Deck 1: Limits

Full screen (f)
exit full mode
Question
Find the equation of a possible function ff with f(0)=2,limx1f(x)=,f ( 0 ) = 2 , \quad \lim _ { x \rightarrow 1 ^ { - } } f ( x ) = \infty , and limf(x)=\lim f ( x ) = \infty
Use Space or
up arrow
down arrow
to flip the card.
Question
Find the equation of a possible function ff with f(0)=2,limx2f(x)=,f ( 0 ) = - 2 , \quad \lim _ { x \rightarrow - 2 ^ { - } } f ( x ) = \infty , and limx2+f(x)=\lim _ { x \rightarrow - 2 ^ { + } } f ( x ) = - \infty
Question
Find the equation of a possible function ff with limf(x)=0\lim f ( x ) = 0 and limx+f(x)=0\lim _ { x \rightarrow + \infty } f ( x ) = 0 not defined at x=3x = 3 , and f(0)=1f ( 0 ) = - 1
Question
f(x)={x2+1 if x<13 if 1x<22x1 if x2f ( x ) = \left\{ \begin{array} { c c } x ^ { 2 } + 1 & \text { if } x < - 1 \\3 & \text { if } - 1 \leq x < 2 \\2 x - 1 & \text { if } x \geq 2\end{array} \right. Find limx1f(x)\lim _ { x \rightarrow - 1 } f ( x ) if it exists.

A) 2
B) Does not exist
C) 3
D) 0
Question
f(x)={x2+1 if x<13 if 1x<22x1 if x2f ( x ) = \left\{ \begin{array} { c c } x ^ { 2 } + 1 & \text { if } x < - 1 \\3 & \text { if } - 1 \leq x < 2 \\2 x - 1 & \text { if } x \geq 2\end{array} \right. Find limx2f(x)\lim _ { x \rightarrow 2 } f ( x ) if it exists.

A) Does not exist
B) 2
C) 0
D) 3
Question
f(x)={x2+1 if x<13 if 1x<22x1 if x2f ( x ) = \left\{ \begin{array} { c c } x ^ { 2 } + 1 & \text { if } x < - 1 \\3 & \text { if } - 1 \leq x < 2 \\2 x - 1 & \text { if } x \geq 2\end{array} \right. Find limx0f(x)\lim _ { x \rightarrow 0 } f ( x ) if it exists.

A) 1
B) 3
C) -1
D) Does not exist
Question
f(x)={x2 if x<32x+2 if x3f ( x ) = \left\{ \begin{array} { c } x ^ { 2 } \text { if } x < 3 \\2 x + 2 \text { if } x \geq 3\end{array} \right. Find limx3f(x)\lim _ { x \rightarrow 3 } f ( x ) if it exists. Otherwise, explain by one-sided limits.
Question
Does limx2x2x2\lim _ { x \rightarrow 2 } \frac { | x - 2 | } { x - 2 } exist? Explain why or why not.
Question
Find limx1x+1x+1\lim _ { x \rightarrow - 1 } \frac { | x + 1 | } { x + 1 } , if it exists.

A) -1
B) 1
C) Does not exist
D) 0
Question
Find limx2x2x2\lim _ { x \rightarrow - 2 } \frac { | x - 2 | } { x - 2 } , if it exists.

A) 1
B) - 1
C) Does not exist
D) 4
Question
Write the limit as a formal statement involving δ and ε\delta \text { and } \varepsilon limx11x2=3\lim _ { x \rightarrow 11 } \sqrt { x - 2 } = 3
Question
Write the limit as a formal statement involving δ and ε\delta \text { and } \varepsilon limx3x29x+3=0\lim _ { x \rightarrow 3 } \frac { x ^ { 2 } - 9 } { x + 3 } = 0
Question
For limx2x3=8\lim _ { x \rightarrow 2 } x ^ { 3 } = 8 and ε=0.2\varepsilon = 0.2 , approximate the largest value of δ\delta that satisfies the definition of the limit.

A) 0.0011
B) 0.0012
C) 0.01
D) 0.001
Question
For limx3x2=9\lim _ { x \rightarrow 3 } x ^ { 2 } = 9 and ε=0.35\varepsilon = 0.35 , approximate the largest value of δ\delta that satisfies the definition of the limit.

A) 0.04
B) 0.05
C) 0.06
D) 0.03
Question
Find the largest possible value of δ\delta that makes the following statement true: "If 0<x1<δ0 < | x - 1 | < \delta then (2x+3)5<0.2"| ( 2 x + 3 ) - 5 | < 0.2 "

A) 0.2
B) 0.05
C) 0.1
D) None of these
Question
Which of the following statements are true?
A. If xax \neq a , then xa<0| x - a | < 0 .
B. If xa>0| x - a | > 0 , then xax \neq a .
C. xx is a solution of 0<xa<δ0 < | x - a | < \delta if, and only if, aδ<x<a+δa - \delta < x < a + \delta .
D. lim(3x1)=5\lim ( 3 x - 1 ) = 5 means that for all δ>0\delta > 0 , there is some ε>0\varepsilon > 0 such that if 0<x5<δ^0 < | x - 5 | < \hat { \delta } , then (x23x1)2<ε\left| \left( \begin{array} { c } x \rightarrow 2 \\ 3 x - 1 \end{array} \right) - 2 \right| < \varepsilon .

A) Only A is true.
B) A and D are true.
C) B and C are true.
D) B and D are true.
Question
Given limx2(x+3)=5\lim _ { x \rightarrow 2 } ( x + 3 ) = 5 find a δ>0\delta > 0 in terms of an ε>0\varepsilon > 0 so that if 0<xc<δ0 < | x - c | < \delta then f(x)L<ε| f ( x ) - L | < \varepsilon

A) ?/2
B) ?/3
C) ?
D) None of these.
Question
Given limx4(2x+6)=2\lim _ { x \rightarrow - 4 } ( 2 x + 6 ) = - 2 find a δ>0\delta > 0 in terms of an ε>0\varepsilon > 0 so that if 0<xc<δ0 < | x - c | < \delta then f(x)L<ε| f ( x ) - L | < \varepsilon

A) ?/3
B) ?/2
C) ?
D) None of these
Question
Given limx3(23x)=11\lim _ { x \rightarrow - 3 } ( 2 - 3 x ) = 11 find a δ>0\delta > 0 in terms of an ε>0\varepsilon > 0 so that if 0<xc<δ0 < | x - c | < \delta then f(x)L<ε| f ( x ) - L | < \varepsilon

A) EE
B) ε/3\varepsilon / 3
C) ε/2\varepsilon / 2
D) None of these
Question
Is f(x)=xf ( x ) = \sqrt { x } continuous at x=1?x = - 1 ? Explain why or why not.
Question
Which of the following statements are true?
A. If limf(x)\lim f ( x ) exists, then ff is continuous at x=cx = c .
B. If f(2)=3f ( 2 ) = - 3 , and f(6)=8f ( 6 ) = - 8 , then there must be a value cc at which f(c)=5f ( c ) = - 5 .
C. If ff is continuous on the closed interval [1, 4], then ff is continuous at every point in [1,4].
D. If ff is continuous on the interval (1,4)( 1,4 ) , then ff must have a maximum value and a minimum value on (1,4)( 1,4 ) .

A) A and C are true.
B) A, C, and D are true.
C) C and D are true.
D) Only C is true.
Question
Is f(x)={x2 if x<2(x2) if x2f ( x ) = \left\{ \begin{array} { c l } x - 2 & \text { if } x < 2 \\- ( x - 2 ) & \text { if } x \geq 2\end{array} \right. continuous at x=2?x = 2 ? Explain why or why not.
Question
Is f(x)={x2 if x<2(x2) if x2f ( x ) = \left\{ \begin{array} { c l } x - 2 & \text { if } x < 2 \\- ( x - 2 ) & \text { if } x \geq 2\end{array} \right. continuous at x=0?x = 0 ? Explain why or why not.
Question
Find all the discontinuities of f(x)={x2 if x39 if 3<x<52x+1 if x5f ( x ) = \left\{ \begin{array} { c c } x ^ { 2 } & \text { if } x \leq 3 \\9 & \text { if } 3 < x < 5 \\2 x + 1 & \text { if } x \geq 5\end{array} \right.

A) 5 and 9
B) 5
C) 9
D) f is continuous everywhere.
Question
Find all the discontinuities of f(x)={2 if x11x if 1<x<12x1 if x1f ( x ) = \left\{ \begin{array} { c c } 2 & \text { if } x \leq - 1 \\\frac { 1 } { x } & \text { if } - 1 < x < 1 \\2 x - 1 & \text { if } x \geq 1\end{array} \right.

A) 0
B) -1
C) 0 and -1
D) f is continuous everywhere.
Question
Find all the discontinuities of f(x)={x13 if x01 if 0<x<32x7 if x3f ( x ) = \left\{ \begin{array} { c c } \sqrt [ 3 ] { x - 1 } & \text { if } x \leq 0 \\- 1 & \text { if } 0 < x < 3 \\2 x - 7 & \text { if } x \geq 3\end{array} \right.

A) 0 and 3
B) 3
C) 0
D) f is continuous everywhere.
Question
Use the Intermediate Value Theorem to find a c(,)c \in ( - \infty , \infty ) for f(x)=x3x21f ( x ) = x ^ { 3 } - x ^ { 2 } - 1 on the interval [-1, 3] such that f(c)=3.f ( c ) = 3 .
Question
Use the Intermediate Value Theorem to find a c(,)c \in ( - \infty , \infty ) for f(x)=x3+2f ( x ) = x ^ { 3 } + 2 on the interval [-2, 3] such that f(c)=1f ( c ) = 1
Question
Show that the function f(x)=x33x22f ( x ) = x ^ { 3 } - 3 x ^ { 2 } - 2 has at least one zero on the interval [-1, 4].
Question
Show that the function f(x)=x3+x2x+2f ( x ) = x ^ { 3 } + x ^ { 2 } - x + 2 has at least one zero on the interval [-3, 0].
Question
Given f(x)=x5x225f ( x ) = \frac { x - 5 } { x ^ { 2 } - 25 } , find all the XX values where ff is not continuous.

A) - 5
B) 5
C) 0 and - 5
D) - 5 and 5
Question
Given f(x)=4xx2+3xf ( x ) = \frac { 4 x } { x ^ { 2 } + 3 x } , find all the XX values where ff is not continuous.

A) - 3
B) 0
C) 0 and - 3
D) - 3 and 3
Question
Given f(x)=x5x5f ( x ) = \frac { | x - 5 | } { x - 5 } , find all the XX values where ff is not continuous.
Question
Given f(x)=x33x22f ( x ) = x ^ { 3 } - 3 x ^ { 2 } - 2 , find all the XX values where ff is not continuous.?
Question
Given that f(x)={4x2+2 if x<03x+a if x0f ( x ) = \left\{ \begin{array} { c } 4 x ^ { 2 } + 2 \text { if } x < 0 \\3 x + a \text { if } x \geq 0\end{array} \right. , find a real number aa a that makes ff continuous at x=0.x = 0 .
Question
Given f(x)={ax+3 if x<02 if x=03x+1 if x>0f ( x ) = \left\{ \begin{array} { c c } a x + 3 & \text { if } x < 0 \\2 & \text { if } \mathrm { x } = 0 \\\frac { 3 } { x + 1 } & \text { if } \mathrm { x } > 0\end{array} \right. can we find a real number aa that makes ff continuous at x=0.x = 0 . ?
Question
Given the function ff below, define f(2)f ( 2 ) , so that ff is continuous at x=2x = 2 , f(x)={2x3 if x<25x2 if x>2f ( x ) = \left\{ \begin{array} { l } 2 x - 3 \text { if } x < 2 \\5 - x ^ { 2 } \text { if } x > 2\end{array} \right.
Question
Find all discontinuities of f(x)=16x32x24f ( x ) = \frac { 16 x - 32 } { x ^ { 2 } - 4 } ; determine if they are removable or non-removable.
Question
Given that f(x)=x22x3x21f ( x ) = \frac { x ^ { 2 } - 2 x - 3 } { x ^ { 2 } - 1 } , define f(1)f ( - 1 ) so that ff is continuous at x=1x = - 1

A) 1/2
B) 2
C) -2
D) -1/2
Question
Which of the following is the equation of a function ff that has a vertical asymptote at x=2x = 2 , a removable discontinuity at x=2x = - 2 , and f(0)=2f ( 0 ) = - 2 ?

A) f(x)=3x9x24f ( x ) = \frac { 3 x - 9 } { x ^ { 2 } - 4 }
B) f(x)=4x+8x24f ( x ) = \frac { 4 x + 8 } { x ^ { 2 } - 4 }
C) f(x)=2x6x24f ( x ) = \frac { 2 x - 6 } { x ^ { 2 } - 4 }
D) f(x)=4x8x24f ( x ) = \frac { 4 x - 8 } { x ^ { 2 } - 4 }
Question
Suppose that ff and gg are functions with limx3f(x)=4,limx3g(x)=6\lim _ { x \rightarrow 3 } f ( x ) = 4 , \lim _ { x \rightarrow 3 } g ( x ) = 6 Find limx32f(x)g(x)\lim _ { x \rightarrow 3 } \frac { 2 - f ( x ) } { g ( x ) }

A) 1/3
B) 3
C) -3
D) -1/3
Question
Suppose that f and gf \text { and } g are functions with limx3f(x)=4,limx3g(x)=6\lim _ { x \rightarrow 3 } f ( x ) = 4 , \lim _ { x \rightarrow 3 } g ( x ) = 6 Find limx3f(x)g(x)+33\lim _ { x \rightarrow 3 } \sqrt [ 3 ] { f ( x ) g ( x ) + 3 }

A) -3
B) 6
C) 3
D) 13
Question
Suppose that ff and gg are functions with limx2f(x)=1,limx2g(x)=4\lim _ { x \rightarrow - 2 } f ( x ) = - 1 , \quad \lim _ { x \rightarrow - 2 } g ( x ) = 4 Find limx2(5f(x)3g(x))\lim _ { x \rightarrow - 2 } ( 5 f ( x ) - 3 g ( x ) )
Question
Suppose that ff and gg are continuous functions with limx3f(x)=4,limx2g(x)=3\lim _ { x \rightarrow 3 } f ( x ) = 4 , \lim _ { x \rightarrow 2 } g ( x ) = 3 Find limx2f(g(x))\lim _ { x \rightarrow 2 } f ( g ( x ) ) , if possible. Otherwise, explain why not.
Question
Suppose that ff and gg are functions with limx3f(x)=4,limx2g(x)=3\lim _ { x \rightarrow 3 } f ( x ) = 4 , \lim _ { x \rightarrow 2 } g ( x ) = 3 Find limx2f(g(x))\lim _ { x \rightarrow 2 } f ( g ( x ) ) , if possible. Otherwise, explain why not.?
Question
Find all the removable discontinuities of f(x)=x2x24f ( x ) = \frac { x - 2 } { x ^ { 2 } - 4 }
Question
Find all removable discontinuities of f(x)=x23x4x25x+4f ( x ) = \frac { x ^ { 2 } - 3 x - 4 } { x ^ { 2 } - 5 x + 4 }

A) 1
B) -1
C) 4
D) - 4
Question
Find all the vertical asymptotes of f(x)=x2x24f ( x ) = \frac { x - 2 } { x ^ { 2 } - 4 }
Question
Find limx23+2xx+2\lim _ { x \rightarrow 2 } \frac { 3 + 2 x } { x + 2 }
Question
Find limx23+2xx+2\lim _ { x \rightarrow - 2 } \frac { 3 + 2 x } { x + 2 }
Question
Find limx24x+2x2x+2\lim _ { x \rightarrow - 2 } \frac { 4 x + 2 x ^ { 2 } } { x + 2 }
Question
Find limx24+2xx2+2x\lim _ { x \rightarrow - 2 } \frac { 4 + 2 x } { x ^ { 2 } + 2 x }
Question
Find limx2x2+x2x2+5x+6\lim _ { x \rightarrow - 2 } \frac { x ^ { 2 } + x - 2 } { x ^ { 2 } + 5 x + 6 }
Question
Find limx3xx+3\lim _ { x \rightarrow - 3 } \frac { x } { x + 3 }

A) - \infty
B) + \infty
C) Does not exist
D) 0
Question
Find limx2+xx2\lim _ { x \rightarrow 2 ^ { + } } \frac { x } { x - 2 } .

A) - \infty
B) + \infty
C) Does not exist
D) 0
Question
Find limx2xx2\lim _ { x \rightarrow 2 ^ { - } } \frac { x } { x - 2 }
Question
Find limx28+8x+4x2+x3x2+x2\lim _ { x \rightarrow - 2 } \frac { 8 + 8 x + 4 x ^ { 2 } + x ^ { 3 } } { x ^ { 2 } + x - 2 }

A) -3/4
B) 3/4
C) -4/3
D) 2/3
Question
Find limx32xx29\lim _ { x \rightarrow 3 ^ { - } } \frac { 2 x } { x ^ { 2 } - 9 }
Question
Find limx44xx2\lim _ { x \rightarrow 4 } \frac { 4 - x } { \sqrt { x } - 2 }

A) 4
B) -4
C) 0
D) Does not exist
Question
Find limx61x16x6\lim _ { x \rightarrow 6 } \frac { \frac { 1 } { x } - \frac { 1 } { 6 } } { x - 6 }

A) -1/36
B) 1/36
C) -1/12
D) Does not exist
Question
Find limx4343xx4\lim _ { x \rightarrow 4 } \frac { \frac { 3 } { 4 } - \frac { 3 } { x } } { x - 4 }
Question
Find limh013+h13h\lim _ { h \rightarrow 0 } \frac { \frac { 1 } { 3 + h } - \frac { 1 } { 3 } } { h }

A) 1/3
B) 1/9
C) -1/9
D) Does not exist
Question
Find limx0e2x1x\lim _ { x \rightarrow 0 } \frac { e ^ { 2 x } - 1 } { x }

A) 1
B) -2
C) + \infty
D) 2
Question
Find limx(π/2)3+2cosxtanx\lim _ { x \rightarrow ( \pi / 2 ) ^ { - } } \frac { 3 + 2 \cos x } { \tan x }

A) - \infty
B) + \infty
C) Does not exist
D) 0
Question
Find limxπ4tanxsinx\lim _ { x \rightarrow \pi } \frac { 4 \tan x } { \sin x }
Question
Find limx03cosxx\lim _ { x \rightarrow 0 ^ { - } } \frac { 3 - \cos x } { x }

A) - \infty
B) + \infty
C) Does not exist
D) 1
Question
Find limx0cosx13cosx\lim _ { x \rightarrow 0 } \frac { \cos x - 1 } { 3 \cos x }
Question
Find limx0cosx23cosx\lim _ { x \rightarrow 0 } \frac { \cos x - 2 } { 3 \cos x }

A) 2/3
B) 0
C) Does not exist
D) -1/3
Question
Find limx03cosxx\lim _ { x \rightarrow 0 } \frac { 3 - \cos x } { x }

A) - \infty
B) + \infty
C) Does not exist
D) 0
Question
Find limx01cos5xx\lim _ { x \rightarrow 0 } \frac { 1 - \cos 5 x } { x }
Question
Find limx05xsin3x\lim _ { x \rightarrow 0 } \frac { 5 x } { \sin 3 x }

A) 3/5
B) 5/3
C) 1
D) Does not exist
Question
Find limx0cosx15x\lim _ { x \rightarrow 0 } \frac { \cos x - 1 } { 5 x }
Question
Find limx0cosx12sinx\lim _ { x \rightarrow 0 } \frac { \cos x - 1 } { 2 \sin x }

A) 1/2
B) 0
C) 1
D) Does not exist
Question
Find limx0(1+x)2/x\lim _ { x \rightarrow 0 } ( 1 + x ) ^ { 2 / x }

A) e3e ^ { 3 }
B) e
C) e2e ^ { 2 }
D) 1
Question
Find limx(1+5x)3x\lim _ { x \rightarrow \infty } \left( 1 + \frac { 5 } { x } \right) ^ { 3 x }

A) e-12
B) e
C) e15
D) 1
Question
Find limx12xcos1(x2)\lim _ { x \rightarrow 1 } 2 x \cos ^ { - 1 } \left( \frac { x } { 2 } \right)
Question
Find limx15xtan1x\lim _ { x \rightarrow 1 } \frac { 5 x } { \tan ^ { - 1 } \sqrt { x } }
Question
Find limx1tan1(x)3x\lim _ { x \rightarrow 1 } \frac { \tan ^ { - 1 } ( \sqrt { x } ) } { 3 x }
Question
Find limx+tan1(x)3x\lim _ { x \rightarrow + \infty } \frac { \tan ^ { - 1 } ( \sqrt { x } ) } { 3 x }
Question
Find limx12tan1x\lim _ { x \rightarrow - \infty } \frac { 1 } { 2 \tan ^ { - 1 } x }
Unlock Deck
Sign up to unlock the cards in this deck!
Unlock Deck
Unlock Deck
1/97
auto play flashcards
Play
simple tutorial
Full screen (f)
exit full mode
Deck 1: Limits
1
Find the equation of a possible function ff with f(0)=2,limx1f(x)=,f ( 0 ) = 2 , \quad \lim _ { x \rightarrow 1 ^ { - } } f ( x ) = \infty , and limf(x)=\lim f ( x ) = \infty
f(x)=2(x1)2 is one of many possible answers f ( x ) = \frac { 2 } { ( x - 1 ) ^ { 2 } } \text { is one of many possible answers }
2
Find the equation of a possible function ff with f(0)=2,limx2f(x)=,f ( 0 ) = - 2 , \quad \lim _ { x \rightarrow - 2 ^ { - } } f ( x ) = \infty , and limx2+f(x)=\lim _ { x \rightarrow - 2 ^ { + } } f ( x ) = - \infty
f(x)=4x+2 is one of many possible answers f ( x ) = \frac { - 4 } { x + 2 } \text { is one of many possible answers }
3
Find the equation of a possible function ff with limf(x)=0\lim f ( x ) = 0 and limx+f(x)=0\lim _ { x \rightarrow + \infty } f ( x ) = 0 not defined at x=3x = 3 , and f(0)=1f ( 0 ) = - 1
f(x)=3x3 is one of many possible answers f ( x ) = \frac { 3 } { x - 3 } \text { is one of many possible answers }
4
f(x)={x2+1 if x<13 if 1x<22x1 if x2f ( x ) = \left\{ \begin{array} { c c } x ^ { 2 } + 1 & \text { if } x < - 1 \\3 & \text { if } - 1 \leq x < 2 \\2 x - 1 & \text { if } x \geq 2\end{array} \right. Find limx1f(x)\lim _ { x \rightarrow - 1 } f ( x ) if it exists.

A) 2
B) Does not exist
C) 3
D) 0
Unlock Deck
Unlock for access to all 97 flashcards in this deck.
Unlock Deck
k this deck
5
f(x)={x2+1 if x<13 if 1x<22x1 if x2f ( x ) = \left\{ \begin{array} { c c } x ^ { 2 } + 1 & \text { if } x < - 1 \\3 & \text { if } - 1 \leq x < 2 \\2 x - 1 & \text { if } x \geq 2\end{array} \right. Find limx2f(x)\lim _ { x \rightarrow 2 } f ( x ) if it exists.

A) Does not exist
B) 2
C) 0
D) 3
Unlock Deck
Unlock for access to all 97 flashcards in this deck.
Unlock Deck
k this deck
6
f(x)={x2+1 if x<13 if 1x<22x1 if x2f ( x ) = \left\{ \begin{array} { c c } x ^ { 2 } + 1 & \text { if } x < - 1 \\3 & \text { if } - 1 \leq x < 2 \\2 x - 1 & \text { if } x \geq 2\end{array} \right. Find limx0f(x)\lim _ { x \rightarrow 0 } f ( x ) if it exists.

A) 1
B) 3
C) -1
D) Does not exist
Unlock Deck
Unlock for access to all 97 flashcards in this deck.
Unlock Deck
k this deck
7
f(x)={x2 if x<32x+2 if x3f ( x ) = \left\{ \begin{array} { c } x ^ { 2 } \text { if } x < 3 \\2 x + 2 \text { if } x \geq 3\end{array} \right. Find limx3f(x)\lim _ { x \rightarrow 3 } f ( x ) if it exists. Otherwise, explain by one-sided limits.
Unlock Deck
Unlock for access to all 97 flashcards in this deck.
Unlock Deck
k this deck
8
Does limx2x2x2\lim _ { x \rightarrow 2 } \frac { | x - 2 | } { x - 2 } exist? Explain why or why not.
Unlock Deck
Unlock for access to all 97 flashcards in this deck.
Unlock Deck
k this deck
9
Find limx1x+1x+1\lim _ { x \rightarrow - 1 } \frac { | x + 1 | } { x + 1 } , if it exists.

A) -1
B) 1
C) Does not exist
D) 0
Unlock Deck
Unlock for access to all 97 flashcards in this deck.
Unlock Deck
k this deck
10
Find limx2x2x2\lim _ { x \rightarrow - 2 } \frac { | x - 2 | } { x - 2 } , if it exists.

A) 1
B) - 1
C) Does not exist
D) 4
Unlock Deck
Unlock for access to all 97 flashcards in this deck.
Unlock Deck
k this deck
11
Write the limit as a formal statement involving δ and ε\delta \text { and } \varepsilon limx11x2=3\lim _ { x \rightarrow 11 } \sqrt { x - 2 } = 3
Unlock Deck
Unlock for access to all 97 flashcards in this deck.
Unlock Deck
k this deck
12
Write the limit as a formal statement involving δ and ε\delta \text { and } \varepsilon limx3x29x+3=0\lim _ { x \rightarrow 3 } \frac { x ^ { 2 } - 9 } { x + 3 } = 0
Unlock Deck
Unlock for access to all 97 flashcards in this deck.
Unlock Deck
k this deck
13
For limx2x3=8\lim _ { x \rightarrow 2 } x ^ { 3 } = 8 and ε=0.2\varepsilon = 0.2 , approximate the largest value of δ\delta that satisfies the definition of the limit.

A) 0.0011
B) 0.0012
C) 0.01
D) 0.001
Unlock Deck
Unlock for access to all 97 flashcards in this deck.
Unlock Deck
k this deck
14
For limx3x2=9\lim _ { x \rightarrow 3 } x ^ { 2 } = 9 and ε=0.35\varepsilon = 0.35 , approximate the largest value of δ\delta that satisfies the definition of the limit.

A) 0.04
B) 0.05
C) 0.06
D) 0.03
Unlock Deck
Unlock for access to all 97 flashcards in this deck.
Unlock Deck
k this deck
15
Find the largest possible value of δ\delta that makes the following statement true: "If 0<x1<δ0 < | x - 1 | < \delta then (2x+3)5<0.2"| ( 2 x + 3 ) - 5 | < 0.2 "

A) 0.2
B) 0.05
C) 0.1
D) None of these
Unlock Deck
Unlock for access to all 97 flashcards in this deck.
Unlock Deck
k this deck
16
Which of the following statements are true?
A. If xax \neq a , then xa<0| x - a | < 0 .
B. If xa>0| x - a | > 0 , then xax \neq a .
C. xx is a solution of 0<xa<δ0 < | x - a | < \delta if, and only if, aδ<x<a+δa - \delta < x < a + \delta .
D. lim(3x1)=5\lim ( 3 x - 1 ) = 5 means that for all δ>0\delta > 0 , there is some ε>0\varepsilon > 0 such that if 0<x5<δ^0 < | x - 5 | < \hat { \delta } , then (x23x1)2<ε\left| \left( \begin{array} { c } x \rightarrow 2 \\ 3 x - 1 \end{array} \right) - 2 \right| < \varepsilon .

A) Only A is true.
B) A and D are true.
C) B and C are true.
D) B and D are true.
Unlock Deck
Unlock for access to all 97 flashcards in this deck.
Unlock Deck
k this deck
17
Given limx2(x+3)=5\lim _ { x \rightarrow 2 } ( x + 3 ) = 5 find a δ>0\delta > 0 in terms of an ε>0\varepsilon > 0 so that if 0<xc<δ0 < | x - c | < \delta then f(x)L<ε| f ( x ) - L | < \varepsilon

A) ?/2
B) ?/3
C) ?
D) None of these.
Unlock Deck
Unlock for access to all 97 flashcards in this deck.
Unlock Deck
k this deck
18
Given limx4(2x+6)=2\lim _ { x \rightarrow - 4 } ( 2 x + 6 ) = - 2 find a δ>0\delta > 0 in terms of an ε>0\varepsilon > 0 so that if 0<xc<δ0 < | x - c | < \delta then f(x)L<ε| f ( x ) - L | < \varepsilon

A) ?/3
B) ?/2
C) ?
D) None of these
Unlock Deck
Unlock for access to all 97 flashcards in this deck.
Unlock Deck
k this deck
19
Given limx3(23x)=11\lim _ { x \rightarrow - 3 } ( 2 - 3 x ) = 11 find a δ>0\delta > 0 in terms of an ε>0\varepsilon > 0 so that if 0<xc<δ0 < | x - c | < \delta then f(x)L<ε| f ( x ) - L | < \varepsilon

A) EE
B) ε/3\varepsilon / 3
C) ε/2\varepsilon / 2
D) None of these
Unlock Deck
Unlock for access to all 97 flashcards in this deck.
Unlock Deck
k this deck
20
Is f(x)=xf ( x ) = \sqrt { x } continuous at x=1?x = - 1 ? Explain why or why not.
Unlock Deck
Unlock for access to all 97 flashcards in this deck.
Unlock Deck
k this deck
21
Which of the following statements are true?
A. If limf(x)\lim f ( x ) exists, then ff is continuous at x=cx = c .
B. If f(2)=3f ( 2 ) = - 3 , and f(6)=8f ( 6 ) = - 8 , then there must be a value cc at which f(c)=5f ( c ) = - 5 .
C. If ff is continuous on the closed interval [1, 4], then ff is continuous at every point in [1,4].
D. If ff is continuous on the interval (1,4)( 1,4 ) , then ff must have a maximum value and a minimum value on (1,4)( 1,4 ) .

A) A and C are true.
B) A, C, and D are true.
C) C and D are true.
D) Only C is true.
Unlock Deck
Unlock for access to all 97 flashcards in this deck.
Unlock Deck
k this deck
22
Is f(x)={x2 if x<2(x2) if x2f ( x ) = \left\{ \begin{array} { c l } x - 2 & \text { if } x < 2 \\- ( x - 2 ) & \text { if } x \geq 2\end{array} \right. continuous at x=2?x = 2 ? Explain why or why not.
Unlock Deck
Unlock for access to all 97 flashcards in this deck.
Unlock Deck
k this deck
23
Is f(x)={x2 if x<2(x2) if x2f ( x ) = \left\{ \begin{array} { c l } x - 2 & \text { if } x < 2 \\- ( x - 2 ) & \text { if } x \geq 2\end{array} \right. continuous at x=0?x = 0 ? Explain why or why not.
Unlock Deck
Unlock for access to all 97 flashcards in this deck.
Unlock Deck
k this deck
24
Find all the discontinuities of f(x)={x2 if x39 if 3<x<52x+1 if x5f ( x ) = \left\{ \begin{array} { c c } x ^ { 2 } & \text { if } x \leq 3 \\9 & \text { if } 3 < x < 5 \\2 x + 1 & \text { if } x \geq 5\end{array} \right.

A) 5 and 9
B) 5
C) 9
D) f is continuous everywhere.
Unlock Deck
Unlock for access to all 97 flashcards in this deck.
Unlock Deck
k this deck
25
Find all the discontinuities of f(x)={2 if x11x if 1<x<12x1 if x1f ( x ) = \left\{ \begin{array} { c c } 2 & \text { if } x \leq - 1 \\\frac { 1 } { x } & \text { if } - 1 < x < 1 \\2 x - 1 & \text { if } x \geq 1\end{array} \right.

A) 0
B) -1
C) 0 and -1
D) f is continuous everywhere.
Unlock Deck
Unlock for access to all 97 flashcards in this deck.
Unlock Deck
k this deck
26
Find all the discontinuities of f(x)={x13 if x01 if 0<x<32x7 if x3f ( x ) = \left\{ \begin{array} { c c } \sqrt [ 3 ] { x - 1 } & \text { if } x \leq 0 \\- 1 & \text { if } 0 < x < 3 \\2 x - 7 & \text { if } x \geq 3\end{array} \right.

A) 0 and 3
B) 3
C) 0
D) f is continuous everywhere.
Unlock Deck
Unlock for access to all 97 flashcards in this deck.
Unlock Deck
k this deck
27
Use the Intermediate Value Theorem to find a c(,)c \in ( - \infty , \infty ) for f(x)=x3x21f ( x ) = x ^ { 3 } - x ^ { 2 } - 1 on the interval [-1, 3] such that f(c)=3.f ( c ) = 3 .
Unlock Deck
Unlock for access to all 97 flashcards in this deck.
Unlock Deck
k this deck
28
Use the Intermediate Value Theorem to find a c(,)c \in ( - \infty , \infty ) for f(x)=x3+2f ( x ) = x ^ { 3 } + 2 on the interval [-2, 3] such that f(c)=1f ( c ) = 1
Unlock Deck
Unlock for access to all 97 flashcards in this deck.
Unlock Deck
k this deck
29
Show that the function f(x)=x33x22f ( x ) = x ^ { 3 } - 3 x ^ { 2 } - 2 has at least one zero on the interval [-1, 4].
Unlock Deck
Unlock for access to all 97 flashcards in this deck.
Unlock Deck
k this deck
30
Show that the function f(x)=x3+x2x+2f ( x ) = x ^ { 3 } + x ^ { 2 } - x + 2 has at least one zero on the interval [-3, 0].
Unlock Deck
Unlock for access to all 97 flashcards in this deck.
Unlock Deck
k this deck
31
Given f(x)=x5x225f ( x ) = \frac { x - 5 } { x ^ { 2 } - 25 } , find all the XX values where ff is not continuous.

A) - 5
B) 5
C) 0 and - 5
D) - 5 and 5
Unlock Deck
Unlock for access to all 97 flashcards in this deck.
Unlock Deck
k this deck
32
Given f(x)=4xx2+3xf ( x ) = \frac { 4 x } { x ^ { 2 } + 3 x } , find all the XX values where ff is not continuous.

A) - 3
B) 0
C) 0 and - 3
D) - 3 and 3
Unlock Deck
Unlock for access to all 97 flashcards in this deck.
Unlock Deck
k this deck
33
Given f(x)=x5x5f ( x ) = \frac { | x - 5 | } { x - 5 } , find all the XX values where ff is not continuous.
Unlock Deck
Unlock for access to all 97 flashcards in this deck.
Unlock Deck
k this deck
34
Given f(x)=x33x22f ( x ) = x ^ { 3 } - 3 x ^ { 2 } - 2 , find all the XX values where ff is not continuous.?
Unlock Deck
Unlock for access to all 97 flashcards in this deck.
Unlock Deck
k this deck
35
Given that f(x)={4x2+2 if x<03x+a if x0f ( x ) = \left\{ \begin{array} { c } 4 x ^ { 2 } + 2 \text { if } x < 0 \\3 x + a \text { if } x \geq 0\end{array} \right. , find a real number aa a that makes ff continuous at x=0.x = 0 .
Unlock Deck
Unlock for access to all 97 flashcards in this deck.
Unlock Deck
k this deck
36
Given f(x)={ax+3 if x<02 if x=03x+1 if x>0f ( x ) = \left\{ \begin{array} { c c } a x + 3 & \text { if } x < 0 \\2 & \text { if } \mathrm { x } = 0 \\\frac { 3 } { x + 1 } & \text { if } \mathrm { x } > 0\end{array} \right. can we find a real number aa that makes ff continuous at x=0.x = 0 . ?
Unlock Deck
Unlock for access to all 97 flashcards in this deck.
Unlock Deck
k this deck
37
Given the function ff below, define f(2)f ( 2 ) , so that ff is continuous at x=2x = 2 , f(x)={2x3 if x<25x2 if x>2f ( x ) = \left\{ \begin{array} { l } 2 x - 3 \text { if } x < 2 \\5 - x ^ { 2 } \text { if } x > 2\end{array} \right.
Unlock Deck
Unlock for access to all 97 flashcards in this deck.
Unlock Deck
k this deck
38
Find all discontinuities of f(x)=16x32x24f ( x ) = \frac { 16 x - 32 } { x ^ { 2 } - 4 } ; determine if they are removable or non-removable.
Unlock Deck
Unlock for access to all 97 flashcards in this deck.
Unlock Deck
k this deck
39
Given that f(x)=x22x3x21f ( x ) = \frac { x ^ { 2 } - 2 x - 3 } { x ^ { 2 } - 1 } , define f(1)f ( - 1 ) so that ff is continuous at x=1x = - 1

A) 1/2
B) 2
C) -2
D) -1/2
Unlock Deck
Unlock for access to all 97 flashcards in this deck.
Unlock Deck
k this deck
40
Which of the following is the equation of a function ff that has a vertical asymptote at x=2x = 2 , a removable discontinuity at x=2x = - 2 , and f(0)=2f ( 0 ) = - 2 ?

A) f(x)=3x9x24f ( x ) = \frac { 3 x - 9 } { x ^ { 2 } - 4 }
B) f(x)=4x+8x24f ( x ) = \frac { 4 x + 8 } { x ^ { 2 } - 4 }
C) f(x)=2x6x24f ( x ) = \frac { 2 x - 6 } { x ^ { 2 } - 4 }
D) f(x)=4x8x24f ( x ) = \frac { 4 x - 8 } { x ^ { 2 } - 4 }
Unlock Deck
Unlock for access to all 97 flashcards in this deck.
Unlock Deck
k this deck
41
Suppose that ff and gg are functions with limx3f(x)=4,limx3g(x)=6\lim _ { x \rightarrow 3 } f ( x ) = 4 , \lim _ { x \rightarrow 3 } g ( x ) = 6 Find limx32f(x)g(x)\lim _ { x \rightarrow 3 } \frac { 2 - f ( x ) } { g ( x ) }

A) 1/3
B) 3
C) -3
D) -1/3
Unlock Deck
Unlock for access to all 97 flashcards in this deck.
Unlock Deck
k this deck
42
Suppose that f and gf \text { and } g are functions with limx3f(x)=4,limx3g(x)=6\lim _ { x \rightarrow 3 } f ( x ) = 4 , \lim _ { x \rightarrow 3 } g ( x ) = 6 Find limx3f(x)g(x)+33\lim _ { x \rightarrow 3 } \sqrt [ 3 ] { f ( x ) g ( x ) + 3 }

A) -3
B) 6
C) 3
D) 13
Unlock Deck
Unlock for access to all 97 flashcards in this deck.
Unlock Deck
k this deck
43
Suppose that ff and gg are functions with limx2f(x)=1,limx2g(x)=4\lim _ { x \rightarrow - 2 } f ( x ) = - 1 , \quad \lim _ { x \rightarrow - 2 } g ( x ) = 4 Find limx2(5f(x)3g(x))\lim _ { x \rightarrow - 2 } ( 5 f ( x ) - 3 g ( x ) )
Unlock Deck
Unlock for access to all 97 flashcards in this deck.
Unlock Deck
k this deck
44
Suppose that ff and gg are continuous functions with limx3f(x)=4,limx2g(x)=3\lim _ { x \rightarrow 3 } f ( x ) = 4 , \lim _ { x \rightarrow 2 } g ( x ) = 3 Find limx2f(g(x))\lim _ { x \rightarrow 2 } f ( g ( x ) ) , if possible. Otherwise, explain why not.
Unlock Deck
Unlock for access to all 97 flashcards in this deck.
Unlock Deck
k this deck
45
Suppose that ff and gg are functions with limx3f(x)=4,limx2g(x)=3\lim _ { x \rightarrow 3 } f ( x ) = 4 , \lim _ { x \rightarrow 2 } g ( x ) = 3 Find limx2f(g(x))\lim _ { x \rightarrow 2 } f ( g ( x ) ) , if possible. Otherwise, explain why not.?
Unlock Deck
Unlock for access to all 97 flashcards in this deck.
Unlock Deck
k this deck
46
Find all the removable discontinuities of f(x)=x2x24f ( x ) = \frac { x - 2 } { x ^ { 2 } - 4 }
Unlock Deck
Unlock for access to all 97 flashcards in this deck.
Unlock Deck
k this deck
47
Find all removable discontinuities of f(x)=x23x4x25x+4f ( x ) = \frac { x ^ { 2 } - 3 x - 4 } { x ^ { 2 } - 5 x + 4 }

A) 1
B) -1
C) 4
D) - 4
Unlock Deck
Unlock for access to all 97 flashcards in this deck.
Unlock Deck
k this deck
48
Find all the vertical asymptotes of f(x)=x2x24f ( x ) = \frac { x - 2 } { x ^ { 2 } - 4 }
Unlock Deck
Unlock for access to all 97 flashcards in this deck.
Unlock Deck
k this deck
49
Find limx23+2xx+2\lim _ { x \rightarrow 2 } \frac { 3 + 2 x } { x + 2 }
Unlock Deck
Unlock for access to all 97 flashcards in this deck.
Unlock Deck
k this deck
50
Find limx23+2xx+2\lim _ { x \rightarrow - 2 } \frac { 3 + 2 x } { x + 2 }
Unlock Deck
Unlock for access to all 97 flashcards in this deck.
Unlock Deck
k this deck
51
Find limx24x+2x2x+2\lim _ { x \rightarrow - 2 } \frac { 4 x + 2 x ^ { 2 } } { x + 2 }
Unlock Deck
Unlock for access to all 97 flashcards in this deck.
Unlock Deck
k this deck
52
Find limx24+2xx2+2x\lim _ { x \rightarrow - 2 } \frac { 4 + 2 x } { x ^ { 2 } + 2 x }
Unlock Deck
Unlock for access to all 97 flashcards in this deck.
Unlock Deck
k this deck
53
Find limx2x2+x2x2+5x+6\lim _ { x \rightarrow - 2 } \frac { x ^ { 2 } + x - 2 } { x ^ { 2 } + 5 x + 6 }
Unlock Deck
Unlock for access to all 97 flashcards in this deck.
Unlock Deck
k this deck
54
Find limx3xx+3\lim _ { x \rightarrow - 3 } \frac { x } { x + 3 }

A) - \infty
B) + \infty
C) Does not exist
D) 0
Unlock Deck
Unlock for access to all 97 flashcards in this deck.
Unlock Deck
k this deck
55
Find limx2+xx2\lim _ { x \rightarrow 2 ^ { + } } \frac { x } { x - 2 } .

A) - \infty
B) + \infty
C) Does not exist
D) 0
Unlock Deck
Unlock for access to all 97 flashcards in this deck.
Unlock Deck
k this deck
56
Find limx2xx2\lim _ { x \rightarrow 2 ^ { - } } \frac { x } { x - 2 }
Unlock Deck
Unlock for access to all 97 flashcards in this deck.
Unlock Deck
k this deck
57
Find limx28+8x+4x2+x3x2+x2\lim _ { x \rightarrow - 2 } \frac { 8 + 8 x + 4 x ^ { 2 } + x ^ { 3 } } { x ^ { 2 } + x - 2 }

A) -3/4
B) 3/4
C) -4/3
D) 2/3
Unlock Deck
Unlock for access to all 97 flashcards in this deck.
Unlock Deck
k this deck
58
Find limx32xx29\lim _ { x \rightarrow 3 ^ { - } } \frac { 2 x } { x ^ { 2 } - 9 }
Unlock Deck
Unlock for access to all 97 flashcards in this deck.
Unlock Deck
k this deck
59
Find limx44xx2\lim _ { x \rightarrow 4 } \frac { 4 - x } { \sqrt { x } - 2 }

A) 4
B) -4
C) 0
D) Does not exist
Unlock Deck
Unlock for access to all 97 flashcards in this deck.
Unlock Deck
k this deck
60
Find limx61x16x6\lim _ { x \rightarrow 6 } \frac { \frac { 1 } { x } - \frac { 1 } { 6 } } { x - 6 }

A) -1/36
B) 1/36
C) -1/12
D) Does not exist
Unlock Deck
Unlock for access to all 97 flashcards in this deck.
Unlock Deck
k this deck
61
Find limx4343xx4\lim _ { x \rightarrow 4 } \frac { \frac { 3 } { 4 } - \frac { 3 } { x } } { x - 4 }
Unlock Deck
Unlock for access to all 97 flashcards in this deck.
Unlock Deck
k this deck
62
Find limh013+h13h\lim _ { h \rightarrow 0 } \frac { \frac { 1 } { 3 + h } - \frac { 1 } { 3 } } { h }

A) 1/3
B) 1/9
C) -1/9
D) Does not exist
Unlock Deck
Unlock for access to all 97 flashcards in this deck.
Unlock Deck
k this deck
63
Find limx0e2x1x\lim _ { x \rightarrow 0 } \frac { e ^ { 2 x } - 1 } { x }

A) 1
B) -2
C) + \infty
D) 2
Unlock Deck
Unlock for access to all 97 flashcards in this deck.
Unlock Deck
k this deck
64
Find limx(π/2)3+2cosxtanx\lim _ { x \rightarrow ( \pi / 2 ) ^ { - } } \frac { 3 + 2 \cos x } { \tan x }

A) - \infty
B) + \infty
C) Does not exist
D) 0
Unlock Deck
Unlock for access to all 97 flashcards in this deck.
Unlock Deck
k this deck
65
Find limxπ4tanxsinx\lim _ { x \rightarrow \pi } \frac { 4 \tan x } { \sin x }
Unlock Deck
Unlock for access to all 97 flashcards in this deck.
Unlock Deck
k this deck
66
Find limx03cosxx\lim _ { x \rightarrow 0 ^ { - } } \frac { 3 - \cos x } { x }

A) - \infty
B) + \infty
C) Does not exist
D) 1
Unlock Deck
Unlock for access to all 97 flashcards in this deck.
Unlock Deck
k this deck
67
Find limx0cosx13cosx\lim _ { x \rightarrow 0 } \frac { \cos x - 1 } { 3 \cos x }
Unlock Deck
Unlock for access to all 97 flashcards in this deck.
Unlock Deck
k this deck
68
Find limx0cosx23cosx\lim _ { x \rightarrow 0 } \frac { \cos x - 2 } { 3 \cos x }

A) 2/3
B) 0
C) Does not exist
D) -1/3
Unlock Deck
Unlock for access to all 97 flashcards in this deck.
Unlock Deck
k this deck
69
Find limx03cosxx\lim _ { x \rightarrow 0 } \frac { 3 - \cos x } { x }

A) - \infty
B) + \infty
C) Does not exist
D) 0
Unlock Deck
Unlock for access to all 97 flashcards in this deck.
Unlock Deck
k this deck
70
Find limx01cos5xx\lim _ { x \rightarrow 0 } \frac { 1 - \cos 5 x } { x }
Unlock Deck
Unlock for access to all 97 flashcards in this deck.
Unlock Deck
k this deck
71
Find limx05xsin3x\lim _ { x \rightarrow 0 } \frac { 5 x } { \sin 3 x }

A) 3/5
B) 5/3
C) 1
D) Does not exist
Unlock Deck
Unlock for access to all 97 flashcards in this deck.
Unlock Deck
k this deck
72
Find limx0cosx15x\lim _ { x \rightarrow 0 } \frac { \cos x - 1 } { 5 x }
Unlock Deck
Unlock for access to all 97 flashcards in this deck.
Unlock Deck
k this deck
73
Find limx0cosx12sinx\lim _ { x \rightarrow 0 } \frac { \cos x - 1 } { 2 \sin x }

A) 1/2
B) 0
C) 1
D) Does not exist
Unlock Deck
Unlock for access to all 97 flashcards in this deck.
Unlock Deck
k this deck
74
Find limx0(1+x)2/x\lim _ { x \rightarrow 0 } ( 1 + x ) ^ { 2 / x }

A) e3e ^ { 3 }
B) e
C) e2e ^ { 2 }
D) 1
Unlock Deck
Unlock for access to all 97 flashcards in this deck.
Unlock Deck
k this deck
75
Find limx(1+5x)3x\lim _ { x \rightarrow \infty } \left( 1 + \frac { 5 } { x } \right) ^ { 3 x }

A) e-12
B) e
C) e15
D) 1
Unlock Deck
Unlock for access to all 97 flashcards in this deck.
Unlock Deck
k this deck
76
Find limx12xcos1(x2)\lim _ { x \rightarrow 1 } 2 x \cos ^ { - 1 } \left( \frac { x } { 2 } \right)
Unlock Deck
Unlock for access to all 97 flashcards in this deck.
Unlock Deck
k this deck
77
Find limx15xtan1x\lim _ { x \rightarrow 1 } \frac { 5 x } { \tan ^ { - 1 } \sqrt { x } }
Unlock Deck
Unlock for access to all 97 flashcards in this deck.
Unlock Deck
k this deck
78
Find limx1tan1(x)3x\lim _ { x \rightarrow 1 } \frac { \tan ^ { - 1 } ( \sqrt { x } ) } { 3 x }
Unlock Deck
Unlock for access to all 97 flashcards in this deck.
Unlock Deck
k this deck
79
Find limx+tan1(x)3x\lim _ { x \rightarrow + \infty } \frac { \tan ^ { - 1 } ( \sqrt { x } ) } { 3 x }
Unlock Deck
Unlock for access to all 97 flashcards in this deck.
Unlock Deck
k this deck
80
Find limx12tan1x\lim _ { x \rightarrow - \infty } \frac { 1 } { 2 \tan ^ { - 1 } x }
Unlock Deck
Unlock for access to all 97 flashcards in this deck.
Unlock Deck
k this deck
locked card icon
Unlock Deck
Unlock for access to all 97 flashcards in this deck.