Deck 10: Vectors

Full screen (f)
exit full mode
Question
What is the distance between the given pair of points: (1,3) and (2,1)( 1 , - 3 ) \text { and } ( - 2 , - 1 ) ?
Use Space or
up arrow
down arrow
to flip the card.
Question
What is the distance between the given pair of points: (1,2,1) and (4,2,2)( 1,2 , - 1 ) \text { and } ( 4,2,2 ) ?
Question
What is the distance between the given pair of points: (1,2,1) and (2,2,0)( - 1 , - 2,1 ) \text { and } ( - 2,2,0 ) ?

A) 10\sqrt { 10 }
B) 88
C) 1818
D) 323 \sqrt { 2 }
Question
Find the equation of the sphere with center (1,2,1)( 1,2,1 ) and radius 2.
Question
Find the equation of the sphere with center (1,2,4)( - 1 , - 2,4 ) and radius 3\sqrt { 3 }
Question
Find the equation of the sphere with center (1,2,3)( 1 , - 2,3 ) and radius 4.

A) (x1)2+(y+2)2+(z3)2=16( x - 1 ) ^ { 2 } + ( y + 2 ) ^ { 2 } + ( z - 3 ) ^ { 2 } = 16
B) (x+1)2+(y2)2+(z+3)2=16( x + 1 ) ^ { 2 } + ( y - 2 ) ^ { 2 } + ( z + 3 ) ^ { 2 } = 16
C) (x1)2+(y+2)2+(z3)2=4( x - 1 ) ^ { 2 } + ( y + 2 ) ^ { 2 } + ( z - 3 ) ^ { 2 } = 4
D) (x1)2+(y+2)2+(z3)2=2( x - 1 ) ^ { 2 } + ( y + 2 ) ^ { 2 } + ( z - 3 ) ^ { 2 } = 2
Question
Find the equation of the sphere with the center (1,2,3)( 1,2,3 ) containing the origin.
Question
Find the equation of the sphere with the center (1,2,3)( - 1,2 , - 3 ) tangent to the yzy z - plane.
Question
Find the equation of the sphere with the center (2,3,4)( - 2,3,4 ) tangent to the yzy z - plane.

A) (x+2)2+(y3)2+(z4)2=9( x + 2 ) ^ { 2 } + ( y - 3 ) ^ { 2 } + ( z - 4 ) ^ { 2 } = 9
B) (x+2)2+(y3)2+(z4)2=3( x + 2 ) ^ { 2 } + ( y - 3 ) ^ { 2 } + ( z - 4 ) ^ { 2 } = 3
C) (x+2)2+(y3)2+(z4)2=4( x + 2 ) ^ { 2 } + ( y - 3 ) ^ { 2 } + ( z - 4 ) ^ { 2 } = 4
D) (x+2)2+(y3)2+(z4)2=16( x + 2 ) ^ { 2 } + ( y - 3 ) ^ { 2 } + ( z - 4 ) ^ { 2 } = 16
Question
Assume the segment with the endpoints (1,2,1)( 1 , - 2,1 ) and (4,2,2)( 4,2,2 ) is a diameter of a sphere. Give an equation of the sphere.
Question
Assume the segment with the endpoints (1,2,3)( 1,2,3 ) and (5,4,5)( 5 , - 4,5 ) is a diameter of a sphere. Give an equation of the sphere.
Question
Assume the segment with the endpoints (1,2,1)( 1,2,1 ) and (1,6,3)( - 1,6,3 ) is a diameter of a sphere. Give an equation of the sphere.

A) (x1)2+(y2)2+(z2)2=24( x - 1 ) ^ { 2 } + ( y - 2 ) ^ { 2 } + ( z - 2 ) ^ { 2 } = 24
B) x2+(y4)2+(z2)2=6x ^ { 2 } + ( y - 4 ) ^ { 2 } + ( z - 2 ) ^ { 2 } = 6
C) x2+(y4)2+(z2)2=26x ^ { 2 } + ( y - 4 ) ^ { 2 } + ( z - 2 ) ^ { 2 } = 2 \sqrt { 6 }
D) x2+(y4)2+(z2)2=12x ^ { 2 } + ( y - 4 ) ^ { 2 } + ( z - 2 ) ^ { 2 } = 12
Question
If (1,2,3)( 1,2,3 ) is the midpoint of the segment with one endpoint (1,1,1)( 1,1 , - 1 ) , find the second endpoint.
Question
If (3,3,3)( 3,3 , - 3 ) is the midpoint of the segment with one endpoint (1,2,2)( 1,2 , - 2 ) , find the second endpoint.
Question
If (2,3,1)( 2,3,1 ) is the midpoint of the segment with one endpoint (1,3,1)( 1,3,1 ) , find the second endpoint.

A) (3,3,1)( 3,3,1 )
B) (32,3,1)\left( \frac { 3 } { 2 } , 3,1 \right)
C) (1,0,0)( 1,0,0 )
D) (0,1,3)( 0 , - 1,3 )
Question
Find the center and radius of the sphere with the equation x22x+y24y+z2+1=0x ^ { 2 } - 2 x + y ^ { 2 } - 4 y + z ^ { 2 } + 1 = 0
Question
Find the center and radius of the sphere with the equation x22x+y22y+z2+2z6=0x ^ { 2 } - 2 x + y ^ { 2 } - 2 y + z ^ { 2 } + 2 z - 6 = 0
Question
Find the center and radius of the sphere with the equation x2+2x+y22y+z24z+5=0x ^ { 2 } + 2 x + y ^ { 2 } - 2 y + z ^ { 2 } - 4 z + 5 = 0

A) (1,1,2),r=1( - 1,1,2 ) , r = 1
B) (1,1,2),r=1( 1 , - 1 , - 2 ) , r = 1
C) (1,1,2),r=5( - 1,1,2 ) , r = 5
D) (1,1,2),r=5( - 1,1,2 ) , r = \sqrt { 5 }
Question
For v=1,2 and u=1,6\vec { v } = \langle 1,2 \rangle \text { and } \vec { u } = \langle - 1,6 \rangle find u+v\vec { u } + \vec { v } and uv\vec { u } - \vec { v }
Question
For v=1,2 and u=1,4\vec { v } = \langle - 1 , - 2 \rangle \text { and } \vec { u } = \langle 1,4 \rangle find u+v\vec { u } + \vec { v } and uv\vec { u } - \vec { v }
Question
For v=2,0 and u=4,1\vec { v } = \langle 2,0 \rangle \text { and } \vec { u } = \langle 4,1 \rangle find u+v\vec { u } + \vec { v }

A) 2,1\langle 2 , - 1 \rangle
B) 6,1\langle 6 , - 1 \rangle
C) 6,1\langle 6,1 \rangle
D) 2,1\langle 2,1 \rangle
Question
For u=1,2,1 and v=1,1,2\vec { u } = \langle 1,2 , - 1 \rangle \text { and } \vec { v } = \langle 1,1 , - 2 \rangle find u+v\vec { u } + \vec { v } and uv\vec { u } - \vec { v }
Question
For u=1,1,4 and v=1,1,4\vec { u } = \langle - 1 , - 1,4 \rangle \text { and } \vec { v } = \langle 1 , - 1,4 \rangle find u+v\vec { u } + \vec { v } and uv\vec { u } - \vec { v }
Question
For u=1,2,3 and v=1,1,2\vec { u } = \langle 1 , - 2 , - 3 \rangle \text { and } \vec { v } = \langle - 1,1 , - 2 \rangle find u+v\vec { u } + \vec { v }

A) 0,1,5\langle 0 , - 1 , - 5 \rangle
B) 2,3,1\langle 2 , - 3 , - 1 \rangle
C) 0,3,5\langle 0 , - 3 , - 5 \rangle
D) 0,3,3\langle 0 , - 3 , - 3 \rangle
Question
For P=(2,1) and Q=(3,2)P = ( 2,1 ) \text { and } Q = ( 3,2 ) , find PQ\overrightarrow { P Q }
Question
For P=(1,3) and Q=(1,1)P = ( - 1,3 ) \text { and } Q = ( 1 , - 1 ) , find PQ\overrightarrow { P Q }
Question
For P=(1,2) and Q=(5,7)P = ( 1,2 ) \text { and } Q = ( 5,7 ) , find PQ\overrightarrow { P Q }

A) 6,9\langle 6,9 \rangle
B) 4,5\langle - 4 , - 5 \rangle
C) 8,7\langle 8,7 \rangle
D) 4,5\langle 4,5 \rangle
Question
For P=(1,2,1) and Q=(4,2,2)P = ( 1,2,1 ) \text { and } Q = ( - 4,2,2 ) , find PQ\overrightarrow { P Q }
Question
For P=(1,3,9) and Q=(7,6,2)P = ( - 1,3,9 ) \text { and } Q = ( 7,6,2 ) , find PQ\overrightarrow { P Q }
Question
For P=(1,2,3) and Q=(3,3,5)P = ( 1,2,3 ) \text { and } Q = ( 3,3,5 ) , find PQ\overrightarrow { P Q }

A) 2,1,2\langle 2,1,2 \rangle
B) 2,1,2\langle - 2 , - 1 , - 2 \rangle
C) 4,5,8\langle 4,5,8 \rangle
D) 4,5,8\langle - 4 , - 5 , - 8 \rangle
Question
Find the norm of u=1,2\vec { u } = \langle 1,2 \rangle
Question
Find the norm of u=2,1,3\vec { u } = \langle 2,1,3 \rangle
Question
Find the norm of u=4,3,5\vec { u } = \langle 4,3,5 \rangle

A) 2525
B) 252 \sqrt { 5 }
C) 5050
D) 525 \sqrt { 2 }
Question
Find a unit vector in the direction of u=4,3\vec { u } = \langle 4,3 \rangle
Question
Find a unit vector in the direction of u=4,3\vec { u } = \langle 4,3 \rangle
Question
Find a unit vector in the direction of u=1,2,3\vec { u } = \langle 1,2,3 \rangle
Question
Find a unit vector in the direction of u=1,2,3\vec { u } = \langle 1,2,3 \rangle

A) 151,251,351\left\langle \frac { 1 } { 51 } , \frac { 2 } { 51 } , \frac { 3 } { 51 } \right\rangle
B) 114,214,314\left\langle \frac { 1 } { \sqrt { 14 } } , \frac { 2 } { \sqrt { 14 } } , \frac { 3 } { \sqrt { 14 } } \right\rangle
C) 1,1,7\langle 1,1 , \sqrt { 7 } \rangle
D) 19,29,39\left\langle \frac { 1 } { 9 } , \frac { 2 } { 9 } , \frac { 3 } { 9 } \right\rangle
Question
Find a vector of length 10 parallel to 3,4\langle 3,4 \rangle
Question
Find the dot product of u=1,2\vec { u } = \langle 1,2 \rangle and v=2,3\vec { v } = \langle 2 , - 3 \rangle and the cosine of the angle between them.
Question
Find the dot product of u=2,3\vec { u } = \langle 2,3 \rangle and v=3,2\vec { v } = \langle - 3,2 \rangle and the cosine of the angle between them.
Question
Find the dot product of u=4,7\vec { u } = \langle 4,7 \rangle and v=1,3\vec { v } = \langle 1,3 \rangle and the cosine of the angle between them.

A) 10,cos(θ)=11310 , \cos ( \theta ) = \frac { 1 } { 13 }
B) 25,cos(θ)=52625 , \cos ( \theta ) = \frac { 5 } { \sqrt { 26 } }
C) 25,cos(θ)=12525 , \cos ( \theta ) = \frac { 1 } { 25 }
D) 5,cos(θ)=5265 , \cos ( \theta ) = \frac { 5 } { \sqrt { 26 } }
Question
Find the dot product of u=1,2,3\vec { u } = \langle 1,2,3 \rangle and v=2,1,1\vec { v } = \langle 2,1,1 \rangle and the cosine of the angle between them.
Question
Find the dot product of u=1,2,4\vec { u } = \langle - 1,2,4 \rangle and v=2,4,8\vec { v } = \langle 2 , - 4 , - 8 \rangle and the cosine of the angle between them.
Question
Find the dot product of u=1,2,1\vec { u } = \langle 1,2,1 \rangle and v=2,2,1\vec { v } = \langle 2,2,1 \rangle and the cosine of the angle between them.

A) 7,cos(θ)=7367 , \cos ( \theta ) = \frac { 7 } { 3 \sqrt { 6 } }
B) 7,cos(θ)=7547 , \cos ( \theta ) = \frac { 7 } { 54 }
C) 9,cos(θ)=169 , \cos ( \theta ) = \frac { 1 } { 6 }
D) 6,cos(θ)=196 , \cos ( \theta ) = \frac { 1 } { 9 }
Question
 Find compuv,projuv, and the component of v orthogonal to u, where u=1,2 and v=1,3\text { Find } \operatorname { comp } _ { \vec { u } } \vec { v } , \operatorname { proj } _ { \vec { u } } \vec { v } \text {, and the component of } \vec { v } \text { orthogonal to } \vec { u } \text {, where } \vec { u } = \langle 1,2 \rangle \text { and } \vec { v } = \langle - 1,3 \rangle \text {. }
Question
Find compuv\operatorname { com } p _ { \vec { u } } \vec { v } , projuv\operatorname { proj } _ { \vec { u } } \vec { v } , and the component of v\vec { v } orthogonal to u\vec { u } , where u=1,2 and v=2,5\vec { u } = \langle 1,2 \rangle \text { and } \vec { v } = \langle 2 , - 5 \rangle
Question
Find compuv\operatorname { com } p _ { \vec { u } } \vec { v } , projuv\operatorname { proj } _ { \vec { u } } \vec { v } , and the component of v\vec { v } orthogonal to u\vec { u } , where u=1,1 and v=2,1\vec { u } = \langle 1,1 \rangle \text { and } \vec { v } = \langle - 2,1 \rangle

A) compuv=12c o m p _ { \vec { u } } \vec { v } = - \frac { 1 } { \sqrt { 2 } } projuv=12,12\operatorname { proj } _ { \vec { u } } \vec { v } = \left\langle - \frac { 1 } { 2 } , - \frac { 1 } { 2 } \right\rangle orthogonal component is 32,32\left\langle - \frac { 3 } { 2 } , \frac { 3 } { 2 } \right\rangle
B) compuv=12c o m p _ { \vec { u } } \vec { v } = - \frac { 1 } { \sqrt { 2 } } projuv=14,14\operatorname { proj } _ { \vec { u } } \vec { v } = \left\langle - \frac { 1 } { 4 } , - \frac { 1 } { 4 } \right\rangle orthogonal component is 32,34\left\langle - \frac { 3 } { 2 } , \frac { 3 } { 4 } \right\rangle
C) compuv=13\operatorname { comp }_{ \overrightarrow { \vec { u }} } \vec { v } = - \frac { 1 } { \sqrt { 3 } } projuv=12,12\operatorname { proj } _ { \vec { u } } \vec { v } = \left\langle - \frac { 1 } { 2 } , - \frac { 1 } { 2 } \right\rangle orthogonal component is 34,32\left\langle - \frac { 3 } { 4 } , \frac { 3 } { 2 } \right\rangle
D) compuv=13\operatorname { comp }_{ \overrightarrow { \vec { u } }} \vec { v } = - \frac { 1 } { \sqrt { 3 } } projuv=12,12\operatorname { proj } _ { \vec { u } } \vec { v } = \left\langle - \frac { 1 } { 2 } , - \frac { 1 } { 2 } \right\rangle orthogonal component is 34,32\left\langle - \frac { 3 } { 4 } , \frac { 3 } { 2 } \right\rangle
Question
Find compuv\operatorname { com } p _ { \vec { u } } \vec { v } , projuv\operatorname { proj } _ { \vec { u } } \vec { v } , and the component of v\vec { v } orthogonal to u\vec { u } , where u=1,2,1 and v=1,3,2\vec { u } = \langle 1,2,1 \rangle \text { and } \vec { v } = \langle - 1,3,2 \rangle
Question
Find compuv\operatorname { com } p _ { \vec { u } } \vec { v } , projuv\operatorname { proj } _ { \vec { u } } \vec { v } , and the component of v\vec { v } orthogonal to u\vec { u } , where u=2,2,1 and v=1,3,4\vec { u } = \langle 2,2,1 \rangle \text { and } \vec { v } = \langle 1 , - 3,4 \rangle
Question
Find compuv\operatorname { com } p _ { \vec { u } } \vec { v } , projuv\operatorname { proj } _ { \vec { u } } \vec { v } , and the component of v\vec { v } orthogonal to u\vec { u } , where u=1,1,1 and v=3,2,1\vec { u } = \langle 1,1,1 \rangle \text { and } \vec { v } = \langle 3,2,1 \rangle
Question
Find compuv\operatorname { com } p _ { \vec { u } } \vec { v } , projuv\operatorname { proj } _ { \vec { u } } \vec { v } , and the component of v\vec { v } orthogonal to u\vec { u } , where u=1,2,1 and v=1,1,1\vec { u } = \langle 1,2,1 \rangle \text { and } \vec { v } = \langle - 1,1 , - 1 \rangle

A) comppuv=0\operatorname { comp } p _ { \vec { u } } \vec { v } = 0 projuv=2,1,1\operatorname { proj } _ { \vec { u } } \vec { v } = \langle 2,1,1 \rangle orthogonal component is 0,0,0\langle 0,0,0 \rangle
B) comppuv=0\operatorname { comp } p _ { \vec { u } } \vec { v } = 0 projuv=0,0,0\operatorname { proj } _ { \vec { u } } \vec { v } = \langle 0,0,0 \rangle orthogonal component is 1,1,1\langle - 1,1 , - 1 \rangle
C) compuv=1\operatorname { comp } _ { \vec { u } } \vec { v } = 1 projuv=0,0,0\operatorname { proj } _ { \vec { u } } \vec { v } = \langle 0,0,0 \rangle orthogonal component is 2,1,1\langle 2,1,1 \rangle
D) comppuv=0\operatorname { comp } p _ { \vec { u } } \vec { v } = 0 projuv=0,0,0\operatorname { proj } _ { \vec { u } } \vec { v } = \langle 0,0,0 \rangle orthogonal component is 1,2,1\langle 1,2,1 \rangle
Question
For u=1,2,3\vec { u } = \langle 1,2,3 \rangle and v=1,1,1\vec { v } = \langle - 1,1 , - 1 \rangle w=1,2,1\vec { w } = \langle 1,2,1 \rangle , find u×v\vec { u } \times \vec { v }
Question
For u=1,2,3\vec { u } = \langle 1,2,3 \rangle , v=1,1,1\vec { v } = \langle - 1,1 , - 1 \rangle , and w=1,2,1\vec { w } = \langle 1,2,1 \rangle , find v×u\vec { v } \times \vec { u }
Question
For u=1,2,3\vec { u } = \langle 1,2,3 \rangle , v=1,1,1\vec { v } = \langle - 1,1 , - 1 \rangle , and w=1,2,1\vec { w } = \langle 1,2,1 \rangle , find (u×v)×w( \vec { u } \times \vec { v } ) \times \vec { w }
Question
For u=1,2,3\vec { u } = \langle 1,2,3 \rangle , v=1,1,1\vec { v } = \langle - 1,1 , - 1 \rangle and w=1,2,1\vec { w } = \langle 1,2,1 \rangle , find (u×v)×u( \vec { u } \times \vec { v } ) \times \vec { u }

A) 4,2,0\langle - 4,2,0 \rangle
B) 0,0,0\langle 0,0,0 \rangle
C) 4,2,1\langle - 4,2,1 \rangle
D) 4,2,1\langle - 4,2 , - 1 \rangle
Question
For u=1,2,3\vec { u } = \langle 1,2,3 \rangle , v=1,1,1\vec { v } = \langle - 1,1 , - 1 \rangle , and w=1,2,1\vec { w } = \langle 1,2,1 \rangle , find u(v×w)\vec { u } \cdot ( \vec { v } \times \vec { w } )
Question
For u=1,2,3\vec { u } = \langle 1,2,3 \rangle , v=1,1,1\vec { v } = \langle - 1,1 , - 1 \rangle , and w=1,2,1\vec { w } = \langle 1,2,1 \rangle , find v(u×w)\vec { v } \cdot ( \vec { u } \times \vec { w } )

A) -6
B) 6
C) 4,2,0\langle - 4,2,0 \rangle
D) 4,2,0\langle 4 , - 2,0 \rangle
Question
Find the area of the parallelogram determined by u=1,2,3\vec { u } = \langle 1,2,3 \rangle and w=1,2,1\vec { w } = \langle 1,2,1 \rangle
Question
Find the area of the parallelogram determined by u=1,2,3\vec { u } = \langle 1,2,3 \rangle and w=1,1,1\vec { w } = \langle 1,1,1 \rangle
Question
Find the area of the parallelogram determined by v=1,1,1\vec { v } = \langle - 1,1 , - 1 \rangle and w=1,2,1\vec { w } = \langle 1,2,1 \rangle

A) 232 \sqrt { 3 }
B) 12
C) 323 \sqrt { 2 }
D) 66
Question
Find the volume of the parallelepiped determined by u=1,2,3\vec { u } = \langle 1,2,3 \rangle , v=1,1,1\vec { v } = \langle - 1,1 , - 1 \rangle , and w=1,2,1\vec { w } = \langle 1,2,1 \rangle
Question
Find the area of the triangle with vertices P(0,0,0),Q(1,2,3), and R(1,2,1)P ( 0,0,0 ) , Q ( 1,2,3 ) , \text { and } R ( 1,2,1 )
Question
Find a vector perpendicular to the plane determined by the points P(1,2,3),Q(4,5,6), and R(1,1,1)P ( 1,2,3 ) , Q ( 4,5,6 ) \text {, and } R ( 1,1 , - 1 ) , whose third coordinate is 1.
Question
Find a unit vector perpendicular to the plane determined by the points P(1,2,3),Q(4,5,6), and R(1,1,1)P ( 1,2,3 ) , Q ( 4,5,6 ) \text {, and } R ( 1,1 , - 1 )

A) 326,426,126\left\langle \frac { 3 } { \sqrt { 26 } } , - \frac { 4 } { \sqrt { 26 } } , \frac { 1 } { \sqrt { 26 } } \right\rangle
B) <326,426,126>< \frac { 3 } { \sqrt { 26 } } , \frac { 4 } { \sqrt { 26 } } , \frac { 1 } { \sqrt { 26 } } >
C) <326,426,126>< \frac { 3 } { 26 } , - \frac { 4 } { 26 } , \frac { 1 } { 26 } >
D) <326,426,126\left. < \frac { 3 } { 26 } , \frac { 4 } { 26 } , \frac { 1 } { 26 } \right\rangle
Question
Find the area of the triangle in the plane with vertices P(1,2),Q(4,6), and R(1,1)P ( 1,2 ) , Q ( 4,6 ) , \text { and } R ( - 1 , - 1 )
Question
Give an equation of the line containing the points (1,3,2) and (2,1,4)( 1,3,2 ) \text { and } ( 2,1,4 ) as vector parameterization.
Question
Give the parametric equations of the line containing the points (1,3,2) and (2,1,4)( 1,3,2 ) \text { and } ( 2,1,4 )
Question
Give the symmetric equations of the line containing the points (1,3,2) and (2,1,4)( 1,3,2 ) \text { and } ( 2,1,4 )
Question
Give an equation of the line containing the points (2,1,1) and (4,3,2)( 2,1,1 ) \text { and } ( 4,3,2 ) as vector parameterization.
A) r(t)=1,2,2+t1,3,2\vec { r } ( t ) = \langle 1 , - 2,2 \rangle + t \langle 1,3,2 \rangle
B) r(t)=2,1,1+t2,2,1\vec { r } ( t ) = \langle 2,1,1 \rangle + t \langle 2,2,1 \rangle
C) r(t)=1,3,2+t1,2,2\vec { r } ( t ) = \langle 1,3,2 \rangle + t \langle 1,2,2 \rangle
D) r(t)=1,2,2+t1,3,2\vec { r } ( t ) = \langle 1,2,2 \rangle + t \langle 1,3,2 \rangle
Question
Give a set of parametric equations for the line containing the points (2,1,1) and (4,3,2)( 2,1,1 ) \text { and } ( 4,3,2 )

A) x=1+ty=2+3tz=2+2t\begin{array} { l } x = 1 + t \\y = - 2 + 3 t \\z = 2 + 2 t\end{array}
B) x=2+2ty=1+2tz=1+t\begin{array} { l } x = 2 + 2 t \\y = 1 + 2 t \\z = 1 + t\end{array}
C) x=1+ty=3+2tz=2+2t\begin{array} { l } x = 1 + t \\y = 3 + 2 t \\z = 2 + 2 t\end{array}
D) x=1+ty=2+3tz=2+2t\begin{array} { l } x = 1 + t \\y = 2 + 3 t \\z = 2 + 2 t\end{array}
Question
Give a set of symmetric equations for the line containing the points (2,1,1) and (4,3,2)( 2,1,1 ) \text { and } ( 4,3,2 )

A) x22=y12=z1\frac { x - 2 } { 2 } = \frac { y - 1 } { 2 } = z - 1
B) x1=3y2=z22x - 1 = \frac { 3 - y } { 2 } = \frac { z - 2 } { 2 }
C) x1=y32=z22x - 1 = \frac { y - 3 } { 2 } = \frac { z - 2 } { 2 }
D) x1=y23=z22x - 1 = \frac { y - 2 } { 3 } = \frac { z - 2 } { 2 }
Question
Give an equation of the line containing the points (2,23) and (6,1,2)( 2,2 - 3 ) \text { and } ( 6,1,2 ) as vector parameterization.
Question
Give the parametric equations of the line containing the points (2,23) and (6,1,2)( 2,2 - 3 ) \text { and } ( 6,1,2 )
Question
Give the symmetric equations of the line containing the points (2,23) and (6,1,2)( 2,2 - 3 ) \text { and } ( 6,1,2 )
Question
Give an equation of the line containing the point (1,2,1)( 1,2 , - 1 ) and parallel to d2,3,1\vec { d } - \langle 2 , - 3,1 \rangle as vector parameterization.
Question
Give the parametric equations of the line containing the point (1,2,1)( 1,2 , - 1 ) and parallel to d=2,3,1\vec { d } = \langle 2 , - 3,1 \rangle
Question
Give the symmetric equations of the line containing the point (1,2,1)( 1,2 , - 1 ) and parallel to d=2,3,1\vec { d } = \langle 2 , - 3,1 \rangle
Question
Find the distance from the point (1,1,2)( 1,1,2 ) to the line r(t)=0,1,3+t1,2,1\vec { r } ( t ) = \langle 0 , - 1,3 \rangle + t \langle 1,2,1 \rangle
Question
Are the given lines parallel, intersecting, identical or skew? r1(t)=2,3,6+t1,2,4\vec { r } _ { 1 } ( t ) = \langle 2,3,6 \rangle + t \langle - 1,2,4 \rangle r2(t)=9,1,2+t2,4,8\vec { r } _ { 2 } ( t ) = \langle 9 , - 1 , - 2 \rangle + t \langle 2 , - 4 , - 8 \rangle

A) Parallel
B) Identical
C) Intersecting
D) Skew
Question
Find an equation for the plane containing the point (1,1,2)( 1,1,2 ) and normal to the vector 1,1,3\langle 1 , - 1,3 \rangle
Unlock Deck
Sign up to unlock the cards in this deck!
Unlock Deck
Unlock Deck
1/90
auto play flashcards
Play
simple tutorial
Full screen (f)
exit full mode
Deck 10: Vectors
1
What is the distance between the given pair of points: (1,3) and (2,1)( 1 , - 3 ) \text { and } ( - 2 , - 1 ) ?
13\sqrt { 13 }
2
What is the distance between the given pair of points: (1,2,1) and (4,2,2)( 1,2 , - 1 ) \text { and } ( 4,2,2 ) ?
323 \sqrt { 2 }
3
What is the distance between the given pair of points: (1,2,1) and (2,2,0)( - 1 , - 2,1 ) \text { and } ( - 2,2,0 ) ?

A) 10\sqrt { 10 }
B) 88
C) 1818
D) 323 \sqrt { 2 }
D
4
Find the equation of the sphere with center (1,2,1)( 1,2,1 ) and radius 2.
Unlock Deck
Unlock for access to all 90 flashcards in this deck.
Unlock Deck
k this deck
5
Find the equation of the sphere with center (1,2,4)( - 1 , - 2,4 ) and radius 3\sqrt { 3 }
Unlock Deck
Unlock for access to all 90 flashcards in this deck.
Unlock Deck
k this deck
6
Find the equation of the sphere with center (1,2,3)( 1 , - 2,3 ) and radius 4.

A) (x1)2+(y+2)2+(z3)2=16( x - 1 ) ^ { 2 } + ( y + 2 ) ^ { 2 } + ( z - 3 ) ^ { 2 } = 16
B) (x+1)2+(y2)2+(z+3)2=16( x + 1 ) ^ { 2 } + ( y - 2 ) ^ { 2 } + ( z + 3 ) ^ { 2 } = 16
C) (x1)2+(y+2)2+(z3)2=4( x - 1 ) ^ { 2 } + ( y + 2 ) ^ { 2 } + ( z - 3 ) ^ { 2 } = 4
D) (x1)2+(y+2)2+(z3)2=2( x - 1 ) ^ { 2 } + ( y + 2 ) ^ { 2 } + ( z - 3 ) ^ { 2 } = 2
Unlock Deck
Unlock for access to all 90 flashcards in this deck.
Unlock Deck
k this deck
7
Find the equation of the sphere with the center (1,2,3)( 1,2,3 ) containing the origin.
Unlock Deck
Unlock for access to all 90 flashcards in this deck.
Unlock Deck
k this deck
8
Find the equation of the sphere with the center (1,2,3)( - 1,2 , - 3 ) tangent to the yzy z - plane.
Unlock Deck
Unlock for access to all 90 flashcards in this deck.
Unlock Deck
k this deck
9
Find the equation of the sphere with the center (2,3,4)( - 2,3,4 ) tangent to the yzy z - plane.

A) (x+2)2+(y3)2+(z4)2=9( x + 2 ) ^ { 2 } + ( y - 3 ) ^ { 2 } + ( z - 4 ) ^ { 2 } = 9
B) (x+2)2+(y3)2+(z4)2=3( x + 2 ) ^ { 2 } + ( y - 3 ) ^ { 2 } + ( z - 4 ) ^ { 2 } = 3
C) (x+2)2+(y3)2+(z4)2=4( x + 2 ) ^ { 2 } + ( y - 3 ) ^ { 2 } + ( z - 4 ) ^ { 2 } = 4
D) (x+2)2+(y3)2+(z4)2=16( x + 2 ) ^ { 2 } + ( y - 3 ) ^ { 2 } + ( z - 4 ) ^ { 2 } = 16
Unlock Deck
Unlock for access to all 90 flashcards in this deck.
Unlock Deck
k this deck
10
Assume the segment with the endpoints (1,2,1)( 1 , - 2,1 ) and (4,2,2)( 4,2,2 ) is a diameter of a sphere. Give an equation of the sphere.
Unlock Deck
Unlock for access to all 90 flashcards in this deck.
Unlock Deck
k this deck
11
Assume the segment with the endpoints (1,2,3)( 1,2,3 ) and (5,4,5)( 5 , - 4,5 ) is a diameter of a sphere. Give an equation of the sphere.
Unlock Deck
Unlock for access to all 90 flashcards in this deck.
Unlock Deck
k this deck
12
Assume the segment with the endpoints (1,2,1)( 1,2,1 ) and (1,6,3)( - 1,6,3 ) is a diameter of a sphere. Give an equation of the sphere.

A) (x1)2+(y2)2+(z2)2=24( x - 1 ) ^ { 2 } + ( y - 2 ) ^ { 2 } + ( z - 2 ) ^ { 2 } = 24
B) x2+(y4)2+(z2)2=6x ^ { 2 } + ( y - 4 ) ^ { 2 } + ( z - 2 ) ^ { 2 } = 6
C) x2+(y4)2+(z2)2=26x ^ { 2 } + ( y - 4 ) ^ { 2 } + ( z - 2 ) ^ { 2 } = 2 \sqrt { 6 }
D) x2+(y4)2+(z2)2=12x ^ { 2 } + ( y - 4 ) ^ { 2 } + ( z - 2 ) ^ { 2 } = 12
Unlock Deck
Unlock for access to all 90 flashcards in this deck.
Unlock Deck
k this deck
13
If (1,2,3)( 1,2,3 ) is the midpoint of the segment with one endpoint (1,1,1)( 1,1 , - 1 ) , find the second endpoint.
Unlock Deck
Unlock for access to all 90 flashcards in this deck.
Unlock Deck
k this deck
14
If (3,3,3)( 3,3 , - 3 ) is the midpoint of the segment with one endpoint (1,2,2)( 1,2 , - 2 ) , find the second endpoint.
Unlock Deck
Unlock for access to all 90 flashcards in this deck.
Unlock Deck
k this deck
15
If (2,3,1)( 2,3,1 ) is the midpoint of the segment with one endpoint (1,3,1)( 1,3,1 ) , find the second endpoint.

A) (3,3,1)( 3,3,1 )
B) (32,3,1)\left( \frac { 3 } { 2 } , 3,1 \right)
C) (1,0,0)( 1,0,0 )
D) (0,1,3)( 0 , - 1,3 )
Unlock Deck
Unlock for access to all 90 flashcards in this deck.
Unlock Deck
k this deck
16
Find the center and radius of the sphere with the equation x22x+y24y+z2+1=0x ^ { 2 } - 2 x + y ^ { 2 } - 4 y + z ^ { 2 } + 1 = 0
Unlock Deck
Unlock for access to all 90 flashcards in this deck.
Unlock Deck
k this deck
17
Find the center and radius of the sphere with the equation x22x+y22y+z2+2z6=0x ^ { 2 } - 2 x + y ^ { 2 } - 2 y + z ^ { 2 } + 2 z - 6 = 0
Unlock Deck
Unlock for access to all 90 flashcards in this deck.
Unlock Deck
k this deck
18
Find the center and radius of the sphere with the equation x2+2x+y22y+z24z+5=0x ^ { 2 } + 2 x + y ^ { 2 } - 2 y + z ^ { 2 } - 4 z + 5 = 0

A) (1,1,2),r=1( - 1,1,2 ) , r = 1
B) (1,1,2),r=1( 1 , - 1 , - 2 ) , r = 1
C) (1,1,2),r=5( - 1,1,2 ) , r = 5
D) (1,1,2),r=5( - 1,1,2 ) , r = \sqrt { 5 }
Unlock Deck
Unlock for access to all 90 flashcards in this deck.
Unlock Deck
k this deck
19
For v=1,2 and u=1,6\vec { v } = \langle 1,2 \rangle \text { and } \vec { u } = \langle - 1,6 \rangle find u+v\vec { u } + \vec { v } and uv\vec { u } - \vec { v }
Unlock Deck
Unlock for access to all 90 flashcards in this deck.
Unlock Deck
k this deck
20
For v=1,2 and u=1,4\vec { v } = \langle - 1 , - 2 \rangle \text { and } \vec { u } = \langle 1,4 \rangle find u+v\vec { u } + \vec { v } and uv\vec { u } - \vec { v }
Unlock Deck
Unlock for access to all 90 flashcards in this deck.
Unlock Deck
k this deck
21
For v=2,0 and u=4,1\vec { v } = \langle 2,0 \rangle \text { and } \vec { u } = \langle 4,1 \rangle find u+v\vec { u } + \vec { v }

A) 2,1\langle 2 , - 1 \rangle
B) 6,1\langle 6 , - 1 \rangle
C) 6,1\langle 6,1 \rangle
D) 2,1\langle 2,1 \rangle
Unlock Deck
Unlock for access to all 90 flashcards in this deck.
Unlock Deck
k this deck
22
For u=1,2,1 and v=1,1,2\vec { u } = \langle 1,2 , - 1 \rangle \text { and } \vec { v } = \langle 1,1 , - 2 \rangle find u+v\vec { u } + \vec { v } and uv\vec { u } - \vec { v }
Unlock Deck
Unlock for access to all 90 flashcards in this deck.
Unlock Deck
k this deck
23
For u=1,1,4 and v=1,1,4\vec { u } = \langle - 1 , - 1,4 \rangle \text { and } \vec { v } = \langle 1 , - 1,4 \rangle find u+v\vec { u } + \vec { v } and uv\vec { u } - \vec { v }
Unlock Deck
Unlock for access to all 90 flashcards in this deck.
Unlock Deck
k this deck
24
For u=1,2,3 and v=1,1,2\vec { u } = \langle 1 , - 2 , - 3 \rangle \text { and } \vec { v } = \langle - 1,1 , - 2 \rangle find u+v\vec { u } + \vec { v }

A) 0,1,5\langle 0 , - 1 , - 5 \rangle
B) 2,3,1\langle 2 , - 3 , - 1 \rangle
C) 0,3,5\langle 0 , - 3 , - 5 \rangle
D) 0,3,3\langle 0 , - 3 , - 3 \rangle
Unlock Deck
Unlock for access to all 90 flashcards in this deck.
Unlock Deck
k this deck
25
For P=(2,1) and Q=(3,2)P = ( 2,1 ) \text { and } Q = ( 3,2 ) , find PQ\overrightarrow { P Q }
Unlock Deck
Unlock for access to all 90 flashcards in this deck.
Unlock Deck
k this deck
26
For P=(1,3) and Q=(1,1)P = ( - 1,3 ) \text { and } Q = ( 1 , - 1 ) , find PQ\overrightarrow { P Q }
Unlock Deck
Unlock for access to all 90 flashcards in this deck.
Unlock Deck
k this deck
27
For P=(1,2) and Q=(5,7)P = ( 1,2 ) \text { and } Q = ( 5,7 ) , find PQ\overrightarrow { P Q }

A) 6,9\langle 6,9 \rangle
B) 4,5\langle - 4 , - 5 \rangle
C) 8,7\langle 8,7 \rangle
D) 4,5\langle 4,5 \rangle
Unlock Deck
Unlock for access to all 90 flashcards in this deck.
Unlock Deck
k this deck
28
For P=(1,2,1) and Q=(4,2,2)P = ( 1,2,1 ) \text { and } Q = ( - 4,2,2 ) , find PQ\overrightarrow { P Q }
Unlock Deck
Unlock for access to all 90 flashcards in this deck.
Unlock Deck
k this deck
29
For P=(1,3,9) and Q=(7,6,2)P = ( - 1,3,9 ) \text { and } Q = ( 7,6,2 ) , find PQ\overrightarrow { P Q }
Unlock Deck
Unlock for access to all 90 flashcards in this deck.
Unlock Deck
k this deck
30
For P=(1,2,3) and Q=(3,3,5)P = ( 1,2,3 ) \text { and } Q = ( 3,3,5 ) , find PQ\overrightarrow { P Q }

A) 2,1,2\langle 2,1,2 \rangle
B) 2,1,2\langle - 2 , - 1 , - 2 \rangle
C) 4,5,8\langle 4,5,8 \rangle
D) 4,5,8\langle - 4 , - 5 , - 8 \rangle
Unlock Deck
Unlock for access to all 90 flashcards in this deck.
Unlock Deck
k this deck
31
Find the norm of u=1,2\vec { u } = \langle 1,2 \rangle
Unlock Deck
Unlock for access to all 90 flashcards in this deck.
Unlock Deck
k this deck
32
Find the norm of u=2,1,3\vec { u } = \langle 2,1,3 \rangle
Unlock Deck
Unlock for access to all 90 flashcards in this deck.
Unlock Deck
k this deck
33
Find the norm of u=4,3,5\vec { u } = \langle 4,3,5 \rangle

A) 2525
B) 252 \sqrt { 5 }
C) 5050
D) 525 \sqrt { 2 }
Unlock Deck
Unlock for access to all 90 flashcards in this deck.
Unlock Deck
k this deck
34
Find a unit vector in the direction of u=4,3\vec { u } = \langle 4,3 \rangle
Unlock Deck
Unlock for access to all 90 flashcards in this deck.
Unlock Deck
k this deck
35
Find a unit vector in the direction of u=4,3\vec { u } = \langle 4,3 \rangle
Unlock Deck
Unlock for access to all 90 flashcards in this deck.
Unlock Deck
k this deck
36
Find a unit vector in the direction of u=1,2,3\vec { u } = \langle 1,2,3 \rangle
Unlock Deck
Unlock for access to all 90 flashcards in this deck.
Unlock Deck
k this deck
37
Find a unit vector in the direction of u=1,2,3\vec { u } = \langle 1,2,3 \rangle

A) 151,251,351\left\langle \frac { 1 } { 51 } , \frac { 2 } { 51 } , \frac { 3 } { 51 } \right\rangle
B) 114,214,314\left\langle \frac { 1 } { \sqrt { 14 } } , \frac { 2 } { \sqrt { 14 } } , \frac { 3 } { \sqrt { 14 } } \right\rangle
C) 1,1,7\langle 1,1 , \sqrt { 7 } \rangle
D) 19,29,39\left\langle \frac { 1 } { 9 } , \frac { 2 } { 9 } , \frac { 3 } { 9 } \right\rangle
Unlock Deck
Unlock for access to all 90 flashcards in this deck.
Unlock Deck
k this deck
38
Find a vector of length 10 parallel to 3,4\langle 3,4 \rangle
Unlock Deck
Unlock for access to all 90 flashcards in this deck.
Unlock Deck
k this deck
39
Find the dot product of u=1,2\vec { u } = \langle 1,2 \rangle and v=2,3\vec { v } = \langle 2 , - 3 \rangle and the cosine of the angle between them.
Unlock Deck
Unlock for access to all 90 flashcards in this deck.
Unlock Deck
k this deck
40
Find the dot product of u=2,3\vec { u } = \langle 2,3 \rangle and v=3,2\vec { v } = \langle - 3,2 \rangle and the cosine of the angle between them.
Unlock Deck
Unlock for access to all 90 flashcards in this deck.
Unlock Deck
k this deck
41
Find the dot product of u=4,7\vec { u } = \langle 4,7 \rangle and v=1,3\vec { v } = \langle 1,3 \rangle and the cosine of the angle between them.

A) 10,cos(θ)=11310 , \cos ( \theta ) = \frac { 1 } { 13 }
B) 25,cos(θ)=52625 , \cos ( \theta ) = \frac { 5 } { \sqrt { 26 } }
C) 25,cos(θ)=12525 , \cos ( \theta ) = \frac { 1 } { 25 }
D) 5,cos(θ)=5265 , \cos ( \theta ) = \frac { 5 } { \sqrt { 26 } }
Unlock Deck
Unlock for access to all 90 flashcards in this deck.
Unlock Deck
k this deck
42
Find the dot product of u=1,2,3\vec { u } = \langle 1,2,3 \rangle and v=2,1,1\vec { v } = \langle 2,1,1 \rangle and the cosine of the angle between them.
Unlock Deck
Unlock for access to all 90 flashcards in this deck.
Unlock Deck
k this deck
43
Find the dot product of u=1,2,4\vec { u } = \langle - 1,2,4 \rangle and v=2,4,8\vec { v } = \langle 2 , - 4 , - 8 \rangle and the cosine of the angle between them.
Unlock Deck
Unlock for access to all 90 flashcards in this deck.
Unlock Deck
k this deck
44
Find the dot product of u=1,2,1\vec { u } = \langle 1,2,1 \rangle and v=2,2,1\vec { v } = \langle 2,2,1 \rangle and the cosine of the angle between them.

A) 7,cos(θ)=7367 , \cos ( \theta ) = \frac { 7 } { 3 \sqrt { 6 } }
B) 7,cos(θ)=7547 , \cos ( \theta ) = \frac { 7 } { 54 }
C) 9,cos(θ)=169 , \cos ( \theta ) = \frac { 1 } { 6 }
D) 6,cos(θ)=196 , \cos ( \theta ) = \frac { 1 } { 9 }
Unlock Deck
Unlock for access to all 90 flashcards in this deck.
Unlock Deck
k this deck
45
 Find compuv,projuv, and the component of v orthogonal to u, where u=1,2 and v=1,3\text { Find } \operatorname { comp } _ { \vec { u } } \vec { v } , \operatorname { proj } _ { \vec { u } } \vec { v } \text {, and the component of } \vec { v } \text { orthogonal to } \vec { u } \text {, where } \vec { u } = \langle 1,2 \rangle \text { and } \vec { v } = \langle - 1,3 \rangle \text {. }
Unlock Deck
Unlock for access to all 90 flashcards in this deck.
Unlock Deck
k this deck
46
Find compuv\operatorname { com } p _ { \vec { u } } \vec { v } , projuv\operatorname { proj } _ { \vec { u } } \vec { v } , and the component of v\vec { v } orthogonal to u\vec { u } , where u=1,2 and v=2,5\vec { u } = \langle 1,2 \rangle \text { and } \vec { v } = \langle 2 , - 5 \rangle
Unlock Deck
Unlock for access to all 90 flashcards in this deck.
Unlock Deck
k this deck
47
Find compuv\operatorname { com } p _ { \vec { u } } \vec { v } , projuv\operatorname { proj } _ { \vec { u } } \vec { v } , and the component of v\vec { v } orthogonal to u\vec { u } , where u=1,1 and v=2,1\vec { u } = \langle 1,1 \rangle \text { and } \vec { v } = \langle - 2,1 \rangle

A) compuv=12c o m p _ { \vec { u } } \vec { v } = - \frac { 1 } { \sqrt { 2 } } projuv=12,12\operatorname { proj } _ { \vec { u } } \vec { v } = \left\langle - \frac { 1 } { 2 } , - \frac { 1 } { 2 } \right\rangle orthogonal component is 32,32\left\langle - \frac { 3 } { 2 } , \frac { 3 } { 2 } \right\rangle
B) compuv=12c o m p _ { \vec { u } } \vec { v } = - \frac { 1 } { \sqrt { 2 } } projuv=14,14\operatorname { proj } _ { \vec { u } } \vec { v } = \left\langle - \frac { 1 } { 4 } , - \frac { 1 } { 4 } \right\rangle orthogonal component is 32,34\left\langle - \frac { 3 } { 2 } , \frac { 3 } { 4 } \right\rangle
C) compuv=13\operatorname { comp }_{ \overrightarrow { \vec { u }} } \vec { v } = - \frac { 1 } { \sqrt { 3 } } projuv=12,12\operatorname { proj } _ { \vec { u } } \vec { v } = \left\langle - \frac { 1 } { 2 } , - \frac { 1 } { 2 } \right\rangle orthogonal component is 34,32\left\langle - \frac { 3 } { 4 } , \frac { 3 } { 2 } \right\rangle
D) compuv=13\operatorname { comp }_{ \overrightarrow { \vec { u } }} \vec { v } = - \frac { 1 } { \sqrt { 3 } } projuv=12,12\operatorname { proj } _ { \vec { u } } \vec { v } = \left\langle - \frac { 1 } { 2 } , - \frac { 1 } { 2 } \right\rangle orthogonal component is 34,32\left\langle - \frac { 3 } { 4 } , \frac { 3 } { 2 } \right\rangle
Unlock Deck
Unlock for access to all 90 flashcards in this deck.
Unlock Deck
k this deck
48
Find compuv\operatorname { com } p _ { \vec { u } } \vec { v } , projuv\operatorname { proj } _ { \vec { u } } \vec { v } , and the component of v\vec { v } orthogonal to u\vec { u } , where u=1,2,1 and v=1,3,2\vec { u } = \langle 1,2,1 \rangle \text { and } \vec { v } = \langle - 1,3,2 \rangle
Unlock Deck
Unlock for access to all 90 flashcards in this deck.
Unlock Deck
k this deck
49
Find compuv\operatorname { com } p _ { \vec { u } } \vec { v } , projuv\operatorname { proj } _ { \vec { u } } \vec { v } , and the component of v\vec { v } orthogonal to u\vec { u } , where u=2,2,1 and v=1,3,4\vec { u } = \langle 2,2,1 \rangle \text { and } \vec { v } = \langle 1 , - 3,4 \rangle
Unlock Deck
Unlock for access to all 90 flashcards in this deck.
Unlock Deck
k this deck
50
Find compuv\operatorname { com } p _ { \vec { u } } \vec { v } , projuv\operatorname { proj } _ { \vec { u } } \vec { v } , and the component of v\vec { v } orthogonal to u\vec { u } , where u=1,1,1 and v=3,2,1\vec { u } = \langle 1,1,1 \rangle \text { and } \vec { v } = \langle 3,2,1 \rangle
Unlock Deck
Unlock for access to all 90 flashcards in this deck.
Unlock Deck
k this deck
51
Find compuv\operatorname { com } p _ { \vec { u } } \vec { v } , projuv\operatorname { proj } _ { \vec { u } } \vec { v } , and the component of v\vec { v } orthogonal to u\vec { u } , where u=1,2,1 and v=1,1,1\vec { u } = \langle 1,2,1 \rangle \text { and } \vec { v } = \langle - 1,1 , - 1 \rangle

A) comppuv=0\operatorname { comp } p _ { \vec { u } } \vec { v } = 0 projuv=2,1,1\operatorname { proj } _ { \vec { u } } \vec { v } = \langle 2,1,1 \rangle orthogonal component is 0,0,0\langle 0,0,0 \rangle
B) comppuv=0\operatorname { comp } p _ { \vec { u } } \vec { v } = 0 projuv=0,0,0\operatorname { proj } _ { \vec { u } } \vec { v } = \langle 0,0,0 \rangle orthogonal component is 1,1,1\langle - 1,1 , - 1 \rangle
C) compuv=1\operatorname { comp } _ { \vec { u } } \vec { v } = 1 projuv=0,0,0\operatorname { proj } _ { \vec { u } } \vec { v } = \langle 0,0,0 \rangle orthogonal component is 2,1,1\langle 2,1,1 \rangle
D) comppuv=0\operatorname { comp } p _ { \vec { u } } \vec { v } = 0 projuv=0,0,0\operatorname { proj } _ { \vec { u } } \vec { v } = \langle 0,0,0 \rangle orthogonal component is 1,2,1\langle 1,2,1 \rangle
Unlock Deck
Unlock for access to all 90 flashcards in this deck.
Unlock Deck
k this deck
52
For u=1,2,3\vec { u } = \langle 1,2,3 \rangle and v=1,1,1\vec { v } = \langle - 1,1 , - 1 \rangle w=1,2,1\vec { w } = \langle 1,2,1 \rangle , find u×v\vec { u } \times \vec { v }
Unlock Deck
Unlock for access to all 90 flashcards in this deck.
Unlock Deck
k this deck
53
For u=1,2,3\vec { u } = \langle 1,2,3 \rangle , v=1,1,1\vec { v } = \langle - 1,1 , - 1 \rangle , and w=1,2,1\vec { w } = \langle 1,2,1 \rangle , find v×u\vec { v } \times \vec { u }
Unlock Deck
Unlock for access to all 90 flashcards in this deck.
Unlock Deck
k this deck
54
For u=1,2,3\vec { u } = \langle 1,2,3 \rangle , v=1,1,1\vec { v } = \langle - 1,1 , - 1 \rangle , and w=1,2,1\vec { w } = \langle 1,2,1 \rangle , find (u×v)×w( \vec { u } \times \vec { v } ) \times \vec { w }
Unlock Deck
Unlock for access to all 90 flashcards in this deck.
Unlock Deck
k this deck
55
For u=1,2,3\vec { u } = \langle 1,2,3 \rangle , v=1,1,1\vec { v } = \langle - 1,1 , - 1 \rangle and w=1,2,1\vec { w } = \langle 1,2,1 \rangle , find (u×v)×u( \vec { u } \times \vec { v } ) \times \vec { u }

A) 4,2,0\langle - 4,2,0 \rangle
B) 0,0,0\langle 0,0,0 \rangle
C) 4,2,1\langle - 4,2,1 \rangle
D) 4,2,1\langle - 4,2 , - 1 \rangle
Unlock Deck
Unlock for access to all 90 flashcards in this deck.
Unlock Deck
k this deck
56
For u=1,2,3\vec { u } = \langle 1,2,3 \rangle , v=1,1,1\vec { v } = \langle - 1,1 , - 1 \rangle , and w=1,2,1\vec { w } = \langle 1,2,1 \rangle , find u(v×w)\vec { u } \cdot ( \vec { v } \times \vec { w } )
Unlock Deck
Unlock for access to all 90 flashcards in this deck.
Unlock Deck
k this deck
57
For u=1,2,3\vec { u } = \langle 1,2,3 \rangle , v=1,1,1\vec { v } = \langle - 1,1 , - 1 \rangle , and w=1,2,1\vec { w } = \langle 1,2,1 \rangle , find v(u×w)\vec { v } \cdot ( \vec { u } \times \vec { w } )

A) -6
B) 6
C) 4,2,0\langle - 4,2,0 \rangle
D) 4,2,0\langle 4 , - 2,0 \rangle
Unlock Deck
Unlock for access to all 90 flashcards in this deck.
Unlock Deck
k this deck
58
Find the area of the parallelogram determined by u=1,2,3\vec { u } = \langle 1,2,3 \rangle and w=1,2,1\vec { w } = \langle 1,2,1 \rangle
Unlock Deck
Unlock for access to all 90 flashcards in this deck.
Unlock Deck
k this deck
59
Find the area of the parallelogram determined by u=1,2,3\vec { u } = \langle 1,2,3 \rangle and w=1,1,1\vec { w } = \langle 1,1,1 \rangle
Unlock Deck
Unlock for access to all 90 flashcards in this deck.
Unlock Deck
k this deck
60
Find the area of the parallelogram determined by v=1,1,1\vec { v } = \langle - 1,1 , - 1 \rangle and w=1,2,1\vec { w } = \langle 1,2,1 \rangle

A) 232 \sqrt { 3 }
B) 12
C) 323 \sqrt { 2 }
D) 66
Unlock Deck
Unlock for access to all 90 flashcards in this deck.
Unlock Deck
k this deck
61
Find the volume of the parallelepiped determined by u=1,2,3\vec { u } = \langle 1,2,3 \rangle , v=1,1,1\vec { v } = \langle - 1,1 , - 1 \rangle , and w=1,2,1\vec { w } = \langle 1,2,1 \rangle
Unlock Deck
Unlock for access to all 90 flashcards in this deck.
Unlock Deck
k this deck
62
Find the area of the triangle with vertices P(0,0,0),Q(1,2,3), and R(1,2,1)P ( 0,0,0 ) , Q ( 1,2,3 ) , \text { and } R ( 1,2,1 )
Unlock Deck
Unlock for access to all 90 flashcards in this deck.
Unlock Deck
k this deck
63
Find a vector perpendicular to the plane determined by the points P(1,2,3),Q(4,5,6), and R(1,1,1)P ( 1,2,3 ) , Q ( 4,5,6 ) \text {, and } R ( 1,1 , - 1 ) , whose third coordinate is 1.
Unlock Deck
Unlock for access to all 90 flashcards in this deck.
Unlock Deck
k this deck
64
Find a unit vector perpendicular to the plane determined by the points P(1,2,3),Q(4,5,6), and R(1,1,1)P ( 1,2,3 ) , Q ( 4,5,6 ) \text {, and } R ( 1,1 , - 1 )

A) 326,426,126\left\langle \frac { 3 } { \sqrt { 26 } } , - \frac { 4 } { \sqrt { 26 } } , \frac { 1 } { \sqrt { 26 } } \right\rangle
B) <326,426,126>< \frac { 3 } { \sqrt { 26 } } , \frac { 4 } { \sqrt { 26 } } , \frac { 1 } { \sqrt { 26 } } >
C) <326,426,126>< \frac { 3 } { 26 } , - \frac { 4 } { 26 } , \frac { 1 } { 26 } >
D) <326,426,126\left. < \frac { 3 } { 26 } , \frac { 4 } { 26 } , \frac { 1 } { 26 } \right\rangle
Unlock Deck
Unlock for access to all 90 flashcards in this deck.
Unlock Deck
k this deck
65
Find the area of the triangle in the plane with vertices P(1,2),Q(4,6), and R(1,1)P ( 1,2 ) , Q ( 4,6 ) , \text { and } R ( - 1 , - 1 )
Unlock Deck
Unlock for access to all 90 flashcards in this deck.
Unlock Deck
k this deck
66
Give an equation of the line containing the points (1,3,2) and (2,1,4)( 1,3,2 ) \text { and } ( 2,1,4 ) as vector parameterization.
Unlock Deck
Unlock for access to all 90 flashcards in this deck.
Unlock Deck
k this deck
67
Give the parametric equations of the line containing the points (1,3,2) and (2,1,4)( 1,3,2 ) \text { and } ( 2,1,4 )
Unlock Deck
Unlock for access to all 90 flashcards in this deck.
Unlock Deck
k this deck
68
Give the symmetric equations of the line containing the points (1,3,2) and (2,1,4)( 1,3,2 ) \text { and } ( 2,1,4 )
Unlock Deck
Unlock for access to all 90 flashcards in this deck.
Unlock Deck
k this deck
69
Give an equation of the line containing the points (2,1,1) and (4,3,2)( 2,1,1 ) \text { and } ( 4,3,2 ) as vector parameterization.
A) r(t)=1,2,2+t1,3,2\vec { r } ( t ) = \langle 1 , - 2,2 \rangle + t \langle 1,3,2 \rangle
B) r(t)=2,1,1+t2,2,1\vec { r } ( t ) = \langle 2,1,1 \rangle + t \langle 2,2,1 \rangle
C) r(t)=1,3,2+t1,2,2\vec { r } ( t ) = \langle 1,3,2 \rangle + t \langle 1,2,2 \rangle
D) r(t)=1,2,2+t1,3,2\vec { r } ( t ) = \langle 1,2,2 \rangle + t \langle 1,3,2 \rangle
Unlock Deck
Unlock for access to all 90 flashcards in this deck.
Unlock Deck
k this deck
70
Give a set of parametric equations for the line containing the points (2,1,1) and (4,3,2)( 2,1,1 ) \text { and } ( 4,3,2 )

A) x=1+ty=2+3tz=2+2t\begin{array} { l } x = 1 + t \\y = - 2 + 3 t \\z = 2 + 2 t\end{array}
B) x=2+2ty=1+2tz=1+t\begin{array} { l } x = 2 + 2 t \\y = 1 + 2 t \\z = 1 + t\end{array}
C) x=1+ty=3+2tz=2+2t\begin{array} { l } x = 1 + t \\y = 3 + 2 t \\z = 2 + 2 t\end{array}
D) x=1+ty=2+3tz=2+2t\begin{array} { l } x = 1 + t \\y = 2 + 3 t \\z = 2 + 2 t\end{array}
Unlock Deck
Unlock for access to all 90 flashcards in this deck.
Unlock Deck
k this deck
71
Give a set of symmetric equations for the line containing the points (2,1,1) and (4,3,2)( 2,1,1 ) \text { and } ( 4,3,2 )

A) x22=y12=z1\frac { x - 2 } { 2 } = \frac { y - 1 } { 2 } = z - 1
B) x1=3y2=z22x - 1 = \frac { 3 - y } { 2 } = \frac { z - 2 } { 2 }
C) x1=y32=z22x - 1 = \frac { y - 3 } { 2 } = \frac { z - 2 } { 2 }
D) x1=y23=z22x - 1 = \frac { y - 2 } { 3 } = \frac { z - 2 } { 2 }
Unlock Deck
Unlock for access to all 90 flashcards in this deck.
Unlock Deck
k this deck
72
Give an equation of the line containing the points (2,23) and (6,1,2)( 2,2 - 3 ) \text { and } ( 6,1,2 ) as vector parameterization.
Unlock Deck
Unlock for access to all 90 flashcards in this deck.
Unlock Deck
k this deck
73
Give the parametric equations of the line containing the points (2,23) and (6,1,2)( 2,2 - 3 ) \text { and } ( 6,1,2 )
Unlock Deck
Unlock for access to all 90 flashcards in this deck.
Unlock Deck
k this deck
74
Give the symmetric equations of the line containing the points (2,23) and (6,1,2)( 2,2 - 3 ) \text { and } ( 6,1,2 )
Unlock Deck
Unlock for access to all 90 flashcards in this deck.
Unlock Deck
k this deck
75
Give an equation of the line containing the point (1,2,1)( 1,2 , - 1 ) and parallel to d2,3,1\vec { d } - \langle 2 , - 3,1 \rangle as vector parameterization.
Unlock Deck
Unlock for access to all 90 flashcards in this deck.
Unlock Deck
k this deck
76
Give the parametric equations of the line containing the point (1,2,1)( 1,2 , - 1 ) and parallel to d=2,3,1\vec { d } = \langle 2 , - 3,1 \rangle
Unlock Deck
Unlock for access to all 90 flashcards in this deck.
Unlock Deck
k this deck
77
Give the symmetric equations of the line containing the point (1,2,1)( 1,2 , - 1 ) and parallel to d=2,3,1\vec { d } = \langle 2 , - 3,1 \rangle
Unlock Deck
Unlock for access to all 90 flashcards in this deck.
Unlock Deck
k this deck
78
Find the distance from the point (1,1,2)( 1,1,2 ) to the line r(t)=0,1,3+t1,2,1\vec { r } ( t ) = \langle 0 , - 1,3 \rangle + t \langle 1,2,1 \rangle
Unlock Deck
Unlock for access to all 90 flashcards in this deck.
Unlock Deck
k this deck
79
Are the given lines parallel, intersecting, identical or skew? r1(t)=2,3,6+t1,2,4\vec { r } _ { 1 } ( t ) = \langle 2,3,6 \rangle + t \langle - 1,2,4 \rangle r2(t)=9,1,2+t2,4,8\vec { r } _ { 2 } ( t ) = \langle 9 , - 1 , - 2 \rangle + t \langle 2 , - 4 , - 8 \rangle

A) Parallel
B) Identical
C) Intersecting
D) Skew
Unlock Deck
Unlock for access to all 90 flashcards in this deck.
Unlock Deck
k this deck
80
Find an equation for the plane containing the point (1,1,2)( 1,1,2 ) and normal to the vector 1,1,3\langle 1 , - 1,3 \rangle
Unlock Deck
Unlock for access to all 90 flashcards in this deck.
Unlock Deck
k this deck
locked card icon
Unlock Deck
Unlock for access to all 90 flashcards in this deck.