Exam 2: Derivatives

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Find the derivative of f(x)=ln(xsin3x)f ( x ) = \ln ( x \sin 3 x )

Free
(Multiple Choice)
4.9/5
(35)
Correct Answer:
Verified

D

Find the derivative of f(x)=(x3+2x)3f ( x ) = ( \sqrt [ 3 ] { x } + 2 \sqrt { x } ) ^ { 3 }

Free
(Essay)
4.7/5
(42)
Correct Answer:
Verified

(x3+2x)2(1x23+3x)( \sqrt [ 3 ] { x } + 2 \sqrt { x } ) ^ { 2 } \left( \frac { 1 } { \sqrt [ 3 ] { x ^ { 2 } } } + \frac { 3 } { \sqrt { x } } \right)

Given f(x)={2x if x<1x3 if x1f ( x ) = \left\{ \begin{array} { l } - 2 x \text { if } x < 1 \\x - 3 \text { if } x \geq 1\end{array} \right. , is ff continuous and/or differentiable at x=1?x = 1 ? Explain.

Free
(Multiple Choice)
4.8/5
(34)
Correct Answer:
Verified

C

Find the derivative of f(x)=52e+3x2x5+1x3f ( x ) = 5 - 2 e + 3 x - 2 x ^ { 5 } + \frac { 1 } { \sqrt [ 3 ] { x } }

(Multiple Choice)
4.9/5
(40)

Find the derivative of f(x)=2x(4x2+1)7f ( x ) = 2 x \left( 4 x ^ { 2 } + 1 \right) ^ { 7 }

(Multiple Choice)
5.0/5
(35)

Differentiate f(x)=(x31x)3f ( x ) = \left( \frac { x ^ { 3 } - 1 } { \sqrt { x } } \right) ^ { 3 } in three ways: (a) with the chain rule, (b) with the quotient rule but not chain rule, (c) without the chain or quotient rules.

(Essay)
4.8/5
(24)

Find the derivative of f(x)=e5xln(x2+1)f ( x ) = e ^ { 5 x } \ln \left( x ^ { 2 } + 1 \right)

(Essay)
4.8/5
(35)

Find the derivative of f(x)=x533x5x3f ( x ) = \frac { \sqrt [ 3 ] { x ^ { 5 } } - 3 x ^ { 5 } } { x ^ { 3 } }

(Multiple Choice)
4.9/5
(30)

Suppose that h(t)h ( t ) represents the height, in feet, of a person tt years old. In real world terms, what does h(10)h ( 10 ) represent? What is its unit? What does h(t)h ^ { \prime } ( t ) represents and what is its unit?

(Essay)
4.8/5
(45)

Find the derivative of f(x)=2x+1(x21)4(x3)3(2+x)f ( x ) = \frac { \sqrt { 2 x + 1 } \left( x ^ { 2 } - 1 \right) ^ { 4 } } { ( x - 3 ) ^ { 3 } ( 2 + x ) }

(Essay)
4.8/5
(28)

Find the derivative of f(x)=ln(3e4x)+sin2x3f ( x ) = \ln \left( 3 e ^ { 4 x } \right) + \sin ^ { 2 } x ^ { 3 }

(Essay)
4.8/5
(43)

The function f(x)=92x+x2f ( x ) = 9 - 2 x + x ^ { 2 } is both continuous and differentiable at x=0x = 0 Write these facts as limit statements.

(Essay)
4.7/5
(26)

Find the derivative of f(x)=ln(x5x3+2x+1)f ( x ) = \ln \left( \frac { x ^ { 5 } } { x ^ { 3 } + 2 x + 1 } \right)

(Multiple Choice)
4.7/5
(30)

Find the derivative of f(x)=sin2x+3cos2xf ( x ) = \sin ^ { 2 } x + 3 \cos ^ { 2 } x

(Multiple Choice)
4.8/5
(24)

Find the derivative of f(x)=2xsin2xcos2xf ( x ) = 2 x \sqrt { \sin 2 x \cos 2 x }

(Essay)
4.8/5
(42)

Find the derivative of f(x)=13xf ( x ) = | 1 - 3 x |

(Essay)
4.9/5
(39)

Find the derivative of f(x)=cos1(lnx).f ( x ) = \cos ^ { - 1 } ( \ln x ) .

(Multiple Choice)
4.8/5
(33)

Use the definition of derivative: limh0f(x+h)f(x)h\lim _ { h \rightarrow 0 } \frac { f ( x + h ) - f ( x ) } { h } to find f(x), if f(x)=1x2f ^ { \prime } ( x ) \text {, if } f ( x ) = \frac { 1 } { x ^ { 2 } }

(Essay)
4.9/5
(36)

Find the derivative of f(x)=2xtanx+2xf ( x ) = 2 ^ { x } \tan x + 2 x

(Multiple Choice)
4.9/5
(26)

Differentiate f(x)=(2x3+1x3)3f ( x ) = \left( \frac { 2 x ^ { 3 } + 1 } { \sqrt [ 3 ] { x } } \right) ^ { 3 } in three ways: (a) with the chain rule, (b) with the quotient rule but not chain rule, (c) without the chain or quotient rules.

(Essay)
4.7/5
(33)
Showing 1 - 20 of 94
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)