Exam 1: Limits

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Is f(x)=xf ( x ) = \sqrt { x } continuous at x=1?x = - 1 ? Explain why or why not.

Free
(Short Answer)
4.8/5
(35)
Correct Answer:
Verified

It is not continuous at x = -1 because it is not defined at x = -1.

f(x)={x2+1 if x<13 if 1x<22x1 if x2f ( x ) = \left\{ \begin{array} { c c } x ^ { 2 } + 1 & \text { if } x < - 1 \\3 & \text { if } - 1 \leq x < 2 \\2 x - 1 & \text { if } x \geq 2\end{array} \right. Find limx2f(x)\lim _ { x \rightarrow 2 } f ( x ) if it exists.

Free
(Multiple Choice)
4.9/5
(36)
Correct Answer:
Verified

D

f(x)={x2 if x<32x+2 if x3f ( x ) = \left\{ \begin{array} { c } x ^ { 2 } \text { if } x < 3 \\2 x + 2 \text { if } x \geq 3\end{array} \right. Find limx3f(x)\lim _ { x \rightarrow 3 } f ( x ) if it exists. Otherwise, explain by one-sided limits.

Free
(Essay)
4.8/5
(29)
Correct Answer:
Verified

limx3f(x)\lim _ { x \rightarrow 3 } f ( x ) does not exist because limf(x)=9, but limf(x)=8\lim f ( x ) = 9 , \text { but } \lim f ( x ) = 8

Use the Intermediate Value Theorem to find a c(,)c \in ( - \infty , \infty ) for f(x)=x3+2f ( x ) = x ^ { 3 } + 2 on the interval [-2, 3] such that f(c)=1f ( c ) = 1

(Short Answer)
4.8/5
(28)

Find limx+tan1(x)3x\lim _ { x \rightarrow + \infty } \frac { \tan ^ { - 1 } ( \sqrt { x } ) } { 3 x }

(Short Answer)
4.9/5
(36)

Find limx12x4x25\lim _ { x \rightarrow - \infty } \frac { 1 - 2 x } { \sqrt { 4 x ^ { 2 } - 5 } }

(Short Answer)
4.8/5
(34)

Given f(x)=4xx2+3xf ( x ) = \frac { 4 x } { x ^ { 2 } + 3 x } , find all the XX values where ff is not continuous.

(Multiple Choice)
4.8/5
(48)

Find the equation of a possible function ff with limf(x)=0\lim f ( x ) = 0 and limx+f(x)=0\lim _ { x \rightarrow + \infty } f ( x ) = 0 not defined at x=3x = 3 , and f(0)=1f ( 0 ) = - 1

(Essay)
4.9/5
(30)

Find all the vertical asymptotes of f(x)=x2x24f ( x ) = \frac { x - 2 } { x ^ { 2 } - 4 }

(Short Answer)
5.0/5
(42)

Does limx2x2x2\lim _ { x \rightarrow 2 } \frac { | x - 2 | } { x - 2 } exist? Explain why or why not.

(Essay)
4.9/5
(35)

Given limx2(x+3)=5\lim _ { x \rightarrow 2 } ( x + 3 ) = 5 find a δ>0\delta > 0 in terms of an ε>0\varepsilon > 0 so that if 0<xc<δ0 < | x - c | < \delta then f(x)L<ε| f ( x ) - L | < \varepsilon

(Multiple Choice)
4.7/5
(35)

Is f(x)={x2 if x<2(x2) if x2f ( x ) = \left\{ \begin{array} { c l } x - 2 & \text { if } x < 2 \\- ( x - 2 ) & \text { if } x \geq 2\end{array} \right. continuous at x=2?x = 2 ? Explain why or why not.

(Essay)
4.8/5
(34)

Find limx0cosx15x\lim _ { x \rightarrow 0 } \frac { \cos x - 1 } { 5 x }

(Short Answer)
4.7/5
(32)

Which of the following forms is/are indeterminate? A. 010 ^ { 1 } B. 000 ^ { 0 } C. 11 ^ { \infty } D. 1\infty ^ { 1 }

(Multiple Choice)
4.8/5
(38)

Suppose that ff and gg are functions with limx3f(x)=4,limx2g(x)=3\lim _ { x \rightarrow 3 } f ( x ) = 4 , \lim _ { x \rightarrow 2 } g ( x ) = 3 Find limx2f(g(x))\lim _ { x \rightarrow 2 } f ( g ( x ) ) , if possible. Otherwise, explain why not.?

(Essay)
4.8/5
(30)

Is f(x)={x2 if x<2(x2) if x2f ( x ) = \left\{ \begin{array} { c l } x - 2 & \text { if } x < 2 \\- ( x - 2 ) & \text { if } x \geq 2\end{array} \right. continuous at x=0?x = 0 ? Explain why or why not.

(Essay)
4.9/5
(40)

Find limx0cosx13cosx\lim _ { x \rightarrow 0 } \frac { \cos x - 1 } { 3 \cos x }

(Short Answer)
4.9/5
(36)

Find limx+12x9x25\lim _ { x \rightarrow + \infty } \frac { 1 - 2 x } { \sqrt { 9 x ^ { 2 } - 5 } }

(Short Answer)
4.9/5
(34)

Find limx05xsin3x\lim _ { x \rightarrow 0 } \frac { 5 x } { \sin 3 x }

(Multiple Choice)
4.9/5
(35)

f(x)={x2+1 if x<13 if 1x<22x1 if x2f ( x ) = \left\{ \begin{array} { c c } x ^ { 2 } + 1 & \text { if } x < - 1 \\3 & \text { if } - 1 \leq x < 2 \\2 x - 1 & \text { if } x \geq 2\end{array} \right. Find limx1f(x)\lim _ { x \rightarrow - 1 } f ( x ) if it exists.

(Multiple Choice)
4.7/5
(29)
Showing 1 - 20 of 97
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)