { z }
C) ysin(xy)+cos(y)+ez- y \sin ( x y ) + \cos ( y ) + e ^ { z }
D) xsin(xy)+cos(y)+ez- x \sin ( x y ) + \cos ( y ) + e ^ { z }
Question
Find DivF\operatorname { Div } \vec { F } for F(x,y,z)=ln(xy),cos(y),z2\vec { F } ( x , y , z ) = \left\langle \ln ( x y ) , \cos ( y ) , z ^ { 2 } \right\rangle
Question
Find DivF\operatorname { Div } \vec { F } for F(x,y,z)=xyz,xyz,xyz\vec { F } ( x , y , z ) = \langle x y z , x y z , x y z \rangle
Question
Find DivF\operatorname { Div } \vec { F } for F(x,y,z)=x2ey,y2ex,y\vec { F } ( x , y , z ) = \left\langle x ^ { 2 } e ^ { y } , y ^ { 2 } e ^ { x } , y \right\rangle

A) 2xey+2yex2 x e ^ { y } + 2 y e ^ { x }
B) xey+yexx e ^ { y } + y e ^ { x }
C) 2yey+2xex2 y e ^ { y } + 2 x e ^ { x }
D) 2xey+2yex+12 x e ^ { y } + 2 y e ^ { x } + 1
Question
Compute SFndS\iint _ { S } \vec { F } \cdot \vec { n } d S where S is the unit sphere, n\vec { n } is the unit outward normal, and F(x,y,z)=x3,y3,z3\vec { F } ( x , y , z ) = \left\langle x ^ { 3 } , y ^ { 3 } , z ^ { 3 } \right\rangle
Question
Compute SFndS\iint _ { S } \vec { F } \cdot \vec { n } d S where S is the unit sphere, n\vec { n } is the unit outward normal, and F(x,y,z)=x2,y,4\vec { F } ( x , y , z ) = \left\langle x ^ { 2 } , y , 4 \right\rangle
Question
Compute SFndS\iint _ { S } \vec { F } \cdot \vec { n } d S where S is the unit sphere, n\vec { n } is the unit outward normal, and F(x,y,z)=x,y,z2\vec { F } ( x , y , z ) = \left\langle x , y , z ^ { 2 } \right\rangle

A) 123π\frac { 12 } { 3 } \pi
B) 83π\frac { 8 } { 3 } \pi
C) 43π\frac { 4 } { 3 } \pi
D) 13π\frac { 1 } { 3 } \pi
Unlock Deck
Sign up to unlock the cards in this deck!
Unlock Deck
Unlock Deck
1/75
auto play flashcards
Play
simple tutorial
Full screen (f)
exit full mode
Deck 14: Vector Analysis
1
Find a potential for the given vector field: F(x,y)=2xy,x2+1\vec { F } ( x , y ) = \left\langle 2 x y , x ^ { 2 } + 1 \right\rangle
f(x,y)=x2y+yf ( x , y ) = x ^ { 2 } y + y
2
Find a potential for the given vector field: F(x,y)=eysin(xey),xeysin(xey)\vec { F } ( x , y ) = \left\langle - e ^ { y } \sin \left( x e ^ { y } \right) , - x e ^ { y } \sin \left( x e ^ { y } \right) \right\rangle
f(x,y)=cos(xey)f ( x , y ) = \cos \left( x e ^ { y } \right)
3
Find a potential for the given vector field: F(x,y)=3x2cos(xy)x3ysin(xy),x4sin(xy)\vec { F } ( x , y ) = \left\langle 3 x ^ { 2 } \cos ( x y ) - x ^ { 3 } y \sin ( x y ) , - x ^ { 4 } \sin ( x y ) \right\rangle

A) f(x,y)=x4cos(xy)f ( x , y ) = x ^ { 4 } \cos ( x y )
B) f(x,y)=x3sin(xy)f ( x , y ) = x ^ { 3 } \sin ( x y )
C) f(x,y)=x3cos(xy)f ( x , y ) = x ^ { 3 } \cos ( x y )
D) f(x,y)=x4sin(xy)f ( x , y ) = x ^ { 4 } \sin ( x y )
C
4
Find a potential for the given vector field: F(x,y)=ycos(xy)esin(xy),xcos(xy)esin(xy)\vec { F } ( x , y ) = \left\langle y \cos ( x y ) e ^ { \sin ( x y ) } , x \cos ( x y ) e ^ { \sin ( x y ) } \right\rangle
Unlock Deck
Unlock for access to all 75 flashcards in this deck.
Unlock Deck
k this deck
5
Find a potential for the given vector field: F(x,y)=2x,2y\vec { F } ( x , y ) = \left\langle \frac { 2 } { x } , \frac { 2 } { y } \right\rangle
Unlock Deck
Unlock for access to all 75 flashcards in this deck.
Unlock Deck
k this deck
6
Find a potential for the given vector field: F(x,y)=2xy1,x2y2\vec { F } ( x , y ) = \left\langle 2 x y ^ { - 1 } , - x ^ { 2 } y ^ { - 2 } \right\rangle

A) f(x,y)=x2y1f ( x , y ) = - x ^ { 2 } y ^ { - 1 }
B) f(x,y)=xy2f ( x , y ) = x y ^ { - 2 }
C) f(x,y)=xy1f ( x , y ) = x y ^ { - 1 }
D) f(x,y)=x2y1f ( x , y ) = x ^ { 2 } y ^ { - 1 }
Unlock Deck
Unlock for access to all 75 flashcards in this deck.
Unlock Deck
k this deck
7
Find a potential for the given vector field: F(x,y,z)=yz1,xz1,xyz2\vec { F } ( x , y , z ) = \left\langle y z ^ { - 1 } , x z ^ { - 1 } , - x y z ^ { - 2 } \right\rangle
Unlock Deck
Unlock for access to all 75 flashcards in this deck.
Unlock Deck
k this deck
8
Find a potential for the given vector field: F(x,y,z)=yzexyz,xzexyz,xyexyz\vec { F } ( x , y , z ) = \left\langle y z e ^ { x y z } , x z e ^ { x y z } , x y e ^ { x y z } \right\rangle
Unlock Deck
Unlock for access to all 75 flashcards in this deck.
Unlock Deck
k this deck
9
Find a potential for the given vector field: F(x,y,z)=1x,1y,cot(z)\vec { F } ( x , y , z ) = \left\langle \frac { 1 } { x } , \frac { 1 } { y } , \cot ( z ) \right\rangle

A) f(x,y,z)=ln(xytan(z))f ( x , y , z ) = \ln ( x y \tan ( z ) )
B) f(x,y,z)=ln(xycos(z))f ( x , y , z ) = \ln ( x y \cos ( z ) )
C) f(x,y,z)=ln(xysin(z))f ( x , y , z ) = \ln ( x y \sin ( z ) )
D) f(x,y,z)=ln(xysec(z))f ( x , y , z ) = \ln ( x y \sec ( z ) )
Unlock Deck
Unlock for access to all 75 flashcards in this deck.
Unlock Deck
k this deck
10
Is the given vector field conservative? F(x,y)=xy1,xyln(x)\vec { F } ( x , y ) = \left\langle x ^ { y - 1 } , x ^ { y } \ln ( x ) \right\rangle
Unlock Deck
Unlock for access to all 75 flashcards in this deck.
Unlock Deck
k this deck
11
Is the given vector field conservative? F(x,y)=2xy3,3x2y2\vec { F } ( x , y ) = \left\langle 2 x y ^ { 3 } , 3 x ^ { 2 } y ^ { 2 } \right\rangle
Unlock Deck
Unlock for access to all 75 flashcards in this deck.
Unlock Deck
k this deck
12
Is the given vector field conservative? F(x,y)=3xy3,3x2y3\vec { F } ( x , y ) = \left\langle 3 x y ^ { 3 } , 3 x ^ { 2 } y ^ { 3 } \right\rangle
Unlock Deck
Unlock for access to all 75 flashcards in this deck.
Unlock Deck
k this deck
13
Evaluate the line integral of the function over the given curve: f(x,y)=x3f ( x , y ) = x ^ { 3 } and the curve C is given by y=x3,0x2y = x ^ { 3 } , 0 \leq x \leq 2
Unlock Deck
Unlock for access to all 75 flashcards in this deck.
Unlock Deck
k this deck
14
Evaluate the line integral of the function over the given curve: f(x,y)=yf ( x , y ) = y and the curve C is given by y=x3,0x2y = x ^ { 3 } , 0 \leq x \leq 2
Unlock Deck
Unlock for access to all 75 flashcards in this deck.
Unlock Deck
k this deck
15
Evaluate the line integral of the function over the given curve: f(x,y)=xf ( x , y ) = x and the curve C is given by y=x2,0x2y = x ^ { 2 } , 0 \leq x \leq 2

A) 1717112\frac { 17 \sqrt { 17 } - 1 } { 12 }
B) 1717114\frac { 17 \sqrt { 17 } - 1 } { 14 }
C) 1717117\frac { 17 \sqrt { 17 } - 1 } { 17 }
D) 1717212\frac { 17 \sqrt { 17 } - 2 } { 12 }
Unlock Deck
Unlock for access to all 75 flashcards in this deck.
Unlock Deck
k this deck
16
Evaluate the line integral of the function over the given curve: f(x,y)=xf ( x , y ) = x and the curve C is given by r(t)=cos(t),sin(t),0tπ2\vec { r } ( t ) = \langle \cos ( t ) , \sin ( t ) \rangle , 0 \leq t \leq \frac { \pi } { 2 }
Unlock Deck
Unlock for access to all 75 flashcards in this deck.
Unlock Deck
k this deck
17
Evaluate the line integral of the function over the given curve: f(x,y)=xyf ( x , y ) = x y and the curve C is given by r(t)=cos(t),sin(t),0tπ2\vec { r } ( t ) = \langle \cos ( t ) , \sin ( t ) \rangle , 0 \leq t \leq \frac { \pi } { 2 }
Unlock Deck
Unlock for access to all 75 flashcards in this deck.
Unlock Deck
k this deck
18
Evaluate the line integral of the function over the given curve: f(x,y)=xeyf ( x , y ) = x e ^ { y } and the curve C is given by r(t)=cos(t),sin(t),0tπ2\vec { r } ( t ) = \langle \cos ( t ) , \sin ( t ) \rangle , 0 \leq t \leq \frac { \pi } { 2 }

A) ee
B) e1e - 1
C) 1- 1
D) eπ21e ^ { \frac { \pi } { 2 } } - 1
Unlock Deck
Unlock for access to all 75 flashcards in this deck.
Unlock Deck
k this deck
19
Evaluate the line integral of the function over the given curve: f(x,y,z)=yexf ( x , y , z ) = y e ^ { x } and the curve C is given by r(t)=cos(t),sin(t),t,0tπ2\vec { r } ( t ) = \langle \cos ( t ) , \sin ( t ) , t \rangle , 0 \leq t \leq \frac { \pi } { 2 }
Unlock Deck
Unlock for access to all 75 flashcards in this deck.
Unlock Deck
k this deck
20
Evaluate the line integral of the function over the given curve: f(x,y,z)=ezf ( x , y , z ) = e ^ { z } and the curve C is given by r(t)=cos(t),sin(t),t,0tπ2\vec { r } ( t ) = \langle \cos ( t ) , \sin ( t ) , t \rangle , 0 \leq t \leq \frac { \pi } { 2 }
Unlock Deck
Unlock for access to all 75 flashcards in this deck.
Unlock Deck
k this deck
21
Evaluate the line integral of the function over the given curve: f(x,y,z)=xeyf ( x , y , z ) = x e ^ { y } and the curve C is given by r(t)=cos(t),sin(t),t,0tπ2\vec { r } ( t ) = \langle \cos ( t ) , \sin ( t ) , t \rangle , 0 \leq t \leq \frac { \pi } { 2 }
Unlock Deck
Unlock for access to all 75 flashcards in this deck.
Unlock Deck
k this deck
22
Find CFdr\int _ { C } \vec { F } \cdot d \vec { r } of the function over the given curve: F(x,y)=x,x\vec { F } ( x , y ) = \langle x , x \rangle and the curve C is given by y=x3,0x2y = x ^ { 3 } , 0 \leq x \leq 2
Unlock Deck
Unlock for access to all 75 flashcards in this deck.
Unlock Deck
k this deck
23
Find CFdr\int _ { C } \vec { F } \cdot d \vec { r } of the function over the given curve: F(x,y)=y,y\vec { F } ( x , y ) = \langle y , y \rangle and the curve C is given by y=x3,0x2y = x ^ { 3 } , 0 \leq x \leq 2
Unlock Deck
Unlock for access to all 75 flashcards in this deck.
Unlock Deck
k this deck
24
Find CFdr\int _ { C } \vec { F } \cdot d \vec { r } of the function over the given curve: F(x,y)=x,y\vec { F } ( x , y ) = \langle x , y \rangle and the curve C is given by y=x2,0x2y = x ^ { 2 } , 0 \leq x \leq 2

A) 4
B) 88

C) 1010
D) 1212
Unlock Deck
Unlock for access to all 75 flashcards in this deck.
Unlock Deck
k this deck
25
Find CFdr\int _ { C } \vec { F } \cdot d \vec { r } of the function over the given curve: F(x,y)=x,x\vec { F } ( x , y ) = \langle x , x \rangle and the curve C is given by r(t)=cos(t),sin(t),0tπ2\vec { r } ( t ) = \langle \cos ( t ) , \sin ( t ) \rangle , 0 \leq t \leq \frac { \pi } { 2 }
Unlock Deck
Unlock for access to all 75 flashcards in this deck.
Unlock Deck
k this deck
26
Find CFdr\int _ { C } \vec { F } \cdot d \vec { r } of the function over the given curve: F(x,y)=y,y\vec { F } ( x , y ) = \langle y , y \rangle and the curve C is given by r(t)=cos(t),sin(t),0tπ2\vec { r } ( t ) = \langle \cos ( t ) , \sin ( t ) \rangle , 0 \leq t \leq \frac { \pi } { 2 }
Unlock Deck
Unlock for access to all 75 flashcards in this deck.
Unlock Deck
k this deck
27
Find CFdr\int _ { C } \vec { F } \cdot d \vec { r } of the function over the given curve: F(x,y)=x,y\vec { F } ( x , y ) = \langle x , y \rangle and the curve C is given by r(t)=cos(t),sin(t),0tπ2\vec { r } ( t ) = \langle \cos ( t ) , \sin ( t ) \rangle , 0 \leq t \leq \frac { \pi } { 2 }

A) 12\frac { 1 } { 2 }
B) 00
C) 1- 1
D) π1\pi - 1
Unlock Deck
Unlock for access to all 75 flashcards in this deck.
Unlock Deck
k this deck
28
Find CFdr\int _ { C } \vec { F } \cdot d \vec { r } of the function over the given curve: F(x,y)=x,y,z\vec { F } ( x , y ) = \langle x , y , z \rangle and the curve C is given by r(t)=cos(t),sin(t),t,0tπ2\vec { r } ( t ) = \langle \cos ( t ) , \sin ( t ) , t \rangle , 0 \leq t \leq \frac { \pi } { 2 }
Unlock Deck
Unlock for access to all 75 flashcards in this deck.
Unlock Deck
k this deck
29
Find CFdr\int _ { C } \vec { F } \cdot d \vec { r } of the function over the given curve: F(x,y)=x,x,x\vec { F } ( x , y ) = \langle x , x , x \rangle and the curve C is given by r(t)=cos(t),sin(t),t,0tπ2\vec { r } ( t ) = \langle \cos ( t ) , \sin ( t ) , t \rangle , 0 \leq t \leq \frac { \pi } { 2 }
Unlock Deck
Unlock for access to all 75 flashcards in this deck.
Unlock Deck
k this deck
30
Find CFdr\int _ { C } \vec { F } \cdot d \vec { r } of the function over the given curve: F(x,y)=1,x,1\vec { F } ( x , y ) = \langle 1 , x , 1 \rangle and the curve C is given by r(t)=cos(t),sin(t),t,0tπ2\vec { r } ( t ) = \langle \cos ( t ) , \sin ( t ) , t \rangle , 0 \leq t \leq \frac { \pi } { 2 }

A) 3π41\frac { 3 \pi } { 4 } - 1
B) 3π4\frac { 3 \pi } { 4 }
C) π41\frac { \pi } { 4 } - 1
D) 3π432\frac { 3 \pi } { 4 } - \frac { 3 } { 2 }
Unlock Deck
Unlock for access to all 75 flashcards in this deck.
Unlock Deck
k this deck
31
Find the area of the surface SS Let SS be the portion of the plane z=2x+y+3z = 2 x + y + 3 above the rectangle 0x20 \leq x \leq 2 and 1y61 \leq y \leq 6
Unlock Deck
Unlock for access to all 75 flashcards in this deck.
Unlock Deck
k this deck
32
Find the area of the surface SS Let SS be the portion of the plane z=3x+4y+7z = 3 x + 4 y + 7 above the rectangle 0x30 \leq x \leq 3 and 0y40 \leq y \leq 4
Unlock Deck
Unlock for access to all 75 flashcards in this deck.
Unlock Deck
k this deck
33
Find the area of the surface SS Let SS be the portion of the plane z=x+9y2z = x + 9 y - 2 above the rectangle 1x31 \leq x \leq 3 and 2y42 \leq y \leq 4

A) 4834 \sqrt { 83 }
B) 2832 \sqrt { 83 }
C) 83\sqrt { 83 }
D) 1283\frac { 1 } { 2 } \sqrt { 83 }
Unlock Deck
Unlock for access to all 75 flashcards in this deck.
Unlock Deck
k this deck
34
Find the area of the surface SS Let S={(2u+v,uv,u+3v):0u2 and 0v1}S = \{ ( 2 u + v , u - v , u + 3 v ) : 0 \leq u \leq 2 \text { and } 0 \leq v \leq 1 \}
Unlock Deck
Unlock for access to all 75 flashcards in this deck.
Unlock Deck
k this deck
35
Find the area of the surface SS Let S={(v,u,u):0u1 and 0v1}S = \{ ( v , u , u ) : 0 \leq u \leq 1 \text { and } 0 \leq v \leq 1 \}
Unlock Deck
Unlock for access to all 75 flashcards in this deck.
Unlock Deck
k this deck
36
Find the area of the surface SS Let S={(u+v,3u+2v,6v):0u1 and 1v3}S = \{ ( u + v , 3 u + 2 v , 6 v ) : 0 \leq u \leq 1 \text { and } 1 \leq v \leq 3 \}

A) 219\sqrt { 219 }
B) 2832 \sqrt { 83 }
C) 83\sqrt { 83 }
D) 3838
Unlock Deck
Unlock for access to all 75 flashcards in this deck.
Unlock Deck
k this deck
37
Integrate the function ff over the surface SS Let SS be the portion of the plane z=2x+y+3z = 2 x + y + 3 above the rectangle 0x20 \leq x \leq 2 and 1x61 \leq x \leq 6 and f(x,y)=xf ( x , y ) = x
Unlock Deck
Unlock for access to all 75 flashcards in this deck.
Unlock Deck
k this deck
38
Integrate the function ff over the surface SS Let SS be the portion of the plane z=3x+4y+7z = 3 x + 4 y + 7 above the rectangle 0x30 \leq x \leq 3 and 0x40 \leq x \leq 4 and f(x,y)=xyf ( x , y ) = x y
Unlock Deck
Unlock for access to all 75 flashcards in this deck.
Unlock Deck
k this deck
39
Integrate the function ff over the surface SS Let SS be the portion of the plane z=x+9y2z = x + 9 y - 2 above the rectangle 1x31 \leq x \leq 3 and 2x42 \leq x \leq 4 and f(x,y)=x2f ( x , y ) = x ^ { 2 }

A) 528352 \sqrt { 83 }
B) 268326 \sqrt { 83 }
C) 52383\frac { 52 } { 3 } \sqrt { 83 }
D) 26383\frac { 26 } { 3 } \sqrt { 83 }
Unlock Deck
Unlock for access to all 75 flashcards in this deck.
Unlock Deck
k this deck
40
Integrate the function ff over the surface SS Let S={(2u+v,uv,u+3v):0u2 and 0v1}S = \{ ( 2 u + v , u - v , u + 3 v ) : 0 \leq u \leq 2 \text { and } 0 \leq v \leq 1 \} and f(x,y)=exf ( x , y ) = e ^ { x }
Unlock Deck
Unlock for access to all 75 flashcards in this deck.
Unlock Deck
k this deck
41
Integrate the function ff over the surface SS Let S={(v,u,u):0u1 and 0v1}S = \{ ( v , u , u ) : 0 \leq u \leq 1 \text { and } 0 \leq v \leq 1 \} and f(x,y)=yf ( x , y ) = y
Unlock Deck
Unlock for access to all 75 flashcards in this deck.
Unlock Deck
k this deck
42
Integrate the function ff over the surface SS Let S={(u+v,3u+2v,6v):0u1 and 1v3}S = \{ ( u + v , 3 u + 2 v , 6 v ) : 0 \leq u \leq 1 \text { and } 1 \leq v \leq 3 \} and f(x,y)=sin(x)f ( x , y ) = \sin ( x )

A) sin(4)sin(3)sin(2)+sin(1)\sin ( 4 ) - \sin ( 3 ) - \sin ( 2 ) + \sin ( 1 )
B) 19(sin(4)+sin(3)+sin(2)sin(1))19 ( - \sin ( 4 ) + \sin ( 3 ) + \sin ( 2 ) - \sin ( 1 ) )
C) sin(4)+sin(3)- \sin ( 4 ) + \sin ( 3 )
D) 22192 \sqrt { 219 }
Unlock Deck
Unlock for access to all 75 flashcards in this deck.
Unlock Deck
k this deck
43
Find the flux of F\vec { F } through the surface SS in the positive z direction. Let S={(2u+v,uv,u+3v):0u2 and 0v1}S = \{ ( 2 u + v , u - v , u + 3 v ) : 0 \leq u \leq 2 \text { and } 0 \leq v \leq 1 \} and F(x,y,z)=x,y,zy\vec { F } ( x , y , z ) = \langle x , y , z - y \rangle
Unlock Deck
Unlock for access to all 75 flashcards in this deck.
Unlock Deck
k this deck
44
Find the flux of F\vec { F } through the surface SS in the positive z direction. Let S={(v,u,u):0u1 and 0v1}S = \{ ( v , u , u ) : 0 \leq u \leq 1 \text { and } 0 \leq v \leq 1 \} and F(x,y,z)=x,y,zy\vec { F } ( x , y , z ) = \langle x , y , z - y \rangle
Unlock Deck
Unlock for access to all 75 flashcards in this deck.
Unlock Deck
k this deck
45
Find the flux of F\vec { F } through the surface SS in the positive z direction. Let S={(u+v,3u+2v,6v):0u1 and 1v3}S = \{ ( u + v , 3 u + 2 v , 6 v ) : 0 \leq u \leq 1 \text { and } 1 \leq v \leq 3 \} and F(x,y,z)=z,x,y\vec { F } ( x , y , z ) = \langle z , x , y \rangle

A) 378378
B) 791- 791
C) 409- 409
D) 00
Unlock Deck
Unlock for access to all 75 flashcards in this deck.
Unlock Deck
k this deck
46
Find the divergence of F(x,y)=x,xy\vec { F } ( x , y ) = \langle x , x y \rangle
Unlock Deck
Unlock for access to all 75 flashcards in this deck.
Unlock Deck
k this deck
47
Find the divergence of F(x,y)=x2y,exy\vec { F } ( x , y ) = \left\langle x ^ { 2 } y , e ^ { x y } \right\rangle
Unlock Deck
Unlock for access to all 75 flashcards in this deck.
Unlock Deck
k this deck
48
Find the divergence of F(x,y)=sin(xy),cos(y2)\vec { F } ( x , y ) = \left\langle \sin ( x y ) , \cos \left( y ^ { 2 } \right) \right\rangle

A) ycos(xy)2ysin(y2)y \cos ( x y ) - 2 y \sin \left( y ^ { 2 } \right)
B) cos(xy)2sin(y2)\cos ( x y ) - 2 \sin \left( y ^ { 2 } \right)
C) ycos(xy)+2ysin(y2)- y \cos ( x y ) + 2 y \sin \left( y ^ { 2 } \right)
D) ycos(xy)ysin(y2)y \cos ( x y ) - y \sin \left( y ^ { 2 } \right)
Unlock Deck
Unlock for access to all 75 flashcards in this deck.
Unlock Deck
k this deck
49
Find the divergence of F(x,y,z)=x,y2,z3\vec { F } ( x , y , z ) = \left\langle x , y ^ { 2 } , z ^ { 3 } \right\rangle
Unlock Deck
Unlock for access to all 75 flashcards in this deck.
Unlock Deck
k this deck
50
Find the divergence of F(x,y,z)=xy,yz,xz\vec { F } ( x , y , z ) = \langle x y , y z , x z \rangle
Unlock Deck
Unlock for access to all 75 flashcards in this deck.
Unlock Deck
k this deck
51
Find the divergence of F(x,y,z)=eyz,exz,exy\vec { F } ( x , y , z ) = \left\langle e ^ { y z } , e ^ { x z } , e ^ { x y } \right\rangle

A) eyz+exz+exye ^ { y z } + e ^ { x z } + e ^ { x y }
B) yeyz+xexz+xexyy e ^ { y z } + x e ^ { x z } + x e ^ { x y }
C) 00
D) 3exy3 e ^ { x y }
Unlock Deck
Unlock for access to all 75 flashcards in this deck.
Unlock Deck
k this deck
52
Find the curl of F(x,y,z)=x,y2,z3\vec { F } ( x , y , z ) = \left\langle x , y ^ { 2 } , z ^ { 3 } \right\rangle
Unlock Deck
Unlock for access to all 75 flashcards in this deck.
Unlock Deck
k this deck
53
Find the curl of F(x,y,z)=xy,yz,xz\vec { F } ( x , y , z ) = \langle x y , y z , x z \rangle
Unlock Deck
Unlock for access to all 75 flashcards in this deck.
Unlock Deck
k this deck
54
Find the curl of F(x,y,z)=eyz,exz,exy\vec { F } ( x , y , z ) = \left\langle e ^ { y z } , e ^ { x z } , e ^ { x y } \right\rangle

A) xexyzexz,yeyzxexy,zexzyeyz>\left\langle x e ^ { x y } - z e ^ { x z } , y e ^ { y z } - x e ^ { x y } , z e ^ { x z } - y e ^ { y z } > \right.
B) <xexy+xexz,yeyz+yexy,zexz+zeyz>< x e ^ { x y } + x e ^ { x z } , y e ^ { y z } + y e ^ { x y } , z e ^ { x z } + z e ^ { y z } >
C) xexyxexz,yeyzyexy,zexzzeyz>\left\langle x e ^ { x y } - x e ^ { x z } , y e ^ { y z } - y e ^ { x y } , z e ^ { x z } - z e ^ { y z } > \right.
D) xexy,yeyz,zexz\left\langle x e ^ { x y } , y e ^ { y z } , z e ^ { x z } \right\rangle
Unlock Deck
Unlock for access to all 75 flashcards in this deck.
Unlock Deck
k this deck
55
Compute the integral using Green's theorem. CFdr\int _ { C } \vec { F } \cdot d \vec { r } , where C is the square with vertices (1, 1), (0, 1), (0, 0), and (1, 0) traversed counterclockwise and F(x,y)=x2y,x2y2\vec { F } ( x , y ) = \left\langle x ^ { 2 } y , x ^ { 2 } y ^ { 2 } \right\rangle
Unlock Deck
Unlock for access to all 75 flashcards in this deck.
Unlock Deck
k this deck
56
Compute the integral using Green's theorem. CFdr\int _ { C } \vec { F } \cdot d \vec { r } , where C is the unit circle traversed counterclockwise and F(x,y)=y3,x3\vec { F } ( x , y ) = \left\langle y ^ { 3 } , - x ^ { 3 } \right\rangle
Unlock Deck
Unlock for access to all 75 flashcards in this deck.
Unlock Deck
k this deck
57
Compute the integral using Green's theorem. CFdr\int _ { C } \vec { F } \cdot d \vec { r } , where C is the triangle with vertices (1, 1), (0, 0), and (1, 0) traversed counterclockwise and F(x,y)=x2y,x3y3\vec { F } ( x , y ) = \left\langle x ^ { 2 } y , x ^ { 3 } y ^ { 3 } \right\rangle

A) 17- \frac { 1 } { 7 }
B) 17\frac { 1 } { 7 }
C) 114- \frac { 1 } { 14 }
D) 114\frac { 1 } { 14 }
Unlock Deck
Unlock for access to all 75 flashcards in this deck.
Unlock Deck
k this deck
58
Use Stokes' theorem to evaluate CFdr\int _ { C } \vec { F } \cdot d \vec { r } , where C is in the plane z=6xyz = 6 - x - y lying above the square with vertices (0, 0), (1, 0), (1, 1), and (0, 1) with the normal vector in the positive z direction where F(x,y,z)=xz,yx,xyz\vec { F } ( x , y , z ) = \langle x z , y x , x y z \rangle
Unlock Deck
Unlock for access to all 75 flashcards in this deck.
Unlock Deck
k this deck
59
Use Stokes' theorem to evaluate CFdr\int _ { C } \vec { F } \cdot d \vec { r } , where C is in the plane z=6xyz = 6 - x - y lying above the square with vertices (0, 0), (1, 0), (1, 1), and (0, 1) with the normal vector in the positive z direction where F(x,y,z)=z,y,2x\vec { F } ( x , y , z ) = \langle z , y , 2 x \rangle
Unlock Deck
Unlock for access to all 75 flashcards in this deck.
Unlock Deck
k this deck
60
Use Stokes' theorem to evaluate CFdr\int _ { C } \vec { F } \cdot d \vec { r } , where C is in the plane z=6xyz = 6 - x - y lying above the square with vertices (0, 0), (1, 0), (1, 1), and (0, 1) with the normal vector in the positive z direction where F(x,y,z)=z,y2,3x\vec { F } ( x , y , z ) = \left\langle z , y ^ { 2 } , 3 x \right\rangle

A) 4- 4
B) 2- 2
C) 1- 1
D) 00
Unlock Deck
Unlock for access to all 75 flashcards in this deck.
Unlock Deck
k this deck
61
Use Stokes' theorem to evaluate CFdr\int _ { C } \vec { F } \cdot d \vec { r } , where C is in the plane z=72xyz = 7 - 2 x - y lying above the square with vertices (0, 0), (2, 0), (2, 2), and (0, 2) with the normal vector in the positive z direction where F(x,y,z)=xz,yx,xyz\vec { F } ( x , y , z ) = \langle x z , y x , x y z \rangle
Unlock Deck
Unlock for access to all 75 flashcards in this deck.
Unlock Deck
k this deck
62
Use Stokes' theorem to evaluate CFdr\int _ { C } \vec { F } \cdot d \vec { r } , where C is in the plane z=72xyz = 7 - 2 x - y lying above the unit disk with the normal vector in the positive z direction where F(x,y,z)=z,y,2x\vec { F } ( x , y , z ) = \langle z , y , 2 x \rangle
Unlock Deck
Unlock for access to all 75 flashcards in this deck.
Unlock Deck
k this deck
63
Use Stokes' theorem to evaluate CFdr\int _ { C } \vec { F } \cdot d \vec { r } , where C is in the plane z=72xyz = 7 - 2 x - y lying above the square with vertices (0, 0), (2, 0), (2, 2), and (0, 2) with the normal vector in the positive z direction where F(x,y,z)=z,y2,3x\vec { F } ( x , y , z ) = \left\langle z , y ^ { 2 } , 3 x \right\rangle

A) 16- 16
B) 8- 8
C) 4- 4
D) 2- 2
Unlock Deck
Unlock for access to all 75 flashcards in this deck.
Unlock Deck
k this deck
64
Use Stokes' theorem to evaluate CFdr\int _ { C } \vec { F } \cdot d \vec { r } , where C is the boundary curve of the surface S={(uv,u,uv):0u1 and 0v1}S = \{ ( u v , u , u - v ) : 0 \leq u \leq 1 \text { and } 0 \leq v \leq 1 \} with the normal vector in the positive z direction where F(x,y,z)=x,x,y\vec { F } ( x , y , z ) = \langle x , x , y \rangle
Unlock Deck
Unlock for access to all 75 flashcards in this deck.
Unlock Deck
k this deck
65
Use Stokes' theorem to evaluate CFdr\int _ { C } \vec { F } \cdot d \vec { r } , where C is the boundary curve of the surface S={(uv,u,uv):0u1 and 0v1}S = \{ ( u v , u , u - v ) : 0 \leq u \leq 1 \text { and } 0 \leq v \leq 1 \} with the normal vector in the positive z direction where F(x,y,z)=z,y,2x\vec { F } ( x , y , z ) = \langle z , y , 2 x \rangle
Unlock Deck
Unlock for access to all 75 flashcards in this deck.
Unlock Deck
k this deck
66
Use Stokes' theorem to evaluate CFdr\int _ { C } \vec { F } \cdot d \vec { r } , where C is the boundary curve of the surface S={(uv,u,uv):0u1 and 0v1}S = \{ ( u v , u , u - v ) : 0 \leq u \leq 1 \text { and } 0 \leq v \leq 1 \} with the normal vector in the positive z direction where F(x,y,z)=z,y2,3x\vec { F } ( x , y , z ) = \left\langle z , y ^ { 2 } , 3 x \right\rangle

A) 1
B) 1- 1
C) 2- 2
D) 2
Unlock Deck
Unlock for access to all 75 flashcards in this deck.
Unlock Deck
k this deck
67
Find DivF\operatorname { Div } \vec { F } for F(x,y,z)=2x,yz,z2\vec { F } ( x , y , z ) = \left\langle 2 x , y z , z ^ { 2 } \right\rangle
Unlock Deck
Unlock for access to all 75 flashcards in this deck.
Unlock Deck
k this deck
68
Find DivF\operatorname { Div } \vec { F } for F(x,y,z)=yx2,exy,z\vec { F } ( x , y , z ) = \left\langle y x ^ { 2 } , e ^ { x y } , z \right\rangle
Unlock Deck
Unlock for access to all 75 flashcards in this deck.
Unlock Deck
k this deck
69
Find DivF\operatorname { Div } \vec { F } for F(x,y,z)=cos(xy),sin(y),ez\vec { F } ( x , y , z ) = \left\langle \cos ( x y ) , \sin ( y ) , e ^ { z } \right\rangle

A) ysin(xy)cos(y)+ezy \sin ( x y ) - \cos ( y ) + e ^ { z }
B) sin(xy)+cos(y)+ez- \sin ( x y ) + \cos ( y ) + e ^ { z }
C) ysin(xy)+cos(y)+ez- y \sin ( x y ) + \cos ( y ) + e ^ { z }
D) xsin(xy)+cos(y)+ez- x \sin ( x y ) + \cos ( y ) + e ^ { z }
Unlock Deck
Unlock for access to all 75 flashcards in this deck.
Unlock Deck
k this deck
70
Find DivF\operatorname { Div } \vec { F } for F(x,y,z)=ln(xy),cos(y),z2\vec { F } ( x , y , z ) = \left\langle \ln ( x y ) , \cos ( y ) , z ^ { 2 } \right\rangle
Unlock Deck
Unlock for access to all 75 flashcards in this deck.
Unlock Deck
k this deck
71
Find DivF\operatorname { Div } \vec { F } for F(x,y,z)=xyz,xyz,xyz\vec { F } ( x , y , z ) = \langle x y z , x y z , x y z \rangle
Unlock Deck
Unlock for access to all 75 flashcards in this deck.
Unlock Deck
k this deck
72
Find DivF\operatorname { Div } \vec { F } for F(x,y,z)=x2ey,y2ex,y\vec { F } ( x , y , z ) = \left\langle x ^ { 2 } e ^ { y } , y ^ { 2 } e ^ { x } , y \right\rangle

A) 2xey+2yex2 x e ^ { y } + 2 y e ^ { x }
B) xey+yexx e ^ { y } + y e ^ { x }
C) 2yey+2xex2 y e ^ { y } + 2 x e ^ { x }
D) 2xey+2yex+12 x e ^ { y } + 2 y e ^ { x } + 1
Unlock Deck
Unlock for access to all 75 flashcards in this deck.
Unlock Deck
k this deck
73
Compute SFndS\iint _ { S } \vec { F } \cdot \vec { n } d S where S is the unit sphere, n\vec { n } is the unit outward normal, and F(x,y,z)=x3,y3,z3\vec { F } ( x , y , z ) = \left\langle x ^ { 3 } , y ^ { 3 } , z ^ { 3 } \right\rangle
Unlock Deck
Unlock for access to all 75 flashcards in this deck.
Unlock Deck
k this deck
74
Compute SFndS\iint _ { S } \vec { F } \cdot \vec { n } d S where S is the unit sphere, n\vec { n } is the unit outward normal, and F(x,y,z)=x2,y,4\vec { F } ( x , y , z ) = \left\langle x ^ { 2 } , y , 4 \right\rangle
Unlock Deck
Unlock for access to all 75 flashcards in this deck.
Unlock Deck
k this deck
75
Compute SFndS\iint _ { S } \vec { F } \cdot \vec { n } d S where S is the unit sphere, n\vec { n } is the unit outward normal, and F(x,y,z)=x,y,z2\vec { F } ( x , y , z ) = \left\langle x , y , z ^ { 2 } \right\rangle

A) 123π\frac { 12 } { 3 } \pi
B) 83π\frac { 8 } { 3 } \pi
C) 43π\frac { 4 } { 3 } \pi
D) 13π\frac { 1 } { 3 } \pi
Unlock Deck
Unlock for access to all 75 flashcards in this deck.
Unlock Deck
k this deck
locked card icon
Unlock Deck
Unlock for access to all 75 flashcards in this deck.