Deck 11: Vector Functions

Full screen (f)
exit full mode
Question
Find the parametric equations for the vector-valued function r(t)=2t,t2\vec { r } ( t ) = \left\langle 2 t , t ^ { 2 } \right\rangle
Use Space or
up arrow
down arrow
to flip the card.
Question
Find the parametric equations for the vector-valued function r(t)=sin(t),14\vec { r } ( t ) = \langle \sin ( t ) , 14 \rangle
Question
Find the parametric equations for the vector-valued function r(t)=cos(t),t22\vec { r } ( t ) = \left\langle \cos ( t ) , t ^ { 2 } - 2 \right\rangle

A) x(t)=cos(t),y(t)=t22x ( t ) = \cos ( t ) , y ( t ) = t ^ { 2 } - 2
B) x(t)=t22,y(t)=cos(t)x ( t ) = t ^ { 2 } - 2 , y ( t ) = \cos ( t )
C) x(t)=sin(t),y(t)=2tx ( t ) = - \sin ( t ) , y ( t ) = 2 t
D) x(t)=2t,y(t)=sin(t)x ( t ) = 2 t , y ( t ) = - \sin ( t )
Question
Find the parametric equations for the vector-valued function r(t)=t,2t2,3t3\vec { r } ( t ) = \left\langle t , 2 t ^ { 2 } , 3 t ^ { 3 } \right\rangle
Question
Find the parametric equations for the vector-valued function r(t)=cos(t),sin(2t),tan(3t)\vec { r } ( t ) = \langle \cos ( t ) , \sin ( 2 t ) , \tan ( 3 t ) \rangle
Question
Find the parametric equations for the vector-valued function r(t)=cos(t),e2t,t3\vec { r } ( t ) = \left\langle \cos ( t ) , e ^ { 2 t } , t ^ { 3 } \right\rangle

A) x(t)=t3,y(t)=cos(t),z(t)=t3x ( t ) = t ^ { 3 } , y ( t ) = \cos ( t ) , z ( t ) = t ^ { 3 }
B) x(t)=cos(t),y(t)=e3t,z(t)=t3x ( t ) = \cos ( t ) , y ( t ) = e ^ { 3 t } , z ( t ) = t ^ { 3 }
C) x(t)=t3,y(t)=cos(t)z(t)=e2tx ( t ) = t ^ { 3 } , y ( t ) = \cos ( t ) z ( t ) = e ^ { 2 t }
D) x(t)=e2t,y(t)=t3,z(t)=cos(t)x ( t ) = e ^ { 2 t } , y ( t ) = t ^ { 3 } , z ( t ) = \cos ( t )
Question
Evaluate and simplify the quantity. 3<2t,cos(t)>3 < 2 t , \cos ( t ) >
Question
Evaluate and simplify the quantity. t<cos(t),et>t < \cos ( t ) , e ^ { t } >
Question
Evaluate and simplify the quantity. t,etet,t\left\langle t , e ^ { t } \right\rangle \cdot \left\langle - e ^ { t } , - t \right\rangle

A) t2+e2tt ^ { 2 } + e ^ { 2 t }
B) 2te2t2 t e ^ { 2 t }
C) 0
D) 2tet- 2 t e ^ { t }
Question
Evaluate and simplify the quantity. t<cos(t),sin(t),et>t < \cos ( t ) , \sin ( t ) , e ^ { t } >
Question
Evaluate and simplify the quantity. t,et,cos(t)+4,et,t2\left\langle t , e ^ { t } , \cos ( t ) \right\rangle + \left\langle 4 , e ^ { t } , t ^ { 2 } \right\rangle
Question
Evaluate and simplify the quantity. cos(t),sin(t),3cos(t),sin(t),t\langle \cos ( t ) , \sin ( t ) , 3 \rangle \cdot \langle \cos ( t ) , \sin ( t ) , t \rangle
Question
Evaluate and simplify the quantity. t,7t,cos(t)×1,t,t2\langle t , 7 t , \cos ( t ) \rangle \times \left\langle 1 , t , t ^ { 2 } \right\rangle

A) tcos(t)7t2,t3cos(t),7tt3\left\langle t \cos ( t ) - 7 t ^ { 2 } , t ^ { 3 } - \cos ( t ) , 7 t - t ^ { 3 } \right\rangle
B) 7t3tcos(t),cos(t)t3,t27t\left\langle 7 t ^ { 3 } - t \cos ( t ) , \cos ( t ) - t ^ { 3 } , t ^ { 2 } - 7 t \right\rangle
C) t,7t3,t2cos(t)\left\langle t , 7 t ^ { 3 } , t ^ { 2 } \cos ( t ) \right\rangle
D) t+7t3+t2cos(t)t + 7 t ^ { 3 } + t ^ { 2 } \cos ( t )
Question
Evaluate the limit: limx0t2,cos(t)\lim _ { x \rightarrow 0 } \left\langle t ^ { 2 } , \cos ( t ) \right\rangle
Question
Evaluate the limit: limx1t,et\lim _ { x \rightarrow 1 } \left\langle t , e ^ { t } \right\rangle
Question
Evaluate the limit: limxπ2t2,cos(t)\lim _ { x \rightarrow \frac { \pi } { 2 } } \left\langle t ^ { 2 } , \cos ( t ) \right\rangle

A) <0,π22>< 0 , \frac { \pi ^ { 2 } } { 2 } >
B) 0,1\langle 0,1 \rangle
C) <π24,1>< \frac { \pi ^ { 2 } } { 4 } , - 1 >
D) <π24,0\left. < \frac { \pi ^ { 2 } } { 4 } , 0 \right\rangle
Question
Evaluate the limit: limx0t,t2,cot(t)\lim _ { x \rightarrow 0 } \left\langle t , t ^ { 2 } , \cot ( t ) \right\rangle
Question
Evaluate the limit: limx1t21t1,cos(πt),t2\lim _ { x \rightarrow 1 } \left\langle \frac { t ^ { 2 } - 1 } { t - 1 } , \cos ( \pi t ) , t ^ { 2 } \right\rangle
Question
Evaluate the limit: limxπ2tπ,t2,tan(t)\lim _ { x \rightarrow \frac { \pi } { 2 } } \left\langle \frac { t } { \pi } , t ^ { 2 } , \tan ( t ) \right\rangle

A) <12,π24,1>< \frac { 1 } { 2 } , \frac { \pi ^ { 2 } } { 4 } , 1 >
B) <1,π2,1>< 1 , \frac { \pi } { 2 } , - 1 >
C) DNE
D) <12,π24,π2>< \frac { 1 } { 2 } , \frac { \pi ^ { 2 } } { 4 } , \frac { \pi } { 2 } >
Question
Find r(t)=x(t),y(t)\vec { r } ( t ) = \langle x ( t ) , y ( t ) \rangle determined by x(t)=x(t),y(t)=tx(0)=1,y(0)=1\begin{array} { l } x ^ { \prime } ( t ) = x ( t ) , y ^ { \prime } ( t ) = t \\x ( 0 ) = 1 , y ( 0 ) = 1\end{array}
Question
Find the derivative drds\frac { d \vec { r } } { d s } r(t)=t,sin(t),t2,t=s2\vec { r } ( t ) = \left\langle t , \sin ( t ) , t ^ { 2 } \right\rangle , t = s ^ { 2 }
Question
Find the derivative drds\frac { d \vec { r } } { d s } r(t)=cos(t),et,t,t=es\vec { r } ( t ) = \left\langle \cos ( t ) , e ^ { t } , t \right\rangle , t = e ^ { s }
Question
Find the derivative drds\frac { d \vec { r } } { d s } r(t)=t,t3,t,t=(s2+1)3\vec { r } ( t ) = \left\langle t , t ^ { 3 } , \sqrt { t } \right\rangle , t = \left( s ^ { 2 } + 1 \right) ^ { 3 }

A) r(s)=1,3(s2+1)6,12(s2+1)32\vec { r } ^ { \prime } ( s ) = \left\langle 1,3 \left( s ^ { 2 } + 1 \right) ^ { 6 } , \frac { 1 } { 2 } \left( s ^ { 2 } + 1 \right) ^ { - \frac { 3 } { 2 } } \right\rangle
B) r(s)=1,3t2,12t12\vec { r } ^ { \prime } ( s ) = \left\langle 1,3 t ^ { 2 } , \frac { 1 } { 2 } t ^ { - \frac { 1 } { 2 } } \right\rangle
C) r(s)=1,3(s2+1)6,12(s2+1)32>6s(s2+1)2\vec { r } ^ { \prime } ( s ) = \left\langle 1,3 \left( s ^ { 2 } + 1 \right) ^ { 6 } , \frac { 1 } { 2 } \left( s ^ { 2 } + 1 \right) ^ { - \frac { 3 } { 2 } } > 6 s \left( s ^ { 2 } + 1 \right) ^ { 2 } \right.
D) r(s)=t,t3,t6s(s2+1)\vec { r } ^ { \prime } ( s ) = \left\langle t , t ^ { 3 } , \sqrt { t } \right\rangle 6 s \left( s ^ { 2 } + 1 \right)
Question
Find an equation for the line tangent to the given curve at the specified point. r(t)=t,t3,t5,(1,1,1)\vec { r } ( t ) = \left\langle t , t ^ { 3 } , t ^ { 5 } \right\rangle , ( 1,1,1 )
Question
Find an equation for the line tangent to the given curve at the specified point. r(t)=et,cos(t),t,(1,1,0)\vec { r } ( t ) = \left\langle e ^ { t } , \cos ( t ) , t \right\rangle , ( 1,1,0 )
Question
Find an equation for the line tangent to the given curve at the specified point. r(t)=et,cos(t),t,(1,1,0)\vec { r } ( t ) = \left\langle e ^ { t } , \cos ( t ) , t \right\rangle , ( 1,1,0 )

A) T(t)=1,1,0+t1,0,1\vec { T } ( t ) = \langle 1,1,0 \rangle + t \langle 1,0,1 \rangle
B) T(t)=0,e2,1+t0,e2,1\vec { T } ( t ) = \left\langle 0 , e ^ { 2 } , 1 \right\rangle + t \left\langle 0 , e ^ { 2 } , 1 \right\rangle
C) T(t)=0,e2,1+t1,2e2,π2\vec { T } ( t ) = \left\langle 0 , e ^ { 2 } , 1 \right\rangle + t \left\langle 1,2 e ^ { 2 } , \frac { \pi } { 2 } \right\rangle
D) T(t)=1,2e2,0+t0,e2,1\vec { T } ( t ) = \left\langle 1,2 e ^ { 2 } , 0 \right\rangle + t \left\langle 0 , e ^ { 2 } , 1 \right\rangle
Question
Find the velocity for the given position vector, r(t)=t,sin(t),t2\vec { r } ( t ) = \left\langle t , \sin ( t ) , t ^ { 2 } \right\rangle
Question
Find the velocity for the given position vector, r(t)=ln(t),et2,ln(et)\vec { r } ( t ) = \left\langle \ln ( t ) , e ^ { t ^ { 2 } } , \ln \left( e ^ { t } \right) \right\rangle
Question
Find the velocity for the given position vector, r(t)=2t,(1+t2)3,t\vec { r } ( t ) = \left\langle 2 t , \left( 1 + t ^ { 2 } \right) ^ { 3 } , t \right\rangle

A) v(t)=2t,(1+t2)3,t\vec { v } ( t ) = \left\langle 2 t , \left( 1 + t ^ { 2 } \right) ^ { 3 } , t \right\rangle
B) v(t)=2,6t(1+t2)2,1\vec { v } ( t ) = \left\langle 2,6 t \left( 1 + t ^ { 2 } \right) ^ { 2 } , 1 \right\rangle
C) v(t)=2,3(1+t2)2,1\vec { v } ( t ) = \left\langle 2,3 \left( 1 + t ^ { 2 } \right) ^ { 2 } , 1 \right\rangle
D) v(t)=2,3t2(1+t2)2,1\vec { v } ( t ) = \left\langle 2,3 t ^ { 2 } \left( 1 + t ^ { 2 } \right) ^ { 2 } , 1 \right\rangle
Question
Find the acceleration for the given position vector, r(t)=t,sin(t),t2\vec { r } ( t ) = \left\langle t , \sin ( t ) , t ^ { 2 } \right\rangle
Question
Find the acceleration for the given position vector, r(t)=ln(t),et2,ln(et)\vec { r } ( t ) = \left\langle \ln ( t ) , e ^ { t ^ { 2 } } , \ln \left( e ^ { t } \right) \right\rangle
Question
Find the acceleration for the given position vector, r(t)=2t,(1+t2)3,t\vec { r } ( t ) = \left\langle 2 t , \left( 1 + t ^ { 2 } \right) ^ { 3 } , t \right\rangle

A) a(t)=2,6t(1+t2)2,t\vec { a } ( t ) = \left\langle 2,6 t \left( 1 + t ^ { 2 } \right) ^ { 2 } , t \right\rangle
B) a(t)=0,6(1+t2)2+24t2(1+t2),0\vec { a } ( t ) = \left\langle 0,6 \left( 1 + t ^ { 2 } \right) ^ { 2 } + 24 t ^ { 2 } \left( 1 + t ^ { 2 } \right) , 0 \right\rangle
C) a(t)=0,2t(1+t2),0\vec { a } ( t ) = \left\langle 0,2 t \left( 1 + t ^ { 2 } \right) , 0 \right\rangle
D) a(t)=0,6t2(1+2t)2,0\vec { a } ( t ) = \left\langle 0,6 t ^ { 2 } ( 1 + 2 t ) ^ { 2 } , 0 \right\rangle
Question
Evaluate the integral. t,et,sin(t)dt\int \left\langle t , e ^ { t } , \sin ( t ) \right\rangle d t
Question
Evaluate the integral. 12<1t,3t2,tet2>dt\int _ { 1 } ^ { 2 } < \frac { 1 } { t } , 3 t ^ { 2 } , t e ^ { t ^ { 2 } } > d t
Question
Evaluate the integral. <t,cot(t),et>dt\int < t , \cot ( t ) , e ^ { t } > d t

A) <t22,sin(t),et\left. < \frac { t ^ { 2 } } { 2 } , \sin ( t ) , e ^ { t } \right\rangle
B) <t22,sin(t),et>+c< \frac { t ^ { 2 } } { 2 } , \sin ( t ) , e ^ { t } > + \vec { c }
C) t22,sin(t),et\left\langle \frac { t ^ { 2 } } { 2 } , - \sin ( t ) , e ^ { t } \right\rangle
D) <t22,sin(t),et>+c< \frac { t ^ { 2 } } { 2 } , - \sin ( t ) , e ^ { t } > + \vec { c }
Question
Given the velocity vector v(t)=t,sin(t),t2\vec { v } ( t ) = \left\langle t , - \sin ( t ) , t ^ { 2 } \right\rangle and r(0)=1,1,1\vec { r } ( 0 ) = \langle 1,1,1 \rangle find r(t)\vec { r } ( t )
Question
Given the velocity vector v(t)=1t+1,et,t\vec { v } ( t ) = \left\langle \frac { 1 } { t + 1 } , e ^ { t } , t \right\rangle and r(0)=1,0,2\vec { r } ( 0 ) = \langle 1,0,2 \rangle , find r(t)\vec { r } ( t )
Question
Given the velocity vector v(t)=1,t,t2\vec { v } ( t ) = \left\langle 1 , t , t ^ { 2 } \right\rangle and r(0)=1,2,3\vec { r } ( 0 ) = \langle 1,2,3 \rangle , find r(t)\vec { r } ( t )

A) r(t)=t,t2,t3+1,2,3\vec { r } ( t ) = \left\langle t , t ^ { 2 } , t ^ { 3 } \right\rangle + \langle 1,2,3 \rangle
B) r(t)=t,t22,t33+0,32,83\vec { r } ( t ) = \left\langle t , \frac { t ^ { 2 } } { 2 } , \frac { t ^ { 3 } } { 3 } \right\rangle + \left\langle 0 , \frac { 3 } { 2 } , \frac { 8 } { 3 } \right\rangle
C) r(t)=1,t2,t3+0,2,3\vec { r } ( t ) = \left\langle 1 , t ^ { 2 } , t ^ { 3 } \right\rangle + \langle 0,2,3 \rangle
D) r(t)=t,t22,t33+1,2,3\vec { r } ( t ) = \left\langle t , \frac { t ^ { 2 } } { 2 } , \frac { t ^ { 3 } } { 3 } \right\rangle + \langle 1,2,3 \rangle
Question
Given the acceleration vector a(t)=2t,cos(t),12t2\vec { a } ( t ) = \left\langle 2 t , \cos ( t ) , 12 t ^ { 2 } \right\rangle and initial velocity and position v(0)=1,2,1\vec { v } ( 0 ) = \langle 1,2,1 \rangle and r(0)=1,1,1\vec { r } ( 0 ) = \langle 1,1,1 \rangle , find r(t)\vec { r } ( t )
Question
Find the unit tangent for r(t)=t,et\vec { r } ( t ) = \left\langle t , e ^ { t } \right\rangle
Question
Find the unit tangent for r(t)=cos(t),sin(t)\vec { r } ( t ) = \langle \cos ( t ) , \sin ( t ) \rangle
Question
Find the unit tangent for r(t)=et,tr ( t ) = \left\langle e ^ { t } , t \right\rangle

A) T(t)=1,etT ( t ) = \left\langle 1 , e ^ { t } \right\rangle
B) T(t)=1,et1+et\vec { T } ( t ) = \frac { \left\langle 1 , e ^ { t } \right\rangle } { \sqrt { 1 + e ^ { t } } }
C) T(t)=1,et1+e2t\vec { T } ( t ) = \frac { \left\langle 1 , e ^ { t } \right\rangle } { \sqrt { 1 + e ^ { 2 t } } }
D) T(t)=1,ett2+e2t\vec { T } ( t ) = \frac { \left\langle 1 , e ^ { t } \right\rangle } { \sqrt { t ^ { 2 } + e ^ { 2 t } } }
Question
Find the unit tangent for r(t)=1,t2,t\vec { r } ( t ) = \left\langle 1 , t ^ { 2 } , t \right\rangle
Question
Find the unit tangent for r(t)=cos(2t),sin(2t),2\vec { r } ( t ) = \langle \cos ( 2 t ) , \sin ( 2 t ) , 2 \rangle
Question
Find the unit tangent for r(t)=cos(3t),sin(3t),et\vec { r } ( t ) = \left\langle \cos ( 3 t ) , \sin ( 3 t ) , e ^ { t } \right\rangle

A) T(t)=3sin(3t),3cos(3t),et9+e2t\vec { T } ( t ) = \frac { \left\langle - 3 \sin ( 3 t ) , 3 \cos ( 3 t ) , e ^ { t } \right\rangle } { \sqrt { 9 + e ^ { 2 t } } }
B) T(t)=cos(3t),sin(3t),et9+e2t\vec { T } ( t ) = \frac { \left\langle \cos ( 3 t ) , \sin ( 3 t ) , e ^ { t } \right\rangle } { \sqrt { 9 + e ^ { 2 t } } }
C) T(t)=3sin(3t),3cos(3t),et9+e2t\vec { T } ( t ) = \frac { \left\langle 3 \sin ( 3 t ) , - 3 \cos ( 3 t ) , e ^ { t } \right\rangle } { \sqrt { 9 + e ^ { 2 t } } }
D) T(t)=cos(3t),sin(3t),et\vec { T } ( t ) = \left\langle \cos ( 3 t ) , \sin ( 3 t ) , e ^ { t } \right\rangle
Question
Find the principle normal unit vector for r(t)=sin(t),cos(t),t\vec { r } ( t ) = \langle \sin ( t ) , \cos ( t ) , t \rangle
Question
Find the principle binormal unit vector for r(t)=sin(t),cos(t),t\vec { r } ( t ) = \langle \sin ( t ) , \cos ( t ) , t \rangle
Question
Find the osculating plane for for r(t)=sin(t),cos(t),t\vec { r } ( t ) = \langle \sin ( t ) , \cos ( t ) , t \rangle for t=0t = 0
Question
Find the principle normal unit vector for r(t)=cos(3t),sin(3t),3\vec { r } ( t ) = \langle \cos ( 3 t ) , \sin ( 3 t ) , 3 \rangle
Question
Find the principle binormal unit vector for r(t)=cos(3t),sin(3t),3\vec { r } ( t ) = \langle \cos ( 3 t ) , \sin ( 3 t ) , 3 \rangle
Question
Find the osculating plane for r(t)=cos(3t),sin(3t),3\vec { r } ( t ) = \langle \cos ( 3 t ) , \sin ( 3 t ) , 3 \rangle for t=1t = 1
Question
Find the arc length of the curve defined by r(t)=2sin(5t),2cos(5t)\vec { r } ( t ) = \langle 2 \sin ( 5 t ) , 2 \cos ( 5 t ) \rangle over [2,4][ 2,4 ]
Question
Find the arc length of the curve defined by r(t)=1+cos(3t),1+sin(3t)\vec { r } ( t ) = \langle 1 + \cos ( 3 t ) , 1 + \sin ( 3 t ) \rangle over [4,7][ 4,7 ]
Question
Find the arc length of the curve defined by r(t)=1+7cos(3t),1+7sin(3t)\vec { r } ( t ) = \langle 1 + 7 \cos ( 3 t ) , 1 + 7 \sin ( 3 t ) \rangle over [2,3][ 2,3 ]
Question
Find the arc length of the curve defined by r(t)=3+4cos(2t),4+2sin(4t)\vec { r } ( t ) = \langle 3 + 4 \cos ( 2 t ) , 4 + 2 \sin ( 4 t ) \rangle over [2,4][ 2,4 ]

A) 4
B) 8
C) 16
D) 32
Question
Find the arc length of the curve defined by r(t)=1+cos(3t),1+sin(3t),2\vec { r } ( t ) = \langle 1 + \cos ( 3 t ) , 1 + \sin ( 3 t ) , 2 \rangle over [1,5][ 1,5 ]
Question
Find the arc length of the curve defined by r(t)=etcos(t),et,etsin(t)\vec { r } ( t ) = \left\langle e ^ { t } \cos ( t ) , e ^ { t } , e ^ { t } \sin ( t ) \right\rangle over [ln(2),ln(5)][ \ln ( 2 ) , \ln ( 5 ) ]
Question
Find the arc length of the curve defined by r(t)=1+cos(3t),1+sin(3t),5\vec { r } ( t ) = \langle 1 + \cos ( 3 t ) , 1 + \sin ( 3 t ) , 5 \rangle over [4,7][ 4,7 ]

A) 4
B) 7
C) 9
D) 11
Question
Give an arc length parameterization of r(t)=sin(2t),cos(2t)\vec { r } ( t ) = \langle \sin ( 2 t ) , \cos ( 2 t ) \rangle
Question
Give an arc length parameterization of r(t)=1+sin(2t),2+cos(2t),3\vec { r } ( t ) = \langle 1 + \sin ( 2 t ) , 2 + \cos ( 2 t ) , 3 \rangle

A) r(s)=cos(s),sin(s),3\vec { r } ( s ) = \langle \cos ( s ) , \sin ( s ) , 3 \rangle
B) r(s)=1+cos(2s),2+sin(2s),3\vec { r } ( s ) = \langle 1 + \cos ( 2 s ) , 2 + \sin ( 2 s ) , 3 \rangle
C) r(s)=1+cos(s),2+sin(s),3\vec { r } ( s ) = \langle 1 + \cos ( s ) , 2 + \sin ( s ) , 3 \rangle
D) r(s)=cos(2s),sin(2s),0\vec { r } ( s ) = \langle \cos ( 2 s ) , \sin ( 2 s ) , 0 \rangle
Question
Give an arc length parameterization of r(t)=et,2et\vec { r } ( t ) = \left\langle e ^ { t } , 2 e ^ { t } \right\rangle
Question
Find the curvature of the given function at the indicated value of XX : f(x)=x2,x=1f ( x ) = x ^ { 2 } , x = 1
Question
Find the curvature of the given function at the indicated value of XX : f(x)=ex,x=0f ( x ) = e ^ { x } , x = 0
Question
Find the curvature of the given function at the indicated value of XX : f(x)=cos(x),x=0f ( x ) = \cos ( x ) , x = 0

A) 1232\frac { 1 } { 2 ^ { \frac { 3 } { 2 } } }
B) 0
C) 1
D) Undefined
Question
Find the curvature of the vector valued function: r(t)=1,t2,t2\vec { r } ( t ) = \left\langle 1 , t ^ { 2 } , t ^ { 2 } \right\rangle
Question
Find the curvature of the vector valued function: r(t)=sin(t),cos(t),t\vec { r } ( t ) = \langle \sin ( t ) , \cos ( t ) , t \rangle
Question
Find the curvature of the vector valued function: r(t)=et,e2t,e3t\vec { r } ( t ) = \left\langle e ^ { t } , e ^ { 2 t } , e ^ { 3 t } \right\rangle

A) κ(t)=12\kappa ( t ) = \frac { 1 } { 2 }
B) κ(t)=36e10t+36e8t+4e6t\kappa ( t ) = \sqrt { 36 e ^ { 10 t } + 36 e ^ { 8 t } + 4 e ^ { 6 t } }
C) κ(t)=29e4t+9e2t+1(1+4e2t+9e4t)32\kappa ( t ) = \frac { 2 \sqrt { 9 e ^ { 4 t } + 9 e ^ { 2 t } + 1 } } { \left( 1 + 4 e ^ { 2 t } + 9 e ^ { 4 t } \right) ^ { \frac { 3 } { 2 } } }
D) κ(t)=9e4t+9e4t+1\kappa ( t ) = \sqrt { 9 e ^ { 4 t } + 9 e ^ { 4 t } + 1 }
Question
For r(t)=sin(π2t),cos(π2t)\vec { r } ( t ) = \left\langle \sin \left( \frac { \pi } { 2 } t \right) , \cos \left( \frac { \pi } { 2 } t \right) \right\rangle find the displacement vector as tt goes from t=1t = - 1 to t=1t = 1
Question
Find the distance traveled by a particle moving on the curve given by r(t)=sin(π2t),cos(π2t)\vec { r } ( t ) = \left\langle \sin \left( \frac { \pi } { 2 } t \right) , \cos \left( \frac { \pi } { 2 } t \right) \right\rangle as tt goes from t=1t = - 1 to t=1t = 1
Question
For r(t)=sin(3t),cos(3t)\vec { r } ( t ) = \langle \sin ( 3 t ) , \cos ( 3 t ) \rangle find the displacement vector as tt goes from t=0t = 0 to t=πt = \pi

A) 2,0\langle - 2,0 \rangle
B) 1,0\langle - 1,0 \rangle
C) 1,0\langle 1,0 \rangle
D) 1,1\langle 1,1 \rangle
Question
Find the distance traveled by a particle moving on the curve given by r(t)=sin(3t),cos(3t)\vec { r } ( t ) = \langle \sin ( 3 t ) , \cos ( 3 t ) \rangle find the displacement vector as tt goes from t=0t = 0 to t=πt = \pi

A) π3\pi \sqrt { 3 }
B) 3π3 \pi
C) 22
D) 2π2 \pi
Question
For r(t)=sin(π2t),cos(π2t),t\vec { r } ( t ) = \left\langle \sin \left( \frac { \pi } { 2 } t \right) , \cos \left( \frac { \pi } { 2 } t \right) , t \right\rangle find the displacement vector as tt goes from t=1t = - 1 to t=1t = 1
Question
Find the distance traveled by a particle moving on the curve given by r(t)=sin(π2t),cos(π2t),t\vec { r } ( t ) = \left\langle \sin \left( \frac { \pi } { 2 } t \right) , \cos \left( \frac { \pi } { 2 } t \right) , t \right\rangle as tt goes from t=1t = - 1 to t=1t = 1
Question
For r(t)=sin(3t),cos(3t),t\vec { r } ( t ) = \langle \sin ( 3 t ) , \cos ( 3 t ) , t \rangle find the displacement vector as tt goes from t=0t = 0 to t=πt = \pi

A) 2,0,π\langle - 2,0 , \pi \rangle
B) 1,0,π\langle - 1,0 , \pi \rangle
C) 1,0,π\langle 1,0 , \pi \rangle
D) 1,1,π\langle 1,1 , \pi \rangle
Question
Find the distance traveled by a particle moving on the curve given by r(t)=sin(3t),cos(3t),t\vec { r } ( t ) = \langle \sin ( 3 t ) , \cos ( 3 t ) , t \rangle as tt goes from t=0t = 0 to t=πt = \pi

A) 3π3 \pi
B) π10\pi \sqrt { 10 }
C) π3\pi \sqrt { 3 }
D) 10π10 \pi
Question
Find the tangential and normal components for the position function r(t)=t,t3\vec { r } ( t ) = \left\langle t , t ^ { 3 } \right\rangle
Question
Find the tangential and normal components for the position function r(t)=cos(t),sin(t)\vec { r } ( t ) = \langle \cos ( t ) , \sin ( t ) \rangle
Question
Find the tangential and normal components for the position function r(t)=et,et\vec { r } ( t ) = \left\langle e ^ { t } , e ^ { - t } \right\rangle

A) aT=e2te2taN=2\begin{array} { l } a _ { T } = e ^ { 2 t } - e ^ { - 2 t } \\a _ { N } = 2\end{array}
B) aT=2e2t+e2taN=e2te2te2t+e2t\begin{array} { l } a _ { T } = \frac { 2 } { \sqrt { e ^ { 2 t } + e ^ { - 2 t } } } \\a _ { N } = \frac { e ^ { 2 t } - e ^ { - 2 t } } { \sqrt { e ^ { 2 t } + e ^ { - 2 t } } }\end{array}
C) aT=2e2t+e2taN=e2t+e2te2t+e2t\begin{array} { l } a _ { T } = \frac { 2 } { \sqrt { e ^ { 2 t } + e ^ { - 2 t } } } \\a _ { N } = \frac { e ^ { 2 t } + e ^ { - 2 t } } { \sqrt { e ^ { 2 t } + e ^ { - 2 t } } }\end{array}
D) aT=e2te2te2t+e2taN=2e2t+e2t\begin{array} { l } a _ { T } = \frac { e ^ { 2 t } - e ^ { - 2 t } } { \sqrt { e ^ { 2 t } + e ^ { - 2 t } } } \\a _ { N } = \frac { 2 } { \sqrt { e ^ { 2 t } + e ^ { - 2 t } } }\end{array}
Question
Find the tangential and normal components for the position function r(t)=t,et,t2\vec { r } ( t ) = \left\langle t , e ^ { t } , t ^ { 2 } \right\rangle
Question
Find the tangential and normal components of acceleration for the position function r(t)=cos(3t),t,sin(3t)\vec { r } ( t ) = \langle \cos ( 3 t ) , t , \sin ( 3 t ) \rangle
Unlock Deck
Sign up to unlock the cards in this deck!
Unlock Deck
Unlock Deck
1/81
auto play flashcards
Play
simple tutorial
Full screen (f)
exit full mode
Deck 11: Vector Functions
1
Find the parametric equations for the vector-valued function r(t)=2t,t2\vec { r } ( t ) = \left\langle 2 t , t ^ { 2 } \right\rangle
x(t)=2t,y(t)=t2x ( t ) = 2 t , y ( t ) = t ^ { 2 }
2
Find the parametric equations for the vector-valued function r(t)=sin(t),14\vec { r } ( t ) = \langle \sin ( t ) , 14 \rangle
x(t)=sin(t),y(t)=14x ( t ) = \sin ( t ) , y ( t ) = 14
3
Find the parametric equations for the vector-valued function r(t)=cos(t),t22\vec { r } ( t ) = \left\langle \cos ( t ) , t ^ { 2 } - 2 \right\rangle

A) x(t)=cos(t),y(t)=t22x ( t ) = \cos ( t ) , y ( t ) = t ^ { 2 } - 2
B) x(t)=t22,y(t)=cos(t)x ( t ) = t ^ { 2 } - 2 , y ( t ) = \cos ( t )
C) x(t)=sin(t),y(t)=2tx ( t ) = - \sin ( t ) , y ( t ) = 2 t
D) x(t)=2t,y(t)=sin(t)x ( t ) = 2 t , y ( t ) = - \sin ( t )
A
4
Find the parametric equations for the vector-valued function r(t)=t,2t2,3t3\vec { r } ( t ) = \left\langle t , 2 t ^ { 2 } , 3 t ^ { 3 } \right\rangle
Unlock Deck
Unlock for access to all 81 flashcards in this deck.
Unlock Deck
k this deck
5
Find the parametric equations for the vector-valued function r(t)=cos(t),sin(2t),tan(3t)\vec { r } ( t ) = \langle \cos ( t ) , \sin ( 2 t ) , \tan ( 3 t ) \rangle
Unlock Deck
Unlock for access to all 81 flashcards in this deck.
Unlock Deck
k this deck
6
Find the parametric equations for the vector-valued function r(t)=cos(t),e2t,t3\vec { r } ( t ) = \left\langle \cos ( t ) , e ^ { 2 t } , t ^ { 3 } \right\rangle

A) x(t)=t3,y(t)=cos(t),z(t)=t3x ( t ) = t ^ { 3 } , y ( t ) = \cos ( t ) , z ( t ) = t ^ { 3 }
B) x(t)=cos(t),y(t)=e3t,z(t)=t3x ( t ) = \cos ( t ) , y ( t ) = e ^ { 3 t } , z ( t ) = t ^ { 3 }
C) x(t)=t3,y(t)=cos(t)z(t)=e2tx ( t ) = t ^ { 3 } , y ( t ) = \cos ( t ) z ( t ) = e ^ { 2 t }
D) x(t)=e2t,y(t)=t3,z(t)=cos(t)x ( t ) = e ^ { 2 t } , y ( t ) = t ^ { 3 } , z ( t ) = \cos ( t )
Unlock Deck
Unlock for access to all 81 flashcards in this deck.
Unlock Deck
k this deck
7
Evaluate and simplify the quantity. 3<2t,cos(t)>3 < 2 t , \cos ( t ) >
Unlock Deck
Unlock for access to all 81 flashcards in this deck.
Unlock Deck
k this deck
8
Evaluate and simplify the quantity. t<cos(t),et>t < \cos ( t ) , e ^ { t } >
Unlock Deck
Unlock for access to all 81 flashcards in this deck.
Unlock Deck
k this deck
9
Evaluate and simplify the quantity. t,etet,t\left\langle t , e ^ { t } \right\rangle \cdot \left\langle - e ^ { t } , - t \right\rangle

A) t2+e2tt ^ { 2 } + e ^ { 2 t }
B) 2te2t2 t e ^ { 2 t }
C) 0
D) 2tet- 2 t e ^ { t }
Unlock Deck
Unlock for access to all 81 flashcards in this deck.
Unlock Deck
k this deck
10
Evaluate and simplify the quantity. t<cos(t),sin(t),et>t < \cos ( t ) , \sin ( t ) , e ^ { t } >
Unlock Deck
Unlock for access to all 81 flashcards in this deck.
Unlock Deck
k this deck
11
Evaluate and simplify the quantity. t,et,cos(t)+4,et,t2\left\langle t , e ^ { t } , \cos ( t ) \right\rangle + \left\langle 4 , e ^ { t } , t ^ { 2 } \right\rangle
Unlock Deck
Unlock for access to all 81 flashcards in this deck.
Unlock Deck
k this deck
12
Evaluate and simplify the quantity. cos(t),sin(t),3cos(t),sin(t),t\langle \cos ( t ) , \sin ( t ) , 3 \rangle \cdot \langle \cos ( t ) , \sin ( t ) , t \rangle
Unlock Deck
Unlock for access to all 81 flashcards in this deck.
Unlock Deck
k this deck
13
Evaluate and simplify the quantity. t,7t,cos(t)×1,t,t2\langle t , 7 t , \cos ( t ) \rangle \times \left\langle 1 , t , t ^ { 2 } \right\rangle

A) tcos(t)7t2,t3cos(t),7tt3\left\langle t \cos ( t ) - 7 t ^ { 2 } , t ^ { 3 } - \cos ( t ) , 7 t - t ^ { 3 } \right\rangle
B) 7t3tcos(t),cos(t)t3,t27t\left\langle 7 t ^ { 3 } - t \cos ( t ) , \cos ( t ) - t ^ { 3 } , t ^ { 2 } - 7 t \right\rangle
C) t,7t3,t2cos(t)\left\langle t , 7 t ^ { 3 } , t ^ { 2 } \cos ( t ) \right\rangle
D) t+7t3+t2cos(t)t + 7 t ^ { 3 } + t ^ { 2 } \cos ( t )
Unlock Deck
Unlock for access to all 81 flashcards in this deck.
Unlock Deck
k this deck
14
Evaluate the limit: limx0t2,cos(t)\lim _ { x \rightarrow 0 } \left\langle t ^ { 2 } , \cos ( t ) \right\rangle
Unlock Deck
Unlock for access to all 81 flashcards in this deck.
Unlock Deck
k this deck
15
Evaluate the limit: limx1t,et\lim _ { x \rightarrow 1 } \left\langle t , e ^ { t } \right\rangle
Unlock Deck
Unlock for access to all 81 flashcards in this deck.
Unlock Deck
k this deck
16
Evaluate the limit: limxπ2t2,cos(t)\lim _ { x \rightarrow \frac { \pi } { 2 } } \left\langle t ^ { 2 } , \cos ( t ) \right\rangle

A) <0,π22>< 0 , \frac { \pi ^ { 2 } } { 2 } >
B) 0,1\langle 0,1 \rangle
C) <π24,1>< \frac { \pi ^ { 2 } } { 4 } , - 1 >
D) <π24,0\left. < \frac { \pi ^ { 2 } } { 4 } , 0 \right\rangle
Unlock Deck
Unlock for access to all 81 flashcards in this deck.
Unlock Deck
k this deck
17
Evaluate the limit: limx0t,t2,cot(t)\lim _ { x \rightarrow 0 } \left\langle t , t ^ { 2 } , \cot ( t ) \right\rangle
Unlock Deck
Unlock for access to all 81 flashcards in this deck.
Unlock Deck
k this deck
18
Evaluate the limit: limx1t21t1,cos(πt),t2\lim _ { x \rightarrow 1 } \left\langle \frac { t ^ { 2 } - 1 } { t - 1 } , \cos ( \pi t ) , t ^ { 2 } \right\rangle
Unlock Deck
Unlock for access to all 81 flashcards in this deck.
Unlock Deck
k this deck
19
Evaluate the limit: limxπ2tπ,t2,tan(t)\lim _ { x \rightarrow \frac { \pi } { 2 } } \left\langle \frac { t } { \pi } , t ^ { 2 } , \tan ( t ) \right\rangle

A) <12,π24,1>< \frac { 1 } { 2 } , \frac { \pi ^ { 2 } } { 4 } , 1 >
B) <1,π2,1>< 1 , \frac { \pi } { 2 } , - 1 >
C) DNE
D) <12,π24,π2>< \frac { 1 } { 2 } , \frac { \pi ^ { 2 } } { 4 } , \frac { \pi } { 2 } >
Unlock Deck
Unlock for access to all 81 flashcards in this deck.
Unlock Deck
k this deck
20
Find r(t)=x(t),y(t)\vec { r } ( t ) = \langle x ( t ) , y ( t ) \rangle determined by x(t)=x(t),y(t)=tx(0)=1,y(0)=1\begin{array} { l } x ^ { \prime } ( t ) = x ( t ) , y ^ { \prime } ( t ) = t \\x ( 0 ) = 1 , y ( 0 ) = 1\end{array}
Unlock Deck
Unlock for access to all 81 flashcards in this deck.
Unlock Deck
k this deck
21
Find the derivative drds\frac { d \vec { r } } { d s } r(t)=t,sin(t),t2,t=s2\vec { r } ( t ) = \left\langle t , \sin ( t ) , t ^ { 2 } \right\rangle , t = s ^ { 2 }
Unlock Deck
Unlock for access to all 81 flashcards in this deck.
Unlock Deck
k this deck
22
Find the derivative drds\frac { d \vec { r } } { d s } r(t)=cos(t),et,t,t=es\vec { r } ( t ) = \left\langle \cos ( t ) , e ^ { t } , t \right\rangle , t = e ^ { s }
Unlock Deck
Unlock for access to all 81 flashcards in this deck.
Unlock Deck
k this deck
23
Find the derivative drds\frac { d \vec { r } } { d s } r(t)=t,t3,t,t=(s2+1)3\vec { r } ( t ) = \left\langle t , t ^ { 3 } , \sqrt { t } \right\rangle , t = \left( s ^ { 2 } + 1 \right) ^ { 3 }

A) r(s)=1,3(s2+1)6,12(s2+1)32\vec { r } ^ { \prime } ( s ) = \left\langle 1,3 \left( s ^ { 2 } + 1 \right) ^ { 6 } , \frac { 1 } { 2 } \left( s ^ { 2 } + 1 \right) ^ { - \frac { 3 } { 2 } } \right\rangle
B) r(s)=1,3t2,12t12\vec { r } ^ { \prime } ( s ) = \left\langle 1,3 t ^ { 2 } , \frac { 1 } { 2 } t ^ { - \frac { 1 } { 2 } } \right\rangle
C) r(s)=1,3(s2+1)6,12(s2+1)32>6s(s2+1)2\vec { r } ^ { \prime } ( s ) = \left\langle 1,3 \left( s ^ { 2 } + 1 \right) ^ { 6 } , \frac { 1 } { 2 } \left( s ^ { 2 } + 1 \right) ^ { - \frac { 3 } { 2 } } > 6 s \left( s ^ { 2 } + 1 \right) ^ { 2 } \right.
D) r(s)=t,t3,t6s(s2+1)\vec { r } ^ { \prime } ( s ) = \left\langle t , t ^ { 3 } , \sqrt { t } \right\rangle 6 s \left( s ^ { 2 } + 1 \right)
Unlock Deck
Unlock for access to all 81 flashcards in this deck.
Unlock Deck
k this deck
24
Find an equation for the line tangent to the given curve at the specified point. r(t)=t,t3,t5,(1,1,1)\vec { r } ( t ) = \left\langle t , t ^ { 3 } , t ^ { 5 } \right\rangle , ( 1,1,1 )
Unlock Deck
Unlock for access to all 81 flashcards in this deck.
Unlock Deck
k this deck
25
Find an equation for the line tangent to the given curve at the specified point. r(t)=et,cos(t),t,(1,1,0)\vec { r } ( t ) = \left\langle e ^ { t } , \cos ( t ) , t \right\rangle , ( 1,1,0 )
Unlock Deck
Unlock for access to all 81 flashcards in this deck.
Unlock Deck
k this deck
26
Find an equation for the line tangent to the given curve at the specified point. r(t)=et,cos(t),t,(1,1,0)\vec { r } ( t ) = \left\langle e ^ { t } , \cos ( t ) , t \right\rangle , ( 1,1,0 )

A) T(t)=1,1,0+t1,0,1\vec { T } ( t ) = \langle 1,1,0 \rangle + t \langle 1,0,1 \rangle
B) T(t)=0,e2,1+t0,e2,1\vec { T } ( t ) = \left\langle 0 , e ^ { 2 } , 1 \right\rangle + t \left\langle 0 , e ^ { 2 } , 1 \right\rangle
C) T(t)=0,e2,1+t1,2e2,π2\vec { T } ( t ) = \left\langle 0 , e ^ { 2 } , 1 \right\rangle + t \left\langle 1,2 e ^ { 2 } , \frac { \pi } { 2 } \right\rangle
D) T(t)=1,2e2,0+t0,e2,1\vec { T } ( t ) = \left\langle 1,2 e ^ { 2 } , 0 \right\rangle + t \left\langle 0 , e ^ { 2 } , 1 \right\rangle
Unlock Deck
Unlock for access to all 81 flashcards in this deck.
Unlock Deck
k this deck
27
Find the velocity for the given position vector, r(t)=t,sin(t),t2\vec { r } ( t ) = \left\langle t , \sin ( t ) , t ^ { 2 } \right\rangle
Unlock Deck
Unlock for access to all 81 flashcards in this deck.
Unlock Deck
k this deck
28
Find the velocity for the given position vector, r(t)=ln(t),et2,ln(et)\vec { r } ( t ) = \left\langle \ln ( t ) , e ^ { t ^ { 2 } } , \ln \left( e ^ { t } \right) \right\rangle
Unlock Deck
Unlock for access to all 81 flashcards in this deck.
Unlock Deck
k this deck
29
Find the velocity for the given position vector, r(t)=2t,(1+t2)3,t\vec { r } ( t ) = \left\langle 2 t , \left( 1 + t ^ { 2 } \right) ^ { 3 } , t \right\rangle

A) v(t)=2t,(1+t2)3,t\vec { v } ( t ) = \left\langle 2 t , \left( 1 + t ^ { 2 } \right) ^ { 3 } , t \right\rangle
B) v(t)=2,6t(1+t2)2,1\vec { v } ( t ) = \left\langle 2,6 t \left( 1 + t ^ { 2 } \right) ^ { 2 } , 1 \right\rangle
C) v(t)=2,3(1+t2)2,1\vec { v } ( t ) = \left\langle 2,3 \left( 1 + t ^ { 2 } \right) ^ { 2 } , 1 \right\rangle
D) v(t)=2,3t2(1+t2)2,1\vec { v } ( t ) = \left\langle 2,3 t ^ { 2 } \left( 1 + t ^ { 2 } \right) ^ { 2 } , 1 \right\rangle
Unlock Deck
Unlock for access to all 81 flashcards in this deck.
Unlock Deck
k this deck
30
Find the acceleration for the given position vector, r(t)=t,sin(t),t2\vec { r } ( t ) = \left\langle t , \sin ( t ) , t ^ { 2 } \right\rangle
Unlock Deck
Unlock for access to all 81 flashcards in this deck.
Unlock Deck
k this deck
31
Find the acceleration for the given position vector, r(t)=ln(t),et2,ln(et)\vec { r } ( t ) = \left\langle \ln ( t ) , e ^ { t ^ { 2 } } , \ln \left( e ^ { t } \right) \right\rangle
Unlock Deck
Unlock for access to all 81 flashcards in this deck.
Unlock Deck
k this deck
32
Find the acceleration for the given position vector, r(t)=2t,(1+t2)3,t\vec { r } ( t ) = \left\langle 2 t , \left( 1 + t ^ { 2 } \right) ^ { 3 } , t \right\rangle

A) a(t)=2,6t(1+t2)2,t\vec { a } ( t ) = \left\langle 2,6 t \left( 1 + t ^ { 2 } \right) ^ { 2 } , t \right\rangle
B) a(t)=0,6(1+t2)2+24t2(1+t2),0\vec { a } ( t ) = \left\langle 0,6 \left( 1 + t ^ { 2 } \right) ^ { 2 } + 24 t ^ { 2 } \left( 1 + t ^ { 2 } \right) , 0 \right\rangle
C) a(t)=0,2t(1+t2),0\vec { a } ( t ) = \left\langle 0,2 t \left( 1 + t ^ { 2 } \right) , 0 \right\rangle
D) a(t)=0,6t2(1+2t)2,0\vec { a } ( t ) = \left\langle 0,6 t ^ { 2 } ( 1 + 2 t ) ^ { 2 } , 0 \right\rangle
Unlock Deck
Unlock for access to all 81 flashcards in this deck.
Unlock Deck
k this deck
33
Evaluate the integral. t,et,sin(t)dt\int \left\langle t , e ^ { t } , \sin ( t ) \right\rangle d t
Unlock Deck
Unlock for access to all 81 flashcards in this deck.
Unlock Deck
k this deck
34
Evaluate the integral. 12<1t,3t2,tet2>dt\int _ { 1 } ^ { 2 } < \frac { 1 } { t } , 3 t ^ { 2 } , t e ^ { t ^ { 2 } } > d t
Unlock Deck
Unlock for access to all 81 flashcards in this deck.
Unlock Deck
k this deck
35
Evaluate the integral. <t,cot(t),et>dt\int < t , \cot ( t ) , e ^ { t } > d t

A) <t22,sin(t),et\left. < \frac { t ^ { 2 } } { 2 } , \sin ( t ) , e ^ { t } \right\rangle
B) <t22,sin(t),et>+c< \frac { t ^ { 2 } } { 2 } , \sin ( t ) , e ^ { t } > + \vec { c }
C) t22,sin(t),et\left\langle \frac { t ^ { 2 } } { 2 } , - \sin ( t ) , e ^ { t } \right\rangle
D) <t22,sin(t),et>+c< \frac { t ^ { 2 } } { 2 } , - \sin ( t ) , e ^ { t } > + \vec { c }
Unlock Deck
Unlock for access to all 81 flashcards in this deck.
Unlock Deck
k this deck
36
Given the velocity vector v(t)=t,sin(t),t2\vec { v } ( t ) = \left\langle t , - \sin ( t ) , t ^ { 2 } \right\rangle and r(0)=1,1,1\vec { r } ( 0 ) = \langle 1,1,1 \rangle find r(t)\vec { r } ( t )
Unlock Deck
Unlock for access to all 81 flashcards in this deck.
Unlock Deck
k this deck
37
Given the velocity vector v(t)=1t+1,et,t\vec { v } ( t ) = \left\langle \frac { 1 } { t + 1 } , e ^ { t } , t \right\rangle and r(0)=1,0,2\vec { r } ( 0 ) = \langle 1,0,2 \rangle , find r(t)\vec { r } ( t )
Unlock Deck
Unlock for access to all 81 flashcards in this deck.
Unlock Deck
k this deck
38
Given the velocity vector v(t)=1,t,t2\vec { v } ( t ) = \left\langle 1 , t , t ^ { 2 } \right\rangle and r(0)=1,2,3\vec { r } ( 0 ) = \langle 1,2,3 \rangle , find r(t)\vec { r } ( t )

A) r(t)=t,t2,t3+1,2,3\vec { r } ( t ) = \left\langle t , t ^ { 2 } , t ^ { 3 } \right\rangle + \langle 1,2,3 \rangle
B) r(t)=t,t22,t33+0,32,83\vec { r } ( t ) = \left\langle t , \frac { t ^ { 2 } } { 2 } , \frac { t ^ { 3 } } { 3 } \right\rangle + \left\langle 0 , \frac { 3 } { 2 } , \frac { 8 } { 3 } \right\rangle
C) r(t)=1,t2,t3+0,2,3\vec { r } ( t ) = \left\langle 1 , t ^ { 2 } , t ^ { 3 } \right\rangle + \langle 0,2,3 \rangle
D) r(t)=t,t22,t33+1,2,3\vec { r } ( t ) = \left\langle t , \frac { t ^ { 2 } } { 2 } , \frac { t ^ { 3 } } { 3 } \right\rangle + \langle 1,2,3 \rangle
Unlock Deck
Unlock for access to all 81 flashcards in this deck.
Unlock Deck
k this deck
39
Given the acceleration vector a(t)=2t,cos(t),12t2\vec { a } ( t ) = \left\langle 2 t , \cos ( t ) , 12 t ^ { 2 } \right\rangle and initial velocity and position v(0)=1,2,1\vec { v } ( 0 ) = \langle 1,2,1 \rangle and r(0)=1,1,1\vec { r } ( 0 ) = \langle 1,1,1 \rangle , find r(t)\vec { r } ( t )
Unlock Deck
Unlock for access to all 81 flashcards in this deck.
Unlock Deck
k this deck
40
Find the unit tangent for r(t)=t,et\vec { r } ( t ) = \left\langle t , e ^ { t } \right\rangle
Unlock Deck
Unlock for access to all 81 flashcards in this deck.
Unlock Deck
k this deck
41
Find the unit tangent for r(t)=cos(t),sin(t)\vec { r } ( t ) = \langle \cos ( t ) , \sin ( t ) \rangle
Unlock Deck
Unlock for access to all 81 flashcards in this deck.
Unlock Deck
k this deck
42
Find the unit tangent for r(t)=et,tr ( t ) = \left\langle e ^ { t } , t \right\rangle

A) T(t)=1,etT ( t ) = \left\langle 1 , e ^ { t } \right\rangle
B) T(t)=1,et1+et\vec { T } ( t ) = \frac { \left\langle 1 , e ^ { t } \right\rangle } { \sqrt { 1 + e ^ { t } } }
C) T(t)=1,et1+e2t\vec { T } ( t ) = \frac { \left\langle 1 , e ^ { t } \right\rangle } { \sqrt { 1 + e ^ { 2 t } } }
D) T(t)=1,ett2+e2t\vec { T } ( t ) = \frac { \left\langle 1 , e ^ { t } \right\rangle } { \sqrt { t ^ { 2 } + e ^ { 2 t } } }
Unlock Deck
Unlock for access to all 81 flashcards in this deck.
Unlock Deck
k this deck
43
Find the unit tangent for r(t)=1,t2,t\vec { r } ( t ) = \left\langle 1 , t ^ { 2 } , t \right\rangle
Unlock Deck
Unlock for access to all 81 flashcards in this deck.
Unlock Deck
k this deck
44
Find the unit tangent for r(t)=cos(2t),sin(2t),2\vec { r } ( t ) = \langle \cos ( 2 t ) , \sin ( 2 t ) , 2 \rangle
Unlock Deck
Unlock for access to all 81 flashcards in this deck.
Unlock Deck
k this deck
45
Find the unit tangent for r(t)=cos(3t),sin(3t),et\vec { r } ( t ) = \left\langle \cos ( 3 t ) , \sin ( 3 t ) , e ^ { t } \right\rangle

A) T(t)=3sin(3t),3cos(3t),et9+e2t\vec { T } ( t ) = \frac { \left\langle - 3 \sin ( 3 t ) , 3 \cos ( 3 t ) , e ^ { t } \right\rangle } { \sqrt { 9 + e ^ { 2 t } } }
B) T(t)=cos(3t),sin(3t),et9+e2t\vec { T } ( t ) = \frac { \left\langle \cos ( 3 t ) , \sin ( 3 t ) , e ^ { t } \right\rangle } { \sqrt { 9 + e ^ { 2 t } } }
C) T(t)=3sin(3t),3cos(3t),et9+e2t\vec { T } ( t ) = \frac { \left\langle 3 \sin ( 3 t ) , - 3 \cos ( 3 t ) , e ^ { t } \right\rangle } { \sqrt { 9 + e ^ { 2 t } } }
D) T(t)=cos(3t),sin(3t),et\vec { T } ( t ) = \left\langle \cos ( 3 t ) , \sin ( 3 t ) , e ^ { t } \right\rangle
Unlock Deck
Unlock for access to all 81 flashcards in this deck.
Unlock Deck
k this deck
46
Find the principle normal unit vector for r(t)=sin(t),cos(t),t\vec { r } ( t ) = \langle \sin ( t ) , \cos ( t ) , t \rangle
Unlock Deck
Unlock for access to all 81 flashcards in this deck.
Unlock Deck
k this deck
47
Find the principle binormal unit vector for r(t)=sin(t),cos(t),t\vec { r } ( t ) = \langle \sin ( t ) , \cos ( t ) , t \rangle
Unlock Deck
Unlock for access to all 81 flashcards in this deck.
Unlock Deck
k this deck
48
Find the osculating plane for for r(t)=sin(t),cos(t),t\vec { r } ( t ) = \langle \sin ( t ) , \cos ( t ) , t \rangle for t=0t = 0
Unlock Deck
Unlock for access to all 81 flashcards in this deck.
Unlock Deck
k this deck
49
Find the principle normal unit vector for r(t)=cos(3t),sin(3t),3\vec { r } ( t ) = \langle \cos ( 3 t ) , \sin ( 3 t ) , 3 \rangle
Unlock Deck
Unlock for access to all 81 flashcards in this deck.
Unlock Deck
k this deck
50
Find the principle binormal unit vector for r(t)=cos(3t),sin(3t),3\vec { r } ( t ) = \langle \cos ( 3 t ) , \sin ( 3 t ) , 3 \rangle
Unlock Deck
Unlock for access to all 81 flashcards in this deck.
Unlock Deck
k this deck
51
Find the osculating plane for r(t)=cos(3t),sin(3t),3\vec { r } ( t ) = \langle \cos ( 3 t ) , \sin ( 3 t ) , 3 \rangle for t=1t = 1
Unlock Deck
Unlock for access to all 81 flashcards in this deck.
Unlock Deck
k this deck
52
Find the arc length of the curve defined by r(t)=2sin(5t),2cos(5t)\vec { r } ( t ) = \langle 2 \sin ( 5 t ) , 2 \cos ( 5 t ) \rangle over [2,4][ 2,4 ]
Unlock Deck
Unlock for access to all 81 flashcards in this deck.
Unlock Deck
k this deck
53
Find the arc length of the curve defined by r(t)=1+cos(3t),1+sin(3t)\vec { r } ( t ) = \langle 1 + \cos ( 3 t ) , 1 + \sin ( 3 t ) \rangle over [4,7][ 4,7 ]
Unlock Deck
Unlock for access to all 81 flashcards in this deck.
Unlock Deck
k this deck
54
Find the arc length of the curve defined by r(t)=1+7cos(3t),1+7sin(3t)\vec { r } ( t ) = \langle 1 + 7 \cos ( 3 t ) , 1 + 7 \sin ( 3 t ) \rangle over [2,3][ 2,3 ]
Unlock Deck
Unlock for access to all 81 flashcards in this deck.
Unlock Deck
k this deck
55
Find the arc length of the curve defined by r(t)=3+4cos(2t),4+2sin(4t)\vec { r } ( t ) = \langle 3 + 4 \cos ( 2 t ) , 4 + 2 \sin ( 4 t ) \rangle over [2,4][ 2,4 ]

A) 4
B) 8
C) 16
D) 32
Unlock Deck
Unlock for access to all 81 flashcards in this deck.
Unlock Deck
k this deck
56
Find the arc length of the curve defined by r(t)=1+cos(3t),1+sin(3t),2\vec { r } ( t ) = \langle 1 + \cos ( 3 t ) , 1 + \sin ( 3 t ) , 2 \rangle over [1,5][ 1,5 ]
Unlock Deck
Unlock for access to all 81 flashcards in this deck.
Unlock Deck
k this deck
57
Find the arc length of the curve defined by r(t)=etcos(t),et,etsin(t)\vec { r } ( t ) = \left\langle e ^ { t } \cos ( t ) , e ^ { t } , e ^ { t } \sin ( t ) \right\rangle over [ln(2),ln(5)][ \ln ( 2 ) , \ln ( 5 ) ]
Unlock Deck
Unlock for access to all 81 flashcards in this deck.
Unlock Deck
k this deck
58
Find the arc length of the curve defined by r(t)=1+cos(3t),1+sin(3t),5\vec { r } ( t ) = \langle 1 + \cos ( 3 t ) , 1 + \sin ( 3 t ) , 5 \rangle over [4,7][ 4,7 ]

A) 4
B) 7
C) 9
D) 11
Unlock Deck
Unlock for access to all 81 flashcards in this deck.
Unlock Deck
k this deck
59
Give an arc length parameterization of r(t)=sin(2t),cos(2t)\vec { r } ( t ) = \langle \sin ( 2 t ) , \cos ( 2 t ) \rangle
Unlock Deck
Unlock for access to all 81 flashcards in this deck.
Unlock Deck
k this deck
60
Give an arc length parameterization of r(t)=1+sin(2t),2+cos(2t),3\vec { r } ( t ) = \langle 1 + \sin ( 2 t ) , 2 + \cos ( 2 t ) , 3 \rangle

A) r(s)=cos(s),sin(s),3\vec { r } ( s ) = \langle \cos ( s ) , \sin ( s ) , 3 \rangle
B) r(s)=1+cos(2s),2+sin(2s),3\vec { r } ( s ) = \langle 1 + \cos ( 2 s ) , 2 + \sin ( 2 s ) , 3 \rangle
C) r(s)=1+cos(s),2+sin(s),3\vec { r } ( s ) = \langle 1 + \cos ( s ) , 2 + \sin ( s ) , 3 \rangle
D) r(s)=cos(2s),sin(2s),0\vec { r } ( s ) = \langle \cos ( 2 s ) , \sin ( 2 s ) , 0 \rangle
Unlock Deck
Unlock for access to all 81 flashcards in this deck.
Unlock Deck
k this deck
61
Give an arc length parameterization of r(t)=et,2et\vec { r } ( t ) = \left\langle e ^ { t } , 2 e ^ { t } \right\rangle
Unlock Deck
Unlock for access to all 81 flashcards in this deck.
Unlock Deck
k this deck
62
Find the curvature of the given function at the indicated value of XX : f(x)=x2,x=1f ( x ) = x ^ { 2 } , x = 1
Unlock Deck
Unlock for access to all 81 flashcards in this deck.
Unlock Deck
k this deck
63
Find the curvature of the given function at the indicated value of XX : f(x)=ex,x=0f ( x ) = e ^ { x } , x = 0
Unlock Deck
Unlock for access to all 81 flashcards in this deck.
Unlock Deck
k this deck
64
Find the curvature of the given function at the indicated value of XX : f(x)=cos(x),x=0f ( x ) = \cos ( x ) , x = 0

A) 1232\frac { 1 } { 2 ^ { \frac { 3 } { 2 } } }
B) 0
C) 1
D) Undefined
Unlock Deck
Unlock for access to all 81 flashcards in this deck.
Unlock Deck
k this deck
65
Find the curvature of the vector valued function: r(t)=1,t2,t2\vec { r } ( t ) = \left\langle 1 , t ^ { 2 } , t ^ { 2 } \right\rangle
Unlock Deck
Unlock for access to all 81 flashcards in this deck.
Unlock Deck
k this deck
66
Find the curvature of the vector valued function: r(t)=sin(t),cos(t),t\vec { r } ( t ) = \langle \sin ( t ) , \cos ( t ) , t \rangle
Unlock Deck
Unlock for access to all 81 flashcards in this deck.
Unlock Deck
k this deck
67
Find the curvature of the vector valued function: r(t)=et,e2t,e3t\vec { r } ( t ) = \left\langle e ^ { t } , e ^ { 2 t } , e ^ { 3 t } \right\rangle

A) κ(t)=12\kappa ( t ) = \frac { 1 } { 2 }
B) κ(t)=36e10t+36e8t+4e6t\kappa ( t ) = \sqrt { 36 e ^ { 10 t } + 36 e ^ { 8 t } + 4 e ^ { 6 t } }
C) κ(t)=29e4t+9e2t+1(1+4e2t+9e4t)32\kappa ( t ) = \frac { 2 \sqrt { 9 e ^ { 4 t } + 9 e ^ { 2 t } + 1 } } { \left( 1 + 4 e ^ { 2 t } + 9 e ^ { 4 t } \right) ^ { \frac { 3 } { 2 } } }
D) κ(t)=9e4t+9e4t+1\kappa ( t ) = \sqrt { 9 e ^ { 4 t } + 9 e ^ { 4 t } + 1 }
Unlock Deck
Unlock for access to all 81 flashcards in this deck.
Unlock Deck
k this deck
68
For r(t)=sin(π2t),cos(π2t)\vec { r } ( t ) = \left\langle \sin \left( \frac { \pi } { 2 } t \right) , \cos \left( \frac { \pi } { 2 } t \right) \right\rangle find the displacement vector as tt goes from t=1t = - 1 to t=1t = 1
Unlock Deck
Unlock for access to all 81 flashcards in this deck.
Unlock Deck
k this deck
69
Find the distance traveled by a particle moving on the curve given by r(t)=sin(π2t),cos(π2t)\vec { r } ( t ) = \left\langle \sin \left( \frac { \pi } { 2 } t \right) , \cos \left( \frac { \pi } { 2 } t \right) \right\rangle as tt goes from t=1t = - 1 to t=1t = 1
Unlock Deck
Unlock for access to all 81 flashcards in this deck.
Unlock Deck
k this deck
70
For r(t)=sin(3t),cos(3t)\vec { r } ( t ) = \langle \sin ( 3 t ) , \cos ( 3 t ) \rangle find the displacement vector as tt goes from t=0t = 0 to t=πt = \pi

A) 2,0\langle - 2,0 \rangle
B) 1,0\langle - 1,0 \rangle
C) 1,0\langle 1,0 \rangle
D) 1,1\langle 1,1 \rangle
Unlock Deck
Unlock for access to all 81 flashcards in this deck.
Unlock Deck
k this deck
71
Find the distance traveled by a particle moving on the curve given by r(t)=sin(3t),cos(3t)\vec { r } ( t ) = \langle \sin ( 3 t ) , \cos ( 3 t ) \rangle find the displacement vector as tt goes from t=0t = 0 to t=πt = \pi

A) π3\pi \sqrt { 3 }
B) 3π3 \pi
C) 22
D) 2π2 \pi
Unlock Deck
Unlock for access to all 81 flashcards in this deck.
Unlock Deck
k this deck
72
For r(t)=sin(π2t),cos(π2t),t\vec { r } ( t ) = \left\langle \sin \left( \frac { \pi } { 2 } t \right) , \cos \left( \frac { \pi } { 2 } t \right) , t \right\rangle find the displacement vector as tt goes from t=1t = - 1 to t=1t = 1
Unlock Deck
Unlock for access to all 81 flashcards in this deck.
Unlock Deck
k this deck
73
Find the distance traveled by a particle moving on the curve given by r(t)=sin(π2t),cos(π2t),t\vec { r } ( t ) = \left\langle \sin \left( \frac { \pi } { 2 } t \right) , \cos \left( \frac { \pi } { 2 } t \right) , t \right\rangle as tt goes from t=1t = - 1 to t=1t = 1
Unlock Deck
Unlock for access to all 81 flashcards in this deck.
Unlock Deck
k this deck
74
For r(t)=sin(3t),cos(3t),t\vec { r } ( t ) = \langle \sin ( 3 t ) , \cos ( 3 t ) , t \rangle find the displacement vector as tt goes from t=0t = 0 to t=πt = \pi

A) 2,0,π\langle - 2,0 , \pi \rangle
B) 1,0,π\langle - 1,0 , \pi \rangle
C) 1,0,π\langle 1,0 , \pi \rangle
D) 1,1,π\langle 1,1 , \pi \rangle
Unlock Deck
Unlock for access to all 81 flashcards in this deck.
Unlock Deck
k this deck
75
Find the distance traveled by a particle moving on the curve given by r(t)=sin(3t),cos(3t),t\vec { r } ( t ) = \langle \sin ( 3 t ) , \cos ( 3 t ) , t \rangle as tt goes from t=0t = 0 to t=πt = \pi

A) 3π3 \pi
B) π10\pi \sqrt { 10 }
C) π3\pi \sqrt { 3 }
D) 10π10 \pi
Unlock Deck
Unlock for access to all 81 flashcards in this deck.
Unlock Deck
k this deck
76
Find the tangential and normal components for the position function r(t)=t,t3\vec { r } ( t ) = \left\langle t , t ^ { 3 } \right\rangle
Unlock Deck
Unlock for access to all 81 flashcards in this deck.
Unlock Deck
k this deck
77
Find the tangential and normal components for the position function r(t)=cos(t),sin(t)\vec { r } ( t ) = \langle \cos ( t ) , \sin ( t ) \rangle
Unlock Deck
Unlock for access to all 81 flashcards in this deck.
Unlock Deck
k this deck
78
Find the tangential and normal components for the position function r(t)=et,et\vec { r } ( t ) = \left\langle e ^ { t } , e ^ { - t } \right\rangle

A) aT=e2te2taN=2\begin{array} { l } a _ { T } = e ^ { 2 t } - e ^ { - 2 t } \\a _ { N } = 2\end{array}
B) aT=2e2t+e2taN=e2te2te2t+e2t\begin{array} { l } a _ { T } = \frac { 2 } { \sqrt { e ^ { 2 t } + e ^ { - 2 t } } } \\a _ { N } = \frac { e ^ { 2 t } - e ^ { - 2 t } } { \sqrt { e ^ { 2 t } + e ^ { - 2 t } } }\end{array}
C) aT=2e2t+e2taN=e2t+e2te2t+e2t\begin{array} { l } a _ { T } = \frac { 2 } { \sqrt { e ^ { 2 t } + e ^ { - 2 t } } } \\a _ { N } = \frac { e ^ { 2 t } + e ^ { - 2 t } } { \sqrt { e ^ { 2 t } + e ^ { - 2 t } } }\end{array}
D) aT=e2te2te2t+e2taN=2e2t+e2t\begin{array} { l } a _ { T } = \frac { e ^ { 2 t } - e ^ { - 2 t } } { \sqrt { e ^ { 2 t } + e ^ { - 2 t } } } \\a _ { N } = \frac { 2 } { \sqrt { e ^ { 2 t } + e ^ { - 2 t } } }\end{array}
Unlock Deck
Unlock for access to all 81 flashcards in this deck.
Unlock Deck
k this deck
79
Find the tangential and normal components for the position function r(t)=t,et,t2\vec { r } ( t ) = \left\langle t , e ^ { t } , t ^ { 2 } \right\rangle
Unlock Deck
Unlock for access to all 81 flashcards in this deck.
Unlock Deck
k this deck
80
Find the tangential and normal components of acceleration for the position function r(t)=cos(3t),t,sin(3t)\vec { r } ( t ) = \langle \cos ( 3 t ) , t , \sin ( 3 t ) \rangle
Unlock Deck
Unlock for access to all 81 flashcards in this deck.
Unlock Deck
k this deck
locked card icon
Unlock Deck
Unlock for access to all 81 flashcards in this deck.