Exam 11: Vector Functions

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Evaluate the limit: limx0t,t2,cot(t)\lim _ { x \rightarrow 0 } \left\langle t , t ^ { 2 } , \cot ( t ) \right\rangle

Free
(Short Answer)
4.8/5
(34)
Correct Answer:
Verified

DNE

Find the derivative drds\frac { d \vec { r } } { d s } r(t)=t,t3,t,t=(s2+1)3\vec { r } ( t ) = \left\langle t , t ^ { 3 } , \sqrt { t } \right\rangle , t = \left( s ^ { 2 } + 1 \right) ^ { 3 }

Free
(Multiple Choice)
4.9/5
(31)
Correct Answer:
Verified

C

Evaluate and simplify the quantity. t<cos(t),sin(t),et>t < \cos ( t ) , \sin ( t ) , e ^ { t } >

Free
(Essay)
4.9/5
(29)
Correct Answer:
Verified

tcos(t),tsin(t),tet\left\langle t \cos ( t ) , t \sin ( t ) , t e ^ { t } \right\rangle

Find the curvature of the vector valued function: r(t)=et,e2t,e3t\vec { r } ( t ) = \left\langle e ^ { t } , e ^ { 2 t } , e ^ { 3 t } \right\rangle

(Multiple Choice)
4.7/5
(45)

Find the arc length of the curve defined by r(t)=1+7cos(3t),1+7sin(3t)\vec { r } ( t ) = \langle 1 + 7 \cos ( 3 t ) , 1 + 7 \sin ( 3 t ) \rangle over [2,3][ 2,3 ]

(Short Answer)
4.9/5
(37)

For r(t)=sin(3t),cos(3t),t\vec { r } ( t ) = \langle \sin ( 3 t ) , \cos ( 3 t ) , t \rangle find the displacement vector as tt goes from t=0t = 0 to t=πt = \pi

(Multiple Choice)
4.7/5
(28)

Find the derivative drds\frac { d \vec { r } } { d s } r(t)=cos(t),et,t,t=es\vec { r } ( t ) = \left\langle \cos ( t ) , e ^ { t } , t \right\rangle , t = e ^ { s }

(Essay)
4.9/5
(32)

Find the distance traveled by a particle moving on the curve given by r(t)=sin(3t),cos(3t),t\vec { r } ( t ) = \langle \sin ( 3 t ) , \cos ( 3 t ) , t \rangle as tt goes from t=0t = 0 to t=πt = \pi

(Multiple Choice)
4.8/5
(41)

Find the osculating plane for r(t)=cos(3t),sin(3t),3\vec { r } ( t ) = \langle \cos ( 3 t ) , \sin ( 3 t ) , 3 \rangle for t=1t = 1

(Essay)
4.9/5
(35)

Given the velocity vector v(t)=1,t,t2\vec { v } ( t ) = \left\langle 1 , t , t ^ { 2 } \right\rangle and r(0)=1,2,3\vec { r } ( 0 ) = \langle 1,2,3 \rangle , find r(t)\vec { r } ( t )

(Multiple Choice)
4.8/5
(33)

Evaluate the integral. t,et,sin(t)dt\int \left\langle t , e ^ { t } , \sin ( t ) \right\rangle d t

(Essay)
5.0/5
(32)

Evaluate and simplify the quantity. t,etet,t\left\langle t , e ^ { t } \right\rangle \cdot \left\langle - e ^ { t } , - t \right\rangle

(Multiple Choice)
4.8/5
(37)

Find the acceleration for the given position vector, r(t)=ln(t),et2,ln(et)\vec { r } ( t ) = \left\langle \ln ( t ) , e ^ { t ^ { 2 } } , \ln \left( e ^ { t } \right) \right\rangle

(Essay)
4.9/5
(37)

Find the principle normal unit vector for r(t)=sin(t),cos(t),t\vec { r } ( t ) = \langle \sin ( t ) , \cos ( t ) , t \rangle

(Essay)
4.8/5
(34)

Find r(t)=x(t),y(t)\vec { r } ( t ) = \langle x ( t ) , y ( t ) \rangle determined by (t)=x(t),(t)=t x(0)=1,y(0)=1

(Essay)
4.9/5
(42)

Find the velocity for the given position vector, r(t)=ln(t),et2,ln(et)\vec { r } ( t ) = \left\langle \ln ( t ) , e ^ { t ^ { 2 } } , \ln \left( e ^ { t } \right) \right\rangle

(Essay)
4.9/5
(35)

Evaluate the limit: limxπ2t2,cos(t)\lim _ { x \rightarrow \frac { \pi } { 2 } } \left\langle t ^ { 2 } , \cos ( t ) \right\rangle

(Multiple Choice)
4.8/5
(32)

Evaluate the limit: limx0t2,cos(t)\lim _ { x \rightarrow 0 } \left\langle t ^ { 2 } , \cos ( t ) \right\rangle

(Essay)
4.8/5
(34)

Find the distance traveled by a particle moving on the curve given by r(t)=sin(π2t),cos(π2t)\vec { r } ( t ) = \left\langle \sin \left( \frac { \pi } { 2 } t \right) , \cos \left( \frac { \pi } { 2 } t \right) \right\rangle as tt goes from t=1t = - 1 to t=1t = 1

(Essay)
4.9/5
(29)

Find the arc length of the curve defined by r(t)=2sin(5t),2cos(5t)\vec { r } ( t ) = \langle 2 \sin ( 5 t ) , 2 \cos ( 5 t ) \rangle over [2,4][ 2,4 ]

(Short Answer)
4.8/5
(37)
Showing 1 - 20 of 81
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)