Exam 10: Vectors

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Give an equation of the line containing the points (2,23) and (6,1,2)( 2,2 - 3 ) \text { and } ( 6,1,2 ) as vector parameterization.

Free
(Essay)
4.8/5
(31)
Correct Answer:
Verified

r(t)=2,2,3+t4,1,5\vec { r } ( t ) = \langle 2,2 , - 3 \rangle + t \langle 4 , - 1,5 \rangle Note that there are other forms.

For v=2,0 and u=4,1\vec { v } = \langle 2,0 \rangle \text { and } \vec { u } = \langle 4,1 \rangle find u+v\vec { u } + \vec { v }

Free
(Multiple Choice)
4.8/5
(36)
Correct Answer:
Verified

C

Find the equation of the sphere with center (1,2,1)( 1,2,1 ) and radius 2.

Free
(Essay)
4.9/5
(38)
Correct Answer:
Verified

(x1)2+(y2)2+(z1)2=4( x - 1 ) ^ { 2 } + ( y - 2 ) ^ { 2 } + ( z - 1 ) ^ { 2 } = 4

Find the dot product of u=1,2\vec { u } = \langle 1,2 \rangle and v=2,3\vec { v } = \langle 2 , - 3 \rangle and the cosine of the angle between them.

(Essay)
4.8/5
(24)

Find an equation for the plane that contains the point (1,2,1)( 1,2 , - 1 ) and the line r(t)=1,3,4+t1,1,3\vec { r } ( t ) = \langle 1,3,4 \rangle + t \langle 1,1,3 \rangle

(Essay)
4.8/5
(39)

Find a unit vector in the direction of u=4,3\vec { u } = \langle 4,3 \rangle

(Essay)
4.9/5
(34)

What is the distance between the given pair of points: (1,2,1) and (2,2,0)( - 1 , - 2,1 ) \text { and } ( - 2,2,0 ) ?

(Multiple Choice)
4.9/5
(35)

Find compuv\operatorname { com } p _ { \vec { u } } \vec { v } , projuv\operatorname { proj } _ { \vec { u } } \vec { v } , and the component of v\vec { v } orthogonal to u\vec { u } , where u=1,1 and v=2,1\vec { u } = \langle 1,1 \rangle \text { and } \vec { v } = \langle - 2,1 \rangle

(Multiple Choice)
4.9/5
(40)

Give a set of parametric equations for the line containing the points (2,1,1) and (4,3,2)( 2,1,1 ) \text { and } ( 4,3,2 ) A) x=1+t y=-2+3t z=2+2t B) x=2+2t y=1+2t z=1+t C) x=1+t y=3+2t z=2+2t D) x=1+t y=2+3t z=2+2t

(Essay)
4.8/5
(37)

Find a unit vector in the direction of u=1,2,3\vec { u } = \langle 1,2,3 \rangle

(Essay)
4.8/5
(39)

Find the area of the parallelogram determined by u=1,2,3\vec { u } = \langle 1,2,3 \rangle and w=1,1,1\vec { w } = \langle 1,1,1 \rangle

(Essay)
4.9/5
(27)

For u=1,2,3\vec { u } = \langle 1,2,3 \rangle , v=1,1,1\vec { v } = \langle - 1,1 , - 1 \rangle , and w=1,2,1\vec { w } = \langle 1,2,1 \rangle , find (u×v)×w( \vec { u } \times \vec { v } ) \times \vec { w }

(Essay)
4.9/5
(35)

For u=1,2,3 and v=1,1,2\vec { u } = \langle 1 , - 2 , - 3 \rangle \text { and } \vec { v } = \langle - 1,1 , - 2 \rangle find u+v\vec { u } + \vec { v }

(Multiple Choice)
4.8/5
(38)

Find a unit vector in the direction of u=4,3\vec { u } = \langle 4,3 \rangle

(Essay)
4.8/5
(35)

Give the symmetric equations of the line containing the point (1,2,1)( 1,2 , - 1 ) and parallel to d=2,3,1\vec { d } = \langle 2 , - 3,1 \rangle

(Essay)
4.7/5
(34)

What is the distance between the given pair of points: (1,3) and (2,1)( 1 , - 3 ) \text { and } ( - 2 , - 1 ) ?

(Essay)
4.9/5
(21)

Give the parametric equations of the line containing the points (1,3,2) and (2,1,4)( 1,3,2 ) \text { and } ( 2,1,4 )

(Essay)
4.9/5
(35)

For u=1,2,3\vec { u } = \langle 1,2,3 \rangle , v=1,1,1\vec { v } = \langle - 1,1 , - 1 \rangle , and w=1,2,1\vec { w } = \langle 1,2,1 \rangle , find v×u\vec { v } \times \vec { u }

(Essay)
4.9/5
(38)

If (1,2,3)( 1,2,3 ) is the midpoint of the segment with one endpoint (1,1,1)( 1,1 , - 1 ) , find the second endpoint.

(Essay)
4.8/5
(20)

Find the dot product of u=1,2,3\vec { u } = \langle 1,2,3 \rangle and v=2,1,1\vec { v } = \langle 2,1,1 \rangle and the cosine of the angle between them.

(Essay)
4.9/5
(37)
Showing 1 - 20 of 90
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)