Exam 14: Vector Analysis

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Compute SFndS\iint _ { S } \vec { F } \cdot \vec { n } d S where S is the unit sphere, n\vec { n } is the unit outward normal, and F(x,y,z)=x,y,z2\vec { F } ( x , y , z ) = \left\langle x , y , z ^ { 2 } \right\rangle

Free
(Multiple Choice)
4.9/5
(31)
Correct Answer:
Verified

C

Find the curl of F(x,y,z)=xy,yz,xz\vec { F } ( x , y , z ) = \langle x y , y z , x z \rangle

Free
(Essay)
4.9/5
(32)
Correct Answer:
Verified

y,z,x\langle - y , - z , - x \rangle

Integrate the function ff over the surface SS Let S={(2u+v,uv,u+3v):0u2 and 0v1}S = \{ ( 2 u + v , u - v , u + 3 v ) : 0 \leq u \leq 2 \text { and } 0 \leq v \leq 1 \} and f(x,y)=exf ( x , y ) = e ^ { x }

Free
(Essay)
4.8/5
(27)
Correct Answer:
Verified

502(e5e4e+1)\frac { \sqrt { 50 } } { 2 } \left( e ^ { 5 } - e ^ { 4 } - e + 1 \right)

Find the divergence of F(x,y,z)=eyz,exz,exy\vec { F } ( x , y , z ) = \left\langle e ^ { y z } , e ^ { x z } , e ^ { x y } \right\rangle

(Multiple Choice)
4.8/5
(34)

Find the divergence of F(x,y,z)=x,y2,z3\vec { F } ( x , y , z ) = \left\langle x , y ^ { 2 } , z ^ { 3 } \right\rangle

(Essay)
4.8/5
(41)

Integrate the function ff over the surface SS Let S={(u+v,3u+2v,6v):0u1 and 1v3}S = \{ ( u + v , 3 u + 2 v , 6 v ) : 0 \leq u \leq 1 \text { and } 1 \leq v \leq 3 \} and f(x,y)=sin(x)f ( x , y ) = \sin ( x )

(Multiple Choice)
5.0/5
(38)

Find CFdr\int _ { C } \vec { F } \cdot d \vec { r } of the function over the given curve: F(x,y)=y,y\vec { F } ( x , y ) = \langle y , y \rangle and the curve C is given by y=x3,0x2y = x ^ { 3 } , 0 \leq x \leq 2

(Essay)
4.9/5
(39)

Is the given vector field conservative? F(x,y)=3xy3,3x2y3\vec { F } ( x , y ) = \left\langle 3 x y ^ { 3 } , 3 x ^ { 2 } y ^ { 3 } \right\rangle

(True/False)
4.8/5
(30)

Find a potential for the given vector field: F(x,y)=3x2cos(xy)x3ysin(xy),x4sin(xy)\vec { F } ( x , y ) = \left\langle 3 x ^ { 2 } \cos ( x y ) - x ^ { 3 } y \sin ( x y ) , - x ^ { 4 } \sin ( x y ) \right\rangle

(Multiple Choice)
4.8/5
(36)

Find CFdr\int _ { C } \vec { F } \cdot d \vec { r } of the function over the given curve: F(x,y)=x,y\vec { F } ( x , y ) = \langle x , y \rangle and the curve C is given by y=x2,0x2y = x ^ { 2 } , 0 \leq x \leq 2

(Multiple Choice)
4.8/5
(35)

Find the area of the surface SS Let S={(v,u,u):0u1 and 0v1}S = \{ ( v , u , u ) : 0 \leq u \leq 1 \text { and } 0 \leq v \leq 1 \}

(Essay)
4.9/5
(31)

Find the area of the surface SS Let S={(u+v,3u+2v,6v):0u1 and 1v3}S = \{ ( u + v , 3 u + 2 v , 6 v ) : 0 \leq u \leq 1 \text { and } 1 \leq v \leq 3 \}

(Multiple Choice)
4.9/5
(36)

Find the divergence of F(x,y)=sin(xy),cos(y2)\vec { F } ( x , y ) = \left\langle \sin ( x y ) , \cos \left( y ^ { 2 } \right) \right\rangle

(Multiple Choice)
4.9/5
(36)

Is the given vector field conservative? F(x,y)=2xy3,3x2y2\vec { F } ( x , y ) = \left\langle 2 x y ^ { 3 } , 3 x ^ { 2 } y ^ { 2 } \right\rangle

(True/False)
4.8/5
(26)

Use Stokes' theorem to evaluate CFdr\int _ { C } \vec { F } \cdot d \vec { r } , where C is in the plane z=72xyz = 7 - 2 x - y lying above the square with vertices (0, 0), (2, 0), (2, 2), and (0, 2) with the normal vector in the positive z direction where F(x,y,z)=xz,yx,xyz\vec { F } ( x , y , z ) = \langle x z , y x , x y z \rangle

(Essay)
5.0/5
(43)

Evaluate the line integral of the function over the given curve: f(x,y)=xyf ( x , y ) = x y and the curve C is given by r(t)=cos(t),sin(t),0tπ2\vec { r } ( t ) = \langle \cos ( t ) , \sin ( t ) \rangle , 0 \leq t \leq \frac { \pi } { 2 }

(Essay)
4.8/5
(41)

Use Stokes' theorem to evaluate CFdr\int _ { C } \vec { F } \cdot d \vec { r } , where C is the boundary curve of the surface S={(uv,u,uv):0u1 and 0v1}S = \{ ( u v , u , u - v ) : 0 \leq u \leq 1 \text { and } 0 \leq v \leq 1 \} with the normal vector in the positive z direction where F(x,y,z)=x,x,y\vec { F } ( x , y , z ) = \langle x , x , y \rangle

(Essay)
4.8/5
(39)

Evaluate the line integral of the function over the given curve: f(x,y)=xeyf ( x , y ) = x e ^ { y } and the curve C is given by r(t)=cos(t),sin(t),0tπ2\vec { r } ( t ) = \langle \cos ( t ) , \sin ( t ) \rangle , 0 \leq t \leq \frac { \pi } { 2 }

(Multiple Choice)
4.8/5
(31)

Evaluate the line integral of the function over the given curve: f(x,y)=xf ( x , y ) = x and the curve C is given by r(t)=cos(t),sin(t),0tπ2\vec { r } ( t ) = \langle \cos ( t ) , \sin ( t ) \rangle , 0 \leq t \leq \frac { \pi } { 2 }

(Essay)
4.9/5
(31)

Evaluate the line integral of the function over the given curve: f(x,y,z)=yexf ( x , y , z ) = y e ^ { x } and the curve C is given by r(t)=cos(t),sin(t),t,0tπ2\vec { r } ( t ) = \langle \cos ( t ) , \sin ( t ) , t \rangle , 0 \leq t \leq \frac { \pi } { 2 }

(Essay)
4.7/5
(30)
Showing 1 - 20 of 75
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)