Deck 2: Derivatives

Full screen (f)
exit full mode
Question
Suppose that h(t)h ( t ) represents the height, in feet, of a person tt years old. In real world terms, what does h(10)h ( 10 ) represent? What is its unit? What does h(t)h ^ { \prime } ( t ) represents and what is its unit?
Use Space or
up arrow
down arrow
to flip the card.
Question
The function f(x)=92x+x2f ( x ) = 9 - 2 x + x ^ { 2 } is both continuous and differentiable at x=0x = 0 Write these facts as limit statements.
Question
Suppose f(1)=2,limx1f(x)=2, and limx1+f(x)=2,limx1f(x)f(1)x1=2f ( 1 ) = 2 , \lim _ { x \rightarrow 1 ^ { - } } f ( x ) = 2 , \text { and } \lim _ { x \rightarrow 1 ^ { + } } f ( x ) = 2 , \lim _ { x \rightarrow 1 ^ { - } } \frac { f ( x ) - f ( 1 ) } { x - 1 } = - 2 and limx1+f(x)f(1)x1=1\lim _ { x \rightarrow 1 ^ { + } } \frac { f ( x ) - f ( 1 ) } { x - 1 } = 1 Is ff continuous and/or differentiable at x=1?x = 1 ?

A) f is not continuous but differentiable at x = 1
B) f is neither continuous nor differentiable at x = 1
C) f is continuous at but not differentiable at x = 1
D) f is both continuous and differentiable at x = 1
Question
Suppose f(1)=2,limx1f(x)=2, and limx1+f(x)=2,limh0f(1+h)f(1)h=2f ( 1 ) = 2 , \lim _ { x \rightarrow 1 ^ { - } } f ( x ) = 2 , \text { and } \lim _ { x \rightarrow 1 ^ { + } } f ( x ) = 2 , \lim _ { h \rightarrow 0 ^ { - } } \frac { f ( 1 + h ) - f ( 1 ) } { h } = - 2 and limh0+f(1+h)f(1)h=2\lim _ { h \rightarrow 0 ^ { + } } \frac { f ( 1 + h ) - f ( 1 ) } { h } = - 2 Is ff continuous and/or differentiable at x=1?x = 1 ?

A) f is not continuous but differentiable at x = 1
B) f is neither continuous nor differentiable at x = 1
C) f is continuous but not differentiable at x = 1
D) f is both continuous and differentiable at x = 1
Question
Use the definition of derivative: limh0f(x+h)f(x)h\lim _ { h \rightarrow 0 } \frac { f ( x + h ) - f ( x ) } { h } to find f(1), if f(x)=x2f ^ { \prime } ( - 1 ) \text {, if } f ( x ) = x ^ { 2 }
Question
Use the definition of derivative: limh0f(x+h)f(x)h\lim _ { h \rightarrow 0 } \frac { f ( x + h ) - f ( x ) } { h } to find f(2), if f(x)=2xf ^ { \prime } ( - 2 ) \text {, if } f ( x ) = \frac { 2 } { x }
Question
Use the definition of derivative: limh0f(x+h)f(x)h\lim _ { h \rightarrow 0 } \frac { f ( x + h ) - f ( x ) } { h } to find f(1), if f(x)=x+1x2f ^ { \prime } ( 1 ) \text {, if } f ( x ) = \frac { x + 1 } { x - 2 }
Question
Use the definition of derivative: limzcf(z)f(c)zc\lim _ { z \rightarrow c } \frac { f ( z ) - f ( c ) } { z - c } to find f(1), if f(x)=x2f ^ { \prime } ( - 1 ) \text {, if } f ( x ) = x ^ { 2 }
Question
Use the definition of derivative: limzcf(z)f(c)zc\lim _ { z \rightarrow c } \frac { f ( z ) - f ( c ) } { z - c } to find f(2), if f(x)=2xf ^ { \prime } ( - 2 ) \text {, if } f ( x ) = \frac { 2 } { x }
Question
Use the definition of derivative: limzcf(z)f(c)zc\lim _ { z \rightarrow c } \frac { f ( z ) - f ( c ) } { z - c } to find f(1), if f(x)=x+1x2f ^ { \prime } ( 1 ) \text {, if } f ( x ) = \frac { x + 1 } { x - 2 }
Question
Use the definition of derivative: limh0f(x+h)f(x)h\lim _ { h \rightarrow 0 } \frac { f ( x + h ) - f ( x ) } { h } to find f(x), if f(x)=3x+1f ^ { \prime } ( x ) , \text { if } f ( x ) = \frac { 3 } { x + 1 }
Question
Use the definition of derivative: limh0f(x+h)f(x)h\lim _ { h \rightarrow 0 } \frac { f ( x + h ) - f ( x ) } { h } to find f(x), if f(x)=2xf ^ { \prime } ( x ) , \text { if } f ( x ) = 2 \sqrt { x }
Question
Use the definition of derivative: limh0f(x+h)f(x)h\lim _ { h \rightarrow 0 } \frac { f ( x + h ) - f ( x ) } { h } to find f(x), if f(x)=1x2f ^ { \prime } ( x ) \text {, if } f ( x ) = \frac { 1 } { x ^ { 2 } }
Question
Use the definition of derivative: limh0f(x+h)f(x)h\lim _ { h \rightarrow 0 } \frac { f ( x + h ) - f ( x ) } { h } to find f(x), if f(x)=x+1f ^ { \prime } ( x ) , \text { if } f ( x ) = \sqrt { x + 1 }
Question
Given f(x)={2x if x<1x3 if x1f ( x ) = \left\{ \begin{array} { l } - 2 x \text { if } x < 1 \\x - 3 \text { if } x \geq 1\end{array} \right. , is ff continuous and/or differentiable at x=1?x = 1 ? Explain.

A) f is not continuous but differentiable at x = 1
B) f is neither continuous nor differentiable at x = 1
C) f is continuous but not differentiable at x = 1
D) f is both continuous and differentiable at x = 1
Question
Given f(x)={x22 if x<22x+1 if x2f ( x ) = \left\{ \begin{array} { l } x ^ { 2 } - 2 \text { if } x < 2 \\2 x + 1 \text { if } x \geq 2\end{array} \right. , is ff continuous and/or differentiable at x=2?x = 2 ? Explain.

A) f is continuous but not differentiable at x = 2
B) f is differentiable but not continuous at x = 2
C) f is neither continuous nor differentiable at x = 2
D) f is both continuous and differentiable at x = 2
Question
Use the Intermediate Value Theorem to show that f(x)=x22f ( x ) = x ^ { 2 } - 2 has at least one zero on [0, 2].
Question
Use the Intermediate Value Theorem to show that f(x)=x3+2f ( x ) = x ^ { 3 } + 2 has at least one zero on [- 2, 1].
Question
Suppose ff is a piecewise-defined function, equal to g(x) if x<3, and h(x) if x3g ( x ) \text { if } x < 3 \text {, and } h ( x ) \text { if } x \geq 3 \text {, } where g and hg \text { and } h are continuous and differentiable everywhere. If g(3)=h(3)g ^ { \prime } ( 3 ) = h ^ { \prime } ( 3 ) is the function ff differentiable at x=3?x = 3 ? Explain why or why not.
Question
Suppose f,g and hf , g \text { and } h are functions with values f(1)=3,g(1)=2,f(1)=0,g(1)=3f ( 1 ) = - 3 , g ( 1 ) = 2 , f ^ { \prime } ( 1 ) = 0 , g ^ { \prime } ( 1 ) = 3 \text {. } Find (fg)(1)( f g ) ^ { \prime } ( 1 )

A) 7
B) 9
C) - 9
D) - 7
Question
Suppose f,g and hf , g \text { and } h are functions with values f(1)=3,g(1)=2,f(1)=0,g(1)=3f ( 1 ) = - 3 , g ( 1 ) = 2 , f ^ { \prime } ( 1 ) = 0 , g ^ { \prime } ( 1 ) = 3 \text {. } Find (2f5g)(1)( 2 f - 5 g )^{\prime} ( 1 )

A) 15
B) - 12
C) 12
D) - 15
Question
Suppose f,g and hf , g \text { and } h are functions with values f(1)=3,g(1)=2,f(1)=0,g(1)=3f ( 1 ) = - 3 , g ( 1 ) = 2 , f ^ { \prime } ( 1 ) = 0 , g ^ { \prime } ( 1 ) = 3 \text {. } Find (gf)(1)\left( \frac { g } { f } \right) ^ { \prime } ( 1 )

A) 3
B) 94- \frac { 9 } { 4 }
C) - 1
D) 1
Question
Find constants a and ba \text { and } b so that f(x)={ax+b if x<1bx2+1 if x1f ( x ) = \left\{ \begin{array} { l l } a x + b & \text { if } x < 1 \\b x ^ { 2 } + 1 & \text { if } x \geq 1\end{array} \right. , is continuous and differentiable everywhere?

A) a=2,b=1a = 2 , b = 1
B) a=1,b=1a = 1 , b = 1
C) a=1,b=12a = 1 , b = \frac { - 1 } { 2 }
D) a=1,b=12a = 1 , b = \frac { 1 } { 2 }
Question
Xg(x)h(x)g(x)h(x)30310212231301202323101222221033001\begin{array} { | l | l | l | l | l | } \hline \mathrm { X } & \mathrm { g } ( \mathrm { x } ) & \mathrm { h } ( \mathrm { x } ) & \mathrm { g } ^ { \prime } ( \mathrm { x } ) & \mathrm { h } ^ { \prime } ( \mathrm { x } ) \\\hline - 3 & 0 & 3 & 1 & 0 \\\hline - 2 & 1 & 2 & 2 & - 3 \\\hline - 1 & 3 & 0 & - 1 & - 2 \\\hline 0 & 2 & 3 & - 2 & 3 \\\hline 1 & 0 & - 1 & - 2 & - 2 \\\hline 2 & - 2 & - 2 & - 1 & 0 \\\hline 3 & - 3 & 0 & 0 & 1 \\\hline\end{array}

-Use the table above to find f(3)f ^ { \prime } ( 3 ) if f(x)=5g(x)4h(x)f ( x ) = 5 g ( x ) - 4 h ( x )

A) 4
B) - 1
C) 1
D) - 4
Question
Xg(x)h(x)g(x)h(x)30310212231301202323101222221033001\begin{array} { | l | l | l | l | l | } \hline \mathrm { X } & \mathrm { g } ( \mathrm { x } ) & \mathrm { h } ( \mathrm { x } ) & \mathrm { g } ^ { \prime } ( \mathrm { x } ) & \mathrm { h } ^ { \prime } ( \mathrm { x } ) \\\hline - 3 & 0 & 3 & 1 & 0 \\\hline - 2 & 1 & 2 & 2 & - 3 \\\hline - 1 & 3 & 0 & - 1 & - 2 \\\hline 0 & 2 & 3 & - 2 & 3 \\\hline 1 & 0 & - 1 & - 2 & - 2 \\\hline 2 & - 2 & - 2 & - 1 & 0 \\\hline 3 & - 3 & 0 & 0 & 1 \\\hline\end{array}

-Use the table above to find f(2)f ^ { \prime } ( 2 ) if f(x)=2g(x)h(x)f ( x ) = \frac { 2 g ( x ) } { h ( x ) }

A) 4
B) - 1
C) 1
D) - 4
Question
Xg(x)h(x)g(x)h(x)30310212231301202323101222221033001\begin{array} { | l | l | l | l | l | } \hline \mathrm { X } & \mathrm { g } ( \mathrm { x } ) & \mathrm { h } ( \mathrm { x } ) & \mathrm { g } ^ { \prime } ( \mathrm { x } ) & \mathrm { h } ^ { \prime } ( \mathrm { x } ) \\\hline - 3 & 0 & 3 & 1 & 0 \\\hline - 2 & 1 & 2 & 2 & - 3 \\\hline - 1 & 3 & 0 & - 1 & - 2 \\\hline 0 & 2 & 3 & - 2 & 3 \\\hline 1 & 0 & - 1 & - 2 & - 2 \\\hline 2 & - 2 & - 2 & - 1 & 0 \\\hline 3 & - 3 & 0 & 0 & 1 \\\hline\end{array}

-Use the table above to find f(1)f ^ { \prime } ( - 1 ) if f(x)=g(x)h(x)+1g(x)f ( x ) = \frac { g ( x ) h ( x ) + 1 } { g ( x ) }

A) 19/9
B) - 19/9
C) 17/9
D) - 17/9
Question
Xg(x)h(x)g(x)h(x)30310212231301202323101222221033001\begin{array} { | l | l | l | l | l | } \hline \mathrm { X } & \mathrm { g } ( \mathrm { x } ) & \mathrm { h } ( \mathrm { x } ) & \mathrm { g } ^ { \prime } ( \mathrm { x } ) & \mathrm { h } ^ { \prime } ( \mathrm { x } ) \\\hline - 3 & 0 & 3 & 1 & 0 \\\hline - 2 & 1 & 2 & 2 & - 3 \\\hline - 1 & 3 & 0 & - 1 & - 2 \\\hline 0 & 2 & 3 & - 2 & 3 \\\hline 1 & 0 & - 1 & - 2 & - 2 \\\hline 2 & - 2 & - 2 & - 1 & 0 \\\hline 3 & - 3 & 0 & 0 & 1 \\\hline\end{array}

-Use the table above to find f(2)f ^ { \prime } ( - 2 ) if f(x)=g(h(x))f ( x ) = g ( h ( x ) )

A) - 3
B) 3
C) - 1
D) 1
Question
Xg(x)h(x)g(x)h(x)30310212231301202323101222221033001\begin{array} { | l | l | l | l | l | } \hline \mathrm { X } & \mathrm { g } ( \mathrm { x } ) & \mathrm { h } ( \mathrm { x } ) & \mathrm { g } ^ { \prime } ( \mathrm { x } ) & \mathrm { h } ^ { \prime } ( \mathrm { x } ) \\\hline - 3 & 0 & 3 & 1 & 0 \\\hline - 2 & 1 & 2 & 2 & - 3 \\\hline - 1 & 3 & 0 & - 1 & - 2 \\\hline 0 & 2 & 3 & - 2 & 3 \\\hline 1 & 0 & - 1 & - 2 & - 2 \\\hline 2 & - 2 & - 2 & - 1 & 0 \\\hline 3 & - 3 & 0 & 0 & 1 \\\hline\end{array}

-Use the table above to find f(2)f ^ { \prime } ( - 2 ) if f(x)=h(g(x))f ( x ) = h ( g ( x ) )

A) 4
B) - 1
C) 1
D) - 4
Question
Xg(x)h(x)g(x)h(x)30310212231301202323101222221033001\begin{array} { | l | l | l | l | l | } \hline \mathrm { X } & \mathrm { g } ( \mathrm { x } ) & \mathrm { h } ( \mathrm { x } ) & \mathrm { g } ^ { \prime } ( \mathrm { x } ) & \mathrm { h } ^ { \prime } ( \mathrm { x } ) \\\hline - 3 & 0 & 3 & 1 & 0 \\\hline - 2 & 1 & 2 & 2 & - 3 \\\hline - 1 & 3 & 0 & - 1 & - 2 \\\hline 0 & 2 & 3 & - 2 & 3 \\\hline 1 & 0 & - 1 & - 2 & - 2 \\\hline 2 & - 2 & - 2 & - 1 & 0 \\\hline 3 & - 3 & 0 & 0 & 1 \\\hline\end{array}

-Use the table above to find f(1)f ^ { \prime } ( 1 ) if f(x)=(h(x))3f ( x ) = ( h ( x ) ) ^ { 3 }

A) 3
B) - 3
C) 6
D) - 6
Question
Xg(x)h(x)g(x)h(x)30310212231301202323101222221033001\begin{array} { | l | l | l | l | l | } \hline \mathrm { X } & \mathrm { g } ( \mathrm { x } ) & \mathrm { h } ( \mathrm { x } ) & \mathrm { g } ^ { \prime } ( \mathrm { x } ) & \mathrm { h } ^ { \prime } ( \mathrm { x } ) \\\hline - 3 & 0 & 3 & 1 & 0 \\\hline - 2 & 1 & 2 & 2 & - 3 \\\hline - 1 & 3 & 0 & - 1 & - 2 \\\hline 0 & 2 & 3 & - 2 & 3 \\\hline 1 & 0 & - 1 & - 2 & - 2 \\\hline 2 & - 2 & - 2 & - 1 & 0 \\\hline 3 & - 3 & 0 & 0 & 1 \\\hline\end{array}

-Use the table above to find f(1)f ^ { \prime } ( - 1 ) if f(x)=g(x)f ( x ) = \sqrt { g ( x ) }

A) 32\frac { \sqrt { 3 } } { 2 }
B) 23\frac { 2 } { \sqrt { 3 } }
C) 123\frac { 1 } { 2 \sqrt { 3 } }
D) 123\frac { - 1 } { 2 \sqrt { 3 } }
Question
Xg(x)h(x)g(x)h(x)30310212231301202323101222221033001\begin{array} { | l | l | l | l | l | } \hline \mathrm { X } & \mathrm { g } ( \mathrm { x } ) & \mathrm { h } ( \mathrm { x } ) & \mathrm { g } ^ { \prime } ( \mathrm { x } ) & \mathrm { h } ^ { \prime } ( \mathrm { x } ) \\\hline - 3 & 0 & 3 & 1 & 0 \\\hline - 2 & 1 & 2 & 2 & - 3 \\\hline - 1 & 3 & 0 & - 1 & - 2 \\\hline 0 & 2 & 3 & - 2 & 3 \\\hline 1 & 0 & - 1 & - 2 & - 2 \\\hline 2 & - 2 & - 2 & - 1 & 0 \\\hline 3 & - 3 & 0 & 0 & 1 \\\hline\end{array}

-Use the table above to find f(1)f ^ { \prime } ( - 1 ) if f(x)=h(x2g(x))f ( x ) = h \left( x ^ { 2 } g ( x ) \right)

A) 1
B) - 1
C) 7
D) - 7
Question
Xg(x)h(x)g(x)h(x)30310212231301202323101222221033001\begin{array} { | l | l | l | l | l | } \hline \mathrm { X } & \mathrm { g } ( \mathrm { x } ) & \mathrm { h } ( \mathrm { x } ) & \mathrm { g } ^ { \prime } ( \mathrm { x } ) & \mathrm { h } ^ { \prime } ( \mathrm { x } ) \\\hline - 3 & 0 & 3 & 1 & 0 \\\hline - 2 & 1 & 2 & 2 & - 3 \\\hline - 1 & 3 & 0 & - 1 & - 2 \\\hline 0 & 2 & 3 & - 2 & 3 \\\hline 1 & 0 & - 1 & - 2 & - 2 \\\hline 2 & - 2 & - 2 & - 1 & 0 \\\hline 3 & - 3 & 0 & 0 & 1 \\\hline\end{array}

-Use the table above to find f(1)f ^ { \prime } ( 1 ) if f(x)=h(32x2)f ( x ) = h \left( 3 - 2 x ^ { 2 } \right)

A) 2
B) - 2
C) 8
D) - 8
Question
Find the derivative of f(x)=52e+3x2x5+1x3f ( x ) = 5 - 2 e + 3 x - 2 x ^ { 5 } + \frac { 1 } { \sqrt [ 3 ] { x } }

A) 110x413x13- 1 - 10 x ^ { 4 } - \frac { 1 } { 3 } x ^ { - \frac { 1 } { 3 } }
B) 310x413x133 - 10 x ^ { 4 } - \frac { 1 } { 3 } x ^ { - \frac { 1 } { 3 } }
C) 310x413x433 - 10 x ^ { 4 } - \frac { 1 } { 3 } x ^ { - \frac { 4 } { 3 } }
D) 310x413x233 - 10 x ^ { 4 } - \frac { 1 } { 3 } x ^ { - \frac { 2 } { 3 } }
Question
Find the derivative of f(x)=2x3+3x+4x+5f ( x ) = - 2 x ^ { 3 } + 3 x + 4 \sqrt { x } + 5

A) 6x2+3+2x126 x ^ { 2 } + 3 + 2 x ^ { \frac { 1 } { 2 } }
B) 6x2+3+2x12- 6 x ^ { 2 } + 3 + 2 x ^ { \frac { 1 } { 2 } }
C) 6x2+3+2x126 x ^ { 2 } + 3 + 2 x ^ { - \frac { 1 } { 2 } }
D) 6x2+3+2x12- 6 x ^ { 2 } + 3 + 2 x ^ { - \frac { 1 } { 2 } }
Question
Find the derivative of f(x)=x212x3f ( x ) = \frac { x ^ { 2 } } { 1 - 2 x ^ { 3 } }

A) 2x4+2x(12x3)2\frac { - 2 x ^ { 4 } + 2 x } { \left( 1 - 2 x ^ { 3 } \right) ^ { 2 } }
B) 2x42x(12x3)2\frac { - 2 x ^ { 4 } - 2 x } { \left( 1 - 2 x ^ { 3 } \right) ^ { 2 } }
C) 2x42x(12x3)2\frac { 2 x ^ { 4 } - 2 x } { \left( 1 - 2 x ^ { 3 } \right) ^ { 2 } }
D) 2x4+2x(12x3)2\frac { 2 x ^ { 4 } + 2 x } { \left( 1 - 2 x ^ { 3 } \right) ^ { 2 } }
Question
Find the derivative of f(x)=3+2x45xf ( x ) = \frac { 3 + 2 x } { 4 - 5 x }

A) 23(45x)2\frac { - 23 } { ( 4 - 5 x ) ^ { 2 } }
B) 23(45x)2\frac { 23 } { ( 4 - 5 x ) ^ { 2 } }
C) 7(45x)2\frac { - 7 } { ( 4 - 5 x ) ^ { 2 } }
D) 7(45x)2\frac { 7 } { ( 4 - 5 x ) ^ { 2 } }
Question
Find the derivative of f(x)=(x3+2x)3f ( x ) = ( \sqrt [ 3 ] { x } + 2 \sqrt { x } ) ^ { 3 }
Question
Find the derivative of f(x)=x533x5x3f ( x ) = \frac { \sqrt [ 3 ] { x ^ { 5 } } - 3 x ^ { 5 } } { x ^ { 3 } }

A) 43x356x\frac { 4 } { 3 } x ^ { - \frac { 3 } { 5 } } - 6 x
B) 43x376x\frac { 4 } { 3 } x ^ { - \frac { 3 } { 7 } } - 6 x
C) 43x736x- \frac { 4 } { 3 } x ^ { - \frac { 7 } { 3 } } - 6 x
D) 43x736x\frac { 4 } { 3 } x ^ { - \frac { 7 } { 3 } } - 6 x
Question
Find the derivative of f(x)=(x+2)2(x24)(x+2)f ( x ) = \frac { ( x + 2 ) ^ { 2 } } { \left( x ^ { 2 } - 4 \right) ( x + 2 ) }

A) 1x+2\frac { 1 } { x + 2 }
B) 1(x+2)2\frac { 1 } { ( x + 2 ) ^ { 2 } }
C) 1(x2)2\frac { 1 } { ( x - 2 ) ^ { 2 } }
D) 1(x2)2- \frac { 1 } { ( x - 2 ) ^ { 2 } }
Question
Find the derivative of f(x)=2x+1f ( x ) = | 2 x + 1 |
Question
Find the derivative of f(x)=13xf ( x ) = | 1 - 3 x |
Question
Find the derivative of f(x)={4x1 if x<22x2+3 if x2f ( x ) = \left\{ \begin{array} { c } 4 x - 1 \text { if } x < 2 \\2 x ^ { 2 } + 3 \text { if } x \geq 2\end{array} \right.
Question
Find the derivative of f(x)=245x4f ( x ) = \frac { 2 } { 4 - 5 x ^ { 4 } }

A) 20x3(45x4)2\frac { - 20 x ^ { 3 } } { \left( 4 - 5 x ^ { 4 } \right) ^ { 2 } }
B) 40x3(45x4)2\frac { 40 x ^ { 3 } } { \left( 4 - 5 x ^ { 4 } \right) ^ { 2 } }
C) 20x3(45x4)2\frac { 20 x ^ { 3 } } { \left( 4 - 5 x ^ { 4 } \right) ^ { 2 } }
D) 40x3(45x4)2\frac { - 40 x ^ { 3 } } { \left( 4 - 5 x ^ { 4 } \right) ^ { 2 } }
Question
Differentiate f(x)=(x31x)3f ( x ) = \left( \frac { x ^ { 3 } - 1 } { \sqrt { x } } \right) ^ { 3 } in three ways: (a) with the chain rule, (b) with the quotient rule but not chain rule, (c) without the chain or quotient rules.
Question
Differentiate f(x)=(2x3+1x3)3f ( x ) = \left( \frac { 2 x ^ { 3 } + 1 } { \sqrt [ 3 ] { x } } \right) ^ { 3 } in three ways: (a) with the chain rule, (b) with the quotient rule but not chain rule, (c) without the chain or quotient rules.
Question
Find the derivative of f(x)=(x3+4)6f ( x ) = ( \sqrt [ 3 ] { x } + 4 ) ^ { 6 }

A) 2(x13+4)5x13\frac { 2 \left( x ^ { \frac { 1 } { 3 } } + 4 \right) ^ { 5 } } { x ^ { \frac { 1 } { 3 } } }
B) 2(x13+4)5x23\frac { 2 \left( x ^ { \frac { 1 } { 3 } } + 4 \right) ^ { 5 } } { x ^ { \frac { 2 } { 3 } } }
C) 2(x13+4)52 \left( x ^ { \frac { 1 } { 3 } } + 4 \right) ^ { 5 }
D) 2(x13+4)4x23\frac { 2 \left( x ^ { \frac { 1 } { 3 } } + 4 \right) ^ { 4 } } { x ^ { \frac { 2 } { 3 } } }
Question
Find the derivative of f(x)=2x(4x2+1)7f ( x ) = 2 x \left( 4 x ^ { 2 } + 1 \right) ^ { 7 }

A) (112x2+2)(4x2+1)6\left( 112 x ^ { 2 } + 2 \right) \left( 4 x ^ { 2 } + 1 \right) ^ { 6 }
B) (120x2+2)(4x2+1)7\left( 120 x ^ { 2 } + 2 \right) \left( 4 x ^ { 2 } + 1 \right) ^ { 7 }
C) (120x2+2)(4x2+1)6\left( 120 x ^ { 2 } + 2 \right) \left( 4 x ^ { 2 } + 1 \right) ^ { 6 }
D) 112x2(4x2+1)6112 x ^ { 2 } \left( 4 x ^ { 2 } + 1 \right) ^ { 6 }
Question
Find the derivative of f(x)=2x1x2+2f ( x ) = \frac { 2 x - 1 } { \sqrt { x ^ { 2 } + 2 } }

A) x+4(x2+2)32\frac { - x + 4 } { \left( x ^ { 2 } + 2 \right) ^ { \frac { 3 } { 2 } } }
B) x+4(x2+2)32\frac { x + 4 } { \left( x ^ { 2 } + 2 \right) ^ { \frac { 3 } { 2 } } }
C) x2+4(x2+2)32\frac { x ^ { 2 } + 4 } { \left( x ^ { 2 } + 2 \right) ^ { \frac { 3 } { 2 } } }
D) x4(x2+2)32\frac { - x - 4 } { \left( x ^ { 2 } + 2 \right) ^ { \frac { 3 } { 2 } } }
Question
Find the derivative of f(x)=(3xx2+1)3f ( x ) = \left( 3 x \sqrt { x ^ { 2 } + 1 } \right) ^ { - 3 }
Question
Find the derivative of f(x)=(1x)22x35x+1f ( x ) = \frac { ( 1 - \sqrt { x } ) ^ { 2 } } { 2 x ^ { 3 } - 5 x + 1 }
Question
Find the derivative of f(x)=52x+1f ( x ) = \sqrt { 5 - \sqrt { 2 x + 1 } }
Question
Find the derivative of f(x)=(x33x)2f ( x ) = ( \sqrt [ 3 ] { x } - 3 x ) ^ { - 2 }

A) 18x1323x23(x133x)3\frac { 18 x ^ { \frac { 1 } { 3 } } - 2 } { 3 x ^ { \frac { 2 } { 3 } } \left( x ^ { \frac { 1 } { 3 } } - 3 x \right) ^ { 3 } }
B) 18x1323x13(x133x)3\frac { 18 x ^ { \frac { 1 } { 3 } } - 2 } { 3 x ^ { \frac { 1 } { 3 } } \left( x ^ { \frac { 1 } { 3 } } - 3 x \right) ^ { 3 } }
C) 18x2323x23(x133x)3\frac { 18 x ^ { \frac { 2 } { 3 } } - 2 } { 3 x ^ { \frac { 2 } { 3 } } \left( x ^ { \frac { 1 } { 3 } } - 3 x \right) ^ { 3 } }
D) 18x2322x23(x133x)3\frac { 18 x ^ { \frac { 2 } { 3 } } - 2 } { 2 x ^ { \frac { 2 } { 3 } } \left( x ^ { \frac { 1 } { 3 } } - 3 x \right) ^ { 3 } }
Question
Find the derivative of f(x)=(12x3)3(4x2+1)6f ( x ) = \left( 1 - 2 x ^ { 3 } \right) ^ { 3 } \left( 4 x ^ { 2 } + 1 \right) ^ { 6 }

A) 3(12x3)2(4x2+1)4(4x2+16x+1)3 \left( 1 - 2 x ^ { 3 } \right) ^ { 2 } \left( 4 x ^ { 2 } + 1 \right) ^ { 4 } \left( 4 x ^ { 2 } + 16 x + 1 \right)
B) 3(12x3)2(4x2+1)4(32x4+4x2+16x+1)3 \left( 1 - 2 x ^ { 3 } \right) ^ { 2 } \left( 4 x ^ { 2 } + 1 \right) ^ { 4 } \left( 32 x ^ { 4 } + 4 x ^ { 2 } + 16 x + 1 \right)
C) 3(12x3)2(4x2+1)5(4x2+16x+1)3 \left( 1 - 2 x ^ { 3 } \right) ^ { 2 } \left( 4 x ^ { 2 } + 1 \right) ^ { 5 } \left( 4 x ^ { 2 } + 16 x + 1 \right)
D) 6x(12x3)2(4x2+1)5(28x33x+8)6 x \left( 1 - 2 x ^ { 3 } \right) ^ { 2 } \left( 4 x ^ { 2 } + 1 \right) ^ { 5 } \left( - 28 x ^ { 3 } - 3 x + 8 \right)
Question
Find the derivative of f(x)=2((x2+1)54x)5/2f ( x ) = 2 \left( \left( x ^ { 2 } + 1 \right) ^ { 5 } - 4 x \right) ^ { - 5 / 2 }

A) 50x(x2+1)4((x2+1)54x)52\frac { 50 x \left( x ^ { 2 } + 1 \right) ^ { 4 } } { \left( \left( x ^ { 2 } + 1 \right) ^ { 5 } - 4 x \right) ^ { \frac { 5 } { 2 } } }
B) 2050x(x2+1)4((x2+1)54x)72\frac { 20 - 50 x \left( x ^ { 2 } + 1 \right) ^ { 4 } } { \left( \left( x ^ { 2 } + 1 \right) ^ { 5 } - 4 x \right) ^ { \frac { 7 } { 2 } } }
C) 50x(x2+1)420((x2+1)54x)72\frac { 50 x \left( x ^ { 2 } + 1 \right) ^ { 4 } - 20 } { \left( \left( x ^ { 2 } + 1 \right) ^ { 5 } - 4 x \right) ^ { \frac { 7 } { 2 } } }
D) 2050x(x2+1)4((x2+1)54x)52\frac { 20 - 50 x \left( x ^ { 2 } + 1 \right) ^ { 4 } } { \left( \left( x ^ { 2 } + 1 \right) ^ { 5 } - 4 x \right) ^ { \frac { 5 } { 2 } } }
Question
If f(x)=(xx+2)2f ( x ) = ( x \sqrt { x + 2 } ) ^ { - 2 } , find f(x).f ^ { \prime \prime } ( x ) .
Question
Use implicit differentiation to find dydx\frac { d y } { d x } if xy2+2x3+y2=10x y ^ { 2 } + 2 x ^ { 3 } + y ^ { 2 } = 10

A) 6x2+y22xy+2y\frac { 6 x ^ { 2 } + y ^ { 2 } } { 2 x y + 2 y }
B) 6x2+y22xy+2y\frac { - 6 x ^ { 2 } + y ^ { 2 } } { 2 x y + 2 y }
C) 6x2y22xy+2y\frac { 6 x ^ { 2 } - y ^ { 2 } } { 2 x y + 2 y }
D) 6x2y22xy+2y\frac { - 6 x ^ { 2 } - y ^ { 2 } } { 2 x y + 2 y }
Question
Use implicit differentiation to find dydx\frac { d y } { d x } if 5xy+x2yy2x=105 x y + x ^ { 2 } y - y ^ { 2 } x = 10

A) 105xx2+2xy\frac { 10 } { 5 x - x ^ { 2 } + 2 x y }
B) y2+5y+2xy5xx2+2xy\frac { y ^ { 2 } + 5 y + 2 x y } { 5 x - x ^ { 2 } + 2 x y }
C) y25y5x+x2\frac { y ^ { 2 } - 5 y } { 5 x + x ^ { 2 } }
D) y22xy5y5x+x22xy\frac { y ^ { 2 } - 2 x y - 5 y } { 5 x + x ^ { 2 } - 2 x y }
Question
Use implicit differentiation to find dydx\frac { d y } { d x } if 2y+1=4xy\sqrt { 2 y + 1 } = 4 x y

A) 18y2y+18x2y+1\frac { 1 - 8 y \sqrt { 2 y + 1 } } { 8 x \sqrt { 2 y + 1 } }
B) 14y2y+12x2y+1\frac { 1 - 4 y \sqrt { 2 y + 1 } } { 2 x \sqrt { 2 y + 1 } }
C) 4y2y+114x2y+1\frac { 4 y \sqrt { 2 y + 1 } } { 1 - 4 x \sqrt { 2 y + 1 } }
D) 4y2y+11+2x2y+1\frac { 4 y \sqrt { 2 y + 1 } } { 1 + 2 x \sqrt { 2 y + 1 } }
Question
Find the equation of the tangent lines to the circle x2+y2=4x ^ { 2 } + y ^ { 2 } = 4 at the points with x-coordinate x=1x = 1
Question
Find the equation of the tangent lines to the graph of x2+2y2+3x=3- x ^ { 2 } + 2 y ^ { 2 } + 3 x = 3 at the points with x-coordinate x=2x = 2
Question
Find the derivative of f(x)=(x34)5(5x2)(x+1)3(2+x2)4f ( x ) = \frac { \left( x ^ { 3 } - 4 \right) ^ { 5 } ( 5 x - 2 ) } { ( x + 1 ) ^ { - 3 } \left( 2 + x ^ { 2 } \right) ^ { 4 } }
Question
Find the derivative of f(x)=2x+1(x21)4(x3)3(2+x)f ( x ) = \frac { \sqrt { 2 x + 1 } \left( x ^ { 2 } - 1 \right) ^ { 4 } } { ( x - 3 ) ^ { 3 } ( 2 + x ) }
Question
Find the derivative of f(x)=13+e2xf ( x ) = \frac { 1 } { 3 + e ^ { 2 x } }

A) e2x(3+e2x)2\frac { e ^ { 2 x } } { \left( 3 + e ^ { 2 x } \right) ^ { 2 } }
B) 2e2x(3+e2x)2\frac { 2 e ^ { 2 x } } { \left( 3 + e ^ { 2 x } \right) ^ { 2 } }
C) e2x(3+e2x)2\frac { - e ^ { 2 x } } { \left( 3 + e ^ { 2 x } \right) ^ { 2 } }
D) 2e2x(3+e2x)2\frac { - 2 e ^ { 2 x } } { \left( 3 + e ^ { 2 x } \right) ^ { 2 } }
Question
Find the derivative of f(x)=e5xln(2x2+1)f ( x ) = e ^ { 5 x } \ln \left( 2 x ^ { 2 } + 1 \right)

A) e5xln(2x2+1)+e5xln(2x2+1)e ^ { 5 x } \ln \left( 2 x ^ { 2 } + 1 \right) + \frac { e ^ { 5 x } } { \ln \left( 2 x ^ { 2 } + 1 \right) }
B) e5xln(2x2+1)+e5x2x2+1e ^ { 5 x } \ln \left( 2 x ^ { 2 } + 1 \right) + \frac { e ^ { 5 x } } { 2 x ^ { 2 } + 1 }
C) 5e5xln(2x2+1)+e5x2x2+15 e ^ { 5 x } \ln \left( 2 x ^ { 2 } + 1 \right) + \frac { e ^ { 5 x } } { 2 x ^ { 2 } + 1 }
D) 5e5xln(2x2+1)+4xe5x2x2+15 e ^ { 5 x } \ln \left( 2 x ^ { 2 } + 1 \right) + \frac { 4 x e ^ { 5 x } } { 2 x ^ { 2 } + 1 }
Question
Find the derivative of f(x)=3+x2e2xf ( x ) = \frac { 3 + x ^ { 2 } } { e ^ { 2 x } }

A) 2x22x+6e2x\frac { 2 x ^ { 2 } - 2 x + 6 } { e ^ { 2 x } }
B) x22x+3e2x\frac { x ^ { 2 } - 2 x + 3 } { e ^ { 2 x } }
C) 2x2+2x6e2x\frac { - 2 x ^ { 2 } + 2 x - 6 } { e ^ { 2 x } }
D) x2+2x3e2x\frac { - x ^ { 2 } + 2 x - 3 } { e ^ { 2 x } }
Question
Find the derivative of f(x)=ln(2x2+1)3f ( x ) = \sqrt [ 3 ] { \ln \left( 2 x ^ { 2 } + 1 \right) }

A) 1(6x2+3)ln(2x2+1)3\frac { 1 } { \left( 6 x ^ { 2 } + 3 \right) \sqrt [ 3 ] { \ln \left( 2 x ^ { 2 } + 1 \right) } }
B) 4x(6x2+3)[ln(2x2+1)]23\frac { 4 x } { \left( 6 x ^ { 2 } + 3 \right) \sqrt [ 3 ] { \left[ \ln \left( 2 x ^ { 2 } + 1 \right) \right] ^ { 2 } } }
C) 4x(6x2+3)ln(2x2+1)3\frac { 4 x } { \left( 6 x ^ { 2 } + 3 \right) \sqrt [ 3 ] { \ln \left( 2 x ^ { 2 } + 1 \right) } }
D) 1(6x2+3)[ln(2x2+1)]23\frac { 1 } { \left( 6 x ^ { 2 } + 3 \right) \sqrt [ 3 ] { \left[ \ln \left( 2 x ^ { 2 } + 1 \right) \right] ^ { 2 } } }
Question
Find the derivative of f(x)=e5xln(x2+1)f ( x ) = e ^ { 5 x } \ln \left( x ^ { 2 } + 1 \right)
Question
Find the derivative of f(x)=x3ln(2x2)f ( x ) = x ^ { 3 } \ln \left( 2 x ^ { 2 } \right)

A) 3x2ln(2x2)+12x3 x ^ { 2 } \ln \left( 2 x ^ { 2 } \right) + \frac { 1 } { 2 } x
B) 3x2ln(2x2)+2x3 x ^ { 2 } \ln \left( 2 x ^ { 2 } \right) + 2 x
C) 3x2ln(2x2)+2x23 x ^ { 2 } \ln \left( 2 x ^ { 2 } \right) + 2 x ^ { 2 }
D) 3xln(2x2)+2x23 x \ln \left( 2 x ^ { 2 } \right) + 2 x ^ { 2 }
Question
Find the derivative of f(x)=x2e3xf ( x ) = x ^ { 2 } e ^ { 3 x }

A) 2xe3x+x2e3x2 x e ^ { 3 x } + x ^ { 2 } e ^ { 3 x }
B) 2xe3x+3x2e3x2 x e ^ { 3 x } + 3 x ^ { 2 } e ^ { 3 x }
C) x2e3x+3xe3xx ^ { 2 } e ^ { 3 x } + 3 x e ^ { 3 x }
D) 2e3x+3x2e3x2 e ^ { 3 x } + 3 x ^ { 2 } e ^ { 3 x }
Question
Find the derivative of f(x)=ln(x5x3+2x+1)f ( x ) = \ln \left( \frac { x ^ { 5 } } { x ^ { 3 } + 2 x + 1 } \right)

A) 5x+3x+2x3+2x+1\frac { 5 } { x } + \frac { 3 x + 2 } { x ^ { 3 } + 2 x + 1 }
B) 5x+3x2+2x3+2x+1\frac { 5 } { x } + \frac { 3 x ^ { 2 } + 2 } { x ^ { 3 } + 2 x + 1 }
C) 5x3x2+2x3+2x+1\frac { 5 } { x } - \frac { 3 x ^ { 2 } + 2 } { x ^ { 3 } + 2 x + 1 }
D) 5x3x22x3+2x+1\frac { 5 } { x } - \frac { 3 x ^ { 2 } - 2 } { x ^ { 3 } + 2 x + 1 }
Question
Find the derivative of f(x)=5x+lnxf ( x ) = 5 ^ { x } + \ln \sqrt { x }

A) 5x+1x5 ^ { x } + \frac { 1 } { x }
B) 5xln5+1x5 ^ { x } \ln 5 + \frac { 1 } { x }
C) 5x+12x5 ^ { x } + \frac { 1 } { 2 x }
D) 5xln5+12x5 ^ { x } \ln 5 + \frac { 1 } { 2 x }
Question
Find the derivative of f(x)=xe3x2+5xlnx3f ( x ) = x e ^ { 3 x ^ { 2 } } + 5 x \ln \sqrt [ 3 ] { x }

A) 6x2e3x2+536 x ^ { 2 } e ^ { 3 x ^ { 2 } } + \frac { 5 } { 3 }
B) 6x2e3x2+5lnx3+536 x ^ { 2 } e ^ { 3 x ^ { 2 } } + 5 \ln \sqrt [ 3 ] { x } + \frac { 5 } { 3 }
C) 6x2e3x2+e3x2+536 x ^ { 2 } e ^ { 3 x ^ { 2 } } + e ^ { 3 x ^ { 2 } } + \frac { 5 } { 3 }
D) 6x2e3x2+e3x2+5lnx3+536 x ^ { 2 } e ^ { 3 x ^ { 2 } } + e ^ { 3 x ^ { 2 } } + 5 \ln \sqrt [ 3 ] { x } + \frac { 5 } { 3 }
Question
Find the derivative of f(x)={ln(x+3) if x<14x21 if x1f ( x ) = \left\{ \begin{array} { c l } \ln ( x + 3 ) & \text { if } x < 1 \\4 x ^ { 2 } - 1 & \text { if } x \geq 1\end{array} \right.

A) f(x)={1x+3 if x<14x2+1 if x1f ^ { \prime } ( x ) = \left\{ \begin{array} { c l } \frac { 1 } { x + 3 } & \text { if } x < 1 \\4 x ^ { 2 } + 1 & \text { if } x \geq 1\end{array} \right.
B) f(x)={1x+3 if x<1 DNE  if x=14x if x>1f ^ { \prime } ( x ) = \left\{ \begin{array} { c l } \frac { 1 } { x + 3 } & \text { if } x < 1 \\\text { DNE } & \text { if } x = 1 \\4 x & \text { if } x > 1\end{array} \right.
C) f(x)={1x+3 if x<18x if x1f ^ { \prime } ( x ) = \left\{ \begin{array} { c c } \frac { 1 } { x + 3 } & \text { if } x < 1 \\8 x & \text { if } x \geq 1\end{array} \right.
D) f(x)={1x+3 if x<1 DNE  if x=18x if x>1f ^ { \prime } ( x ) = \left\{ \begin{array} { c l } \frac { 1 } { x + 3 } & \text { if } x < 1 \\\text { DNE } & \text { if } x = 1 \\8 x & \text { if } x > 1\end{array} \right.
Question
Find the derivative of f(x)=e3x(x3+2)5x2(5e2x+1)f ( x ) = \frac { e ^ { 3 x } \left( x ^ { 3 } + 2 \right) ^ { 5 } } { x ^ { 2 } \left( 5 e ^ { 2 x } + 1 \right) }

A) f(x)=e3x(x3+2)5x2(5e2x+1)(3x+5x3+22x10e2x5e2x+1)f ^ { \prime } ( x ) = \frac { e ^ { 3 x } \left( x ^ { 3 } + 2 \right) ^ { 5 } } { x ^ { 2 } \left( 5 e ^ { 2 x } + 1 \right) } \left( 3 x + \frac { 5 } { x ^ { 3 } + 2 } - \frac { 2 } { x } - \frac { 10 e ^ { 2 x } } { 5 e ^ { 2 x } + 1 } \right)
B) f(x)=e3x(x3+2)5x2(5e2x+1)(3e3x+5x2x3+22x10e2x5e2x+1)f ^ { \prime } ( x ) = \frac { e ^ { 3 x } \left( x ^ { 3 } + 2 \right) ^ { 5 } } { x ^ { 2 } \left( 5 e ^ { 2 x } + 1 \right) } \left( 3 e ^ { 3 x } + \frac { 5 x ^ { 2 } } { x ^ { 3 } + 2 } - \frac { 2 } { x } - \frac { 10 e ^ { 2 x } } { 5 e ^ { 2 x } + 1 } \right)
C) f(x)=e3x(x3+2)5x2(5e2x+1)(3+5x2x3+22x10e2x5e2x+1)f ^ { \prime } ( x ) = \frac { e ^ { 3 x } \left( x ^ { 3 } + 2 \right) ^ { 5 } } { x ^ { 2 } \left( 5 e ^ { 2 x } + 1 \right) } \left( 3 + \frac { 5 x ^ { 2 } } { x ^ { 3 } + 2 } - \frac { 2 } { x } - \frac { 10 e ^ { 2 x } } { 5 e ^ { 2 x } + 1 } \right)
D) f(x)=e3x(x3+2)5x2(5e2x+1)(3+15x2x3+22x10e2x5e2x+1)f ^ { \prime } ( x ) = \frac { e ^ { 3 x } \left( x ^ { 3 } + 2 \right) ^ { 5 } } { x ^ { 2 } \left( 5 e ^ { 2 x } + 1 \right) } \left( 3 + \frac { 15 x ^ { 2 } } { x ^ { 3 } + 2 } - \frac { 2 } { x } - \frac { 10 e ^ { 2 x } } { 5 e ^ { 2 x } + 1 } \right)
Question
Find the derivative of f(x)=(x2x1)xf ( x ) = \left( \frac { x ^ { 2 } } { x - 1 } \right) ^ { x }

A) f(x)=(x2x1)x(2lnx+1ln(x1))f ^ { \prime } ( x ) = \left( \frac { x ^ { 2 } } { x - 1 } \right) ^ { x } ( 2 \ln x + 1 - \ln ( x - 1 ) )
B) f(x)=(x2x1)x(2lnx+2ln(x1)xx1)f ^ { \prime } ( x ) = \left( \frac { x ^ { 2 } } { x - 1 } \right) ^ { x } \left( 2 \ln x + 2 - \ln ( x - 1 ) - \frac { x } { x - 1 } \right)
C) f(x)=(x2x1)x(2lnxln(x1)xx1)f ^ { \prime } ( x ) = \left( \frac { x ^ { 2 } } { x - 1 } \right) ^ { x } \left( 2 \ln x - \ln ( x - 1 ) - \frac { x } { x - 1 } \right)
D) f(x)=(x2x1)x(2ln(x1)xx1)f ^ { \prime } ( x ) = \left( \frac { x ^ { 2 } } { x - 1 } \right) ^ { x } \left( 2 - \ln ( x - 1 ) - \frac { x } { x - 1 } \right)
Question
Find the derivative of f(x)=sin2x+3cos2xf ( x ) = \sin ^ { 2 } x + 3 \cos ^ { 2 } x

A) 2sinx+6cosx2 \sin x + 6 \cos x
B) 2sin2x2 \sin 2 x
C) 4sin2x4 \sin 2 x
D) 2sin2x- 2 \sin 2 x
Question
Find the derivative of f(x)=2xtanx+2xf ( x ) = 2 ^ { x } \tan x + 2 x

A) x2x1tanx+2xsec2x+2x 2 ^ { x - 1 } \tan x + 2 ^ { x } \sec ^ { 2 } x + 2
B) x2x1tanx+2xsecxtanx+2x 2 ^ { x - 1 } \tan x + 2 ^ { x } \sec x \tan x + 2
C) 2xln2tanx+2xsec2x+22 ^ { x } \ln 2 \tan x + 2 ^ { x } \sec ^ { 2 } x + 2
D) 2xln2tanx+2xsecxtanx+22 ^ { x } \ln 2 \tan x + 2 ^ { x } \sec x \tan x + 2
Question
Find the derivative of f(x)=x2ln(3x2)sin3xf ( x ) = \frac { x ^ { 2 } \ln \left( 3 x ^ { 2 } \right) } { \sin 3 x }
Question
Find the derivative of f(x)=3x2tan1x3f ( x ) = 3 x ^ { 2 } \tan ^ { - 1 } x ^ { 3 }

A) 6xtan1x3+3x21+x96 x \tan ^ { - 1 } x ^ { 3 } + \frac { 3 x ^ { 2 } } { 1 + x ^ { 9 } }
B) 6xtan1x3+3x21+x66 x \tan ^ { - 1 } x ^ { 3 } + \frac { 3 x ^ { 2 } } { 1 + x ^ { 6 } }
C) 6xtan1x3+9x21+x66 x \tan ^ { - 1 } x ^ { 3 } + \frac { 9 x ^ { 2 } } { 1 + x ^ { 6 } }
D) 6xtan1x3+9x41+x66 x \tan ^ { - 1 } x ^ { 3 } + \frac { 9 x ^ { 4 } } { 1 + x ^ { 6 } }
Question
Find the derivative of f(x)=2xsin2xcos2xf ( x ) = 2 x \sqrt { \sin 2 x \cos 2 x }
Unlock Deck
Sign up to unlock the cards in this deck!
Unlock Deck
Unlock Deck
1/94
auto play flashcards
Play
simple tutorial
Full screen (f)
exit full mode
Deck 2: Derivatives
1
Suppose that h(t)h ( t ) represents the height, in feet, of a person tt years old. In real world terms, what does h(10)h ( 10 ) represent? What is its unit? What does h(t)h ^ { \prime } ( t ) represents and what is its unit?
h(10)h ( 10 ) represents the height of a 10-year old person. Its unit is feet.
h(t)h ^ { \prime } ( t ) represents the rate of change of the height when a person is t years old. Its unit is feet per year.
2
The function f(x)=92x+x2f ( x ) = 9 - 2 x + x ^ { 2 } is both continuous and differentiable at x=0x = 0 Write these facts as limit statements.
Since f is continuous at x = 0, limx0(92x+x2)=f(0)=9\lim _ { x \rightarrow 0 } \left( 9 - 2 x + x ^ { 2 } \right) = f ( 0 ) = 9
Since f is differentiable at x = 0, limh02h+2xh+h2h\lim _ { h \rightarrow 0 } \frac { - 2 h + 2 x h + h ^ { 2 } } { h } exists.
Note that there are alternate ways of writing the answer
3
Suppose f(1)=2,limx1f(x)=2, and limx1+f(x)=2,limx1f(x)f(1)x1=2f ( 1 ) = 2 , \lim _ { x \rightarrow 1 ^ { - } } f ( x ) = 2 , \text { and } \lim _ { x \rightarrow 1 ^ { + } } f ( x ) = 2 , \lim _ { x \rightarrow 1 ^ { - } } \frac { f ( x ) - f ( 1 ) } { x - 1 } = - 2 and limx1+f(x)f(1)x1=1\lim _ { x \rightarrow 1 ^ { + } } \frac { f ( x ) - f ( 1 ) } { x - 1 } = 1 Is ff continuous and/or differentiable at x=1?x = 1 ?

A) f is not continuous but differentiable at x = 1
B) f is neither continuous nor differentiable at x = 1
C) f is continuous at but not differentiable at x = 1
D) f is both continuous and differentiable at x = 1
C
4
Suppose f(1)=2,limx1f(x)=2, and limx1+f(x)=2,limh0f(1+h)f(1)h=2f ( 1 ) = 2 , \lim _ { x \rightarrow 1 ^ { - } } f ( x ) = 2 , \text { and } \lim _ { x \rightarrow 1 ^ { + } } f ( x ) = 2 , \lim _ { h \rightarrow 0 ^ { - } } \frac { f ( 1 + h ) - f ( 1 ) } { h } = - 2 and limh0+f(1+h)f(1)h=2\lim _ { h \rightarrow 0 ^ { + } } \frac { f ( 1 + h ) - f ( 1 ) } { h } = - 2 Is ff continuous and/or differentiable at x=1?x = 1 ?

A) f is not continuous but differentiable at x = 1
B) f is neither continuous nor differentiable at x = 1
C) f is continuous but not differentiable at x = 1
D) f is both continuous and differentiable at x = 1
Unlock Deck
Unlock for access to all 94 flashcards in this deck.
Unlock Deck
k this deck
5
Use the definition of derivative: limh0f(x+h)f(x)h\lim _ { h \rightarrow 0 } \frac { f ( x + h ) - f ( x ) } { h } to find f(1), if f(x)=x2f ^ { \prime } ( - 1 ) \text {, if } f ( x ) = x ^ { 2 }
Unlock Deck
Unlock for access to all 94 flashcards in this deck.
Unlock Deck
k this deck
6
Use the definition of derivative: limh0f(x+h)f(x)h\lim _ { h \rightarrow 0 } \frac { f ( x + h ) - f ( x ) } { h } to find f(2), if f(x)=2xf ^ { \prime } ( - 2 ) \text {, if } f ( x ) = \frac { 2 } { x }
Unlock Deck
Unlock for access to all 94 flashcards in this deck.
Unlock Deck
k this deck
7
Use the definition of derivative: limh0f(x+h)f(x)h\lim _ { h \rightarrow 0 } \frac { f ( x + h ) - f ( x ) } { h } to find f(1), if f(x)=x+1x2f ^ { \prime } ( 1 ) \text {, if } f ( x ) = \frac { x + 1 } { x - 2 }
Unlock Deck
Unlock for access to all 94 flashcards in this deck.
Unlock Deck
k this deck
8
Use the definition of derivative: limzcf(z)f(c)zc\lim _ { z \rightarrow c } \frac { f ( z ) - f ( c ) } { z - c } to find f(1), if f(x)=x2f ^ { \prime } ( - 1 ) \text {, if } f ( x ) = x ^ { 2 }
Unlock Deck
Unlock for access to all 94 flashcards in this deck.
Unlock Deck
k this deck
9
Use the definition of derivative: limzcf(z)f(c)zc\lim _ { z \rightarrow c } \frac { f ( z ) - f ( c ) } { z - c } to find f(2), if f(x)=2xf ^ { \prime } ( - 2 ) \text {, if } f ( x ) = \frac { 2 } { x }
Unlock Deck
Unlock for access to all 94 flashcards in this deck.
Unlock Deck
k this deck
10
Use the definition of derivative: limzcf(z)f(c)zc\lim _ { z \rightarrow c } \frac { f ( z ) - f ( c ) } { z - c } to find f(1), if f(x)=x+1x2f ^ { \prime } ( 1 ) \text {, if } f ( x ) = \frac { x + 1 } { x - 2 }
Unlock Deck
Unlock for access to all 94 flashcards in this deck.
Unlock Deck
k this deck
11
Use the definition of derivative: limh0f(x+h)f(x)h\lim _ { h \rightarrow 0 } \frac { f ( x + h ) - f ( x ) } { h } to find f(x), if f(x)=3x+1f ^ { \prime } ( x ) , \text { if } f ( x ) = \frac { 3 } { x + 1 }
Unlock Deck
Unlock for access to all 94 flashcards in this deck.
Unlock Deck
k this deck
12
Use the definition of derivative: limh0f(x+h)f(x)h\lim _ { h \rightarrow 0 } \frac { f ( x + h ) - f ( x ) } { h } to find f(x), if f(x)=2xf ^ { \prime } ( x ) , \text { if } f ( x ) = 2 \sqrt { x }
Unlock Deck
Unlock for access to all 94 flashcards in this deck.
Unlock Deck
k this deck
13
Use the definition of derivative: limh0f(x+h)f(x)h\lim _ { h \rightarrow 0 } \frac { f ( x + h ) - f ( x ) } { h } to find f(x), if f(x)=1x2f ^ { \prime } ( x ) \text {, if } f ( x ) = \frac { 1 } { x ^ { 2 } }
Unlock Deck
Unlock for access to all 94 flashcards in this deck.
Unlock Deck
k this deck
14
Use the definition of derivative: limh0f(x+h)f(x)h\lim _ { h \rightarrow 0 } \frac { f ( x + h ) - f ( x ) } { h } to find f(x), if f(x)=x+1f ^ { \prime } ( x ) , \text { if } f ( x ) = \sqrt { x + 1 }
Unlock Deck
Unlock for access to all 94 flashcards in this deck.
Unlock Deck
k this deck
15
Given f(x)={2x if x<1x3 if x1f ( x ) = \left\{ \begin{array} { l } - 2 x \text { if } x < 1 \\x - 3 \text { if } x \geq 1\end{array} \right. , is ff continuous and/or differentiable at x=1?x = 1 ? Explain.

A) f is not continuous but differentiable at x = 1
B) f is neither continuous nor differentiable at x = 1
C) f is continuous but not differentiable at x = 1
D) f is both continuous and differentiable at x = 1
Unlock Deck
Unlock for access to all 94 flashcards in this deck.
Unlock Deck
k this deck
16
Given f(x)={x22 if x<22x+1 if x2f ( x ) = \left\{ \begin{array} { l } x ^ { 2 } - 2 \text { if } x < 2 \\2 x + 1 \text { if } x \geq 2\end{array} \right. , is ff continuous and/or differentiable at x=2?x = 2 ? Explain.

A) f is continuous but not differentiable at x = 2
B) f is differentiable but not continuous at x = 2
C) f is neither continuous nor differentiable at x = 2
D) f is both continuous and differentiable at x = 2
Unlock Deck
Unlock for access to all 94 flashcards in this deck.
Unlock Deck
k this deck
17
Use the Intermediate Value Theorem to show that f(x)=x22f ( x ) = x ^ { 2 } - 2 has at least one zero on [0, 2].
Unlock Deck
Unlock for access to all 94 flashcards in this deck.
Unlock Deck
k this deck
18
Use the Intermediate Value Theorem to show that f(x)=x3+2f ( x ) = x ^ { 3 } + 2 has at least one zero on [- 2, 1].
Unlock Deck
Unlock for access to all 94 flashcards in this deck.
Unlock Deck
k this deck
19
Suppose ff is a piecewise-defined function, equal to g(x) if x<3, and h(x) if x3g ( x ) \text { if } x < 3 \text {, and } h ( x ) \text { if } x \geq 3 \text {, } where g and hg \text { and } h are continuous and differentiable everywhere. If g(3)=h(3)g ^ { \prime } ( 3 ) = h ^ { \prime } ( 3 ) is the function ff differentiable at x=3?x = 3 ? Explain why or why not.
Unlock Deck
Unlock for access to all 94 flashcards in this deck.
Unlock Deck
k this deck
20
Suppose f,g and hf , g \text { and } h are functions with values f(1)=3,g(1)=2,f(1)=0,g(1)=3f ( 1 ) = - 3 , g ( 1 ) = 2 , f ^ { \prime } ( 1 ) = 0 , g ^ { \prime } ( 1 ) = 3 \text {. } Find (fg)(1)( f g ) ^ { \prime } ( 1 )

A) 7
B) 9
C) - 9
D) - 7
Unlock Deck
Unlock for access to all 94 flashcards in this deck.
Unlock Deck
k this deck
21
Suppose f,g and hf , g \text { and } h are functions with values f(1)=3,g(1)=2,f(1)=0,g(1)=3f ( 1 ) = - 3 , g ( 1 ) = 2 , f ^ { \prime } ( 1 ) = 0 , g ^ { \prime } ( 1 ) = 3 \text {. } Find (2f5g)(1)( 2 f - 5 g )^{\prime} ( 1 )

A) 15
B) - 12
C) 12
D) - 15
Unlock Deck
Unlock for access to all 94 flashcards in this deck.
Unlock Deck
k this deck
22
Suppose f,g and hf , g \text { and } h are functions with values f(1)=3,g(1)=2,f(1)=0,g(1)=3f ( 1 ) = - 3 , g ( 1 ) = 2 , f ^ { \prime } ( 1 ) = 0 , g ^ { \prime } ( 1 ) = 3 \text {. } Find (gf)(1)\left( \frac { g } { f } \right) ^ { \prime } ( 1 )

A) 3
B) 94- \frac { 9 } { 4 }
C) - 1
D) 1
Unlock Deck
Unlock for access to all 94 flashcards in this deck.
Unlock Deck
k this deck
23
Find constants a and ba \text { and } b so that f(x)={ax+b if x<1bx2+1 if x1f ( x ) = \left\{ \begin{array} { l l } a x + b & \text { if } x < 1 \\b x ^ { 2 } + 1 & \text { if } x \geq 1\end{array} \right. , is continuous and differentiable everywhere?

A) a=2,b=1a = 2 , b = 1
B) a=1,b=1a = 1 , b = 1
C) a=1,b=12a = 1 , b = \frac { - 1 } { 2 }
D) a=1,b=12a = 1 , b = \frac { 1 } { 2 }
Unlock Deck
Unlock for access to all 94 flashcards in this deck.
Unlock Deck
k this deck
24
Xg(x)h(x)g(x)h(x)30310212231301202323101222221033001\begin{array} { | l | l | l | l | l | } \hline \mathrm { X } & \mathrm { g } ( \mathrm { x } ) & \mathrm { h } ( \mathrm { x } ) & \mathrm { g } ^ { \prime } ( \mathrm { x } ) & \mathrm { h } ^ { \prime } ( \mathrm { x } ) \\\hline - 3 & 0 & 3 & 1 & 0 \\\hline - 2 & 1 & 2 & 2 & - 3 \\\hline - 1 & 3 & 0 & - 1 & - 2 \\\hline 0 & 2 & 3 & - 2 & 3 \\\hline 1 & 0 & - 1 & - 2 & - 2 \\\hline 2 & - 2 & - 2 & - 1 & 0 \\\hline 3 & - 3 & 0 & 0 & 1 \\\hline\end{array}

-Use the table above to find f(3)f ^ { \prime } ( 3 ) if f(x)=5g(x)4h(x)f ( x ) = 5 g ( x ) - 4 h ( x )

A) 4
B) - 1
C) 1
D) - 4
Unlock Deck
Unlock for access to all 94 flashcards in this deck.
Unlock Deck
k this deck
25
Xg(x)h(x)g(x)h(x)30310212231301202323101222221033001\begin{array} { | l | l | l | l | l | } \hline \mathrm { X } & \mathrm { g } ( \mathrm { x } ) & \mathrm { h } ( \mathrm { x } ) & \mathrm { g } ^ { \prime } ( \mathrm { x } ) & \mathrm { h } ^ { \prime } ( \mathrm { x } ) \\\hline - 3 & 0 & 3 & 1 & 0 \\\hline - 2 & 1 & 2 & 2 & - 3 \\\hline - 1 & 3 & 0 & - 1 & - 2 \\\hline 0 & 2 & 3 & - 2 & 3 \\\hline 1 & 0 & - 1 & - 2 & - 2 \\\hline 2 & - 2 & - 2 & - 1 & 0 \\\hline 3 & - 3 & 0 & 0 & 1 \\\hline\end{array}

-Use the table above to find f(2)f ^ { \prime } ( 2 ) if f(x)=2g(x)h(x)f ( x ) = \frac { 2 g ( x ) } { h ( x ) }

A) 4
B) - 1
C) 1
D) - 4
Unlock Deck
Unlock for access to all 94 flashcards in this deck.
Unlock Deck
k this deck
26
Xg(x)h(x)g(x)h(x)30310212231301202323101222221033001\begin{array} { | l | l | l | l | l | } \hline \mathrm { X } & \mathrm { g } ( \mathrm { x } ) & \mathrm { h } ( \mathrm { x } ) & \mathrm { g } ^ { \prime } ( \mathrm { x } ) & \mathrm { h } ^ { \prime } ( \mathrm { x } ) \\\hline - 3 & 0 & 3 & 1 & 0 \\\hline - 2 & 1 & 2 & 2 & - 3 \\\hline - 1 & 3 & 0 & - 1 & - 2 \\\hline 0 & 2 & 3 & - 2 & 3 \\\hline 1 & 0 & - 1 & - 2 & - 2 \\\hline 2 & - 2 & - 2 & - 1 & 0 \\\hline 3 & - 3 & 0 & 0 & 1 \\\hline\end{array}

-Use the table above to find f(1)f ^ { \prime } ( - 1 ) if f(x)=g(x)h(x)+1g(x)f ( x ) = \frac { g ( x ) h ( x ) + 1 } { g ( x ) }

A) 19/9
B) - 19/9
C) 17/9
D) - 17/9
Unlock Deck
Unlock for access to all 94 flashcards in this deck.
Unlock Deck
k this deck
27
Xg(x)h(x)g(x)h(x)30310212231301202323101222221033001\begin{array} { | l | l | l | l | l | } \hline \mathrm { X } & \mathrm { g } ( \mathrm { x } ) & \mathrm { h } ( \mathrm { x } ) & \mathrm { g } ^ { \prime } ( \mathrm { x } ) & \mathrm { h } ^ { \prime } ( \mathrm { x } ) \\\hline - 3 & 0 & 3 & 1 & 0 \\\hline - 2 & 1 & 2 & 2 & - 3 \\\hline - 1 & 3 & 0 & - 1 & - 2 \\\hline 0 & 2 & 3 & - 2 & 3 \\\hline 1 & 0 & - 1 & - 2 & - 2 \\\hline 2 & - 2 & - 2 & - 1 & 0 \\\hline 3 & - 3 & 0 & 0 & 1 \\\hline\end{array}

-Use the table above to find f(2)f ^ { \prime } ( - 2 ) if f(x)=g(h(x))f ( x ) = g ( h ( x ) )

A) - 3
B) 3
C) - 1
D) 1
Unlock Deck
Unlock for access to all 94 flashcards in this deck.
Unlock Deck
k this deck
28
Xg(x)h(x)g(x)h(x)30310212231301202323101222221033001\begin{array} { | l | l | l | l | l | } \hline \mathrm { X } & \mathrm { g } ( \mathrm { x } ) & \mathrm { h } ( \mathrm { x } ) & \mathrm { g } ^ { \prime } ( \mathrm { x } ) & \mathrm { h } ^ { \prime } ( \mathrm { x } ) \\\hline - 3 & 0 & 3 & 1 & 0 \\\hline - 2 & 1 & 2 & 2 & - 3 \\\hline - 1 & 3 & 0 & - 1 & - 2 \\\hline 0 & 2 & 3 & - 2 & 3 \\\hline 1 & 0 & - 1 & - 2 & - 2 \\\hline 2 & - 2 & - 2 & - 1 & 0 \\\hline 3 & - 3 & 0 & 0 & 1 \\\hline\end{array}

-Use the table above to find f(2)f ^ { \prime } ( - 2 ) if f(x)=h(g(x))f ( x ) = h ( g ( x ) )

A) 4
B) - 1
C) 1
D) - 4
Unlock Deck
Unlock for access to all 94 flashcards in this deck.
Unlock Deck
k this deck
29
Xg(x)h(x)g(x)h(x)30310212231301202323101222221033001\begin{array} { | l | l | l | l | l | } \hline \mathrm { X } & \mathrm { g } ( \mathrm { x } ) & \mathrm { h } ( \mathrm { x } ) & \mathrm { g } ^ { \prime } ( \mathrm { x } ) & \mathrm { h } ^ { \prime } ( \mathrm { x } ) \\\hline - 3 & 0 & 3 & 1 & 0 \\\hline - 2 & 1 & 2 & 2 & - 3 \\\hline - 1 & 3 & 0 & - 1 & - 2 \\\hline 0 & 2 & 3 & - 2 & 3 \\\hline 1 & 0 & - 1 & - 2 & - 2 \\\hline 2 & - 2 & - 2 & - 1 & 0 \\\hline 3 & - 3 & 0 & 0 & 1 \\\hline\end{array}

-Use the table above to find f(1)f ^ { \prime } ( 1 ) if f(x)=(h(x))3f ( x ) = ( h ( x ) ) ^ { 3 }

A) 3
B) - 3
C) 6
D) - 6
Unlock Deck
Unlock for access to all 94 flashcards in this deck.
Unlock Deck
k this deck
30
Xg(x)h(x)g(x)h(x)30310212231301202323101222221033001\begin{array} { | l | l | l | l | l | } \hline \mathrm { X } & \mathrm { g } ( \mathrm { x } ) & \mathrm { h } ( \mathrm { x } ) & \mathrm { g } ^ { \prime } ( \mathrm { x } ) & \mathrm { h } ^ { \prime } ( \mathrm { x } ) \\\hline - 3 & 0 & 3 & 1 & 0 \\\hline - 2 & 1 & 2 & 2 & - 3 \\\hline - 1 & 3 & 0 & - 1 & - 2 \\\hline 0 & 2 & 3 & - 2 & 3 \\\hline 1 & 0 & - 1 & - 2 & - 2 \\\hline 2 & - 2 & - 2 & - 1 & 0 \\\hline 3 & - 3 & 0 & 0 & 1 \\\hline\end{array}

-Use the table above to find f(1)f ^ { \prime } ( - 1 ) if f(x)=g(x)f ( x ) = \sqrt { g ( x ) }

A) 32\frac { \sqrt { 3 } } { 2 }
B) 23\frac { 2 } { \sqrt { 3 } }
C) 123\frac { 1 } { 2 \sqrt { 3 } }
D) 123\frac { - 1 } { 2 \sqrt { 3 } }
Unlock Deck
Unlock for access to all 94 flashcards in this deck.
Unlock Deck
k this deck
31
Xg(x)h(x)g(x)h(x)30310212231301202323101222221033001\begin{array} { | l | l | l | l | l | } \hline \mathrm { X } & \mathrm { g } ( \mathrm { x } ) & \mathrm { h } ( \mathrm { x } ) & \mathrm { g } ^ { \prime } ( \mathrm { x } ) & \mathrm { h } ^ { \prime } ( \mathrm { x } ) \\\hline - 3 & 0 & 3 & 1 & 0 \\\hline - 2 & 1 & 2 & 2 & - 3 \\\hline - 1 & 3 & 0 & - 1 & - 2 \\\hline 0 & 2 & 3 & - 2 & 3 \\\hline 1 & 0 & - 1 & - 2 & - 2 \\\hline 2 & - 2 & - 2 & - 1 & 0 \\\hline 3 & - 3 & 0 & 0 & 1 \\\hline\end{array}

-Use the table above to find f(1)f ^ { \prime } ( - 1 ) if f(x)=h(x2g(x))f ( x ) = h \left( x ^ { 2 } g ( x ) \right)

A) 1
B) - 1
C) 7
D) - 7
Unlock Deck
Unlock for access to all 94 flashcards in this deck.
Unlock Deck
k this deck
32
Xg(x)h(x)g(x)h(x)30310212231301202323101222221033001\begin{array} { | l | l | l | l | l | } \hline \mathrm { X } & \mathrm { g } ( \mathrm { x } ) & \mathrm { h } ( \mathrm { x } ) & \mathrm { g } ^ { \prime } ( \mathrm { x } ) & \mathrm { h } ^ { \prime } ( \mathrm { x } ) \\\hline - 3 & 0 & 3 & 1 & 0 \\\hline - 2 & 1 & 2 & 2 & - 3 \\\hline - 1 & 3 & 0 & - 1 & - 2 \\\hline 0 & 2 & 3 & - 2 & 3 \\\hline 1 & 0 & - 1 & - 2 & - 2 \\\hline 2 & - 2 & - 2 & - 1 & 0 \\\hline 3 & - 3 & 0 & 0 & 1 \\\hline\end{array}

-Use the table above to find f(1)f ^ { \prime } ( 1 ) if f(x)=h(32x2)f ( x ) = h \left( 3 - 2 x ^ { 2 } \right)

A) 2
B) - 2
C) 8
D) - 8
Unlock Deck
Unlock for access to all 94 flashcards in this deck.
Unlock Deck
k this deck
33
Find the derivative of f(x)=52e+3x2x5+1x3f ( x ) = 5 - 2 e + 3 x - 2 x ^ { 5 } + \frac { 1 } { \sqrt [ 3 ] { x } }

A) 110x413x13- 1 - 10 x ^ { 4 } - \frac { 1 } { 3 } x ^ { - \frac { 1 } { 3 } }
B) 310x413x133 - 10 x ^ { 4 } - \frac { 1 } { 3 } x ^ { - \frac { 1 } { 3 } }
C) 310x413x433 - 10 x ^ { 4 } - \frac { 1 } { 3 } x ^ { - \frac { 4 } { 3 } }
D) 310x413x233 - 10 x ^ { 4 } - \frac { 1 } { 3 } x ^ { - \frac { 2 } { 3 } }
Unlock Deck
Unlock for access to all 94 flashcards in this deck.
Unlock Deck
k this deck
34
Find the derivative of f(x)=2x3+3x+4x+5f ( x ) = - 2 x ^ { 3 } + 3 x + 4 \sqrt { x } + 5

A) 6x2+3+2x126 x ^ { 2 } + 3 + 2 x ^ { \frac { 1 } { 2 } }
B) 6x2+3+2x12- 6 x ^ { 2 } + 3 + 2 x ^ { \frac { 1 } { 2 } }
C) 6x2+3+2x126 x ^ { 2 } + 3 + 2 x ^ { - \frac { 1 } { 2 } }
D) 6x2+3+2x12- 6 x ^ { 2 } + 3 + 2 x ^ { - \frac { 1 } { 2 } }
Unlock Deck
Unlock for access to all 94 flashcards in this deck.
Unlock Deck
k this deck
35
Find the derivative of f(x)=x212x3f ( x ) = \frac { x ^ { 2 } } { 1 - 2 x ^ { 3 } }

A) 2x4+2x(12x3)2\frac { - 2 x ^ { 4 } + 2 x } { \left( 1 - 2 x ^ { 3 } \right) ^ { 2 } }
B) 2x42x(12x3)2\frac { - 2 x ^ { 4 } - 2 x } { \left( 1 - 2 x ^ { 3 } \right) ^ { 2 } }
C) 2x42x(12x3)2\frac { 2 x ^ { 4 } - 2 x } { \left( 1 - 2 x ^ { 3 } \right) ^ { 2 } }
D) 2x4+2x(12x3)2\frac { 2 x ^ { 4 } + 2 x } { \left( 1 - 2 x ^ { 3 } \right) ^ { 2 } }
Unlock Deck
Unlock for access to all 94 flashcards in this deck.
Unlock Deck
k this deck
36
Find the derivative of f(x)=3+2x45xf ( x ) = \frac { 3 + 2 x } { 4 - 5 x }

A) 23(45x)2\frac { - 23 } { ( 4 - 5 x ) ^ { 2 } }
B) 23(45x)2\frac { 23 } { ( 4 - 5 x ) ^ { 2 } }
C) 7(45x)2\frac { - 7 } { ( 4 - 5 x ) ^ { 2 } }
D) 7(45x)2\frac { 7 } { ( 4 - 5 x ) ^ { 2 } }
Unlock Deck
Unlock for access to all 94 flashcards in this deck.
Unlock Deck
k this deck
37
Find the derivative of f(x)=(x3+2x)3f ( x ) = ( \sqrt [ 3 ] { x } + 2 \sqrt { x } ) ^ { 3 }
Unlock Deck
Unlock for access to all 94 flashcards in this deck.
Unlock Deck
k this deck
38
Find the derivative of f(x)=x533x5x3f ( x ) = \frac { \sqrt [ 3 ] { x ^ { 5 } } - 3 x ^ { 5 } } { x ^ { 3 } }

A) 43x356x\frac { 4 } { 3 } x ^ { - \frac { 3 } { 5 } } - 6 x
B) 43x376x\frac { 4 } { 3 } x ^ { - \frac { 3 } { 7 } } - 6 x
C) 43x736x- \frac { 4 } { 3 } x ^ { - \frac { 7 } { 3 } } - 6 x
D) 43x736x\frac { 4 } { 3 } x ^ { - \frac { 7 } { 3 } } - 6 x
Unlock Deck
Unlock for access to all 94 flashcards in this deck.
Unlock Deck
k this deck
39
Find the derivative of f(x)=(x+2)2(x24)(x+2)f ( x ) = \frac { ( x + 2 ) ^ { 2 } } { \left( x ^ { 2 } - 4 \right) ( x + 2 ) }

A) 1x+2\frac { 1 } { x + 2 }
B) 1(x+2)2\frac { 1 } { ( x + 2 ) ^ { 2 } }
C) 1(x2)2\frac { 1 } { ( x - 2 ) ^ { 2 } }
D) 1(x2)2- \frac { 1 } { ( x - 2 ) ^ { 2 } }
Unlock Deck
Unlock for access to all 94 flashcards in this deck.
Unlock Deck
k this deck
40
Find the derivative of f(x)=2x+1f ( x ) = | 2 x + 1 |
Unlock Deck
Unlock for access to all 94 flashcards in this deck.
Unlock Deck
k this deck
41
Find the derivative of f(x)=13xf ( x ) = | 1 - 3 x |
Unlock Deck
Unlock for access to all 94 flashcards in this deck.
Unlock Deck
k this deck
42
Find the derivative of f(x)={4x1 if x<22x2+3 if x2f ( x ) = \left\{ \begin{array} { c } 4 x - 1 \text { if } x < 2 \\2 x ^ { 2 } + 3 \text { if } x \geq 2\end{array} \right.
Unlock Deck
Unlock for access to all 94 flashcards in this deck.
Unlock Deck
k this deck
43
Find the derivative of f(x)=245x4f ( x ) = \frac { 2 } { 4 - 5 x ^ { 4 } }

A) 20x3(45x4)2\frac { - 20 x ^ { 3 } } { \left( 4 - 5 x ^ { 4 } \right) ^ { 2 } }
B) 40x3(45x4)2\frac { 40 x ^ { 3 } } { \left( 4 - 5 x ^ { 4 } \right) ^ { 2 } }
C) 20x3(45x4)2\frac { 20 x ^ { 3 } } { \left( 4 - 5 x ^ { 4 } \right) ^ { 2 } }
D) 40x3(45x4)2\frac { - 40 x ^ { 3 } } { \left( 4 - 5 x ^ { 4 } \right) ^ { 2 } }
Unlock Deck
Unlock for access to all 94 flashcards in this deck.
Unlock Deck
k this deck
44
Differentiate f(x)=(x31x)3f ( x ) = \left( \frac { x ^ { 3 } - 1 } { \sqrt { x } } \right) ^ { 3 } in three ways: (a) with the chain rule, (b) with the quotient rule but not chain rule, (c) without the chain or quotient rules.
Unlock Deck
Unlock for access to all 94 flashcards in this deck.
Unlock Deck
k this deck
45
Differentiate f(x)=(2x3+1x3)3f ( x ) = \left( \frac { 2 x ^ { 3 } + 1 } { \sqrt [ 3 ] { x } } \right) ^ { 3 } in three ways: (a) with the chain rule, (b) with the quotient rule but not chain rule, (c) without the chain or quotient rules.
Unlock Deck
Unlock for access to all 94 flashcards in this deck.
Unlock Deck
k this deck
46
Find the derivative of f(x)=(x3+4)6f ( x ) = ( \sqrt [ 3 ] { x } + 4 ) ^ { 6 }

A) 2(x13+4)5x13\frac { 2 \left( x ^ { \frac { 1 } { 3 } } + 4 \right) ^ { 5 } } { x ^ { \frac { 1 } { 3 } } }
B) 2(x13+4)5x23\frac { 2 \left( x ^ { \frac { 1 } { 3 } } + 4 \right) ^ { 5 } } { x ^ { \frac { 2 } { 3 } } }
C) 2(x13+4)52 \left( x ^ { \frac { 1 } { 3 } } + 4 \right) ^ { 5 }
D) 2(x13+4)4x23\frac { 2 \left( x ^ { \frac { 1 } { 3 } } + 4 \right) ^ { 4 } } { x ^ { \frac { 2 } { 3 } } }
Unlock Deck
Unlock for access to all 94 flashcards in this deck.
Unlock Deck
k this deck
47
Find the derivative of f(x)=2x(4x2+1)7f ( x ) = 2 x \left( 4 x ^ { 2 } + 1 \right) ^ { 7 }

A) (112x2+2)(4x2+1)6\left( 112 x ^ { 2 } + 2 \right) \left( 4 x ^ { 2 } + 1 \right) ^ { 6 }
B) (120x2+2)(4x2+1)7\left( 120 x ^ { 2 } + 2 \right) \left( 4 x ^ { 2 } + 1 \right) ^ { 7 }
C) (120x2+2)(4x2+1)6\left( 120 x ^ { 2 } + 2 \right) \left( 4 x ^ { 2 } + 1 \right) ^ { 6 }
D) 112x2(4x2+1)6112 x ^ { 2 } \left( 4 x ^ { 2 } + 1 \right) ^ { 6 }
Unlock Deck
Unlock for access to all 94 flashcards in this deck.
Unlock Deck
k this deck
48
Find the derivative of f(x)=2x1x2+2f ( x ) = \frac { 2 x - 1 } { \sqrt { x ^ { 2 } + 2 } }

A) x+4(x2+2)32\frac { - x + 4 } { \left( x ^ { 2 } + 2 \right) ^ { \frac { 3 } { 2 } } }
B) x+4(x2+2)32\frac { x + 4 } { \left( x ^ { 2 } + 2 \right) ^ { \frac { 3 } { 2 } } }
C) x2+4(x2+2)32\frac { x ^ { 2 } + 4 } { \left( x ^ { 2 } + 2 \right) ^ { \frac { 3 } { 2 } } }
D) x4(x2+2)32\frac { - x - 4 } { \left( x ^ { 2 } + 2 \right) ^ { \frac { 3 } { 2 } } }
Unlock Deck
Unlock for access to all 94 flashcards in this deck.
Unlock Deck
k this deck
49
Find the derivative of f(x)=(3xx2+1)3f ( x ) = \left( 3 x \sqrt { x ^ { 2 } + 1 } \right) ^ { - 3 }
Unlock Deck
Unlock for access to all 94 flashcards in this deck.
Unlock Deck
k this deck
50
Find the derivative of f(x)=(1x)22x35x+1f ( x ) = \frac { ( 1 - \sqrt { x } ) ^ { 2 } } { 2 x ^ { 3 } - 5 x + 1 }
Unlock Deck
Unlock for access to all 94 flashcards in this deck.
Unlock Deck
k this deck
51
Find the derivative of f(x)=52x+1f ( x ) = \sqrt { 5 - \sqrt { 2 x + 1 } }
Unlock Deck
Unlock for access to all 94 flashcards in this deck.
Unlock Deck
k this deck
52
Find the derivative of f(x)=(x33x)2f ( x ) = ( \sqrt [ 3 ] { x } - 3 x ) ^ { - 2 }

A) 18x1323x23(x133x)3\frac { 18 x ^ { \frac { 1 } { 3 } } - 2 } { 3 x ^ { \frac { 2 } { 3 } } \left( x ^ { \frac { 1 } { 3 } } - 3 x \right) ^ { 3 } }
B) 18x1323x13(x133x)3\frac { 18 x ^ { \frac { 1 } { 3 } } - 2 } { 3 x ^ { \frac { 1 } { 3 } } \left( x ^ { \frac { 1 } { 3 } } - 3 x \right) ^ { 3 } }
C) 18x2323x23(x133x)3\frac { 18 x ^ { \frac { 2 } { 3 } } - 2 } { 3 x ^ { \frac { 2 } { 3 } } \left( x ^ { \frac { 1 } { 3 } } - 3 x \right) ^ { 3 } }
D) 18x2322x23(x133x)3\frac { 18 x ^ { \frac { 2 } { 3 } } - 2 } { 2 x ^ { \frac { 2 } { 3 } } \left( x ^ { \frac { 1 } { 3 } } - 3 x \right) ^ { 3 } }
Unlock Deck
Unlock for access to all 94 flashcards in this deck.
Unlock Deck
k this deck
53
Find the derivative of f(x)=(12x3)3(4x2+1)6f ( x ) = \left( 1 - 2 x ^ { 3 } \right) ^ { 3 } \left( 4 x ^ { 2 } + 1 \right) ^ { 6 }

A) 3(12x3)2(4x2+1)4(4x2+16x+1)3 \left( 1 - 2 x ^ { 3 } \right) ^ { 2 } \left( 4 x ^ { 2 } + 1 \right) ^ { 4 } \left( 4 x ^ { 2 } + 16 x + 1 \right)
B) 3(12x3)2(4x2+1)4(32x4+4x2+16x+1)3 \left( 1 - 2 x ^ { 3 } \right) ^ { 2 } \left( 4 x ^ { 2 } + 1 \right) ^ { 4 } \left( 32 x ^ { 4 } + 4 x ^ { 2 } + 16 x + 1 \right)
C) 3(12x3)2(4x2+1)5(4x2+16x+1)3 \left( 1 - 2 x ^ { 3 } \right) ^ { 2 } \left( 4 x ^ { 2 } + 1 \right) ^ { 5 } \left( 4 x ^ { 2 } + 16 x + 1 \right)
D) 6x(12x3)2(4x2+1)5(28x33x+8)6 x \left( 1 - 2 x ^ { 3 } \right) ^ { 2 } \left( 4 x ^ { 2 } + 1 \right) ^ { 5 } \left( - 28 x ^ { 3 } - 3 x + 8 \right)
Unlock Deck
Unlock for access to all 94 flashcards in this deck.
Unlock Deck
k this deck
54
Find the derivative of f(x)=2((x2+1)54x)5/2f ( x ) = 2 \left( \left( x ^ { 2 } + 1 \right) ^ { 5 } - 4 x \right) ^ { - 5 / 2 }

A) 50x(x2+1)4((x2+1)54x)52\frac { 50 x \left( x ^ { 2 } + 1 \right) ^ { 4 } } { \left( \left( x ^ { 2 } + 1 \right) ^ { 5 } - 4 x \right) ^ { \frac { 5 } { 2 } } }
B) 2050x(x2+1)4((x2+1)54x)72\frac { 20 - 50 x \left( x ^ { 2 } + 1 \right) ^ { 4 } } { \left( \left( x ^ { 2 } + 1 \right) ^ { 5 } - 4 x \right) ^ { \frac { 7 } { 2 } } }
C) 50x(x2+1)420((x2+1)54x)72\frac { 50 x \left( x ^ { 2 } + 1 \right) ^ { 4 } - 20 } { \left( \left( x ^ { 2 } + 1 \right) ^ { 5 } - 4 x \right) ^ { \frac { 7 } { 2 } } }
D) 2050x(x2+1)4((x2+1)54x)52\frac { 20 - 50 x \left( x ^ { 2 } + 1 \right) ^ { 4 } } { \left( \left( x ^ { 2 } + 1 \right) ^ { 5 } - 4 x \right) ^ { \frac { 5 } { 2 } } }
Unlock Deck
Unlock for access to all 94 flashcards in this deck.
Unlock Deck
k this deck
55
If f(x)=(xx+2)2f ( x ) = ( x \sqrt { x + 2 } ) ^ { - 2 } , find f(x).f ^ { \prime \prime } ( x ) .
Unlock Deck
Unlock for access to all 94 flashcards in this deck.
Unlock Deck
k this deck
56
Use implicit differentiation to find dydx\frac { d y } { d x } if xy2+2x3+y2=10x y ^ { 2 } + 2 x ^ { 3 } + y ^ { 2 } = 10

A) 6x2+y22xy+2y\frac { 6 x ^ { 2 } + y ^ { 2 } } { 2 x y + 2 y }
B) 6x2+y22xy+2y\frac { - 6 x ^ { 2 } + y ^ { 2 } } { 2 x y + 2 y }
C) 6x2y22xy+2y\frac { 6 x ^ { 2 } - y ^ { 2 } } { 2 x y + 2 y }
D) 6x2y22xy+2y\frac { - 6 x ^ { 2 } - y ^ { 2 } } { 2 x y + 2 y }
Unlock Deck
Unlock for access to all 94 flashcards in this deck.
Unlock Deck
k this deck
57
Use implicit differentiation to find dydx\frac { d y } { d x } if 5xy+x2yy2x=105 x y + x ^ { 2 } y - y ^ { 2 } x = 10

A) 105xx2+2xy\frac { 10 } { 5 x - x ^ { 2 } + 2 x y }
B) y2+5y+2xy5xx2+2xy\frac { y ^ { 2 } + 5 y + 2 x y } { 5 x - x ^ { 2 } + 2 x y }
C) y25y5x+x2\frac { y ^ { 2 } - 5 y } { 5 x + x ^ { 2 } }
D) y22xy5y5x+x22xy\frac { y ^ { 2 } - 2 x y - 5 y } { 5 x + x ^ { 2 } - 2 x y }
Unlock Deck
Unlock for access to all 94 flashcards in this deck.
Unlock Deck
k this deck
58
Use implicit differentiation to find dydx\frac { d y } { d x } if 2y+1=4xy\sqrt { 2 y + 1 } = 4 x y

A) 18y2y+18x2y+1\frac { 1 - 8 y \sqrt { 2 y + 1 } } { 8 x \sqrt { 2 y + 1 } }
B) 14y2y+12x2y+1\frac { 1 - 4 y \sqrt { 2 y + 1 } } { 2 x \sqrt { 2 y + 1 } }
C) 4y2y+114x2y+1\frac { 4 y \sqrt { 2 y + 1 } } { 1 - 4 x \sqrt { 2 y + 1 } }
D) 4y2y+11+2x2y+1\frac { 4 y \sqrt { 2 y + 1 } } { 1 + 2 x \sqrt { 2 y + 1 } }
Unlock Deck
Unlock for access to all 94 flashcards in this deck.
Unlock Deck
k this deck
59
Find the equation of the tangent lines to the circle x2+y2=4x ^ { 2 } + y ^ { 2 } = 4 at the points with x-coordinate x=1x = 1
Unlock Deck
Unlock for access to all 94 flashcards in this deck.
Unlock Deck
k this deck
60
Find the equation of the tangent lines to the graph of x2+2y2+3x=3- x ^ { 2 } + 2 y ^ { 2 } + 3 x = 3 at the points with x-coordinate x=2x = 2
Unlock Deck
Unlock for access to all 94 flashcards in this deck.
Unlock Deck
k this deck
61
Find the derivative of f(x)=(x34)5(5x2)(x+1)3(2+x2)4f ( x ) = \frac { \left( x ^ { 3 } - 4 \right) ^ { 5 } ( 5 x - 2 ) } { ( x + 1 ) ^ { - 3 } \left( 2 + x ^ { 2 } \right) ^ { 4 } }
Unlock Deck
Unlock for access to all 94 flashcards in this deck.
Unlock Deck
k this deck
62
Find the derivative of f(x)=2x+1(x21)4(x3)3(2+x)f ( x ) = \frac { \sqrt { 2 x + 1 } \left( x ^ { 2 } - 1 \right) ^ { 4 } } { ( x - 3 ) ^ { 3 } ( 2 + x ) }
Unlock Deck
Unlock for access to all 94 flashcards in this deck.
Unlock Deck
k this deck
63
Find the derivative of f(x)=13+e2xf ( x ) = \frac { 1 } { 3 + e ^ { 2 x } }

A) e2x(3+e2x)2\frac { e ^ { 2 x } } { \left( 3 + e ^ { 2 x } \right) ^ { 2 } }
B) 2e2x(3+e2x)2\frac { 2 e ^ { 2 x } } { \left( 3 + e ^ { 2 x } \right) ^ { 2 } }
C) e2x(3+e2x)2\frac { - e ^ { 2 x } } { \left( 3 + e ^ { 2 x } \right) ^ { 2 } }
D) 2e2x(3+e2x)2\frac { - 2 e ^ { 2 x } } { \left( 3 + e ^ { 2 x } \right) ^ { 2 } }
Unlock Deck
Unlock for access to all 94 flashcards in this deck.
Unlock Deck
k this deck
64
Find the derivative of f(x)=e5xln(2x2+1)f ( x ) = e ^ { 5 x } \ln \left( 2 x ^ { 2 } + 1 \right)

A) e5xln(2x2+1)+e5xln(2x2+1)e ^ { 5 x } \ln \left( 2 x ^ { 2 } + 1 \right) + \frac { e ^ { 5 x } } { \ln \left( 2 x ^ { 2 } + 1 \right) }
B) e5xln(2x2+1)+e5x2x2+1e ^ { 5 x } \ln \left( 2 x ^ { 2 } + 1 \right) + \frac { e ^ { 5 x } } { 2 x ^ { 2 } + 1 }
C) 5e5xln(2x2+1)+e5x2x2+15 e ^ { 5 x } \ln \left( 2 x ^ { 2 } + 1 \right) + \frac { e ^ { 5 x } } { 2 x ^ { 2 } + 1 }
D) 5e5xln(2x2+1)+4xe5x2x2+15 e ^ { 5 x } \ln \left( 2 x ^ { 2 } + 1 \right) + \frac { 4 x e ^ { 5 x } } { 2 x ^ { 2 } + 1 }
Unlock Deck
Unlock for access to all 94 flashcards in this deck.
Unlock Deck
k this deck
65
Find the derivative of f(x)=3+x2e2xf ( x ) = \frac { 3 + x ^ { 2 } } { e ^ { 2 x } }

A) 2x22x+6e2x\frac { 2 x ^ { 2 } - 2 x + 6 } { e ^ { 2 x } }
B) x22x+3e2x\frac { x ^ { 2 } - 2 x + 3 } { e ^ { 2 x } }
C) 2x2+2x6e2x\frac { - 2 x ^ { 2 } + 2 x - 6 } { e ^ { 2 x } }
D) x2+2x3e2x\frac { - x ^ { 2 } + 2 x - 3 } { e ^ { 2 x } }
Unlock Deck
Unlock for access to all 94 flashcards in this deck.
Unlock Deck
k this deck
66
Find the derivative of f(x)=ln(2x2+1)3f ( x ) = \sqrt [ 3 ] { \ln \left( 2 x ^ { 2 } + 1 \right) }

A) 1(6x2+3)ln(2x2+1)3\frac { 1 } { \left( 6 x ^ { 2 } + 3 \right) \sqrt [ 3 ] { \ln \left( 2 x ^ { 2 } + 1 \right) } }
B) 4x(6x2+3)[ln(2x2+1)]23\frac { 4 x } { \left( 6 x ^ { 2 } + 3 \right) \sqrt [ 3 ] { \left[ \ln \left( 2 x ^ { 2 } + 1 \right) \right] ^ { 2 } } }
C) 4x(6x2+3)ln(2x2+1)3\frac { 4 x } { \left( 6 x ^ { 2 } + 3 \right) \sqrt [ 3 ] { \ln \left( 2 x ^ { 2 } + 1 \right) } }
D) 1(6x2+3)[ln(2x2+1)]23\frac { 1 } { \left( 6 x ^ { 2 } + 3 \right) \sqrt [ 3 ] { \left[ \ln \left( 2 x ^ { 2 } + 1 \right) \right] ^ { 2 } } }
Unlock Deck
Unlock for access to all 94 flashcards in this deck.
Unlock Deck
k this deck
67
Find the derivative of f(x)=e5xln(x2+1)f ( x ) = e ^ { 5 x } \ln \left( x ^ { 2 } + 1 \right)
Unlock Deck
Unlock for access to all 94 flashcards in this deck.
Unlock Deck
k this deck
68
Find the derivative of f(x)=x3ln(2x2)f ( x ) = x ^ { 3 } \ln \left( 2 x ^ { 2 } \right)

A) 3x2ln(2x2)+12x3 x ^ { 2 } \ln \left( 2 x ^ { 2 } \right) + \frac { 1 } { 2 } x
B) 3x2ln(2x2)+2x3 x ^ { 2 } \ln \left( 2 x ^ { 2 } \right) + 2 x
C) 3x2ln(2x2)+2x23 x ^ { 2 } \ln \left( 2 x ^ { 2 } \right) + 2 x ^ { 2 }
D) 3xln(2x2)+2x23 x \ln \left( 2 x ^ { 2 } \right) + 2 x ^ { 2 }
Unlock Deck
Unlock for access to all 94 flashcards in this deck.
Unlock Deck
k this deck
69
Find the derivative of f(x)=x2e3xf ( x ) = x ^ { 2 } e ^ { 3 x }

A) 2xe3x+x2e3x2 x e ^ { 3 x } + x ^ { 2 } e ^ { 3 x }
B) 2xe3x+3x2e3x2 x e ^ { 3 x } + 3 x ^ { 2 } e ^ { 3 x }
C) x2e3x+3xe3xx ^ { 2 } e ^ { 3 x } + 3 x e ^ { 3 x }
D) 2e3x+3x2e3x2 e ^ { 3 x } + 3 x ^ { 2 } e ^ { 3 x }
Unlock Deck
Unlock for access to all 94 flashcards in this deck.
Unlock Deck
k this deck
70
Find the derivative of f(x)=ln(x5x3+2x+1)f ( x ) = \ln \left( \frac { x ^ { 5 } } { x ^ { 3 } + 2 x + 1 } \right)

A) 5x+3x+2x3+2x+1\frac { 5 } { x } + \frac { 3 x + 2 } { x ^ { 3 } + 2 x + 1 }
B) 5x+3x2+2x3+2x+1\frac { 5 } { x } + \frac { 3 x ^ { 2 } + 2 } { x ^ { 3 } + 2 x + 1 }
C) 5x3x2+2x3+2x+1\frac { 5 } { x } - \frac { 3 x ^ { 2 } + 2 } { x ^ { 3 } + 2 x + 1 }
D) 5x3x22x3+2x+1\frac { 5 } { x } - \frac { 3 x ^ { 2 } - 2 } { x ^ { 3 } + 2 x + 1 }
Unlock Deck
Unlock for access to all 94 flashcards in this deck.
Unlock Deck
k this deck
71
Find the derivative of f(x)=5x+lnxf ( x ) = 5 ^ { x } + \ln \sqrt { x }

A) 5x+1x5 ^ { x } + \frac { 1 } { x }
B) 5xln5+1x5 ^ { x } \ln 5 + \frac { 1 } { x }
C) 5x+12x5 ^ { x } + \frac { 1 } { 2 x }
D) 5xln5+12x5 ^ { x } \ln 5 + \frac { 1 } { 2 x }
Unlock Deck
Unlock for access to all 94 flashcards in this deck.
Unlock Deck
k this deck
72
Find the derivative of f(x)=xe3x2+5xlnx3f ( x ) = x e ^ { 3 x ^ { 2 } } + 5 x \ln \sqrt [ 3 ] { x }

A) 6x2e3x2+536 x ^ { 2 } e ^ { 3 x ^ { 2 } } + \frac { 5 } { 3 }
B) 6x2e3x2+5lnx3+536 x ^ { 2 } e ^ { 3 x ^ { 2 } } + 5 \ln \sqrt [ 3 ] { x } + \frac { 5 } { 3 }
C) 6x2e3x2+e3x2+536 x ^ { 2 } e ^ { 3 x ^ { 2 } } + e ^ { 3 x ^ { 2 } } + \frac { 5 } { 3 }
D) 6x2e3x2+e3x2+5lnx3+536 x ^ { 2 } e ^ { 3 x ^ { 2 } } + e ^ { 3 x ^ { 2 } } + 5 \ln \sqrt [ 3 ] { x } + \frac { 5 } { 3 }
Unlock Deck
Unlock for access to all 94 flashcards in this deck.
Unlock Deck
k this deck
73
Find the derivative of f(x)={ln(x+3) if x<14x21 if x1f ( x ) = \left\{ \begin{array} { c l } \ln ( x + 3 ) & \text { if } x < 1 \\4 x ^ { 2 } - 1 & \text { if } x \geq 1\end{array} \right.

A) f(x)={1x+3 if x<14x2+1 if x1f ^ { \prime } ( x ) = \left\{ \begin{array} { c l } \frac { 1 } { x + 3 } & \text { if } x < 1 \\4 x ^ { 2 } + 1 & \text { if } x \geq 1\end{array} \right.
B) f(x)={1x+3 if x<1 DNE  if x=14x if x>1f ^ { \prime } ( x ) = \left\{ \begin{array} { c l } \frac { 1 } { x + 3 } & \text { if } x < 1 \\\text { DNE } & \text { if } x = 1 \\4 x & \text { if } x > 1\end{array} \right.
C) f(x)={1x+3 if x<18x if x1f ^ { \prime } ( x ) = \left\{ \begin{array} { c c } \frac { 1 } { x + 3 } & \text { if } x < 1 \\8 x & \text { if } x \geq 1\end{array} \right.
D) f(x)={1x+3 if x<1 DNE  if x=18x if x>1f ^ { \prime } ( x ) = \left\{ \begin{array} { c l } \frac { 1 } { x + 3 } & \text { if } x < 1 \\\text { DNE } & \text { if } x = 1 \\8 x & \text { if } x > 1\end{array} \right.
Unlock Deck
Unlock for access to all 94 flashcards in this deck.
Unlock Deck
k this deck
74
Find the derivative of f(x)=e3x(x3+2)5x2(5e2x+1)f ( x ) = \frac { e ^ { 3 x } \left( x ^ { 3 } + 2 \right) ^ { 5 } } { x ^ { 2 } \left( 5 e ^ { 2 x } + 1 \right) }

A) f(x)=e3x(x3+2)5x2(5e2x+1)(3x+5x3+22x10e2x5e2x+1)f ^ { \prime } ( x ) = \frac { e ^ { 3 x } \left( x ^ { 3 } + 2 \right) ^ { 5 } } { x ^ { 2 } \left( 5 e ^ { 2 x } + 1 \right) } \left( 3 x + \frac { 5 } { x ^ { 3 } + 2 } - \frac { 2 } { x } - \frac { 10 e ^ { 2 x } } { 5 e ^ { 2 x } + 1 } \right)
B) f(x)=e3x(x3+2)5x2(5e2x+1)(3e3x+5x2x3+22x10e2x5e2x+1)f ^ { \prime } ( x ) = \frac { e ^ { 3 x } \left( x ^ { 3 } + 2 \right) ^ { 5 } } { x ^ { 2 } \left( 5 e ^ { 2 x } + 1 \right) } \left( 3 e ^ { 3 x } + \frac { 5 x ^ { 2 } } { x ^ { 3 } + 2 } - \frac { 2 } { x } - \frac { 10 e ^ { 2 x } } { 5 e ^ { 2 x } + 1 } \right)
C) f(x)=e3x(x3+2)5x2(5e2x+1)(3+5x2x3+22x10e2x5e2x+1)f ^ { \prime } ( x ) = \frac { e ^ { 3 x } \left( x ^ { 3 } + 2 \right) ^ { 5 } } { x ^ { 2 } \left( 5 e ^ { 2 x } + 1 \right) } \left( 3 + \frac { 5 x ^ { 2 } } { x ^ { 3 } + 2 } - \frac { 2 } { x } - \frac { 10 e ^ { 2 x } } { 5 e ^ { 2 x } + 1 } \right)
D) f(x)=e3x(x3+2)5x2(5e2x+1)(3+15x2x3+22x10e2x5e2x+1)f ^ { \prime } ( x ) = \frac { e ^ { 3 x } \left( x ^ { 3 } + 2 \right) ^ { 5 } } { x ^ { 2 } \left( 5 e ^ { 2 x } + 1 \right) } \left( 3 + \frac { 15 x ^ { 2 } } { x ^ { 3 } + 2 } - \frac { 2 } { x } - \frac { 10 e ^ { 2 x } } { 5 e ^ { 2 x } + 1 } \right)
Unlock Deck
Unlock for access to all 94 flashcards in this deck.
Unlock Deck
k this deck
75
Find the derivative of f(x)=(x2x1)xf ( x ) = \left( \frac { x ^ { 2 } } { x - 1 } \right) ^ { x }

A) f(x)=(x2x1)x(2lnx+1ln(x1))f ^ { \prime } ( x ) = \left( \frac { x ^ { 2 } } { x - 1 } \right) ^ { x } ( 2 \ln x + 1 - \ln ( x - 1 ) )
B) f(x)=(x2x1)x(2lnx+2ln(x1)xx1)f ^ { \prime } ( x ) = \left( \frac { x ^ { 2 } } { x - 1 } \right) ^ { x } \left( 2 \ln x + 2 - \ln ( x - 1 ) - \frac { x } { x - 1 } \right)
C) f(x)=(x2x1)x(2lnxln(x1)xx1)f ^ { \prime } ( x ) = \left( \frac { x ^ { 2 } } { x - 1 } \right) ^ { x } \left( 2 \ln x - \ln ( x - 1 ) - \frac { x } { x - 1 } \right)
D) f(x)=(x2x1)x(2ln(x1)xx1)f ^ { \prime } ( x ) = \left( \frac { x ^ { 2 } } { x - 1 } \right) ^ { x } \left( 2 - \ln ( x - 1 ) - \frac { x } { x - 1 } \right)
Unlock Deck
Unlock for access to all 94 flashcards in this deck.
Unlock Deck
k this deck
76
Find the derivative of f(x)=sin2x+3cos2xf ( x ) = \sin ^ { 2 } x + 3 \cos ^ { 2 } x

A) 2sinx+6cosx2 \sin x + 6 \cos x
B) 2sin2x2 \sin 2 x
C) 4sin2x4 \sin 2 x
D) 2sin2x- 2 \sin 2 x
Unlock Deck
Unlock for access to all 94 flashcards in this deck.
Unlock Deck
k this deck
77
Find the derivative of f(x)=2xtanx+2xf ( x ) = 2 ^ { x } \tan x + 2 x

A) x2x1tanx+2xsec2x+2x 2 ^ { x - 1 } \tan x + 2 ^ { x } \sec ^ { 2 } x + 2
B) x2x1tanx+2xsecxtanx+2x 2 ^ { x - 1 } \tan x + 2 ^ { x } \sec x \tan x + 2
C) 2xln2tanx+2xsec2x+22 ^ { x } \ln 2 \tan x + 2 ^ { x } \sec ^ { 2 } x + 2
D) 2xln2tanx+2xsecxtanx+22 ^ { x } \ln 2 \tan x + 2 ^ { x } \sec x \tan x + 2
Unlock Deck
Unlock for access to all 94 flashcards in this deck.
Unlock Deck
k this deck
78
Find the derivative of f(x)=x2ln(3x2)sin3xf ( x ) = \frac { x ^ { 2 } \ln \left( 3 x ^ { 2 } \right) } { \sin 3 x }
Unlock Deck
Unlock for access to all 94 flashcards in this deck.
Unlock Deck
k this deck
79
Find the derivative of f(x)=3x2tan1x3f ( x ) = 3 x ^ { 2 } \tan ^ { - 1 } x ^ { 3 }

A) 6xtan1x3+3x21+x96 x \tan ^ { - 1 } x ^ { 3 } + \frac { 3 x ^ { 2 } } { 1 + x ^ { 9 } }
B) 6xtan1x3+3x21+x66 x \tan ^ { - 1 } x ^ { 3 } + \frac { 3 x ^ { 2 } } { 1 + x ^ { 6 } }
C) 6xtan1x3+9x21+x66 x \tan ^ { - 1 } x ^ { 3 } + \frac { 9 x ^ { 2 } } { 1 + x ^ { 6 } }
D) 6xtan1x3+9x41+x66 x \tan ^ { - 1 } x ^ { 3 } + \frac { 9 x ^ { 4 } } { 1 + x ^ { 6 } }
Unlock Deck
Unlock for access to all 94 flashcards in this deck.
Unlock Deck
k this deck
80
Find the derivative of f(x)=2xsin2xcos2xf ( x ) = 2 x \sqrt { \sin 2 x \cos 2 x }
Unlock Deck
Unlock for access to all 94 flashcards in this deck.
Unlock Deck
k this deck
locked card icon
Unlock Deck
Unlock for access to all 94 flashcards in this deck.